A SIMPLIFED TRACE FORMULA FOR HECKE OPERATORS FOR $\Gamma_0(N)$

SHEPLEY L. ROSS II

ABSTRACT. Let N and n be relatively prime positive integers, let χ be a Dirichlet character modulo N, and let k be a positive integer. Denote by $S_k(N,\chi)$ the space of cusp forms on $\Gamma_0(N)$ of weight k and character χ , a space denoted simply $S_k(N)$ when χ is the trivial character. Beginning with Hijikata's formula for the trace of T_n acting on $S_k(N,\chi)$, we develop a formula which essentially reduces the computation of this trace to looking up values in a table. From this formula we develop very simple formulas for (1) the dimension of $S_k(N,\chi)$ and (2) the trace of T_n acting on $S_k(N)$.

PRELIMINARIES

For each positive integer N, let

$$\Gamma_0(N) = \left\{ \gamma = \begin{pmatrix} a & b \\ cN & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, \det(\gamma) = 1 \right\};$$

 $\Gamma_0(N)$ is a congruence subgroup of $SL_2(\mathbf{Z})$. Let χ be a (Dirichlet) character mod N. Suppose $N=\prod_{l|N}l^{\nu_l}$, where each l is a prime and $\nu_l=\operatorname{ord}_l(N)$. Then χ can be written as a product $\chi=\prod_{l|N}\chi_l$ of characters, where for each prime $l\mid N$, χ_l is a character mod l^{ν_l} . The exponential conductor $e=e(\chi_l)$ is the smallest value e such that χ_l is a character mod l^e ; note that $e=e(\chi_l)\leq \nu_l$. If χ is a character and $\gamma=\left(\begin{smallmatrix} a&b\\c&d\end{smallmatrix}\right)$, with $a,b,c,d\in\mathbf{Z}$, then by $\chi(\gamma)$ we mean $\chi(a)$. In this paper we will use "|" and "|" for "divides" and "does not divide," respectively.

Fix a positive integer k. For any complex-valued function f and matrix $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in \mathbf{R}$ and $\det(\gamma) > 0$ define

$$f \mid \gamma = (\det(\gamma))^{k/2} (c\tau + d)^{-k} f\left(\frac{a\tau + b}{c\tau + d}\right)$$

(where we take the positive root if k is odd).

Let $\mathcal{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ denote the complex upper half plane, and let f be any complex-valued function on \mathcal{H} . The *cusps* of $\Gamma_0(N)$ are the rational

Received by the editors April 30, 1989 and, in revised form, April 7, 1990. Presented to the joint meeting of the MAA-AMS at San Antonio, Texas, January 24, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 11F11; Secondary 11F25, 11F72, 11Y40.

Key words and phrases. Cusp forms, Hecke operators, modular forms, trace formula.

numbers, along with the point $i\infty$ at infinity. We say that f is a cusp form on $\Gamma_0(N)$ of weight k and character χ if f satisfies

- (i) f is holomorphic on \mathcal{H} ,
- (ii) f is 0 at each cusp,
- (iii) $f \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \chi(a)^{-1} f$ for each $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$.

See [Sha, A-L, or Li] for details. The space of cuspforms on $\Gamma_0(N)$ of weight k and character χ is denoted by $S_k(N,\chi)$, or by $S_k(N)$ if χ is the trivial character.

For each n with (n, N) = 1, let T_n be the standard Hecke operator whose action on $S_k(N, \chi)$ is defined by

(1)
$$f \mid T_n = n^{k-1} \sum_{a,d} \sum_{b=0}^{d-1} \chi(a) f\left(\frac{a\tau + b}{d}\right) d^{-k},$$

where the first sum is over all pairs of integers a, d satisfying a > 0, ad = n, and (a, N) = 1. Note this is the same as the T'_n used by Shimura (see 3.5.7 of [Sha]), and therefore by Hijikata, Pizer, and Shemanske in [H-P-S₁, H-P-S₂]. If n = p, where p is a prime not dividing N and χ is the trivial character, then our T_p is the same as the T_p operator of Atkin and Lehner in [A-L]. (Note however that our weight k is twice the weight k of Atkin and Lehner.)

THE SIMPLIFIED FORMULA; APPLICATIONS

We begin by stating the version of the trace formula for the operator T_n acting on $S_k(N, \chi)$ as given in Theorem 2.2 of [H-P-S₁] and also in Theorem 2.2 of [H-P-S₂]. Denote this trace by $\operatorname{tr}_{N,\chi,k} T_n$.

Theorem 1 (Hijikata-Pizer-Shemanske). Let k be an integer, $k \ge 2$. Let χ be a character mod N and assume $(-1)^k \chi(-1) = 1$. Write $\chi = \prod_{l \mid N} \chi_l$, where for each prime l dividing N, χ_l is a character mod l^{ν} , where $\nu = \operatorname{ord}_l(N)$. Then for (n, N) = 1 we have

$$\operatorname{tr}_{N,\chi,k} T_n = -\sum_{s} a(s) \sum_{f} b(s,f) \prod_{l|N} c'_{\chi}(s,f,l)$$

$$+ \delta(\chi) \operatorname{deg}(T_n) + \delta(\sqrt{n}) \frac{k-1}{12} N \prod_{l|N} \left(1 + \frac{1}{l}\right)$$

$$- \delta(\sqrt{n}) \frac{\sqrt{n}}{2} \prod_{l|N} \operatorname{par}(l),$$

where

$$\delta(\chi) = \begin{cases} 1 & \text{if } k = 2 \text{ and } \chi \text{ is trivial,} \\ 0 & \text{otherwise,} \end{cases}$$

$$\delta(\sqrt{n}) = \begin{cases} n^{k/2-1}\chi(\sqrt{n}) & \text{if } n \text{ is a perfect square,} \\ 0 & \text{otherwise,} \end{cases}$$

$$\operatorname{par}(l) = \begin{cases} 2l^{\nu-e} & \text{if } e \geq \mu+1, \\ l^{\mu}+l^{\mu-1} & \text{if } e \leq \mu \text{ and } \nu \text{ is even,} \\ 2l^{\mu} & \text{if } e \leq \mu \text{ and } \nu \text{ is odd.} \end{cases}$$

Here for a fixed prime $l \mid N$, $\nu = \operatorname{ord}_l(N)$, $\mu = \left[\frac{\nu}{2}\right]$, and $e = e(\chi_l)$. The meanings of s, a(s), b(s, f), and $c'_{\gamma}(s, f, l)$ are given as follows:

Let s run over all integers such that s^2-4n is a positive square or any negative integer. Hence for some positive integer t and squarefree negative integer m, s^2-4n has one of the following forms which we classify into the cases (h) or (e) as follows:

$$s^{2} - 4n = \begin{cases} t^{2}, & \text{(h)} \\ t^{2}m, & 0 > m \equiv 1 \pmod{4}, & \text{(e)} \\ t^{2}4m, & 0 > m \equiv 2, 3 \pmod{4}. & \text{(e)} \end{cases}$$

Let $\Phi(X) = \Phi_s(X) = X^2 - sX + n$ and let x and y be the roots in \mathbb{C} of $\Phi(X) = 0$. Corresponding to the classification of s, put

$$a(s) = \begin{cases} (\min\{|x|, |y|\})^{k-1} |x-y|^{-1} \operatorname{sgn}(x)^k, & (h) \\ \frac{1}{2}(x^{k-1} - y^{k-1})/(x - y). & (e) \end{cases}$$

For each fixed s, let f run over all positive divisors of t and let

$$b(s, f) = \begin{cases} \frac{1}{2}\phi((s^2 - 4n)^{1/2}/f), & \text{(h)} \\ h((s^2 - 4n)/f^2)/\omega((s^2 - 4n)/f^2), & \text{(e)} \end{cases}$$

where ϕ is Euler's function and h(d) (respectively $\omega(d)$) denotes the class number of locally principal ideals (resp. $\frac{1}{2}$ the cardinality of the unit group) of the order of $\mathbf{Q}(\sqrt{d})$ with discriminant d.

Fix a pair (s, f) and let l be a prime divisor of N; let $\nu = \operatorname{ord}_l(N)$ and $\rho = \operatorname{ord}_l(f)$. Put

$$\begin{split} \widetilde{A} &= \{x \in \mathbf{Z} \mid \Phi(x) \equiv 0 \, (l^{\nu+2\rho}) \,, \, 2x \equiv s(l^{\rho}) \} \,, \\ \widetilde{B} &= \{x \in \widetilde{A} \mid \Phi(x) \equiv 0 \, (l^{\nu+2\rho+1}) \}. \end{split}$$

Let $A_{\rho}=A(s\,,\,f\,,\,l)$ (resp. $B_{\rho}=B(s\,,\,f\,,\,l)$) be a complete set of representatives of \widetilde{A} (resp. \widetilde{B}) mod $l^{\nu+\rho}$, and let $B'_{\rho}=B'(s\,,\,f\,,\,l)=\{s-z\mid z\in B_{\rho}\}$. Then

$$c'_{\chi}(s, f, l) = \begin{cases} \sum_{x} \chi_{l}(x) & \text{if } (s^{2} - 4n)/f^{2} \not\equiv 0 (l), \\ \sum_{x} \chi_{l}(x) + \sum_{y} \chi_{l}(y) & \text{if } (s^{2} - 4n)/f^{2} \equiv 0 (l), \end{cases}$$

where x (resp. y) runs over all elements of A_{ρ} (resp. B'_{ρ}). This ends the statement of the theorem.

Proof. See [Hij, H-P-S₁, H-P-S₂].

We introduce a classification of prime numbers to be used throughout this paper. Fix integers n and s, with $n \ge 1$, such that $s^2 - 4n$ is a positive square or any negative integer and write $s^2 - 4n$ as one of t^2 , t^2m , or t^24m as in the statement of Theorem 1. Let l be any prime that divides either N or t, and classify l into one of six cases, A, B, C, D, E, or F, depending on how l

divides $s^2 - 4n$ and whether or not l is odd, as follows:

$$l \text{ is case } \begin{cases} A & \text{if } s^2 - 4n = l^{2a}d^2, \ l \text{ is odd, and } d \text{ is a unit of } \mathbf{Z}_l, \\ B & \text{if } s^2 - 4n = l^{2a}u, \ l \text{ is odd, and } u \text{ is a nonsquare unit of } \mathbf{Z}_l, \\ C & \text{if } s^2 - 4n = l^{2a+1}u, \ l \text{ is odd, and } u \text{ is a unit of } \mathbf{Z}_l, \text{ or } \\ s^2 - 4n = l^{2a+1}u, \ l \text{ is odd, and } u \text{ is a unit of } \mathbf{Z}_l, \text{ or } \\ D & \text{if } s^2 - 4n = 2^{2a}4w, \ l = 2, \ w \in \mathbf{Z}_2, \ w \equiv 2 \pmod{4}, \\ E & \text{if } s^2 - 4n = 2^{2a}u, \ l = 2, \ u \in \mathbf{Z}_2, \text{ and } u \equiv 5 \pmod{8}, \\ F & \text{if } s^2 - 4n = 2^{2a}4w, \ l = 2, \ w \in \mathbf{Z}_2, \text{ and } w \equiv 3 \pmod{4}. \end{cases}$$

We will sometimes denote the case into which l falls by Case(l). Note that $a = \operatorname{ord}_l(t)$, where a is the 'a' which appears in the expression for $s^2 - 4n$, in whatever case l is actually classified; we will sometimes write $a_l(s^2 - 4n)$ to mean this a.

Also let us introduce a convention to be adhered to throughout this paper:

Convention A. Let l be a prime and let n be any integer. We agree that any expression of the form l^n or $l^n - 1$ is taken to be 0 if n < 0.

We are ready to state the new version of the trace formula.

Theorem 2. Let k be an integer, $k \geq 2$. Let χ be a character mod N and assume $(-1)^k \chi(-1) = 1$. Write $\chi = \prod_{l \mid N} \chi_l$, where for each prime l dividing N, χ_l is a character mod l^{ν} , where $\nu = \operatorname{ord}_l(N)$. Then for (n, N) = 1 we have

$$\operatorname{tr}_{N,\chi,k} T_n = -\sum_{s} \left(a(s)b(s) \prod_{l|t,l \nmid N} \gamma(s,l) \prod_{l|N} c(s,l) \right) + \delta(\chi) \operatorname{deg}(T_n) + \delta(\sqrt{n}) \frac{k-1}{12} N \prod_{l|N} \left(1 + \frac{1}{l} \right) - \delta(\sqrt{n}) \frac{\sqrt{n}}{2} \prod_{l|N} \operatorname{par}(l),$$

where $\delta(\chi)$, $\delta(\sqrt{n})$, and par(l) are exactly the same as in Theorem 1. The meanings of s, a(s), b(s), t, $\gamma(s, l)$, and c(s, l) are as follows: Let s, a(s), and t be exactly as in Theorem 1. Now fix s and write $s^2 - 4n$ as one of t^2 , t^2m , t^24m as in Theorem 1. Let

$$b(s) = \begin{cases} \frac{1}{2} & if \, s^2 - 4n = t^2, \\ h(m)/\omega(m) & if \, s^2 - 4n = t^2m \, or \, t^2 4m, \, m < 0, \end{cases}$$

where h(m) is the class number of $\mathbb{Q}(\sqrt{m})$ and $\omega(m)$ is one-half the cardinality of the unit group of $\mathbb{Q}(\sqrt{m})$.

Keeping s fixed, now fix a prime l with $l \mid t, l \nmid N$, and, according to the classification of l, let $a = a_l(s^2 - 4n)$ be the 'a' which appears in the expression for $s^2 - 4n$ and define

$$\gamma(s\,,\,l) = \left\{ \begin{array}{ll} l^a & \text{if l is a case A or D prime},\\ (l^a(l+1)-2)/(l-1) & \text{if l is a case B or E prime},\\ (l^{a+1}-1)/(l-1) & \text{if l is a case C or F prime}. \end{array} \right.$$

Case(l) ν	Λ	$ k_1 $	k_2	k_3	8	k_3 g k_4 ε	బ	k _s	k_6
A	even odd	1	0	1-1	-	<i>l</i> + 1 2	0	$l-1 \begin{vmatrix} l+1 \\ 2 \end{vmatrix} 0 \begin{vmatrix} d(\mu+1,e)d(\mu+1,a) \\ 0 \end{vmatrix}$	
В	even	0	0	<i>l</i> + 1		1+1	0	$l+1 \mid 1 \mid 2 \mid 0 \mid d(\mu+1,e)d(\mu+1,a)$	$d(e, a)d(\mu, a)$ 0
<i>C</i>	even	0	0	1	_	$\begin{vmatrix} l+1\\2l \end{vmatrix}$	1 0	$\begin{bmatrix} 1 & 1 & l+1 & 1 & d(\mu+1,e)d(\mu,a) \\ 2l & 0 & 0 \end{bmatrix}$	$\begin{vmatrix} 0 & 0 \\ d(e, a+1)d(\mu, a) \end{vmatrix}$
D	even odd		$ d(e, a) \min_{0} (a - \mu + 1, 2) 2d(e, a)d(\mu + 1, a) $	-	0	$\begin{vmatrix} l+1 \\ 2 \end{vmatrix}$	-1	$\begin{vmatrix} 1 & 0 & l+1 \\ 2 & 2 & 0 \end{vmatrix} - 1 \begin{vmatrix} d(\mu+1, e)d(\mu+2, a) & d(e, a-1)d(\mu, a-1) \\ 0 & 0 \end{vmatrix}$	$\begin{vmatrix} d(e, a-1)d(\mu, a-1) \\ 0 \end{vmatrix}$
E	even odd	0	$ \left \begin{array}{c} d(e,a) \min_0 (a-\mu+1,2) \\ 2d(e,a)d(\mu+1,a) \end{array} \right $	1+1	0	$\begin{vmatrix} l+1 \\ 2 \end{vmatrix}$	-1	$d(\mu+1, e)d(\mu+2, a)$ 0	$) \min_{0}(a-\mu+1,2) \left l+1 \right 0 \left l+1 \right -1 \left d(\mu+1,e)d(\mu+2,a) \right d(e,a-1)d(\mu,a-1) \right \\ e,a)d(\mu+1,a) = 0$
\overline{F}	even	0	$d(e, a+1)d(\mu, a)$	1	0	l+1	0	$\begin{vmatrix} 1 & 0 & l+1 \\ 2 & 0 & d(\mu+1, e)d(\mu+1, a) \\ 0 & 0 \end{vmatrix}$	$d(e, a)d(\mu, a)$ 0

TABLE 1

Keeping s fixed, now fix a prime $l \mid N$. Let $\nu = \operatorname{ord}_l(N)$, and write $\nu = 2\mu + \delta$, where $\delta = 0$ or 1. Let $e = e(\chi_l)$. Classify l into one of the six cases A, \ldots, F , and, according to the classification, let $a = a_l(s^2 - 4n)$; if l is a case A or D prime let d be the 'd' which appears in $s^2 - 4n$, otherwise let d = 1. Let $\chi_l^* = \chi_l(\frac{s+l^ad}{2}) + \chi_l(\frac{s-l^ad}{2})$; let $\hat{\chi}_l = \chi_l(\frac{s+l^a+l}{2})$, where f = 1 if $\operatorname{Case}(l) = F$, and 0 otherwise. Then c(s, l) is given by the expression

(2)
$$\chi_l^* k_1 l^{\min(2a, \nu-1, a+\nu-e)} + \hat{\chi}_l k_2 k_3 l^{\nu-1} + \chi_l(\frac{s}{2}) k_3 l^{\nu-g} (k_4 (l^{a-\max(\mu, e-\delta)+\varepsilon} - 1)/(l-1) + k_5 l^{a-e+\varepsilon} + k_6),$$

where k_1, \ldots, k_6 , g, and ε are determined from Table 1, by knowing the parity of ν and the classification of the prime l. In the table, define d(x, y) = 1 if $x \le y$ and 0 otherwise, for any integers x and y. Also, let $\min_0(x, y) = \max(0, \min(x, y))$. Note also that Convention A must be followed when evaluating (2).

We remark that we have used Theorem 2 to write a Turbo Pascal program which finds $\operatorname{tr}_{N,\chi,k} T_n$ for small values of k, N, and n, and real characters χ .

The proof of Theorem 2 consists of transforming the first line of the formula given in Theorem 1 into the first line of that given in Theorem 2. We need two lemmas from $[H-P-S_1]$ or $[H-P-S_2]$. The first of these is

Lemma 3. Let the notation be as Theorem 1. In particular, write $s^2 - 4n = t^2$, t^2m , or t^24m as illustrated there. Let l be any prime dividing N or t and put $t = l^at_0$ where $(l, t_0) = 1$. Let $f \mid t$ and put $f = l^\rho f_0$ with $(l, f_0) = 1$. Then $b(s, f) = \alpha(s, \rho, l) \cdot b(s, l^a f_0)$ where

$$\alpha(s\,,\,\rho\,,\,l) = \left\{ \begin{array}{ll} l^{a-\rho} - l^{a-\rho-1} & \text{if l is a case A or D prime}\,,\\ l^{a-\rho} + l^{a-\rho-1} & \text{if l is a case B or E prime}\,,\\ l^{a-\rho} & \text{if l is a case C or F prime}\,. \end{array} \right.$$

Note our Convention A in effect here; if $\rho = a$ we take $l^{a-\rho-1} = 0$. Proof. See Lemma 2.4 of either [H-P-S₁] or [H-P-S₂].

Fix s as in Theorem 1 and write $s^2 - 4n = t^2$, t^2m , or t^24m as illustrated there. Let $l \mid N$ and define $c_{\chi}''(s, \rho, l) = c_{\chi}'(s, l^{\rho}, l)$ for $\rho = 0, \ldots$, $\operatorname{ord}_{l}(t)$. Now let $f \mid t$, and note that $c_{\chi}'(s, f, l)$ depends only on $\operatorname{ord}_{l}(f)$ once s and l are fixed. Write $f = l^{\rho}f_0$ where $\rho = \operatorname{ord}_{l}(f)$; then

$$c'_{\chi}(s, f, l) = c'_{\chi}(s, l^{\rho}f_{0}, l) = c'_{\chi}(s, l^{\rho}, l) = c''_{\chi}(s, \rho, l).$$

Now, if there are v>0 distinct primes l satisfying $l\mid t$ and $l\nmid N$, let $\{l_i\}$, $i=1,\ldots,v$, be a list of them; if there are no such primes, then for convenience set v=1 and define $l_1=1$ and $\alpha(s,0,1)=1$. Next, if $N\neq 1$ let l_{v+1},\ldots,l_{v+w} be a list of the w distinct primes dividing N, while if N=1 then for convenience set w=1 and define $l_{v+1}=1$, $\alpha(s,0,1)=1$ and $c_\chi''(s,0,1)=1$. We can write $t=\prod_{i=1}^{v+w} l_i^{a_i}$ where $a_i=\operatorname{ord}_{l_i}(t)$ if l_i is a (bona-fide) prime and $a_i=0$ if $l_i=1$. Let f be any divisor of t; then we

can write f uniquely as $f = \prod_{i=1}^{v+w} l_i^{\rho_i}$, where $0 \le \rho_i \le a_i$. We have

(3)
$$\sum_{f|l} b(s, f) \prod_{l|N} c'_{\chi}(s, f, l) \\ = \sum_{\rho_1=0}^{a_1} \cdots \sum_{\rho_{v+w}=0}^{a_{v+w}} \left(b\left(s, \prod_{i=1}^{v+w} l_i^{\rho_i}\right) \prod_{i=v+1}^{v+w} c''_{\chi}(s, \rho_i, l_i) \right).$$

The statement of Lemma 3 in our current notation is that, for fixed $\rho_1, \ldots, \rho_{v+w}$, with $0 \le \rho_i \le a_i$ for each $i, i = 1, \ldots, v+w$, and for some particular $i = i_0$ with $1 \le i_0 \le v+w$, we have

$$b\left(s, \prod_{i=1}^{v+w} l_i^{\rho_i}\right) = \alpha(s, \rho_{i_0}, l_{i_0})b\left(s, l_{i_0}^{a_{i_0}} \cdot \prod_{\substack{i \neq i_0 \\ i=1}}^{v+w} l_i^{\rho_i}\right)$$

(and this is clearly also true if $l_{i_0} = 1$). Repeated applications of this equality transform (3) into

$$\sum_{\rho_{1}=0}^{a_{1}} \cdots \sum_{\rho_{v+w}=0}^{a_{v+w}} \left(\alpha(s, \rho_{1}, l_{1}) \cdots \alpha(s, \rho_{v+w}, l_{v+w}) \right. \\ \left. \cdot b\left(s, \underbrace{l_{1}^{a_{1}} \cdots l_{v+w}^{a_{v+w}}}\right) \prod_{i=v+1}^{v+w} c_{\chi}^{\prime\prime}(s, \rho_{i}, l_{i}) \right).$$

Noting that b(s, t) = b(s), this last expression equals

$$b(s) \sum_{\rho_1=0}^{a_1} \cdots \sum_{\rho_{v+w}=0}^{a_{v+w}} \left(\prod_{i=1}^{v+w} \alpha(s, \rho_i, l_i) \cdot \prod_{i=v+1}^{v+w} c_{\chi}''(s, \rho_i, l_i) \right).$$

Again for convenience let $c_{\chi}''(s, \rho_i, l_i) = 1$ for i = 1, ..., v; the above becomes

$$\begin{split} b(s) \sum_{\rho_{1}=0}^{a_{1}} \cdots \sum_{\rho_{v+w}=0}^{a_{v+w}} & \left(\prod_{i=1}^{v+w} \alpha(s\,,\,\rho_{i}\,,\,l_{i})\,c_{\chi}''(s\,,\,\rho_{i}\,,\,l_{i}) \right) \\ &= b(s) \prod_{i=1}^{v+w} \left(\sum_{\rho=0}^{a_{i}} \alpha(s\,,\,\rho\,,\,l_{i})\,c_{\chi}''(s\,,\,\rho\,,\,l_{i}) \right) \\ &= b(s) \prod_{i=1}^{v} \left(\sum_{\rho=0}^{a_{i}} \alpha(s\,,\,\rho\,,\,l_{i}) \right) \cdot \prod_{i=v+1}^{v+w} \left(\sum_{\rho=0}^{a_{i}} \alpha(s\,,\,\rho\,,\,l_{i})\,c_{\chi}''(s\,,\,\rho\,,\,l_{i}) \right). \end{split}$$

All that is needed to prove Theorem 2 is to show two things. First, that $\sum_{\rho=0}^{a_i} \alpha(s,\rho,l_i) = \gamma(s,l_i)$ for each $i,i=1,\ldots,v$, in the case there are v>0 primes l satisfying $l\mid t,l\nmid N$; if there are no such primes then we arranged things so that $\prod_{i=1}^v \left(\sum_{\rho=0}^{a_i} \alpha(s,\rho,l_i)\right) = \alpha(s,0,1) = 1$ which agrees with the "empty" product $\prod_{l\mid t,l\nmid N} \alpha(l)$. Second, we need to show that

$$\sum_{\rho=0}^{u_i} \alpha(s, \rho, l_i) c_{\chi}''(s, \rho, l_i) = c(s, l_i)$$

for each i, i=v+1,..., v+w, in the case that there $are\ w>0$ primes l dividing N; if N=1 we arranged for $\prod_{i=v+1}^{v+w}\sum_{\rho=0}^{a_i}\alpha(s,\rho,l_i)\,c_\chi''(s,\rho,l_i)=\alpha(s,0,1)\,c_\chi''(s,0,1)=1\cdot 1=1$ which agrees with the "empty" product $\prod_{l|N}c(s,l)$.

Suppose then that l is a prime, $l \mid t$, $l \nmid N$. Then $l = l_i$ for some i with $1 \le i \le v$. Let $a = \operatorname{ord}_l(t)$; we show $\sum_{\rho=0}^a \alpha(s, \rho, l) = \gamma(s, l)$.

Suppose l is a case A or D prime. We have

$$\sum_{\rho=0}^{a} \alpha(s, \rho, l) = \sum_{\rho=0}^{a} (l^{a-\rho} - l^{a-\rho-1}) = l^a - l^{-1} = l^a = \gamma(s, l).$$

If Case(l) = B or E,

$$\begin{split} \sum_{\rho=0}^{a} \alpha(s, \rho, l) &= \sum_{\rho=0}^{a} l^{a-\rho} + \sum_{\rho=0}^{a} l^{a-\rho-1} \\ &= (l^{a+1} - 1)/(l-1) + (l^{a} - 1)/(l-1) = \gamma(s, l). \end{split}$$

If Case(l) = C or F,

$$\sum_{\rho=0}^{a} \alpha(s, \rho, l) = \sum_{\rho=0}^{a} l^{a-\rho} = (l^{a+1} - 1)/(l-1) = \gamma(s, l).$$

So all that remains is to explicitly evaluate $\sum_{\rho=0}^{a_i} \alpha(s, \rho, l_i) c_\chi''(s, \rho, l_i)$ for each prime $l_i \mid N$, and show the result is $c(s, l_i)$. Fix $l \mid N$ and write $\alpha(\rho)$ for $\alpha(s, \rho, l)$ and $c(\rho)$ for $c_\chi''(s, \rho, l)$. Now, the task of evaluating $\sum_{\rho=0}^{a} \alpha(\rho) c(\rho)$ and showing that it equals c(s, l) as given by Table 1 is a long straightforward one, but extremely tedious. We give some details concerning the explicit calculation/evaluation of $\sum_{\rho=0}^{a} \alpha(\rho) c(\rho)$ for Case(l) = A and $\operatorname{ord}_l(N)$ even, leaving all other calculations (i.e., those for Case $(l) = B, \ldots, F$, $\operatorname{ord}_l(N)$ even or odd, and Case(l) = A with $\operatorname{ord}_l(N)$ odd) to the reader. First, let us summarize all the calculations here:

Explicit Value of
$$c(s, l) = \sum_{\rho=0}^{a} \alpha(\rho)c(\rho)$$

$$\sum_{\rho=0}^{a} \alpha(\rho) c(\rho)$$
 condition 1 condition 2 for $\operatorname{Case}(l) = A$, $\nu = \operatorname{ord}_{l}(N)$ even
$$a \leq \mu - 1 \quad e \leq \nu - a \qquad \chi_{l}^{*} \, l^{\nu+a-e}$$

$$a = \mu \qquad e \leq a \qquad \chi_{l}^{*} \, l^{\nu+a-e}$$

$$a > \mu \qquad e \leq \mu \qquad \chi_{l}^{*} \, l^{\nu-1} + \chi_{l}(\frac{s}{2})(l-1)l^{\nu-1}$$

$$e > a \qquad \chi_{l}^{*} \, l^{\nu-1} + \chi_{l}(\frac{s}{2})(l-1)l^{\nu-1}$$

$$\mu < e \leq a - 1 \qquad \chi_{l}^{*} \, l^{\nu-1} + \chi_{l}(\frac{s}{2})(l-1)l^{\nu-1}$$

$$\qquad \cdot ((l+1)(l^{a-e}-1)/(l-1) + l^{a-e}+1)$$

$$e = a \qquad \chi_{l}^{*} \, l^{\nu-1} + \chi_{l}(\frac{s}{2})(l-1)l^{\nu-1} (l^{a-e}+1)$$

$$e > a \qquad \chi_{l}^{*} \, l^{\nu+a-e}$$
 condition 1 condition 2
$$\operatorname{Case}(l) = A \,, \ \nu = \operatorname{ord}_{l}(N) \text{ odd}$$

$$a \leq \mu \qquad e \leq \nu - a \qquad \chi_{l}^{*} \, l^{\nu+a-e}$$

$$a>\mu \qquad e\leq \mu+1 \qquad \chi_i^* l^{\nu-1} + \chi_l(\frac{s}{2}) l^{\nu-1} 2 (l^{a-\mu}-1) \\ \mu+1 < e\leq a \qquad \chi_i^* l^{\nu-1} + \chi_l(\frac{s}{2}) l^{\nu-1} 2 (l^{a-e+1}-1) \\ e=a+1 \qquad \chi_i^* l^{\nu+a-e} \\ e>a+1 \qquad \chi_i^* l^{\nu+a-e} \\ e>a \qquad \chi_i(\frac{s}{2}) (l+1) l^{\nu-1} \\ e>a \qquad \chi_i(\frac{s}{2}) (l+1) l^{\nu-1} \\ e>a \qquad \chi_i(\frac{s}{2}) (l+1) l^{\nu-1} ((l+1) (l^{a-\mu}-1)/(l-1)+1) \\ e=a \qquad \chi_i(\frac{s}{2}) (l+1) l^{\nu-1} ((l+1) (l^{a-e}-1)/(l-1)+l^{a-e}+1) \\ e=a \qquad \chi_i(\frac{s}{2}) (l+1) l^{\nu-1} ((l+1) (l^{a-e}-1)/(l-1)+l^{a-e}+1) \\ e>a \qquad 0 \\ condition 1 \ condition 2 \qquad Case(l)=B, \ \nu=ord_l(N) \ odd \\ a\leq \mu \qquad (none) \qquad 0 \\ a>\mu \qquad e\leq \mu+1 \qquad \chi_i(\frac{s}{2}) (l+1) l^{\nu-1} 2 (l^{a-\mu}-1)/(l-1) \\ \mu+1a>a \qquad 0 \\ condition 1 \ condition 2 \qquad Case(l)=C, \ \nu=ord_l(N) \ even \\ a\leq \mu-1 \quad (none) \qquad 0 \\ a\geq \mu \qquad e\leq \mu \qquad \chi_i(\frac{s}{2}) l^{\nu-1} (l+1) (l^{a-\mu+1}-1)/(l-1)+l^{a-e+1}) \\ e>a+1 \qquad 0 \\ condition 1 \ condition 2 \qquad Case(l)=C, \ \nu=ord_l(N) \ odd \\ a\leq \mu-1 \quad (none) \qquad 0 \\ a=\mu \qquad e\leq a+1 \qquad \chi_i(\frac{s}{2}) l^{\nu-1} (l+1) (l^{a-\mu+1}-1)/(l-1)+l^{a-e+1}) \\ e>a+1 \qquad 0 \\ condition 1 \ condition 2 \qquad Case(l)=C, \ \nu=ord_l(N) \ odd \\ a\leq \mu-1 \quad (none) \qquad 0 \\ a=\mu \qquad e\leq a+1 \qquad \chi_i(\frac{s}{2}) l^{\nu-1} (2 l(l^{a-\mu}-1)/(l-1)+1) \\ \mu+1a=a+1 \qquad \chi_i(\frac{s}{2}) l^{\nu-1} (2 l(l^{a-\mu}-1)/(l-1)+1) \\ \mu+1a=a+1 \qquad \chi_i(\frac{s}{2}) l^{\nu-1} (2 l(l^{a-\mu}-1)/(l-1)+1) \\ e=a+1 \qquad \chi_i(\frac{s}{2}) l^{\nu-1} (2 l(l^{a-\mu}-1)/(l-1)+1) \\ e>a+1 \qquad e>a+1 \qquad 0 \\ condition 1 \ condition 2 \qquad Case(l)=D, \ \nu=ord_l(N) \ even \\ a\leq \mu-1 \qquad e\leq a-2 \qquad \chi_i^* l^{\nu+a-e} \\ a>\mu+1 \qquad e\leq a-2 \qquad \chi_i^* l^{\nu+a-e} \\ a>\mu+1 \qquad e\leq a-2 \qquad \chi_i^* l^{\nu+1} + \hat{\chi}_l l^{\nu-1} + \hat{\chi}_l(\frac{s}{2}) l^{\nu} ((l+1) (l^{a-\mu-1}-1)+1) \\ e=a \qquad \chi_i^* l^{\nu-1} + 2\hat{\chi}_l l^{\nu-1} + \chi_l(\frac{s}{2}) l^{\nu} ((l+1) (l^{a-e-1}+1) \\ e=a \qquad \chi_i^* l^{\nu-1} + 2\hat{\chi}_l l^{\nu-1} + \chi_l(\frac{s}{2}) l^{\nu} ((l+1) l^{a-e-1}+1) \\ e=a \qquad \chi_i^* l^{\nu-1} + 2\hat{\chi}_l l^{\nu-1} + \chi_l(\frac{s}{2}) l^{\nu} ((l+1) l^{a-e-1}+1) \\ e=a \qquad \chi_i^* l^{\nu-1} + 2\hat{\chi}_l l^{\nu-1} + \chi_l(\frac{s}{2}) l^{\nu} ((l+1) l^{a-e-1}+1) \\ e>a \qquad \chi_i^* l^{\nu-$$

```
\chi_{l}^{*} l^{\nu-1} + \hat{\chi}_{l} 2 l^{\nu-1}
 a = \mu + 1 e \le a
                                             \chi_l^* l^{\nu+a-e}
                    e > a
                                             \chi_l^* l^{\nu-1} + \hat{\chi}_l 2l^{\nu-1} + \chi_l(\frac{s}{2})l^{\nu} 2(l^{a-\mu-1} - 1)
 a > \mu + 1 e \le \mu + 1
                    \mu + 1 < e < a \chi_l^* l^{\nu - 1} + \hat{\chi}_l 2 l^{\nu - 1} + \chi_l (\frac{s}{2}) l^{\nu} 2 (l^{a - (e - 1) - 1} - 1)
                                             \chi_l^* l^{\nu-1} + \hat{\chi}_l 2 l^{\nu-1}
                    e = a
                                             \chi_l^* l^{\nu+a-e}
                    e > a
condition 1 condition 2
                                             Case(l) = E, \nu = ord_l(N) even
 a \le \mu - 1 (none)
                                             \hat{\chi}_l(l+1)l^{\nu-1}
 a = \mu
                    e \leq a
                    e > a
                                             \hat{\chi}_{l}2(l+1)l^{\nu-1} + \chi_{l}(\tfrac{s}{2})(l+1)l^{\nu}
 a = \mu + 1 e \le a - 1
                                             \hat{\chi}_l 2(l+1)l^{\nu-1}
                    e = a
                    e > a
 a > \mu + 1 e \le \mu
                                             \hat{\chi}_{l}2(l+1)l^{\nu-1} + \chi_{l}(\frac{s}{2})(l+1)l^{\nu}((l+1)(l^{a-\mu-1}-1)+1)
                    \mu < e \leq a - 2 \ \hat{\chi}_l 2(l+1) l^{\nu-1} + \chi_l(\frac{s}{2})(l+1) l^{\nu}
                                               \cdot ((l+1)(l^{a-e-1}-1)+l^{a-e-1}+1)
                    e = a - 1
                                             \hat{\chi}_{l}2(l+1)l^{\nu-1} + \chi_{l}(\frac{s}{2})(l+1)l^{\nu}(l^{a-e-1}+1)
                                             \hat{\chi}_l 2(l+1)l^{\nu-1}
                    e = a
                    e > a
condition 1 condition 2
                                             Case(l) = E, \nu = ord_l(N) odd
a \leq \mu
                   (none)
                                             \hat{\chi}_{l}2(l+1)l^{\nu-1}
a = \mu + 1 e \le a
                    e > a
                                             \hat{\chi}_{l} 2(l+1) l^{\nu-1} + \chi_{l}(\frac{s}{2})(l+1) l^{\nu} 2(l^{a-\mu-1}-1)
a > \mu + 1 e \le \mu + 1
                    \mu+1 < e < a \quad \hat{\chi}_l 2(l+1)l^{\nu-1} + \chi_l(\tfrac{s}{2})(l+1)l^{\nu} 2(l^{a-(e-1)-1}-1)
                                             \hat{\chi}_l 2(l+1)l^{\nu-1}
                    e = a
                    e > a
condition 1 condition 2
                                             Case(l) = F, \nu = ord_l(N) even
a \le \mu - 1 (none)
                                             \hat{\chi}_l l^{\nu-1} + \chi_l(\frac{s}{2}) l^{\nu}
a = u
                    e \leq a
                                             \hat{\chi}_l l^{\nu-1}
                    e = a + 1
                    e > a + 1
a \ge \mu + 1 e \le \mu
                                             \hat{\chi}_l l^{\nu-1} + \chi_l(\frac{s}{2}) l^{\nu} ((l+1)(l^{a-\mu}-1)+1)
                    \mu < e \le a - 1 \hat{\chi}_l l^{\nu - 1} + \chi_l (\frac{s}{2}) l^{\nu} ((l + 1)(l^{a - e} - 1) + l^{a - e} + 1)
                                             \hat{\chi}_l l^{\nu-1} + \chi_l(\frac{\bar{s}}{2}) l^{\nu} (l^{a-e} + 1)
                    e = a
                                             \hat{\chi}_l l^{\nu-1}
                    e = a + 1
                    e > a + 1
condition 1 condition 2
                                             Case(l) = F, \nu = ord_l(N) odd
                                            0
a \le \mu - 1 (none)
                                             \hat{\chi}_l l^{\nu-1}
                   e \leq a + 1
a = \mu
                    e > a + 1
                                             \hat{\chi}_l l^{\nu-1} + \chi_l(\frac{s}{2}) l^{\nu} 2(l^{a-\mu} - 1)
a \ge \mu + 1 e \le \mu + 1
                    \mu + 1 < e \le a \quad \hat{\chi}_l l^{\nu - 1} + \chi_l(\frac{s}{2}) l^{\nu} 2(l^{a - e + 1} - 1)
                                            \hat{\chi}_l l^{\nu-1}
                   e = a + 1
                    e > a + 1
```

In all of what follows, by the "SUM", we mean $\sum_{\rho=0}^{a} \alpha(\rho)c(\rho)$. The key to its explicit evaluation is

Lemma 4. Let p be a prime and let ω be a character modulo some power of p. Let $e = e(\omega)$ be the exponential conductor of ω . If σ and b are nonnegative

integers with $\sigma + b > e$ and $2b \ge e$ and if u is a unit mod p, then

$$\sum_{z \in \mathbf{Z}/p^{\sigma}\mathbf{Z}} \omega(u + zp^b) = \left\{ \begin{array}{ll} p^{\sigma}\omega(u) & \text{if } e \leq b \,, \\ 0 & \text{if } e > b. \end{array} \right.$$

Proof. This is easy. See Lemma 2.1 of [H-P-S₁] or [H-P-S₂].

 ν

condition

Let A_{ρ} and B'_{ρ} be as in Theorem 1. Specific sets of representatives for A_{ρ} and B'_{ρ} are calculated by the authors of [H-P-S₁, H-P-S₂] in their Lemma 2.5 by "easy but tedious calculations"; we copy them here for reference as

Lemma 5. Let $A(s, f, l) = A_{\rho}$ and $B'(s, f, l) = B'_{\rho}$ be the sets appearing in Theorem 1. For fixed N, n, s, and l, A_{ρ} and B'_{ρ} depend only on $\rho = \operatorname{ord}_{l}(f)$. Let $\nu = \operatorname{ord}_{l}(N)$ and set $\nu = 2\mu$ or $\nu = 2\mu + 1$. Classify l as case A, B, etc., setting a and d according to how l is classified. Then the sets A_{ρ} and B'_{ρ} are as follows:

Case(I)
$$\nu$$
 condition

A odd $a - \rho \le \mu$ $A_{\rho} = \left\{ \frac{s \pm l^{2}d}{2} + z l^{2\mu + 2\rho - a + 1} \mid z \in \mathbb{Z}/l^{a - \rho} \mathbb{Z} \right\}$
 $B'_{\rho} = \left\{ \frac{s \pm l^{2}d}{2} + z l^{2\mu + 2\rho - a + 1} \mid z \in \mathbb{Z}/l^{a - \rho} \mathbb{Z} \right\}$
 $a - \rho \ge \mu + 1$ $A_{\rho} = B'_{\rho} = \left\{ \frac{s}{2} + z l^{\mu + \rho + 1} \mid z \in \mathbb{Z}/l^{\mu} \mathbb{Z} \right\}$
even $a - \rho \le \mu - 1$ $A_{\rho} = \left\{ \frac{s \pm l^{\alpha}d}{2} + z l^{2\mu + 2\rho - a + 1} \mid z \in \mathbb{Z}/l^{a - \rho} \mathbb{Z} \right\}$

$$B'_{\rho} = \left\{ \frac{s \pm l^{\alpha}d}{2} + z l^{2\mu + 2\rho - a + 1} \mid z \in \mathbb{Z}/l^{a - \rho - 1} \mathbb{Z} \right\} \uparrow$$
 $a - \rho = \mu$ $A_{\rho} = \left\{ \frac{s}{2} + z l^{a} \mid z \in \mathbb{Z}/l^{\mu} \mathbb{Z} \right\}$

$$B'_{\rho} = \left\{ \frac{s \pm l^{\alpha}d}{2} + z l^{a + 1} \mid z \in \mathbb{Z}/l^{\mu - 1} \mathbb{Z} \right\}$$

$$a - \rho \ge \mu + 1$$
 $A_{\rho} = \left\{ \frac{s}{2} + z l^{\mu + \rho} \mid z \in \mathbb{Z}/l^{\mu} \mathbb{Z} \right\}$

$$B'_{\rho} = \left\{ \frac{s}{2} + z l^{\mu + \rho + 1} \mid z \in \mathbb{Z}/l^{\mu} \mathbb{Z} \right\}$$

$$B'_{\rho} = \left\{ \frac{s}{2} + z l^{\mu + \rho + 1} \mid z \in \mathbb{Z}/l^{\mu} \mathbb{Z} \right\}$$
even $a - \rho \le \mu + 1$ $A_{\rho} = B'_{\rho} = \emptyset$

$$a - \rho \ge \mu + 1$$
 $A_{\rho} = B'_{\rho} = \emptyset$

$$a - \rho \ge \mu + 1$$
 $A_{\rho} = \left\{ \frac{s}{2} + z l^{\mu + \rho + 1} \mid z \in \mathbb{Z}/l^{\mu} \mathbb{Z} \right\}$

$$B'_{\rho} = \left\{ \frac{s}{2} + z l^{\mu + \rho + 1} \mid z \in \mathbb{Z}/l^{\mu} \mathbb{Z} \right\}$$

$$B'_{\rho} = \left\{ \frac{s}{2} + z l^{\mu + \rho + 1} \mid z \in \mathbb{Z}/l^{\mu} \mathbb{Z} \right\}$$

$$B'_{\rho} = \left\{ \frac{s}{2} + z l^{\mu + \rho + 1} \mid z \in \mathbb{Z}/l^{\mu} \mathbb{Z} \right\}$$
even $a - \rho \ge \mu + 1$ $A_{\rho} = B'_{\rho} = \emptyset$

$$a - \rho \ge \mu + 1$$
 $A_{\rho} = B'_{\rho} = \emptyset$

$$a - \rho \ge \mu + 1$$
 $A_{\rho} = B'_{\rho} = \emptyset$

$$a - \rho \ge \mu + 1$$
 $A_{\rho} = B'_{\rho} = \emptyset$

$$a - \rho \ge \mu + 1$$
 $A_{\rho} = B'_{\rho} = \emptyset$

$$a - \rho \ge \mu + 1$$
 $A_{\rho} = B'_{\rho} = \emptyset$

$$a - \rho \ge \mu + 1$$
 $A_{\rho} = B'_{\rho} = \emptyset$

$$a - \rho \ge \mu + 1$$
 $A_{\rho} = B'_{\rho} = \emptyset$

$$a - \rho \ge \mu + 1$$
 $A_{\rho} = B'_{\rho} = \emptyset$

$$a - \rho \ge \mu + 1$$
 $A_{\rho} = B'_{\rho} = \emptyset$

$$a - \rho \ge \mu + 1$$
 $A_{\rho} = B'_{\rho} = \emptyset$

$$a - \rho \ge \mu + 1$$
 $A_{\rho} = B'_{\rho} = \emptyset$

$$a - \rho \ge \mu + 1$$
 $A_{\rho} = B'_{\rho} = \{ \frac{s}{2} + z l^{\mu + \rho + 1} \mid z \in \mathbb{Z}/l^{\mu} \mathbb{Z} \}$
even $a - \rho \ge \mu$ $A_{\rho} = \left\{ \frac{s}{2} + z l^{\mu + \rho + 1} \mid z \in \mathbb{Z}/l^{\mu} \mathbb{Z} \right\}$

$$B'_{\rho} = \left\{ \frac{s}{2} + z l^{\mu + \rho + 1} \mid z \in \mathbb{Z}/l^{\mu} \mathbb{Z} \right\}$$

$$A'_{\rho} = \left\{ \frac{s}{2} + z l^{\mu + \rho + 1} \mid z \in \mathbb{Z}/l^{\mu} \mathbb{Z} \right\}$$

$$A'_{\rho} = \left\{ \frac{s}{2} + z l^{\mu + \rho + 1} \mid z \in \mathbb{Z}/l^{\mu} \mathbb{Z} \right\}$$

$$A'_{\rho} = \left\{ \frac{s}{2} + z l^{\mu + \rho + 1} \mid$$

even
$$a-\rho \leq \mu-1$$
 A_{ρ} and B'_{ρ} are the same as for a case A prime
$$a-\rho = \mu \qquad A_{\rho} = \left\{\frac{s+l^{\alpha}d}{2} + zl^{\alpha} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$B'_{\rho} = \left\{\frac{s+l^{\alpha}d}{2} + zl^{\alpha+1} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$a-\rho = \mu+1 \qquad A_{\rho} = \left\{\frac{s}{2} + zl^{\alpha-1} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$B'_{\rho} = \left\{\frac{s+l^{\alpha}d}{2} + zl^{\alpha} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$B'_{\rho} = \left\{\frac{s+l^{\alpha}d}{2} + zl^{\alpha} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$a-\rho \geq \mu+2 \qquad A_{\rho} \text{ and } B'_{\rho} \text{ are the same as for a case } A \text{ prime}$$

$$E \qquad odd \qquad a-\rho \leq \mu \qquad A_{\rho} = B'_{\rho} = \emptyset$$

$$a-\rho \geq \mu+1 \qquad A_{\rho} \text{ and } B'_{\rho} \text{ are the same as for a case } D \text{ prime},$$
with d set to 1

even $a-\rho \leq \mu-1 \qquad A_{\rho} = B'_{\rho} = \emptyset$

$$a-\rho \geq \mu+1 \qquad A_{\rho} \text{ and } B'_{\rho} \text{ are the same as for a case } D \text{ prime},$$
with d set to 1

$$F \qquad odd \qquad a-\rho \leq \mu-1 \qquad A_{\rho} = B'_{\rho} = \emptyset$$

$$a-\rho = \mu \qquad A_{\rho} = \left\{\frac{s+l^{\alpha}1}{2} + zl^{\alpha} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$B'_{\rho} = \emptyset$$

$$a-\rho \geq \mu+1 \qquad A_{\rho} \text{ and } B'_{\rho} \text{ are the same as for a case } A \text{ prime}$$
even $a-\rho \leq \mu-1 \qquad A_{\rho} = B'_{\rho} = \emptyset$

$$a-\rho \geq \mu+1 \qquad A_{\rho} \text{ and } B'_{\rho} \text{ are the same as for a case } A \text{ prime}$$
even $a-\rho \leq \mu-1 \qquad A_{\rho} = B'_{\rho} = \emptyset$

$$a-\rho = \mu \qquad A_{\rho} = \left\{\frac{s}{2} + zl^{\alpha} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$B'_{\rho} = \left\{\frac{s+l^{\alpha}1}{2} + zl^{\alpha+1} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$B'_{\rho} = \left\{\frac{s+l^{\alpha}1}{2} + zl^{\alpha+1} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$A_{\rho} = \left\{\frac{s+l^{\alpha}1}{2} + zl^{\alpha} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$A_{\rho} = \left\{\frac{s+l^{\alpha}1}{2} + zl^{\alpha} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$A_{\rho} = \left\{\frac{s+l^{\alpha}1}{2} + zl^{\alpha} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$A_{\rho} = \left\{\frac{s+l^{\alpha}1}{2} + zl^{\alpha} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$A_{\rho} = \left\{\frac{s+l^{\alpha}1}{2} + zl^{\alpha} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$A_{\rho} = \left\{\frac{s+l^{\alpha}1}{2} + zl^{\alpha} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$A_{\rho} = \left\{\frac{s+l^{\alpha}1}{2} + zl^{\alpha} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$A_{\rho} = \left\{\frac{s+l^{\alpha}1}{2} + zl^{\alpha} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$A_{\rho} = \left\{\frac{s+l^{\alpha}1}{2} + zl^{\alpha} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$A_{\rho} = \left\{\frac{s+l^{\alpha}1}{2} + zl^{\alpha} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$A_{\rho} = \left\{\frac{s+l^{\alpha}1}{2} + zl^{\alpha} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$A_{\rho} = \left\{\frac{s+l^{\alpha}1}{2} + zl^{\alpha} \mid z \in \mathbf{Z}/l^{\mu}\mathbf{Z}\right\}$$

$$A_{\rho} = \left\{\frac{s+l^{\alpha}1}{2} + zl^{\alpha} \mid z$$

We can now make one more observation: With s fixed and $l \mid N$, let $f \mid t$ and $\rho = \operatorname{ord}_l(f)$ for some $\rho \geq 0$. Refer to the definition of $c'_{\chi}(s, f, l)$ as in Theorem 1. We can actually write

$$c''_{\chi}(s, \rho, l) = c'_{\chi}(s, f, l)$$
 as $\sum_{x \in A_{\rho}} \chi_{l}(x) + \sum_{y \in B'_{\rho}} \chi_{l}(y)$.

For suppose $(s^2-4n)/(l^\rho)^2\not\equiv 0$ (l). Write s^2-4n as t^2 , t^2m , or t^24m as in Theorem 1 and write $t=l^at_0$, where $(l,t_0)=1$; recall this $a=a_l(s^2-4n)$. Clearly if $(s^2-4n)/(l^\rho)^2\not\equiv 0$ (l) then $t^2/l^{2\rho}=l^{2a-2\rho}t_0\not\equiv 0$ (l), which implies $\rho=a$. However, in every case in which $\rho=a$, Lemma 5 shows that the set B'_ρ is empty; consequently $\sum_{y\in B'_\rho}\chi_l(y)=0$. Let us write " A_ρ sum" and " B'_ρ sum" for $\sum_{x\in A_\rho}\chi_l(x)$ and $\sum_{y\in B'_\rho}\chi_l(y)$, respectively, so that $c''_\chi(s,\rho,l)=A_\rho$ sum + B'_ρ sum. Finally we are ready to begin evaluating $\sum_{\rho=0}^a\alpha(\rho)c(\rho)$. Suppose Case(l) = A and $\nu=\mathrm{ord}_l(N)$ is even; write $\nu=2\mu$. Set $a=a_l(s^2-4n)$ and $e=e(\chi_l)$. If $a-\rho\leq\mu-1$ then by applying Lemma 4 twice on each of the sets A_ρ and B'_ρ as given in Lemma 5, we have

$$A_{\rho} \operatorname{sum} = \begin{cases} l^{a-\rho} \chi_l^* & \text{if } e \leq 2\mu + 2\rho - a, \\ 0 & \text{if } e > 2\mu + 2\rho - a \end{cases}$$

and

$$B'_{\rho}\text{sum} = \begin{cases} l^{a-\rho-1}\chi_l^* & \text{if } e \le 2\mu + 2\rho - a + 1, \\ 0 & \text{if } e > 2\mu + 2\rho - a + 1. \end{cases}$$

Notice that if $\rho=a$ then $B'_{\rho}=\varnothing$; in this case the above formula gives $l^{-1}\chi_l^*$ which is 0 by our convention. Adding A_{ρ} sum and B'_{ρ} sum, we have for $a-\rho\leq \mu-1$

(4)
$$c(\rho) = \begin{cases} (l^{a-\rho} + l^{a-\rho-1})\chi_l^* & \text{if } e \le 2\mu + 2\rho - a, \\ l^{a-\rho-1}\chi_l^* & \text{if } e = 2\mu + 2\rho - a + 1, \\ 0 & \text{if } e > 2\mu + 2\rho - a + 1. \end{cases}$$

If $a - \rho = \mu$, then by Lemmas 4 and 5 we have

$$A_{\rho} \text{sum} = \begin{cases} l^{\mu} \chi_{l}(\frac{s}{2}) & \text{if } e \leq a, \\ 0 & \text{if } e > a \end{cases}$$

and

$$B'_{\rho} \text{sum} = \begin{cases} l^{\mu - 1} \chi_l^* & \text{if } e \le a + 1, \\ 0 & \text{if } e > a + 1. \end{cases}$$

Adding A_{ρ} sum and B'_{ρ} sum, we have for $a - \rho = \mu$

(5)
$$c(\rho) = \begin{cases} l^{\mu-1} \chi_l^* + l^{\mu} \chi_l(\frac{s}{2}) & \text{if } e \leq a, \\ l^{\mu-1} \chi_l^* & \text{if } e = a+1, \\ 0 & \text{if } e > a+1. \end{cases}$$

Now suppose $a - \rho \ge \mu + 1$. By Lemmas 4 and 5 we have

$$A_{\rho} \text{sum} = \begin{cases} l^{\mu} \chi_{l}(\frac{s}{2}) & \text{if } e \leq \mu + \rho, \\ 0 & \text{if } e > \mu + \rho \end{cases}$$

and

$$B'_{\rho} \text{sum} = \begin{cases} l^{\mu - 1} \chi_{l}(\frac{s}{2}) & \text{if } e \leq \mu + \rho + 1, \\ 0 & \text{if } e > \mu + \rho + 1. \end{cases}$$

Adding A_{ρ} sum and B'_{ρ} sum we have for $a - \rho \ge \mu + 1$

(6)
$$c(\rho) = \begin{cases} (l^{\mu} + l^{\mu-1})\chi_{l}(\frac{s}{2}) & \text{if } e \leq \mu + \rho, \\ l^{\mu-1}\chi_{l}(\frac{s}{2}) & \text{if } e = \mu + \rho + 1, \\ 0 & \text{if } e > \mu + \rho + 1. \end{cases}$$

Now we are ready to calculate the SUM= $\sum_{\rho=0}^{a} \alpha(\rho)c(\rho)$ under the various possibilities.

Suppose $a \le \mu - 1$. Then for $\rho = 0, \ldots, a$ we have $a - \rho \le \mu - 1$ and therefore $c(\rho)$ is given by (4).

Suppose $e \le 2\mu - a$ (= $\nu - a$). Then for $\rho = 0, ..., a$ we have $e \le 2\mu + 2\rho - a$; by (4) we have

$$\begin{split} \sum_{\rho=0}^{a} \alpha(\rho) c(\rho) &= \sum_{\rho=0}^{a} (l^{a-\rho} - l^{a-\rho-1}) (l^{a-\rho} + l^{a-\rho-1}) \chi_{l}^{*} \\ &= \chi_{l}^{*} \sum_{\rho=0}^{a} (l^{2a-2\rho} - l^{2a-2\rho-2}) = \chi_{l}^{*} (l^{2a} - l^{-2}) = \chi_{l}^{*} l^{2a}. \end{split}$$

Suppose $e>2\mu-a$. Then either $e=2\mu+2\rho_1-a$ for some $\rho_1>0$, or $e=2\mu+2\rho_1-a+1$ for some $\rho_1\geq 0$; we show the SUM is $\chi_l^* l^{\nu+a-e}$ in either case. Suppose then that $e=2\mu+2\rho_1-a$ for some $\rho_1>0$; note $\rho_1\leq a$. If ρ satisfies $\rho_1>\rho$ then $2\rho_1>2\rho+1$ implies $e=2\mu+2\rho_1-a>2\mu+2\rho-a+1$; if $\rho_1\leq \rho$ then $e=2\mu+2\rho_1-a\leq 2\mu+2\rho-a$, so that by (4)

$$c(\rho) = \left\{ \begin{array}{ll} (l^{a-\rho} + l^{a-\rho-1})\chi_l^* & \text{if } \rho \geq \rho_1, \\ 0 & \text{if } \rho < \rho_1, \end{array} \right.$$

and the SUM becomes

$$\begin{split} &\sum_{\rho=0}^{\rho_1-1} \alpha(\rho)c(\rho) + \sum_{\rho=\rho_1}^a \alpha(\rho)c(\rho) \\ &= 0 + \sum_{\rho=\rho_1}^a (l^{a-\rho} - l^{a-\rho-1})(l^{a-\rho} + l^{a-\rho-1})\chi_l^* \\ &= \chi_l^* \sum_{\rho=\rho_1}^a (l^{2a-2\rho} - l^{2a-2\rho-2}) = \chi_l^* \, l^{2a-2\rho_1} = \chi_l^* \, l^{\nu+a-e}. \end{split}$$

Suppose $e = 2\mu + 2\rho_1 - a + 1$ for some $\rho_1 \ge 0$; note $\rho_1 + 1 \le a$. If ρ satisfies $\rho_1 > \rho$ then $e = 2\mu + 2\rho_1 - a + 1 > 2\mu + 2\rho - a + 1$; if $\rho_1 < \rho$ then $e < 2\mu + 2\rho - a + 1$, i.e., $e \le 2\mu + 2\rho - a$. We have

$$c(\rho) = \begin{cases} (l^{a-\rho} + l^{a-\rho-1})\chi_l^* & \text{if } \rho > \rho_1, \\ l^{a-\rho_1-1}\chi_l^* & \text{if } \rho = \rho_1, \\ 0 & \text{if } \rho < \rho_1, \end{cases}$$

so that the SUM equals

$$\begin{split} \sum_{\rho=0}^{\rho_{1}-1} \alpha(\rho) 0 + \alpha(\rho_{1}) l^{a-\rho_{1}-1} \chi_{l}^{*} + \sum_{\rho=\rho_{1}+1}^{a} \alpha(\rho) (l^{a-\rho} + l^{a-\rho-1}) \chi_{l}^{*} \\ &= 0 + (l^{a-\rho_{1}} - l^{a-\rho_{1}-1}) l^{a-\rho_{1}-1} \chi_{l}^{*} \\ &+ \sum_{\rho=\rho_{1}+1}^{a} (l^{2a-2\rho} - l^{2a-2\rho-2}) \chi_{l}^{*} \\ &= \chi_{l}^{*} (l^{2a-2\rho_{1}-1} - l^{2a-2\rho_{1}-2} + l^{2a-2\rho_{1}-2}) \\ &= \chi_{l}^{*} l^{2a-2\rho_{1}-1} = \chi_{l}^{*} l^{\nu+a-e}. \end{split}$$

Suppose $a \ge \mu$; then we can write $a - \rho_0 = \mu$ for some $\rho_0 \ge 0$. Write the SUM as

(7)
$$\sum_{\rho=0}^{\rho_0-1} \alpha(\rho)c(\rho) + \alpha(\rho_0)c(\rho_0) + \sum_{\rho=\rho_0+1}^{a} \alpha(\rho)c(\rho),$$

where we take $\sum_{\rho=0}^{\rho_0-1} \alpha(\rho)c(\rho) = 0$ in the case $\rho_0 = 0$. Suppose $\rho_0 > 0$ and consider $\sum_{\rho=0}^{\rho_0-1} \alpha(\rho)c(\rho)$. If $\rho \le \rho_0-1$ then $a-\rho \ge a-(\rho_0-1)=a-\rho_0+1=\mu+1$ so that $c(\rho)$ is determined using (6).

Suppose $e \le \mu$; then $e \le \mu + \rho$ for $\rho = 0, ..., \rho_0 - 1$. From (6),

$$\begin{split} \sum_{\rho=0}^{\rho_0-1} \alpha(\rho) c(\rho) &= \sum_{\rho=0}^{\rho_0-1} (l^{a-\rho} - l^{a-\rho-1}) (l^{\mu} + l^{\mu-1}) \chi_l(\frac{s}{2}) \\ &= \chi_l(\frac{s}{2}) (l^{\mu} + l^{\mu-1}) \sum_{\rho=0}^{\rho_0-1} (l^{a-\rho} - l^{a-\rho-1}) \\ &= \chi_l(\frac{s}{2}) l^{\mu-1} (l+1) (l^a - l^{a-\rho_0}) = \chi_l(\frac{s}{2}) l^{\mu-1} (l+1) l^{\mu} (l^{a-\mu} - 1) \\ &= \chi_l(\frac{s}{2}) l^{\nu-1} (l+1) (l^{a-\mu} - 1). \end{split}$$

Suppose $e>\mu$; then for some $\rho_1\geq 0$ we have $e=\mu+\rho_1+1$. Suppose $\rho\leq\rho_0-1$. Then $e=\mu+\rho_1+1\leq\mu+\rho$ iff $\rho_1+1\leq\rho$; by (6) we have

(8)
$$c(\rho) = \begin{cases} (l^{\mu} + l^{\mu-1})\chi_{l}(\frac{s}{2}) & \text{if } \rho \geq \rho_{1} + 1, \\ l^{\mu-1}\chi_{l}(\frac{s}{2}) & \text{if } \rho = \rho_{1}, \\ 0 & \text{if } \rho < \rho_{1}. \end{cases}$$

Now, $\rho_1+1\leq \rho_0-1$ iff $\mu+\rho_1+1\leq \mu+\rho_0-1$ iff $e\leq a-1$. Suppose this is the case. We have

$$\begin{split} \sum_{\rho=0}^{\rho_0-1} \alpha(\rho) c(\rho) &= \sum_{\rho=0}^{\rho_1-1} \alpha(\rho) \cdot 0 \ + (l^{a-\rho_1} - l^{a-\rho_1-1}) l^{\mu-1} \chi_l(\frac{s}{2}) \\ &+ \sum_{\rho=\rho_1+1}^{\rho_0-1} (l^{a-\rho} - l^{a-\rho-1}) (l^{\mu} + l^{\mu-1}) \chi_l(\frac{s}{2}) \\ &= \chi_l(\frac{s}{2}) ((l^{a-e+\mu+1} - l^{a-e+\mu}) l^{\mu-1} \\ &\qquad \qquad + (l^{\mu} + l^{\mu-1}) (l^{a-\rho_1-1} - l^{a-\rho_0})) \\ &= \chi_l(\frac{s}{2}) (l^{a-e} l^{\mu} (l-1) l^{\mu-1} + l^{\mu-1} (l+1) (l^{a-e+\mu} - l^{\mu})) \\ &= \chi_l(\frac{s}{2}) (l^{a-e} l^{\nu-1} (l-1) + l^{\nu-1} (l+1) (l^{a-e} - 1)) \\ &= \chi_l(\frac{s}{2}) (l-1) l^{\nu-1} \ ((l+1) (l^{a-e} - 1) / (l-1) \ + l^{a-e}). \end{split}$$

Next, $\rho_1 = \rho_0 - 1$ iff $\mu + \rho_1 + 1 = \mu + \rho_0$ iff e = a. If this is the case, we have

$$\sum_{\rho=0}^{\rho_0-1} \alpha(\rho)c(\rho) = \sum_{\rho=0}^{\rho_1-1} \alpha(\rho) \cdot 0 + (l^{a-\rho_1} - l^{a-\rho_1-1})l^{\mu-1} \chi_l(\frac{s}{2})$$
$$= \chi_l(\frac{s}{2})(l-1)l^{\nu-1}l^{a-e}.$$

Finally, if e > a then $\mu + \rho_1 + 1 > \mu + \rho_0$ so $\rho_1 > \rho_0 - 1$. Thus, $\rho \le \rho_0 - 1$ implies $\rho \le \rho_1 - 1$ so that by (8)

$$\sum_{\rho=0}^{\rho_0-1} \alpha(\rho)c(\rho) = \sum_{\rho=0}^{\rho_0-1} \alpha(\rho) \cdot 0 = 0.$$

Now consider $\alpha(\rho_0)c(\rho_0)$. We have $\alpha(\rho_0)=l^{a-\rho_0}-l^{a-\rho_0-1}=l^{\mu}-l^{\mu-1}=$

 $l^{\mu-1}(l-1)$, so that by (5) directly

$$\begin{split} \text{if } e &\leq a \,, \quad \alpha(\rho_0) c(\rho_0) = (l^\mu - l^{\mu-1}) l^{\mu-1} \chi_l^* \, + l^{\mu-1} (l-1) l^\mu \chi_l(\frac{s}{2}) \\ &= (l^{\nu-1} - l^{\nu-2}) \chi_l^* \, + l^{\nu-1} (l-1) \chi_l(\frac{s}{2}) \,; \\ \text{if } e &= a+1 \,, \quad \alpha(\rho_0) c(\rho_0) = (l^\mu - l^{\mu-1}) l^{\mu-1} \chi_l^* \, = (l^{\nu-1} - l^{\nu-2}) \chi_l^* \,\,; \\ \text{if } e &> a+1 \,, \quad \alpha(\rho_0) c(\rho_0) = 0. \end{split}$$

Consider next $\sum_{\rho=\rho_0+1}^a \alpha(\rho)c(\rho)$. Note that $\rho_0+1\leq a$, for otherwise $1>a-\rho_0=\mu>0$, a contradiction. If $\rho\geq\rho_0+1$ then $a-\rho\leq a-\rho_0-1=\mu-1$; hence we use (4) to find $c(\rho)$.

Suppose $e \le 2\mu + 2(\rho_0 + 1) - a$ (= a + 2); then for $\rho = \rho_0 + 1, \ldots, a$ we have $e \le 2\mu + 2\rho - a$, so that

$$\begin{split} \sum_{\rho=\rho_0+1}^a \alpha(\rho)c(\rho) &= \sum_{\rho=\rho_0+1}^a (l^{a-p}-l^{a-\rho-1})(l^{a-\rho}+l^{a-\rho-1})\chi_l^* \\ &= \chi_l^* \sum_{\rho=\rho_0+1} (l^{2a-2\rho}-l^{2a-2\rho-2}) = \chi_l^* l^{2a-2\rho_0-2} = \chi_l^* l^{\nu-2} \,. \end{split}$$

Suppose $e>2\mu+2(\rho_0+1)-a$ (=a+2). Then either $e=2\mu+2\rho_1-a$ for some $\rho_1>\rho_0+1$ (note $\rho_1\leq a$ or a contradiction arises) or $e=2\mu+2\rho_1-a+1$ for some $\rho_1\geq\rho_0+1$. In either case, $\sum_{\rho=\rho_0+1}^a\alpha(\rho)c(\rho)=\chi_l^*l^{\nu+a-e}$; the work done to show this is virtually the same as that which showed $\sum_{\rho=0}^a\alpha(\rho)c(\rho)=\chi_l^*l^{\nu+a-e}$ under the conditions $a\leq\mu-1$ and $e>2\mu-a$, except that $\sum_{\rho=0}^{\rho_1}\alpha(\rho)c(\rho)$ must be replaced with $\sum_{\rho=\rho_0+1}^{\rho_1-1}\alpha(\rho)c(\rho)$; this has no effect on the outcome, as $c(\rho)=0$ for each ρ in either of these two sums.

Now then, to write explicit formulas for (7) let us first add $\alpha(\rho_0)c(\rho_0)$ to $\sum_{\rho=\rho_0+1}^a \alpha(\rho)c(\rho)$ and simplify. We have

$$\begin{split} \text{if } e &\leq a: \quad \chi_l^* \, (l^{\nu-1} - l^{\nu-2}) + \chi_l(\frac{s}{2}) l^{\nu-1} (l-1) + \chi_l^* \, l^{\nu-2} \\ &= \chi_l^* \, l^{\nu-1} + \chi_l(\frac{s}{2}) l^{\nu-1} (l-1) \, ; \\ \text{if } e &= a+1: \quad \chi_l^* \, (l^{\nu-1} - l^{\nu-2}) + \chi_l^* \, l^{\nu-2} = \chi_l^* \, l^{\nu-1} = \chi_l^* \, l^{\nu+a-e} \, ; \\ \text{if } e &= a+2: \quad 0 + \chi_l^* \, l^{\nu-2} = \chi_l^* \, l^{\nu+a-e} \, ; \\ \text{if } e &> a+2: \quad \chi_l^* \, l^{\nu+a-e} \, . \end{split}$$

Note two things: First, we can combine the last three lines above into

if
$$e \ge a+1$$
: $\chi_l^* l^{\nu+a+e}$.

Second, in (7) we take $\sum_{\rho=0}^{\rho_0-1} \alpha(\rho)c(\rho) = 0$ in case $\rho_0 = 0$, and this is the case iff $a = \mu$. Therefore, $\sum_{\rho=0}^{a} \alpha(\rho)c(\rho)$ is given by the above results in the case $a = \mu$. If $\rho_0 > 0$ (i.e., if $a > \mu$) then we add $\sum_{\rho=0}^{\rho_0-1} \alpha(\rho)c(\rho)$ to the above

results and simplify to find $\sum_{\rho=0}^{a} \alpha(\rho)c(\rho)$. We have:

if
$$e \le \mu$$
:
$$\chi_{l}(\frac{s}{2})l^{\nu-1}(l+1)(l^{a-\mu}-1) + \chi_{l}^{*} l^{\nu-1} + \chi_{l}(\frac{s}{2})l^{\nu-1}(l-1)$$

$$= \chi_{l}^{*} l^{\nu-1} + \chi_{l}(\frac{s}{2})(l-1)l^{\nu-1}((l+1)(l^{a-\mu}-1)/(l-1)+1);$$
if $\mu < e \le a-1$:
$$\chi_{l}(\frac{s}{2})(l-1)l^{\nu-1}((l+1)(l^{a-e}-1)/(l-1)+l^{a-e})$$

$$+ \chi_{l}^{*} l^{\nu-1} + \chi_{l}(\frac{s}{2})l^{\nu-1}(l-1)$$

$$= \chi_{l}^{*} l^{\nu-1} + \chi_{l}(\frac{s}{2})(l-1)l^{\nu-1}((l+1)(l^{a-e}-1)/(l-1)+l^{a-e}+1);$$
if $e = a$:
$$\chi_{l}(\frac{s}{2})(l-1)l^{\nu-1}l^{a-e} + \chi_{l}^{*} l^{\nu-1} + \chi_{l}(\frac{s}{2})l^{\nu-1}(l-1)$$

$$= \chi_{l}^{*} l^{\nu-1} + \chi_{l}(\frac{s}{2})(l-1)l^{\nu-1}(l^{a-e}+1);$$
if $e \ge a+1$:
$$0 + \chi_{l}^{*} l^{\nu+a-e} = \chi_{l}^{*} l^{\nu+a-e}.$$

Refer now to Table 1 for c(s, l). If Case(l) = A and $\nu = ord_l(N) = 2\mu$ is even, we have c(s, l) is equal to

$$\chi_l^* l^{\min(2a,\nu-1,\nu+a-e)} + \chi_l(\frac{s}{2})(l-1)l^{\nu-1}\{(l+1)(l^{a-\max(\mu,e)}-1)/(l-1) + k_5l^{a-e} + k_6\},$$

$$\text{re } k_5 = d(\mu+1,e)d(\mu+1,a) \text{ and } k_6 = d(e,a)d(\mu,a). \text{ We show the state of } l$$

where $k_5 = d(\mu + 1, e)d(\mu + 1, a)$ and $k_6 = d(e, a)d(\mu, a)$. We show that $c(s, l) = \sum_{\rho=0}^{a} \alpha(\rho)c(\rho)$ for Case(l) = A and even $\nu = \operatorname{ord}_l(N) = 2\mu$.

Suppose $a \le \mu - 1$. We have $2a \le 2\mu - 2 = \nu - 2 < \nu - 1$ so that $\min(2a, \nu - 1, \nu + a - e) = \min(2a, \nu + a - e)$. Now, $e \le \nu - a$ iff $2a \le \nu + a - e$, so that c(s, l) gives the χ_l^* -term of the SUM properly. Next, $a - \max(\mu, e) \le a - \mu \le \mu - 1 - \mu = -1$; by our convention, then, $l^{a - \max(\mu, e)} - 1 = 0$. Also, $a \le \mu - 1 < \mu < \mu + 1$ so that $d(\mu, a) = 0$ and $d(\mu + 1, a) = 0$ so that $k_6 = k_5 = 0$. Therefore, since each term in the $\{\}$'s is 0, the $\chi_l(\frac{s}{2})$ -term is 0.

Suppose $a=\mu$. Then $\min(2a,\nu-1,\nu+a-e)=\min(\nu-\tilde{1},\nu+a-e)$, and moreover, e>a iff $\nu+a-e=\min(\nu-1,\nu+a-e)$ so that c(s,l) gives the χ_l^* -term properly. If $e\le a$, we have $a-\max(\mu,e)=a-\mu=0$ so that $l^{a-\max(\mu,e)}-1=0$. Clearly $k_5=0$ and k_6 is 1 so the $\chi_l(\frac{s}{2})$ -term is given by c(s,l) to be $\chi_l(\frac{s}{2})(l-1)l^{\nu-1}$. If e>a, we have $a-\max(\mu,e)\le a-e<0$, so that by convention, $l^{a-\max(\mu,e)}-1=0$; $k_5=k_6=0$ so that each term in the $\{\}$'s is 0, and so no $\chi_l(\frac{s}{2})$ -term appears.

Suppose $a>\mu$. Then $\min(2a,\nu-1,\nu+a-e)=\min(\nu-1,\nu+a-e)$; again e>a iff $\nu+a-e=\min(\nu-1,\nu+a-e)$ so that c(s,l) correctly gives the χ_l^* -term. Now consider the $\chi_l(\frac{s}{2})$ -term. If $e\le\mu$ we have $l^{a-\max(\mu,e)}=l^{a-\mu}$; $d(\mu+1,e)=0$ so that $k_5=0$, while $k_6=1$. The terms in $\{\}$'s become $(l+1)(l^{a-\mu}-1)/(l-1)+1$. If $\mu< e\le a-1$ we have $l^{a-\max(\mu,e)}=l^{a-e}$ while $k_5=k_6=1$ and the terms in $\{\}$'s become $(l+1)(l^{a-e}-1)/(l-1)+l^{a-e}+1$. If e=a we get $l^{a-\max(\mu,e)}-1=l^{a-e}-1=0$; $k_5=k_6=1$ so the terms in $\{\}$'s become $l^{a-e}+1$. Lastly, if e>a, we have $a-\max(\mu,e)=a-e<0$ so that $l^{a-\max(\mu,e)}-1=0$; also $k_5l^{a-e}=0$, and $k_6=0$ so that each term in the $\{\}$'s and therefore the entire $\chi_l(\frac{s}{2})$ -term is 0, and we have shown c(s,l) gives the $\chi_l(\frac{s}{2})$ -term correctly in each case.

This concludes the proof that $\sum_{\rho=0}^{a} \alpha(\rho)c(\rho) = c(s, l)$ for Case(l) = A and even $\nu = \operatorname{ord}_{l}(N)$; we leave verification in the other cases to the reader.

Example 6. Let N=3, k=7, and n=7, and suppose that $\chi=\left(\frac{*}{3}\right)$ is the Legendre symbol. We show how easy Theorem 2 makes the computation of $\operatorname{tr}_{N,\chi,k}T_n$. First note that since k>2, the $\delta(\chi)$ -term of the trace formula is 0, while both $\delta(\sqrt{n})$ -terms are 0 because n is not a perfect square. All we need to do is evaluate \sum_s . Now, $s^2-4n<0$ for $0\leq \pm s\leq 5$; s^2-4n is a perfect square for $\pm s=8$.

Suppose s = 1. We have $s^2 - 4n = -27$, so that t = 3 and m = -3. The contribution to \sum_s for s = 1 is then a(1)b(1)c(1,3). To find c(1,3), we note that $\nu = \operatorname{ord}_3(N) = 1$, so $\mu = 0$ and $\delta = 1$, that $e = e_3(\chi) = 1$, and we determine that 3 is a case C prime, with $a = a_3(s^2 - 4n) = 1$. By Table 1, $k_1 = k_2 = k_5 = \varepsilon = 0$, $k_3 = g = 1$, $k_4 = 6$, and $k_6 = d(1,2)d(0,1) = 1$; also $a - \max(\mu, e - \delta) + \varepsilon = 1$. By (2), $c(1,3) = \chi_3(1/2)3^0(6(3-1)/2+1) = -7$. We compute a(1) = 60, while $b(1) = h(-3)/\omega(-3) = 1/3$. Therefore, the contribution to \sum_s for s = 1 is $60 \cdot (1/3) \cdot -7 = -140$.

Similarly, when s=2, the contribution to \sum_s is $a(2)b(2)c(2,3)=51\cdot (2/1)\cdot 1=102$; if s=4 the contribution to \sum_s is $a(4)b(4)\gamma(4,2)c(4,3)=-90\cdot (1/3)\cdot 4\cdot -1=120$; for s=5 the contribution is $a(5)b(5)c(5,3)=180\cdot (1/3)\cdot 1=60$; for each of these values of s, 3 is a case C prime in the evaluation of c(s,3).

Now, if s=0 or 3, then c(s,3)=0. Therefore, there is no need to evaluate a(s)b(s), nor any products of the $\gamma(s,l)$ -terms; the contribution to \sum_s for either of these values of s is simply 0.

If s=8 then $s^2-4n=36$, so that t=6. The contribution to \sum_s is then $a(8)b(8)\gamma(8,2)c(8,3)$. In finding c(8,3), we have $\nu=\operatorname{ord}_3(N)=1$, $\mu=0$ and $\delta=1$, $e=e_3(\chi)=1$, and we determine that 3 is a case A prime, with $a=a_3(s^2-4n)=1$. By Table 1, $k_2=k_5=k_6=\varepsilon=0$, $k_1=g=1$, and $k_3=k_4=2$; also $\min(2a,\nu-1,a+\nu-e)=0$, $a-\max(\mu,e-\delta)+\varepsilon=1$, $\chi_1^*=\chi_3(1)+\chi_3(7)=2$, and $\chi_3(8/2)=1$. By (2), $c(8,3)=2\cdot 1\cdot 1+0+1\cdot 2\cdot 1(2(3-1)/2+0+0)=6$. We find a(8)=1/6, while b(8)=1/2. Also, $\gamma(8,2)=2$, as 2 is a case D prime and $a_2(s^2-4n)=1$. Therefore, the contribution to \sum_s for s=8 is $(1/6)(1/2)\cdot 2\cdot 6=1$.

By Proposition 7 below, the contributions to \sum_s of s and -s are equal, and so finally we obtain $\operatorname{tr}_{N,\chi,k} T_n = -\sum_s = -2(-140+102+120+60+1) = -286$.

The following proposition states that for fixed s_0 the contributions of the terms corresponding to s_0 and $-s_0$ to the \sum_s in the trace formula as given in Theorem 2 are the same. Therefore, the formula in Theorem 2 could be modified by taking the \sum over all the *nonnegative* integers s satisfying s^2-4n is a positive square or any negative integer, and replacing (say) a(s) with 2a(s), except for s=0.

Proposition 7. Let the notation be as in Theorem 2. Let $s \in \mathbb{Z}$ satisfy $s^2 - 4n$ is a positive square or any negative integer. Then

$$a(-s)b(-s)\prod_{l\mid t\,,\,l\nmid N}\gamma(-s\,,\,l)\prod_{l\mid N}c(-s\,,\,l)=a(s)b(s)\prod_{l\mid t\,,\,l\nmid N}\gamma(s\,,\,l)\prod_{l\mid N}c(s\,,\,l).$$

Proof. Fix s satisfying the hypothesis, and write $s^2 - 4n$ as t^2 , t^2m , or t^24m as in Theorem 1. Fix a prime l with $l \mid t$, $l \nmid N$. Note that b(s) and $\gamma(s, l)$

depend only on $s^2 - 4n = (-s)^2 - 4n$ so that b(s) = b(-s) and $\gamma(s, l) = \gamma(-s, l)$. Let x and y be the roots in C of $X^2 - sX + n$; then -x and -y are the roots of $X^2 - (-s)X + n$, and it follows that $a(-s) = (-1)^k a(s)$. Referring to its definition, note that c(s, l) is of the form

$$C_{1}\left(\chi_{l}\left(\frac{s+l^{a}d}{2}\right)+\chi_{l}\left(\frac{s-l^{a}d}{2}\right)\right) \\ +C_{2}\left(\chi_{l}\left(\frac{s+l^{a+f}d}{2}\right)\right)+C_{3}\chi_{l}\left(\frac{s}{2}\right)\,,$$

where C_1 , C_2 , and C_3 are functions of l, $e = e(\chi_l)$, $\nu = \operatorname{ord}_l(N)$, and $a = \operatorname{ord}_l(t)$, where $s^2 - 4n = (-s)^2 - 4n = t^2$, t^2m , or t^24m as the case may be, so that C_1 , C_2 , and C_3 are independent of the sign of s. Therefore, for the same C_1 , C_2 , and C_3 , we have c(-s, l) equals

$$C_{1}\left(\chi_{l}\left(\frac{-s+l^{a}d}{2}\right)+\chi_{l}\left(\frac{-s-l^{a}d}{2}\right)\right) + C_{2}\left(\chi_{l}\left(\frac{-s+l^{a+f}d}{2}\right)\right)+C_{3}\chi_{l}\left(\frac{-s}{2}\right).$$

First,

$$C_{1}\left(\chi_{l}\left(\frac{-s+l^{a}d}{2}\right)+\chi_{l}\left(\frac{-s-l^{a}d}{2}\right)\right)$$

$$=\chi_{l}(-1)C_{1}\left(\chi_{l}\left(\frac{s+l^{a}d}{2}\right)+\chi_{l}\left(\frac{s-l^{a}d}{2}\right)\right).$$

Next, it is clear that $C_3\chi_l(\frac{-s}{2})=\chi_l(-1)C_3\chi_l(\frac{s}{2})$. Furthermore, if $C_2\neq 0$ then we must have l=2 and d(e,a+f)=1, that is, $e\leq a+f$. In this case, we have $0\equiv 2^{a+f}d\equiv (s+2^{a+f}d)/2-(s-2^{a+f}d)/2\pmod{2^e}$, that is, $(s+2^{a+f}d)/2\equiv (s-2^{a+f}d)/2\pmod{2^e}$, so that

$$C_2 \chi_2 \left(\frac{-s + 2^{a+f} d}{2} \right) = C_2 \chi_2(-1) \chi_2 \left(\frac{s - 2^{a+f} d}{2} \right)$$
$$= \chi_2(-1) C_2 \chi_2 \left(\frac{s + 2^{a+f} d}{2} \right).$$

Therefore, $c(-s, l) = \chi_l(-1)c(s, l)$, and it follows that

$$\prod_{l|N} c(-s, l) = \chi(-1) \prod_{l|N} c(s, l).$$

Finally then,

$$a(-s)b(-s) \prod_{l|t, l\nmid N} \gamma(-s, l) \prod_{l|N} c(-s, l)$$

$$= (-1)^k \chi(-1)a(s)b(s) \prod_{l|t, l\nmid N} \gamma(s, l) \prod_{l|N} c(s, l).$$

This proves the result, because we assume (in both Theorems 1 and 2) that $(-1)^k \chi(-1) = 1$.

The following is easy to show using Theorem 2:

Corollary 8. Let k, χ , and N be as in Theorems 1 and 2. The dimension of the space $S_k(N, \chi)$ is given by the formula

$$\dim(S_k(N, \chi)) = -s_0 - s_1 + d + m - p$$
,

where

$$s_0 = \begin{cases} 0 & \text{if any one of the following conditions is met: } k \text{ is} \\ & \text{odd} \ ; \ 4 \mid N \ ; \ \chi_l(-1) = -1 \text{ or } (\frac{-1}{l}) = -1 \text{ for some} \\ & \text{odd prime } l \mid N \ , \\ \frac{1}{4}(-1)^{k/2-1}\chi(r_0)2^n & \text{otherwise, where } r_0 \in \mathbb{Z} \text{ satisfies } r_0^2 \equiv -1 \pmod{N} \\ & \text{and } n \text{ is the number of odd primes which divide } N, \end{cases}$$

$$s_1 = \begin{cases} 0 & \text{if any one of the following conditions is met: } k \equiv 1 \\ & \text{or } 4 \pmod{6} \text{ ; } 9 \mid N \text{ ; } 2 \mid N \text{ ; or } (\frac{-3}{l}) = -1 \text{ for some} \\ & \text{odd prime } l \mid N \ , l \neq 3, \end{cases}$$

$$s_1 = \begin{cases} \frac{\alpha}{3}\chi(\frac{1}{2})\prod_{l|N,l\neq 3}\beta_l & \text{otherwise, where } \alpha = 1 \text{ if } k \equiv 2 \text{ or } 3 \pmod{6} \text{ and } -1 \\ & \text{if } k \equiv 0 \text{ or } 5 \pmod{6}; \ \beta_l = \chi_l(1+r_1) + \chi_l(1-r_1) \\ & \text{where } r_1 \in \mathbb{Z} \text{ satisfies } r_1^2 \equiv -3 \pmod{N} \text{ if } (N,3) = 1, \\ & \text{and } r_1^2 \equiv -3 \pmod{\frac{N}{3}} \text{ if } 3 || N, \end{cases}$$

$$d = \begin{cases} 1 & \text{if } k = 2 \text{ and } \chi \text{ is trivial,} \\ 0 & \text{otherwise,} \end{cases}$$

$$m = \frac{k-1}{12}N\prod_{l|N}(1+1/l), \qquad p = \frac{1}{2}\prod_{l|N} par(l),$$

where par(l) is defined as in Theorem 1.

Proof. Since T_1 is the identity operator, the trace of T_1 acting on $S_k(N, \chi)$ gives the dimension of the space, so we need only evaluate Theorem 2 with n set to 1. Consider the sum over s in the first part of the trace formula as given in Theorem 2. Now, 0, 1, and -1 are the only values of s such that $s^2 - 4n$ is negative, and there are no integral values of s such that $s^2 - 4n$ is a positive square.

First, fix s=0. We have $s^2-4n=-4=t^24m$, where t=1 and $m=-1\equiv 3$ (4). Since i and -i are the roots of $\Phi(X)$, we find $a(0)=(1/4)i^{k-2}$ $(1+(-1)^k)$. If k is odd, a(0)=0; otherwise $a(0)=(1/2)(-1)^{k/2-1}$. The class number of $\mathbb{Q}\sqrt{-1}$ is 1, and one-half the cardinality of its unit group is 2 so that b(0)=1/2. Since t=1, $\prod_{l|t,l\nmid N}\gamma(0,l)=1$. It remains to evaluate $\prod_{l|N}c(0,l)$. Let l be an odd prime dividing N, and set $\nu=\operatorname{ord}_l(N)$; we have $s^2-4n=-4=l^{2a}\cdot-4$, where a=0. Suppose that $(\frac{-4}{l})=1$ so that $\operatorname{Case}(l)=A$. Let $d_l\in\mathbb{Z}_l$ satisfy $d_l^2=-1$, so that $(2d_l)^2=-4$. Note that $2d_l$ is the 'd' which appears in the classification of l, so that $(s\pm l^ad)/2=(0\pm 1\cdot 2d_l)/2=\pm d_l$. Refer to Table 1 to find c(0,l): We have $k_1=1$, $\min(2a,\nu-1,a+\nu-e)=0$, $k_2=0$, and $\chi_l(0/2)=0$ so that $c(0,l)=\chi_l(d_l)+\chi_l(-d_l)=\chi_l(d_l)(1+\chi_l(-1))$. If $\chi_l(-1)=-1$ then c(0,l)=0 and hence the contribution of the s=0 term to the trace is 0, while if $\chi_l(-1)=1$ we have $c(0,l)=2\chi_l(d_l)$. Now if $(\frac{-4}{l})=-1$, so that $\operatorname{Case}(l)=B$, then

referring to Table 1 for c(0, l) we have $k_1 = k_2 = 0$ and $\chi_l(0/2) = 0$ so that c(0, l) = 0 and therefore the contribution of the s = 0 term to the trace is 0.

Keep s=0, and suppose now that l=2 and $l \mid N$. Then Case(l)=F, a=0, $\chi_2(0/2)=0$, and Table 1 for c(0,l) gives $k_1=0$. Let $\nu={\rm ord}_2(N)$; write $\nu=2\mu$ or $2\mu+1$ as the case may be. If $4\mid N$ then $\mu\geq 1$ so that $d(\mu,a)=d(\mu,0)=0$, thus $k_2=0$ and so c(0,2)=0. If $2\mid N$ then $\nu=1$ and $\mu=0$, and χ_2 is the trivial character, so that $e=e(\chi_2)=0$. We have $k_2=d(e,a+1)d(\mu,a)=d(0,1)d(0,0)=1$; in this case $c(0,2)=k_2k_3\hat{\chi}_2=1\cdot 1\cdot \chi_2((0+2^{0+1}\cdot 1)/2)=\chi_2(1)=1$.

Therefore the contribution of the s=0 term to the trace is 0 unless k is even, $4 \nmid N$, $\chi_l(-1)=1$ for all odd primes $l \mid N$, and $(\frac{-1}{l})=1$ for all odd $l \mid N$. Suppose that all these conditions are met. In particular, since $4 \nmid N$ and $(\frac{-1}{l})=1$ for all odd $l \mid N$, there is some $r \in \mathbb{Z}$ with $r^2 \equiv -1(N)$; note r is odd if $2 \mid N$ so that $\chi_2(r)=1$. If l is an odd prime dividing N and d_l is a unit in \mathbb{Z}_l satisfying $d_l^2=-1$, then $\chi_l(d_l)=\chi_l(r)$, because $d_l\equiv \pm r\pmod{l^{\operatorname{ord}_l(N)}}$ and $\chi_l(-1)=1$. Finally then,

$$\prod_{l|N,l \text{ odd}} 2\chi_l(d_l) = \prod_{l|N,l \text{ odd}} 2\chi_l(r) = 2^n \chi(r),$$

where n is the number of odd primes dividing N.

Now fix s = 1. We have $s^2 - 4n = -3 = t^2 m$, where t = 1 and m = -3. The roots x and y of $\Phi(X) = X^2 - X + 1$ are $(1 \pm \sqrt{-3})/2$; deMoivre's formula gives $(x^{k-1} - y^{k-1})/(x - y) = 2i\sin((k-1)\pi/3)/(i\sqrt{3})$ so that

$$a(1) = \frac{1}{2} \cdot \begin{cases} 1 & \text{if } k \equiv 2, 3(6), \\ 0 & \text{if } k \equiv 1, 4(6), \\ -1 & \text{if } k \equiv 0, 5(6). \end{cases}$$

The class number of $\mathbf{Q}\sqrt{-3}$ is 1, and one-half the cardinality of the unit group is 3, so that b(1)=1/3. Since t=1, $\prod_{l|\iota,l\nmid N}\gamma(1,l)=1$; it remains to evaluate $\prod_{l|N}c(1,l)$. Let $l\mid N$ be an odd prime, $l\neq 3$. Then $s^2-4n=-3=l^{2a}(-3)$ with a=0. Let $\nu=\operatorname{ord}_l(N)$ and set $\nu=2\mu$ or $2\mu+1$ as appropriate. Suppose $(\frac{-3}{l})=1$, so that $\operatorname{Case}(l)=A$. Let d_l be a unit in \mathbf{Z}_l satisfying $d_l^2=-3$. Referring to Table 1 for c(1,l) we see that $k_2=0$, $k_1=1$, and $l^{\min(2a,\nu-1,\nu+a-e)}=l^0=1$. If ν is even, then $\mu>a$ so that $d(\mu+1,a)$ and $d(\mu,a)$ are both 0, hence $k_5=k_6=0$, while if ν is odd, k_5 and k_6 are 0 automatically. Since $a-\max(\mu,e-\delta)\leq 0$, the k_4 -term is 0, and hence for any ν , the contribution to c(1,l) from the $\chi_l(\frac{s}{2})$ -term is 0, and so $c(1,l)=\chi_l((1+d_l)/2)+\chi_l((1-d_l/2))$. If $(\frac{-3}{l})=-1$ then $\operatorname{Case}(l)=B$; here $k_1=0$ while the other k_l -terms are the same as for $\operatorname{Case}(l)=A$. Thus if $(\frac{-3}{l})=-1$, then c(1,l)=0 and therefore the contribution of the s=1 term to the trace is 0.

Suppose now that $l \mid N$ and l = 3; we have $s^2 - 4n = -3 = 3^{2a+1}(-1)$, where a = 0 and -1 is a unit in \mathbb{Z}_3 , so that $\operatorname{Case}(l) = C$. Let $\nu = \operatorname{ord}_3(N)$ and set $\nu = 2\mu$ or $2\mu + 1$. Suppose first that ν is even; refer to Table 1 for c(1, 3). We have $k_1 = k_2 = k_6 = 0$; also $d(\mu, a) = 0$ so $k_5 = 0$. Furthermore, $a - \max(\mu, e) + 1 \le 0$ so the k_4 -term is 0. Therefore the $\chi_l(\frac{s}{2})$ -term is 0, so that if ν is even, c(1, 3) = 0. Now, if ν is odd, we have $k_1 = k_2 = k_5 = 0$,

and $a - \max(\mu, e - 1) \le 0$ so the k_4 -term is 0. Consider k_6 . If $\mu \ge 1$ then $d(\mu, a) = 0$, so $k_6 = 0$, and therefore c(1, 3) = 0; combined with the fact that c(1, 3) = 0 if ν is even we have that the contribution of the s = 1 term to the trace is 0 if $3^2 \mid N$. Suppose $3 \mid N$; then $\mu = 0$, and it follows that $k_6 = 1$. Therefore $c(1, 3) = \chi_3(\frac{1}{2}) \cdot 3^{1-1}(0+0+1) = \chi_3(\frac{1}{2})$; since χ_3 is now either the trivial character or $(\frac{*}{3})$, we have c(1, 3) = 1 or -1, respectively.

Suppose l=2 and $2\mid N$; then $s^2-4n=-3=2^{2a}(-3)$ with a=0 and $-3\equiv 5\pmod 8$ is a unit in \mathbb{Z}_2 , so that $\mathrm{Case}(l)=E$. Refer to Table 1 for c(1,2). We have $k_1=0$. Let $\nu=\mathrm{ord}_2(N)$ and set $\nu=2\mu$ or $2\mu+1$. Suppose first that ν is even. Then $\mu>a$ so that $k_2=k_5=k_6=0$ and the k_4 -term is 0 and therefore c(1,2)=0. If ν is odd, then k_2 and the k_4 -term are again 0, while k_5 and k_6 are automatically 0, so that c(1,2)=0. Hence, if $2\mid N$, the contribution of the s=1 term to the trace is 0.

We have shown that $\prod_{l|N}c(1,l)=0$ unless $9\nmid N$, $2\nmid N$, and $(\frac{-3}{l})=1$ for each odd prime $l\mid N$, $l\neq 3$. Suppose in fact that all these conditions are satisfied. It is then possible to find $r\in \mathbb{Z}$ such that $r^2\equiv -3\pmod N$ if (3,N)=1, and $r^2\equiv -3\pmod (\frac N3)$ if $3\parallel N$, and satisfying the following: for each odd prime $l\mid N$, $l\neq 3$, we have $r\equiv \pm d_l\pmod {l^{\operatorname{ord}_l(N)}}$, where $d_l\in \mathbb{Z}_l$ is a unit with $d_l^2=-3$. For each such l we have $\chi_l(\frac12)(\chi_l(1+r)+\chi_l(1-r))=\chi_l(\frac12)(\chi_l(1\pm d_l)+\chi_l(1\mp d_l))=\chi_l((1+d_l)/2)+\chi_l((1-d_l)/2)$. Taking $\{\chi_3(\frac12)\}$ to mean 1 if $3\nmid N$ and $\chi_3(\frac12)$ if $3\parallel N$, we have $\prod_{l|N}c(1,l)=\{\chi_3(\frac12)\}\cdot\prod_{l|N,l\neq 3}(\chi_l(1+d_l)/2)+\chi_l((1-d_l)/2))=\chi(\frac12)\prod_{l|N,l\neq 3}(\chi_l(1+r)+\chi_l(1-r))$.

By Proposition 7, the contribution of the s = -1 term to the trace equals that of the s = 1 term. The remaining terms in the dimension formula come immediately from the corresponding terms in either Theorem 1 or 2.

Consider the trace formula as given in Theorem 2. If χ is the trivial character, we can make additional simplifications to the formula, the most important being that c(s, l) can be given by a very simple table; this is the result of our next corollary.

Corollary 9. Let k, χ , N, and n be as in Theorem 2, and suppose furthermore that χ is the trivial character. Then for (n, N) = 1 we have

$$\operatorname{tr}_{N,\chi,k} T_{n} = -\sum_{s} \left(a(s)b(s) \prod_{l|t,l\nmid N} \gamma(s,l) \prod_{l|N} c_{0}(s,l) \right) \\
+ \left[\frac{2}{k} \right] \operatorname{deg}(T_{n}) + \delta_{0}(\sqrt{n}) \frac{k-1}{12} N \prod_{l|N} (1+1/l) \\
- \delta_{0}(\sqrt{n}) \frac{\sqrt{n}}{2} \prod_{l|N} \operatorname{par}_{0}(l),$$

where s, a(s), b(s), t, and $\gamma(s, l)$ are exactly the same as in Theorem 2, and

$$\begin{split} \delta_0(\sqrt{n}) &= \left\{ \begin{array}{ll} n^{k/2-1} & \text{if n is a perfect square}\,,\\ 0 & \text{otherwise}\,, \end{array} \right.\\ \mathrm{par}_0(l) &= \left\{ \begin{array}{ll} l^\mu + l^{\mu-1} & \text{if $\nu = \mathrm{ord}_l(N) = 2\mu$,}\\ 2l^\mu & \text{if $\nu = \mathrm{ord}_l(N) = 2\mu + 1$,} \end{array} \right. \end{split}$$

and $c_0(s, l)$ is defined as follows. Fix s and a prime $l \mid N$. Let $\nu = \operatorname{ord}_l(N)$, write $\nu = 2\mu + \delta$, where $\delta = 0$ or 1. Classify l into one of the six cases A, ..., F, and referring to how $\operatorname{Case}(l)$ is determined, let $a = a_l(s^2 - 4n)$. Let d(x, y) = 1 if $x \leq y$ and 0 otherwise, for any $x, y \in \mathbb{Z}$. Then $c_0(s, l)$ is given by the expression

(9)
$$k_1 2 l^{\min(2a, \nu-1)} + k_3 l^{\nu-1} (c_4 (l^{a-\mu+\varepsilon} - 1)/(l-1) + c_6),$$

where the values of k_1 , k_3 , c_4 , c_6 , and ε are determined from Table 2.

Case(l)	ν	k_1	k ₃	C4	Е	<i>c</i> ₆
A or D	even odd	1	l-1	l+1	0	$d(\mu, a)$
B or E	even odd	0	l+1	l+1	0	$d(\mu, a) = 0$
C or F	even odd	0	1	l+1 $2l$	1 0	$d(\mu, a)$

TABLE 2

Remarks. Note that k_1 and k_3 are the same k_1 and k_3 as appear in Theorem 2, while c_4 and c_6 are similar to the k_4 and k_6 (respectively) of the same theorem. Also, one must heed Convention A in evaluating (9). In Theorems 1 and 2 we assume $(-1)^k \chi(-1) = 1$; the corollary's additional hypothesis that χ is trivial implies that k is even.

Proof. Let χ be the trivial character mod N, so that $\chi = \prod_{l|N} \chi_l$, where for each prime $l \mid N$, χ_l is the trivial character mod $l^{\operatorname{ord}_l(N)}$; note $e = e(\chi_l) = 0$ for each prime $l \mid N$. Let the trace $\operatorname{tr}_{N,\chi,k} T_n$ be as given by Theorem 2. Clearly the last three lines of the formula in the statement of Corollary 9 follow directly from the corresponding lines of Theorem 2. All one has to do is show how Table 1 "collapses" into Table 2 by showing that $c_0(s,l) = c(s,l)$ for each fixed s and s where s and s and s and s where s and s and s and s where s and s and s and s and s and s where s and s and s and s and s where s and s an

REFERENCES

- [A-L] A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma_0(m)$, Math. Ann. 185 (1970), 134–160.
- [Hij] H. Hijikata, Explicit formula of the traces of the Hecke operators for $\Gamma_0(N)$, J. Math. Soc. Japan 26 (1974), 56-82.
- [H-P-S₁] H. Hijikata, A. Pizer, and T. Shemanske, *The basis problem for modular forms on* $\Gamma_0(N)$, Mem. Amer. Math. Soc. No. 418, 1989.
- [H-P-S₂] _____, Twists of newforms, preprint, 1988.
- [Li] W. Li, Newforms and functional equations, Math. Ann. 212 (1975), 285-315.
- [Sha] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press, Princeton, N. J., 1971.

DEPARTMENT OF MATHEMATICS, BATES COLLEGE, LEWISTON, MAINE 04240