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A SIMPLIFED TRACE FORMULA
FOR HECKE OPERATORS FOR T, (N)

SHEPLEY L. ROSS II

ABSTRACT. Let N and n be relatively prime positive integers, let y be a
Dirichlet character modulo N, and let k be a positive integer. Denote by
Si(N, x) the space of cusp forms on I'o(N) of weight k and character x,
a space denoted simply Si(N) when y is the trivial character. Beginning
with Hijikata’s formula for the trace of 7, acting on Si(N, x), we develop a
formula which essentially reduces the computation of this trace to looking up
values in a table. From this formula we develop very simple formulas for (1)
the dimension of Si(N, x) and (2) the trace of T, acting on Si(N).

PRELIMINARIES

For each positive integer N, let

ro = {r = (& f;)

I'o(N) is a congruence subgroup of SL,(Z). Let x be a (Dirichlet) character
mod N. Suppose N = Hll n ", where each [ is a prime and v; = ord;(N).
Then x can be written as a product y =[]y x; of characters, where for each

prime /| N, x; is a character mod [” . The exponential conductor e = e(y;) is
the smallest value ¢ such that y; is a character mod /¢; note that e = e(y;) <
v;. If x isa character and y = (24), with a, b, c,d € Z, then by x(y) we
mean x(a). In this paper we will use “|” and “ t ” for “divides” and “does not
divide,” respectively.

Fix a positive integer k. For any complex-valued function f and matrix
y=(4%) with a, b, c,d R and det(y) >0 define

a,b,c,deZ,det(y) = 1} ;

[y = (et (ct+d)* f (a_fir_b)

ct+d
(where we take the positive root if k is odd).
Let # = {z € C|Im(z) > 0} denote the complex upper half plane, and let
f be any complex-valued function on /# . The cusps of I'o(N) are the rational
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numbers, along with the point ico at infinity. We say that f is a cusp form on
I'o(N) of weight k and character x if f satisfies
(i) f is holomorphic on #,
(i) f is O at each cusp,
(iii) f](28)=2x(a)"'f foreach (25)eTy(N).
See [Sha, A-L, or Li] for details. The space of cuspforms on I'((N) of weight
k and character y is denoted by Sy (N, x), or by Si(N) if x is the trivial
character.
For each n with (n, N) =1, let T, be the standard Hecke operator whose
action on Si(N, x) is defined by

d—1
(1) AT =t S paf (22 ) a+,

a,d b=0

where the first sum is over all pairs of integers a, d satisfying a >0, ad =n,
and (a, N) = 1. Note this is the same as the 7, used by Shimura (see 3.5.7 of
[Sha]), and therefore by Hijikata, Pizer, and Shemanske in [H-P-S,, H-P-S;]. If
n =p, where p is a prime not dividing N and y is the trivial character, then
our T, is the same as the 7, operator of Atkin and Lehner in [A-L]. (Note
however that our weight k is twice the weight k of Atkin and Lehner.)

THE SIMPLIFIED FORMULA; APPLICATIONS

We begin by stating the version of the trace formula for the operator 7, act-
ing on Si(N, x) as given in Theorem 2.2 of [H-P-S,;] and also in Theorem 2.2
of [H-P-S;]. Denote this trace by try , « T .

Theorem 1 (Hijikata-Pizer-Shemanske). Let k be an integer, k > 2. Let x be
a character mod N and assume (—1)kx(—1) = 1. Write x = [1;y x:, where

for each prime | dividing N, x; is a character mod [Y, where v = ord;(N).
Then for (n, N) =1 we have

try ok Tn = — 3 a() b6, N eyls, £ 1)
s s

IIN

+d(x) deg(T) + 6(ﬁ)k1_21NH (1 " %)
IIN

—5(\/5)4 [Ipar(),

IIN

where
- { 1 ifk =2 and x is trivial

I(x 0 otherwise,

nkI2=1y(/n) if n is a perfect square,
otherwise,

0
{21"“’ fe>u+1,

st/ = {

[* 4+ [+=1 jfe < uandv is even,
20k ife<uandv is odd.

par(/) =
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Here for a fixed prime | | N, v =ord;(N), u=[%], and e = e(x).

The meanings of s, a(s), b(s, f), and c,(s, f, ) are given as follows:

Let s run over all integers such that s*>—4n is a positive square or any negative
integer. Hence for some positive integer t and squarefree negative integer m,
52— 4n has one of the following forms which we classify into the cases (h) or ()
as follows:

2, (h)
s?—4n={ *’m, 0>m=1(mod4), (e
t24m, 0>m=2,3(mod4). (e

Let ®(X) = ®y(X) = X2 —sX +n and let x and y be the roots in C of
®(X) = 0. Corresponding to the classification of s, put

Cmin{ x|, [y E X -y [ sk, (b)
““*'{%ub*—ybnﬂx—yy ©

For each fixed s, let f run over all positive divisors of t and let

38((s* —4n)' 2/ f), (h)
h((s* = 4n)/ fA)]w((s? - 4n)/f?),  (e)

where ¢ is Euler’s function and h(d) (respectively w(d)) denotes the class
number of locally principal ideals (resp. % the cardinality of the unit group) of
the order of Q(v/d) with discriminant d .

Fix a pair (s, f) and let | be a prime divisor of N ; let v = ord;(N) and
p =ord;(f). Put

bs. N ={

A={x€Z|®(x)=0("*%), 2x = s(I")},
B={xeA|®(x)=0("**").

Let 4, = A(s, f,~l) (resp. B, = B(s, f, 1)) be a complete set of represen-
tatives of A (resp. B) mod [**7, and let B, = B'(s, f,])={s—z |z € By}.
Then
2o xi(x) if (s*—4n)/f2Z£0(),

Yo xx)+ X, 0 if (st —4n)/fF=0(),
where x (resp. y) runs over all elements of A, (resp. B,). This ends the

statement of the theorem.
Proof. See [Hij, H-P-S,, H-P-S,].

C}(s,f,1)={

We introduce a classification of prime numbers to be used throughout this
paper. Fix integers n and s, with n > 1, such that s2—4n is a positive square
or any negative integer and write s —4n as one of 2, t!m, or t*4m as in the
statement of Theorem 1. Let / be any prime that divides either N or ¢, and
classify / into one of six cases, 4, B, C, D, E, or F, depending on how [
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divides s2 — 4n and whether or not / is odd, as follows:

( A if s2 —4n =1%%d?, [ is odd, and 4 is a unit of Z;,

B if s2—4n =[*y, [ is odd, and u is a nonsquare unit of Z;,

C if s? —4n =[%*1y [ is odd, and u is a unit of Z;, or

[ is casey{ s2—4n=1"4w =2, weZ,,w=2(mod4),

D ifs2—4n=2%4d? | =2, and d is a unit of Z,,

E ifs2—4n=2%y,l=2,u€Zy,and u=5 (mod 8),

( F ifs?—4n=2%4w,l=2,w € Zy,and w = 3 (mod 4).

We will sometimes denote the case into which / falls by Case(/). Note that
a = ord;(t), where a is the ‘a’ which appears in the expression for s2 — 4n,
in whatever case / is actually classified; we will sometimes write a;(s> —4n) to

mean this a.
Also let us introduce a convention to be adhered to throughout this paper:

Convention A. Let / be a prime and let n be any integer. We agree that any
expression of the form /” or /" — 1 istakentobe 0if n<O0.

We are ready to state the new version of the trace formula.

Theorem 2. Let k be an integer, k > 2. Let y be a character mod N and
assume (—=1)ky(=1)=1. Write x = HIIN X1, Where for each prime | dividing
N, yx; is a character mod ¥, where v = ord;(N). Then for (n, N) =1 we
have

try ok In = —Z( a@)b(s) [[ »¢s.D]]eCs, 1)

s It 14N IIN
+ 500 deg(T) + SV N ] (1+7)
1IN
— (/M) Y2 ] par(t
I|\N

where 6(x), d(v/n), and par(l) are exactly the same as in Theorem 1.

The meanings of s, a(s), b(s), t, y(s, 1), and c(s, l) are as follows:

Let s, a(s), and t be exactly as in Theorem 1. Now fix s and write s* — 4n
as one of 2, t*m, t*4m as in Theorem 1. Let

1 2 _dn — 12
b(s) ={ 3 ifst—4n=1*,
h(m)/w(m) ifs?—4n=1tmort?4m, m<O0,

where h(m) is the class number of Q(v/m) and w(m) is one-half the cardinality
of the unit group of Q(v/m).

Keeping s fixed, now fix a prime | with [|t,[{N, and, according to the
classification of 1, let a = a;(s2—4n) be the ‘a’ which appears in the expression
for s2 — 4n and define

/e if l is a case A or D prime,
(s, =¢ (I°(l+1)-2)/(I-1) iflisacaseB orE prime,
(e - 1)/ -1) ifl is a case C or F prime.
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Keeping s fixed, now fix a prime | | N. Let v = ord;(N), and write v =
2u+3d, where 6 =0 or 1. Let e = e(y;). Classify [ into one of the six cases
A, ..., F, and, according to the classification, let a = a;(s> —4n); if | isa
case A or D prime let d be the ‘d’ which appears in s* — 4n, otherwise let
d=1. Let yj = (359) + g (==F4); let 3y = p(t572), where f =1 if
Case(l) = F, and 0 otherwise. Then c(s, l) is given by the expression

(2) XI* kl lmin(2a,u—1,a+u—e) + 21k2k3 lu—l
o 2(3) Ky IV (g€ 1) (] — 1) 4 K5 19764 4 Kg),

where ki, ..., ks, g, and ¢ are determined from Table 1, by knowing the par-
ity of v and the classification of the prime |. In the table, define d(x,y) =1
if x <y and 0 otherwise, for any integers x and y. Also, let miny(x, y) =
max(0, min(x, y)). Note also that Convention A must be followed when evalu-
ating (2).

We remark that we have used Theorem 2 to write a Turbo Pascal program
which finds try , x T, for small values of k, N, and n, and real characters

The proof of Theorem 2 consists of transforming the first line of the formula
given in Theorem 1 into the first line of that given in Theorem 2. We need two
lemmas from [H-P-S;] or [H-P-S;]. The first of these is

Lemma 3. Let the notation be as Theorem 1. In particular, write s* — 4n =
12, 2m, or t*4m as illustrated there. Let | be any prime dividing N or t and
put t = [%y where (I,t) =1. Let f |t and put f=1°fy, with (I, fo) = 1.
Then b(s, f)=a(s, p,1)-b(s, [9fy) where

ja=p _ Ja=p=1 if] js a case A or D prime,
a(s,p, )= 1P+ %P~ iflis a case B or E prime,
2=, if l is a case C or F prime.
Note our Convention A in effect here; if p =a we take 1471 =0.

Proof. See Lemma 2.4 of either [H-P-S;] or [H-P-S,].

Fix s as in Theorem 1 and write s2 —4n = t2, 2m, or t*4m as illustrated
there. Let /| N and define cj(s, p, ) = ¢, (s, /7, 1) for p=0,..., ord)(?).
Now let f| ¢, and note that c,(s, f, /) depends only on ord,(f) once s and
| are fixed. Write f = [?f; where p = ord,(f); then

(s, LD =c(s, IPfo, 1) = ci(s, 1P, ) =¢cy(s, p, D).

Now, if there are v > 0 distinct primes / satisfying / | ¢ and [/t N, let

{li}, i=1,...,v, be a list of them; if there are no such primes, then for
convenience set v = 1 and define /; =1 and (s, 0, 1) =1. Next, if N # 1
let ly41,..., lyyw be a list of the w distinct primes dividing N, while if

N =1 then for convenience set w = 1 and define /,,; =1, a(s,0,1) =1

and cj(s, 0, 1) = 1. We can write ¢ = [[;"}" I where a; = ord;(¢) if /; is a

(bona-fide) prime and aq; = 0 if /; = 1. Let f be any divisor of ¢; then we
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can write f uniquely as f = [[2" /",

> bis, N]] e

St IIN

(3) Qy+w v+w v4+w
_Z > ( (s, Hl{"’) II c;’(s,pi,li)).

=0 pyiuw=0 i=1 i=v+1

where 0 < p; < a;. We have

The statement of Lemma 3 in our current notation is that, for fixed py, ...,
Pusw , With 0 < p; < a; foreach i, i=1,..., v+ w, and for some particular
i =iy with 1 <iy<v+w, we have

v+w v+w
( Hl”‘)-a(s Pio> li)b | s, lalo Hlp'

i=1 i#ip
i=1

(and this is clearly also true if /;, = 1). Repeated applications of this equality
transform (3) into

Qy+w

Z Z ( S P],l] (S,pv+w,lv+w)

p1=0 Po+w=0

v+w
'b(s,l;ll' lgm‘f H C;(S, piali))‘
T i=v+1

Noting that b(s, t) = b(s), this last expression equals

Ay+w v+w v+w
Z > (Ha(s pi, 1)+ I ¢ts, p,,l))
=0 pysu=0 i=v+l1

Again for convenience let ¢/(s, p;, ;) = 1 for i =1, ..., v; the above be-
comes

Ay+w v+w

b(s) Z Z (H a(s, pi, lj)Cg(S, Pis 11‘))
i=1

=0 Porw=0

—b(s)ﬁ(z (s, p,l)cy(s, p, l))

—b<s),Hl(pZ_0a<s p.1)- ,ﬁ.(,,%““ p NG5, 1),

All that is needed to prove Theorem 2 is to show two things. First, that
27,';00(5, p, ) = y(s,1l;) foreach i, i = 1,...,v, in the case there are
v > 0 primes / satisfying /| ¢, [{N; if there are no such primes then we
arranged things so that [];_, (EZ';O a(s, p, I;)) = a(s, 0, 1) = 1 which agrees
with the “empty” product 1'[”,, IEN a(l). Second, we need to show that

a;

ZG(S, p,li)cg(s9 P, ll) =C(S, ll)

p=0
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foreach i, i=v+1,...,v +w, in the case that there are w > 0 primes /
dividing N;if N = [ we arranged for [T504 Eooals, p, l)cy(s, p, Ii) =

a(s, 0, l)c"(s 0,1) = 1.1 =1 which agrees with the * empty product
[Iynels, l).

Suppose then that / is a prime, /|¢, /[{N. Then [/ = [; for some i with
1<i<w. Let a=ord)(f); weshow 37 _sa(s, p, 1) =y(s, ).
Suppose / is a case 4 or D prime. We have
a a

Yoals,p, =Y (1P =12 =10~ 7L = [0 = y(s, ).

p=0 p=0
If Case(/)=B or E,

p=0 p=0

p=0
= -0/ -D+*-D/U=1)=y(s, D).

If Case(/)=C or F,

a

Z a(s, p, 1) = ZI" =~ 1)/ -1) =y(s, ).

p=0

So all that remains is to explicitly evaluate Y% p=0 (S, P, li)cy(s, p, ;) for
each prime /; | N, and show the result is c(s liy. Fix /| N and write
a(p) for afs, p, 1) and c(p) for cj(s, p, ). Now, the task of evaluating
Z‘;}:o a(p)c(p) and showing that it equals c(s, /) as given by Table 1 is a long
straightforward one, but extremely tedious. We give some details concerning the
explicit calculation/evaluation of ZZ=0 a(p)c(p) for Case(l) = A and ord;(N)
even, leaving all other calculations (i.e., those for Case(/) = B, ..., F, ord;(N)
even or odd, and Case(/) = A with ord;(N) odd) to the reader. First, let us
summarize all the calculations here:

a
Explicit Value of c¢(s, /) = Z a(p)c(p)
p=0

;=o a(p)c(p)
condition 1 condition 2 for Case(/) = A, v = ord;(N) even

a<pu-1 e<v-a X1
e>v-—a xpvra-e
a=p e<a P+ (3 - et
e>a Xl-lu+a—e
a>u ey U= DN+ DR =)= 1) + 1)

I+ D= -1/ - 1)+ 1%=¢ + 1)
e=a xR (5= DI + 1)
e>a X71u+a—e

S

3)
p<e<a-—1 x4+ () -nr!

—e

$)

condition ! condition 2 Case(/) = A, v =ord;(N) odd
a<uyu e<v-—a X1
e>v-—a e
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a>pu e<u+1 PN () 2@eE — 1)
p+l<e<a yrl='+ y(§rr-12e-e+1 - 1)
e=a+1 x ! (=x,’l"+““’)
e>a+1 xprrrae

condition 1 condition 2 Case(l) = B, v =ord;(N) even

a<pu—1 (none) 0
a=u e<a u($H)U+nr-t
e>a 0
a>yp esu b7 + DTN+ DU =1/ =- 1)+ 1)

(3
p<e<a-1 yE)U+ DN+ 1) - 1)/ -1)+17¢ +1)
e=a ($)U+ DIv=1(1a=e 4+ 1)

e>a 0

condition 1 condition 2 Case(/) = B, v = ord;(N) odd

asuyu (none) 0

a>pu esu+1 u$)U+ D=2 — 1)/ - 1)
p+l<e<a y)U+ 012004 —1)/(1-1)
e>a 0

condition 1 condition 2 Case(/) = C, v =ord;(N) even

a<pu—1 (none) 0

apu esu DI+ e — 1)/ - 1)
p<e<a N+ DU — D/ = 1) + [2mest)
e=a+l xi($)Ir—1ja—e+!
e>a+1 0

condition 1 condition 2 Case(/) = C, v = ord;(N) odd

a<p—1 (none) 0
a=p e<a+l a3t
e>a+1 0

a>pu+l esp+1 u$HFrRIeE -/ - 1)+ 1)
p+l<e<a y$Hr-tiEe-et-1/(1-1+1)
e=a+1 (-1
e>a+1 0

condition 1 condition 2 Case(l) = D, v = ord;(N) even

a<pu—-1 e<v-a X
e>v-—a xpvre—e
a=pu e<a P+ et
e>a X;1u+a—e
a=p+1 e<a-1 xR g2 (51
e=a P 77 Lt
e>a X;- Jv+a—e
a>u+l e<y XN 20 4 () + DA = 1)+ 1)

u<e<a-2 xrlv='42g1-!

P+ et — 1) 4 e )
e=a-1 g lele2gll s g ($Pae 4 1)
e=a x4 2!
e>a X[v[u-«-a—e

condition 1 condition 2 Case(/) = D, v = ord;(N) odd

a<su e<v-—a 112
e>v—a 1 [vta—e
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a=u+1 e<a X+ g20rt
e>a X; Jv+a—e

a>pu+1 e<pu+1 T 20 y($)Ir(eE - 1)
prl<e<a xpl=l4 22001 4 g (3)o(la-e=n=1_ )
e=a Xl 2!
e>a X Jv+a—e

condition 1 condition 2 Case(l) = E, v =ord;(N) even

a<u—1 (none) 0
a=u e<a l+ -t
e>a 0
a=p+1 e<a-1 220+ DI g ($)+ )Y
e=a 220+ 1v-1
e>a 0
a>u+1 e<uy 120+ D)+ U+ DI+ DI #= =1y + 1)
p<e<a-2 y2(+ 1)+ y (5 + 1Y

X
it
((I+n)(e—e=-l — 1) 4 Ja—e=1 1 1)
e=a-—1 220+ DIV 4 (5 + DIY(1a—e—1 4+ 1)
e=a 220 + vt

e>a 0

condition | condition 2 Case(l) = E, v = ord;(N) odd

alpu (none) 0

a=u+1 e<a 2+ vt
e>a 0

a>u+1 e<u+l1 2+ nr-1 + 05U+ Dr2(a-rt — )
u+l<e<a g2+ 11t + (3 + Dlr2(la=e=N-1_q)
e=a 220+ Hiv-!
e>a 0

condition 1 condition 2 Case(/) = F, v =ord;(N) even

a<u-—1 (none) 0
a=p e<a ()
e=a+1 !
e>a+1 0
azp+l e<yu Ll (U + D{EE - 1) + 1)
p<e<a—1 gl 4+ (I + 1) - 1)+ 197 +1)
e=a 1l =+ (e + 1)
e=a+1 vt
e>a+1 0
condition 1 condition 2 Case(/) = F, v =ord;(N) odd
a<u—-1 (none) 0
a=yu e<a+1 vt
e>a+1 0

a>u+1 e<u+1 N+ u($Hr2eE - 1)
pt+l<e<a gl='+yE)raie-e — 1)
e=a+1 vt
e>a+1 0

In all of what follows, by the “SUM”, we mean EZ=0 a(p)c(p). The key to
its explicit evaluation is

Lemma 4. Let p be a prime and let w be a character modulo some power of p .
Let e = e(w) be the exponential conductor of w. If ¢ and b are nonnegative
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integers with d +b > e and 2b > e and if u is a unit mod p, then

Z€Z/p°ZL

¥ wW+Zf)={p%Mw

ife<b,
0 ife >b.

Proof. This is easy. See Lemma 2.1 of [H-P-S,] or [H-P-S,].

Let 4, and B) be as in Theorem 1. Specific sets of representatives for 4,
and B are calculated by the authors of [H-P-S;, H-P-S,] in their Lemma 2.5
by “easy but tedious calculations”; we copy them here for reference as

Lemma S. Let A(s, f,1)= A, and B'(s, f, 1) = B, be the sets appearing in
Theorem 1. Forfixed N, n, s,and |, A, and By, depend only on p = ord,(f).

Let v =ord;(N) and set v =2u or v=2u+1. Classify | ascase A, B, etc.,
setting a and d according to how [ is classified. Then the sets A, and B, are

as follows :

Case(l) v

A odd
even

B odd
even

C odd
even

D odd

condition
a-p<yp
a-p2p+l
a-p<pu-1
a-p=4pu
a-p2p+l
a-p<p
a-p2p+l
a-p<p-—1
a-p=u
a-p2p+1
a-p<p-1
a-p=4pu
a-p2pu+l
a-p<p-1
a-p2u
a—-psp
a-p=u+1
a-p>p+2

Ay = {4 zpur2e-art | 2 e 7/19-07)
Blll = {# + z[2u+2p—a+2 |z € Z/la_”_ll}'l'
Ap =B, = {% + zI#+Ptl | z € Z/IFZY

Ap= {sizl"d +zl42-a | 7 ¢ Z/l“‘/’Z}

By = {4 + zpm2-avt | z e Z/19-r- 12} ¢
Ap={5+zI°|z€Z/I'L}

B, = {s:té"d +zI9% | z € Z/l"_lZ}
Ap = {5+ 2zl | z € Z/I*L}

B, = {§ +zIt+r+l | z € Z/I*-1Z}
Ap = B, = {§ +zI"P+! | z € Z/IFZ}
A4, =B, =2
Ap={5+zI°|z€Z/I*L}

B,=0

Ap = {5+ 2107 | z € 2147}

Bl = {§ + zIm+r+1 | z € Z/I+-1Z}
4p=B,=2

Ap = {5+ 2% | z € Z/1*Z}

B, =2

Ap = By = {§ + zIm+p+1 | z € Z/IFZ}
Ap=B,=0

p
Ap={5+zI"r |z e L/I'L}
B, = {5 +zlttPtl | z € Z/IF1Z})

Ap and Bj, are the same as for a case A prime
Ap=By={shd 210z ¢ Z/I”Z}

Ap and By, are the same as for a case A prime
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even a—p<u-1 A, and B,’, are the same as for a case A prime
a-p=yp ap= {1210 z e 202}
By = {4 4 21t | z e 21012}
a-p=p+1 Ay={§+z1°"|z€Z/IFL}
By = {4 + 21| z e 212}
a-p2p+2 Ap and Bj arethe same as for a case A prime
E odd a-p<u Ap=B,=0
a—p2p+1 A, and Bj are the same as for a case D prime,
with d set to 1
even a-p<pu-1 A,=B,=2
a-p=u Ap={”T’a+zla|zeZ/1”Z}
B, =0
a-p=2p+1 Ay and By are the same as for a case D prime,
with d set to |
F odd a-p<pu-1 Ay=B,=0
a-p=u A,,={S+’T"“+z1a+l|zGZ/1ﬂz}
B, =0
a-p2u+1 Ay and Bj are the same as for a case A prime
even a-p<u-1 Ay,=B,=0
a-p=u Ap={5+2z°|z€Z/I"L}
B, = {WT“ +zlatl |z ¢ Z/I”“Z}
a-p2p+1 A, and Bj are the same as for a case A prime

tif p=a thenset B, =o.

We can now make one more observation: With s fixedand /| N, let f|¢
and p = ord,(f) for some p > 0. Refer to the definition of ¢, (s, f, /) asin
Theorem 1. We can actually write

(s, p D) =Cyls, £, 1) as

S+ ) u).

X€EA, YEB,

For suppose (s2—4n)/(I7)? 20 (I). Write s> —4n as (2, *m, or t*4m as in
Theorem 1 and write ¢ = [°ty, where (I, ty) = 1; recall this a = a;(s? — 4n).
Clearly if (s> —4n)/(1?)2 # 0 (I) then 2/I1?¢ = [24=2r¢, % 0 (), which implies
p = a. However, in every case in which p = a, Lemma 5 shows that the set B,
is empty; consequently Zye B Xi (¥) = 0. Let us write “4,sum” and “Bjsum”
for erA,, xi/(x) and ZyeB‘,’ x1(y) , respectively, so that ¢/(s, p, [) = A,sum +
B,sum. Finally we are ready to begin evaluating E‘;=0 a(p)c(p). Suppose
Case(/) = A and v = ord;(N) is even; write v = 2u. Set a = a;(s?> — 4n) and
e=e(x). If a—p < u-1 then by applying Lemma 4 twice on each of the
sets 4, and B as given in Lemma 5, we have

19=Py; ife<2u+2p-—a,

Apsum = {

0 ife>2u+2p—a
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B’sum—{la—p—lxl* ife<2u+2p-a+1,
A N ife>2u+2p—a+l.

Notice that if p = a then B, = o in this case the above formula gives
I='xr which is 0 by our convention. Adding A,sum and B,sum, we have for
a-p<pu-1

(lo=p 1oyt fe<2u+2p-a,
(4) c(p) =4 171y ife=2u+2p-a+1,

0 ife>2u+2p-—a+1.
If a— p=u, then by Lemmas 4 and 5 we have

P35 ife<a,
Apsum = 2
pSum {0 ife>a
and
[#=lyx fe<a+1
Bl — l — ’
pSUm {0 ife>ad+l.

Adding 4,sum and Bjsum, we have for a — p = u
=y +100(5) ife<a,

(5) c(p) =1 I+ 1y} ife=a+1,
0 ife>a+1.

Now suppose a— p > u+ 1. By Lemmas 4 and 5 we have

Fa(3) ife< ,
Apsum={ x(3) nESktp
0 ife>u+p
and
Py ife<pu+p+1
B)sum = 2 N ’
pSum {0 ife>u+p+1.

Adding A4,sum and Bjsum we have for a —p > u+1
(41 Ya3) ife<u+p,

(6) c(p) =9 '3 ife=p+p+1,
0 ife>u+p+1.

Now we are ready to calculate the SUM= Z‘;zo a(p)c(p) under the various
possibilities.
Suppose a < u—1. Then for p=0,...,a wehave a—p < u—-1 and
therefore c(p) is given by (4).
Suppose ¢ < 2u—a (= v —a). Then for p = 0,...,a we have e <
2u+2p — a; by (4) we have
a a
> alp)elp) =D (14P = 12Ty (Ua 4 1570y

p=0 ﬂ=0

a
- X; Z(IZa—Zp _ l2a—2p—2) — X; (12a _ 1—2) — X; ]2a.
p=0
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Suppose € > 2u —a. Then either e = 2u + 2p; — a for some p; > 0, or
e=2u+2p;—a+1 for some p; > 0; we show the SUM is yx; /¥+%~¢ in either
case. Suppose then that e = 21: +2p; —a for some p; > 0;note p; <a.If p
satisfies p; > p then 2p; > 2p+1 implies e =2u+2p;—a >2u+2p—a+1;
if py<p then e=2u+2p, —a<2u+2p-a,so that by (4)

c(p) = { P+ 7 i oz s
0 if P <P
and the SUM becomes
pl_l a
> alp)e(p) + Y alp)elp)
p=0 p=pi
a
=0+ 3 (147 = 1P 4 10
P=p
a
=1 Z (12a—-2p _ 12a—2p—2) =x J2a=2p1 _ X Jrta—e
P=pP1

Suppose e = 2u +2p; —a+ 1 for some p; > 0; note p; +1 < a. If p
satisfies p; > p then e=2u+2p; —a+1>2u+2p—a+1;if p; < p then
e<2u+2p-—a+1,ie., e<2u+2p—a. We have

(la=p - 1e=r=yyr if p> py,

c(p)=q 1=y} if p=pi,
0 if p < p1,
so that the SUM equals
-l a
Y ap)0+a(p)l Py + S a(p)(eP + 1Py
p=0 p=p1tl

=04 (277 — [a=P—lyja=p—lyx

a
+ Z (12a—2p _12a—2p—2)X;=

p=p1+l
— Xl* (12a—2p,—1 _ 12a—2p|—2 + 12a—2p|—2)
- X; J26-20—1 _ Xl* Jvta—e

Suppose a > u; then we can write a — pg = 1 for some pg > 0. Write the
SUM as

po—1 a
(7 > a(p)e(p) + alpo)e(po) + Y alp)c(p),
p=0 p=po+1

where we take Z;"’:B' a(p)c(p) = 0 in the case po = 0. Suppose po > 0 and
consider ZZ":},' a(p)e(p). If p<po—1then a—p>a—(po—1)=a—po+1=
u+1 so that c(p) is determined using (6).
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Suppose e < u;then e<u+p for p=0,..., po—1. From (6),

po—1 po—1
Yo alp)e(p) =D (1477 =17 TH I+ I p($)
p=0 p=0
po—1
= uHE+ P Y (12—
p=0

Suppose e > u; then for some p; > 0 we have e = u+ p; + 1. Suppose
p<po—1.Then e=pu+p+1<u+p iff py+1<p;by(6) we have
P+ i) fp2pi+l,
(8) c(p) =14 I u(3) if p = p1,
0 if p < py.

Now, pr+1<po—1 iff u+p1+1<u+py—1 iff e<a-1. Suppose this
is the case. We have

po—1 -l
Y alp)e(p) =Y alp) -0 + (1277 = 1o7A= Iy (5)
p=0 p=0
po—1
DR G e IR L PC)
p=p1+1

= XI(%)((IG—H/HI _ la—e+;4)l,u-1

+ (I8 4 V) (ja-m=1 — [ampo))
= (3 — DI 4 TN 4 1)1 - )
=)0 -+ I+ )17 - 1))
=03 =D+ 1) = 1)/(1 = 1) +197°).

Next, py = po—1 iff u+py+1=pu+po iff e =a. If this is the case, we have

po—1 n-1
Yo alpe(p) =Y alp) -0 + (17 = 1577y (3)
p=0 p=0

= ()~ DI,

Finally, if e >a then u+p;+1>u+po so p1 > po—1. Thus, p < py—1
implies p < p; — 1 so that by (8)

po—1 po—1

Y a(p)e(p) = Y a(p)-0=0.

p=0 p=0

Now consider a(pg)c(po). We have a(py) = [47P0 — [a=Po~1 = |4 _ [b=1 =
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[#=1(] — 1), so that by (5) directly

ife<a, a(po)c(po) = (I* = IF=HIF=xp + 1* 11 = DI*x(5)
=T =T + TN - D)
ife=a+1, a(po)c(po)=(*—1F"NF 1y ="' =" D)1
ife>a+1, a(po)c(py)=0.

Consider next Z;’,:po +12(p)e(p). Note that po+ 1 < a, for otherwise 1 >
a—po=u>0,acontradiction. If p>po+1 then a—p<a—-py—-1=u-1;
hence we use (4) to find c(p).

Suppose e <2u+2(pp+1)—a(=a+2);thenfor p=po+1,...,a we
have e <2u+2p —a, so that

a

S alp)ep) = 3 (P — e 4 170

p=po+1 p=potl
— Xl* Z (l2a—2p _ lZa—Zp—Z) — x;12a—2p0-2 - X;rlu—z .
p=po+1

Suppose e > 2u+2(pp+ 1) —a (= a+2). Then either e = 2u + 2p; —
a for some p; > po+ 1 (note p; < a or a contradiction arises) or e =
2u+2py —a+1 for some p; > po+ 1. In either case, 27,=p0+1 a(p)c(p) =
X[ 17*4~¢; the work done to show this is virtually the same as that which showed
Yo—oa(p)e(p) = x;‘ [v+a=¢ yunder the conditions a < u—1 and e > 2u—a,

except that }°°! o (p)c(p) must be replaced with Eﬁ‘ p; +1a(p)c(p) ; this has

no effect on the outcome, as c¢(p) =0 for each p in either of these two sums.

Now then, to write explicit formulas for (7) let us first add a(pg)c(po) to
Y —por1 @(P)c(p) and simplify. We have

ife<a: g7 ("7 =Y+ (PP - D)+ 2
=x P @I - );

fe=at1: xf (" =124 gp 2= g 17 = g e

ife=a+2: 0+X;‘1V—2=X;lu+a—e;

ife>a+2: yplv+ee.

Note two things: First, we can combine the last three lines above into

ife>a+1: xyr+ere,

Second, in (7) we take Zz";ol a(p)c(p) =0 in case pg = 0, and this is the case

iff @ = u. Therefore, E;—o a(p)c(p) is given by the above results in the case
a=p. If pp>0 (ie., if a > pu) then we add Y9~

5 a(p)c(p) to the above
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results and simplify to find }°7_, a(p)c(p) . We have:
ife<u:
HPTH U+ D = 1)+ 27 7+ (- 1)
= G- DI+ DEE =D/ -1) +1);
if u<e<a-1:
13U =D+ D =D/ = 1) +197°)
+x -
=2 U =D+ D =D/ =)+ 170 4 1)
ife=a:
1§ = D 4 g 7 ()P - 1)
= T G- DT+ 1)
ife>a+1:
0+ X; Jrta—e — X; Jvta—e
Refer now to Table 1 for c(s, /). If Case(/) =A and v = ord;(N) = 2u is

even, we have c(s, /) is equal to
X;r lmin(2a,u—1 ,v+a—e)

+ 0(5) = DI+ 1)e™ 00 — 1) /(1= 1) + ksl*™¢ + ke},
where ks =d(u+1,e)d(u+1,a) and k¢ = d(e, a)d(u, a). We show that
(s, 1) =¥, oga(p)c(p) for Case(/) = 4 and even v = ord;(N) = 24.

Suppose a < u—1. Wehave 2a < 2u -2 =v -2 < v -1 so that
min(2a, v—-1, v+a—e) = min(2a, v+a—e). Now, e <v-a iff 2a <v+a-e,
so that c(s, /) gives the x; -term of the SUM properly. Next, a—max(u, e) <
a—-pu < u-1-pu=—1; by our convention, then, /4~max(k.¢) _ 1 = (. Also,
a<pu—-l<u<u+1 sothat d(u,a) =0 and d(u+ 1, a) = 0 so that
ks = ks = 0. Therefore, since each term in the { }’s is 0, the x;(3)-term is 0.

Suppose a = 4. Then min(2a,v—-1,v+a—-e)=minlv-1,v+a-—e),
and moreover, ¢ >a iff v+a—e=min(v -1, v+a—e) so that c(s, [) gives
the x; -term properly. If e < a, we have a — max(u, e) = a— u =0 so that
[a—max(u.€) _ ] = (. Clearly ks = 0 and kg is 1 so the xi(3)-term is given by
c(s,I) tobe x;(5)(I —1)I""1. If e >a, we have a —max(u,e)<a-e<0,
so that by convention, [4~m2x(#.€) _ | = 0; ks = k¢ = 0 so that each term in
the { }’s is 0, and so no x;(5)-term appears.

Suppose a > u. Then min(2a, v—1, v+a—e) = min(v—1, v+a—e); again
e>a iff v+a—e=min(v — 1, v +a—e) so that c(s, /) correctly gives the
x; -term. Now consider the y;(5)-term. If e < u we have [¢-max(.e) = Ja=u,
d(u+1,e) =0 sothat ks = 0, while k¢ = 1. The terms in { }’s become
I+ D) #-1)/(I-1)+1.If p<e<a-1 wehave [¢~max(k.€) — [a—¢ while
ks = ks =1 and the terms in { }’s become (/ + 1)(/~¢—-1)/(I-1)+1%°+1.
If e=a weget [7™(W.¢) _ 1 =[3-¢ _1=0; ks = kg = 1 so the terms in {
}’s become /27¢ + 1. Lastly, if e > a, we have a — max(u,e)=a—e <0 so
that /a—max(u.e) _ 1 =(; also ks/%~¢ =0, and ks = 0 so that each term in the
{ }Y’sand therefore the entire y;(3)-term is 0, and we have shown c(s, /) gives
the x;(3)-term correctly in each case.
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This concludes the proof that Z;’,:O a(p)e(p) =c(s, !) for Case(l) = A and
even v = ord,(N); we leave verification in the other cases to the reader.

Example 6. Let N =3, k =7, and n =7, and suppose that y = (3) is the
Legendre symbol. We show how easy Theorem 2 makes the computation of
try, 4.k Tn. First note that since k > 2, the J(x)-term of the trace formula
is 0, while both d(y/n)-terms are 0 because » is not a perfect square. All we
need to do is evaluate . Now, 52 —4n <0 for 0 < +s<5; s2—4n isa
perfect square for +s = 8.

Suppose s = 1. We have s> — 4n = —27, so that t =3 and m = —3. The
contribution to > for s = 1 is then a(1)b(1)c(1, 3). To find ¢(1, 3), we
note that v =ord;(N)=1,s0 u=0 and d =1, that e = e3(x) =1, and we
determine that 3 is a case C prime, with a = a3(s> — 4n) = 1. By Table I,
k1=k2=k5=8=0, k3=g= 1, k4=6,and k6=d(1,2)d(0, 1)= l;also
a-max(u,e—-0)+e=1.By(2), c(1,3)=x3(1/2)3%6(3-1)/2+ 1) = -T7.
We compute a(l) = 60, while b(1) = h(-3)/w(—3) = 1/3. Therefore, the
contribution to ) for s=1is 60-(1/3).- -7 =-140.

Similarly, when s = 2, the contribution to > is a(2)b(2)c(2, 3) = 51 -
(2/1)+1 =102; if s = 4 the contribution to > is a(4)b(4)y(4, 2)c(4, 3) =
—-90.(1/3)-4.—1 = 120; for s = 5 the contribution is a(5)b(5)c(5, 3) =
180-(1/3) -1 = 60; for each of these values of s, 3 is a case C prime in the
evaluation of c¢(s, 3).

Now, if s = 0 or 3, then ¢(s, 3) = 0. Therefore, there is no need to
evaluate a(s)b(s), nor any products of the y(s, /)-terms; the contribution to
Y-, for either of these values of s is simply 0.

If s =8 then s2—4n =36, so that ¢ = 6. The contribution to }_, is then
a(8)b(8)y(8, 2)c(8, 3). In finding c¢(8, 3), we have v =ord3(N) =1, u=0
and d =1, e =e3(x) = 1, and we determine that 3 is a case 4 prime, with
a=a3s2—4n)=1. ByTable |, ky=ks=ks=¢=0, ky = g =1, and
ky=ks=2;also min2a,v—-1,a+v—-e)=0, a—max(u,e—Jd)+e=1,
% = x3(1)+ x3(7) = 2, and x3(8/2) = 1. By (2), ¢(8,3)=2-1-1+0+
1.2-123-1)/2+0+0) = 6. We find a(8) = 1/6, while b(8) = 1/2.
Also, y(8,2) =2, as2isacase D prime and a,(s> — 4n) = 1. Therefore, the
contribution to >, for s =8 is (1/6)(1/2)-2-6=1.

By Proposition 7 below, the contributionsto ). of s and —s are equal, and
so finally we obtain try , , T, = — > = —2(—140+102+120+60+1) = —286.

s
The following proposition states that for fixed sy, the contributions of the
terms corresponding to 5o and —sp to the > in the trace formula as given
in Theorem 2 are the same. Therefore, the formula in Theorem 2 could be
modified by taking the S_ over all the nonnegative integers s satisfying s> —4n
is a positive square or any negative integer, and replacing (say) a(s) with 2a(s),
except for s =0.

Proposition 7. Let the notation be as in Theorem 2. Let s € L satisfy s> — 4n
is a positive square or any negative integer. Then

a(=5)b(=s) [[ »(=s.D]]c(=s.D=a(b(s) [ »s,H][ets, D).
I, N 1IN Ie 11N 1IN

Proof. Fix s satisfying the hypothesis, and write s2 —4n as 2, t?m, or t?4m
as in Theorem 1. Fix a prime [ with /| ¢, /{N. Note that b(s) and y(s, /)
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depend only on s2 — 4n=(-s5)? — 4n so that b(s) = b(—s) and y(s,[) =
?(=s,1). Let x and y be the roots in C of X2 —sX + n; then —x and
—y are the roots of X2 — (—s)X + n, and it follows that a(—s) = (—1)a(s).
Referring to its definition, note that c(s, /) is of the form

+1°d ~1%d
& (o (25%) 1 (7))

l“+fd
+ G <X/ (£+—2—>> + Cx (%) ,

where C;, C,, and C; are functions of /, e = e(x;), v = ord;(N), and
a = ord(t), where s? —4n = (—s)2 —4n = >, *m, or t*4m as the case may
be, so that C;, C,, and C; are independent of the sign of s. Therefore, for
the same C;, C,, and C3, we have c¢(-s, /) equals

—s+1% —s—lIed
& (n(=57) 1 (=)
—s+19t/d -
o (22 v (7).

6 (ue (2554 20 (2552))
(1), (x: (ﬁzlld) + (S —2lad)> .

Next, it is clear that C3x;(5%) = x(=1)Cix(5). Furthermore, if C; # 0
then we must have / = 2 and d(e,a+ f) = 1, thatis, e < a+ f. In this
case, we have 0 = 29t/d = (s + 29*/d)/2 — (s — 2°*/d)/2 (mod 2¢), that is,
(s +22t/d)/2 = (s — 2*/d)/2 (mod 2¢), so that
—s+2%+/d s—24+/d
ot (1 2) - oty (22

+24+/d
= x2(=1)Cax2 (ST) .

Therefore, c(—s, [) = y;(—1)c(s, [), and it follows that
HC(-S9 l) = X(—I)HC(S, l)

1N 1IN

First,

Finally then,
a(-9)b(=s) [[ »(=s.D]]e(=s. 1)

It ItN IIN
= (=Dkx(=Da(s)b(s) [[ »(s. D[]ets, D).
It 14N IIN

This proves the result, because we assume (in both Theorems 1 and 2) that
(-Dfx(-1D=1.

The following is easy to show using Theorem 2:
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Corollary 8. Let k, x, and N be as in Theorems 1 and 2. The dimension of
the space Si(N, x) is given by the formula

dim(Sy(N, x)=-so—-s1+d+m—p,

where
( 0 if any one of the following conditions is met: k is
odd; 4|N; xi(—1)=—1or (F) = -1 for some
5o = « odd prime |l | N,
L(=1)k2=1x(rg)2" otherwise, where ry € Z satisfies rz = —1 (mod N)
\ and n is the number of odd primes which divide N,
(0 if any one of the following conditions is met : k = 1

or4 (mod 6); 9| N; 2| N;or (32)=—1 for some
odd primel | N, | # 3,
si=1 $X3) [y, 1z3 B otherwise, where a =1 ifk =2 or 3 (mod 6) and —1
ifk=0o0r5(mod6); B = xi(1+r)+x(l-r)
where r| € Z satisfies r{ = -3 (mod N) if (N, 3) =1,
{ and r} = -3 (mod ¥) if 3|N,

1 ifk =2 and yx is trivial,

d={ .
0 otherwise,

NH +1/), p= %Hpar(l)

IIN 1IN
where par(l) is defined as in Theorem 1.

Proof. Since T, is the identity operator, the trace of 77 acting on Si (N, x)
gives the dimension of the space, so we need only evaluate Theorem 2 with »
set to 1. Consider the sum over s in the first part of the trace formula as given
in Theorem 2. Now, 0, 1, and —1 are the only values of s such that s? — 4n
is negative, and there are no integral values of s such that s —4n is a positive
square.

First, fix s = 0. We have s2 —4n = —4 = t?4m, where t =1 and m =
—1=3(4). Since i and —i are the roots of ®(X), we find a(0) = (1/4)i*~2
(14 (=Dk). If k is odd, a(0) = 0; otherwise a(0) = (1/2)(=1)k/2-1, The
class number of Qv/—1 is 1, and one-half the cardinality of its unit group is 2
so that b(0) = 1/2. Since ¢t =1, [];, ;;x7(0,]) = 1. It remains to evaluate
[Iync(0,1). Let I be an odd prime dividing N, and set v = ord,(N); we
have s2 —4n = —4 = [22. -4 where a = 0. Suppose that (3%) = 1 so that
Case(l) = A. Let d) € Z; satisfy d? = —1, so that (2d;)? = —4. Note that
2d, is the ‘d’ which appears in the classification of /, so that (s +/9d)/2 =
(0+1-2d;)/2 = +d,. Refer to Table 1 to find ¢(0,/): We have k; = 1,
min(2a,v-1,a+v —e) =0, k, =0, and x(0/2) = 0 so that ¢(0,/) =
xi(d) + xi(=di) = x(d))(1 + xi(=1)). If x(~1) = -1 then ¢(0,/) =0 and
hence the contribution of the s =0 term to the trace is 0, while if x;(-1)=1
we have c(0, /) = 2x,(d;)). Now if (F 4) = , so that Case(/) = B, then
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referring to Table 1 for ¢(0, /) we have k; = k; =0 and x;(0/2) =0 so that
¢(0, /) = 0 and therefore the contribution of the s = 0 term to the trace is 0.

Keep s = 0, and suppose now that / =2 and /| N. Then Case(l/) = F,
a=0, x2(0/2) =0, and Table 1 for c(0, /) gives k; = 0. Let v = ordy(N);
write v = 2u or 2u + 1 as the case may be. If 4 | N then u > 1 so that
d(u,a)=d(u,0)=0,thus kK =0 and so ¢(0,2)=0.If 2| N then v =1
and y = 0, and g, is the trivial character, so that e = e(y2) = 0. We have
ky=d(e,a+ 1)d(u,a)=d(0, 1)d(0, 0) = 1; in this case c(0, 2) = kyk3j2 =
L 1- (042014 1)/2) = (1) = 1.

Therefore the contribution of the s = 0 term to the trace is 0 unless k is
even, 4N, x;(—1) =1 for all odd primes / | N, and (:11) =1 for all odd
/| N. Suppose that all these conditions are met. In particular, since 4{N
and (F!) =1 forall odd /| N, there is some r € Z with r> = —1(N); note
r isodd if 2 | N so that x,(r) = 1. If / is an odd prime dividing N and
d) is a unit in Z, satisfying d? = —1, then x,(d)) = x/(r), because d; = +r
(mod [°4(M)) and y;(—1) = 1. Finally then,

IT 2u@)= I 2x0)=2"x(,

I|N,lodd IIN,lodd

where n is the number of odd primes dividing N .

Now fix s =1. We have s2—4n = -3 =t>m, where t=1 and m = -3.
The roots x and y of ®(X) = X2 - X + 1 are (1 £+/-3)/2; deMoivre’s
formula gives (xk=! — yk=1)/(x — y) = 2isin((k — 1)n/3)/(iV/3) so that

1 ifk=2,3(6),
{o ifk=1,4(6),

1
a(l)—i' :
_1 ifk=0,5(6).

The class number of Qv/=3 is 1, and one-half the cardinality of the unit group is
3,sothat b(1)=1/3. Since t =1, [[;, ;5 ?(1, ) =1} it remains to evaluate
[Iync(l, ). Let [| N be an odd prime, [ # 3. Then st —dn=-3=1[%(-3)
with a = 0. Let v = ord;(N) and set v = 2u or 2u + 1 as appropriate.
Suppose (‘T-") =1, so that Case(/) = A. Let d; be a unit in Z; satisfying
d,2 = —3. Referring to Table 1 for c¢(1, /) we see that k; =0, k; = 1, and
[min(2a,v—1,v+a—€) — |0 — | If v is even, then u > a so that d(u + 1, a)
and d(u, a) are both 0, hence ks = k¢ = 0, while if v is odd, ks and
k¢ are 0 automatically. Since a — max(u, e —d) < 0, the k4-term is 0, and
hence for any v, the contribution to ¢(1, /) from the yx,;(3)-term is 0, and so
c(1, )= x((1+d)/2)+ u((1 —d;/2). If (31) = —1 then Case(/) = B here
k; = 0 while the other k;-terms are the same as for Case(/) = A. Thus if
(:Ii) = —1, then ¢(1, /) =0 and therefore the contribution of the s =1 term
to the trace is 0.

Suppose now that / | N and / = 3; we have s? — 4n = -3 = 32a+l(_]),
where a =0 and —1 is a unit in Z;, so that Case(/) = C. Let v = ord;(N)
and set v = 2u or 2u + 1. Suppose first that v is even; refer to Table 1 for
c(1,3). Wehave k; =k, = k¢ =0; also d(u, a) =0 so ks = 0. Furthermore,
a-— max(;z e)+1<0 sothe k4-term is 0. Therefore the x;(5)-term is 0, so
that if v is even, ¢(1, 3) = 0. Now, if v is odd, we have k| = k; = k; =0,
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and a — max(u,e — 1) <0 so the ks-term is 0. Consider kg. If x4 > 1 then
d(u,a) =0, so k¢ = 0, and therefore c¢(1, 3) = 0; combined with the fact
that ¢(1, 3) =0 if v is even we have that the contribution of the s = 1 term
to the trace is 0 if 32 | N. Suppose 3 | N; then u = 0, and it follows that
ks = 1. Therefore c(1, 3) = x3(1)-3'"1(0+ 0+ 1) = x3(}); since x3 is now
either the trivial character or (), we have ¢(1, 3) =1 or -1, respectively.

Suppose / =2 and 2| N; then s> —4n = -3 = 224(—3) with a = 0 and
—3 =5 (mod 8) is a unit in Z,, so that Case(/) = E. Refer to Table 1 for
c(1,2). We have k; = 0. Let v = ordy(N) and set v = 2u or 2u+ 1.
Suppose first that v is even. Then u > a so that k; = ks = kg = 0 and the
ks-term is O and therefore ¢(1, 2) = 0. If v is odd, then k, and the ks-term
are again 0, while ks and kg are automatically 0, so that ¢(1, 2) = 0. Hence,
if 2| N, the contribution of the s =1 term to the trace is 0.

We have shown that H,lNc(l, /) = 0 unless 9tN, 2¢N, and (213) =1
for each odd prime / | N, / # 3. Suppose in fact that all these conditions
are satisfied. It is then possible to find r € Z such that r> = -3 (mod N) if
(3, N)=1,and r2=-3 (mod (¥)) if 3| N, and satisfying the following: for
each odd prime / | N, [ # 3, we have r = +d; (mod [°"4(M)  where d; € Z;
is a unit with d? = —3. For each such / we have x;(3)(x;/(1+r)+x(1-r)) =
(N1 xd) + (1 Fdp) = xi((1+d))/2) + x((1 — dy)/2) . Taking {x3(3)}
to mean 1 if 3{N and x3(3) if 3 || N, we have [[;yc(1,1) = {x3(3)}
H1|N,1¢3(XI((1 +d))/2)+ x((1-4d))/2)) = X(%) H1|N,1¢3(X1(1 +r)+x(l-r).

By Proposition 7, the contribution of the s = —1 term to the trace equals
that of the s = 1 term. The remaining terms in the dimension formula come
immediately from the corresponding terms in either Theorem 1 or 2.

Consider the trace formula as given in Theorem 2. If x is the trivial charac-
ter, we can make additional simplifications to the formula, the most important
being that c(s, /) can be given by a very simple table; this is the result of our
next corollary.

Corollary 9. Let k, x, N, and n be as in Theorem 2, and suppose furthermore
that x is the trivial character. Then for (n, N) =1 we have

try gk In = —Z (a(s)b(s) H (s, I)Hco(s, l))

s Nt 14N 1|N
[i]deg(T)+(50 NH +1/1)
1IN
—do(v/n Hparo
I|N

where s, a(s), b(s), t, and y(s, l) are exactly the same as in Theorem 2, and

v = {

nk/2=1 if n is a perfect square,

0 otherwise,

# 4+ [*=1 jfv =ord;(N) = 2u,

2[# ifv =o0rd;(N)=2u+1,

pary(/) = {
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and co(s, ) is defined as follows. Fix s and a prime | | N. Let v = ord;(N),
write v = 2u+ 6, where 6 = 0 or 1. Classify | into one of the six cases A,
..., F, and referring to how Case(l) is determined, let a = a;(s* — 4n). Let
d(x,y) =1 if x <y and 0 otherwise, for any x, y € Z. Then cy(s, ) is
given by the expression

9) ke 20min@a,v=1) 4 e = (cy(197#4 — 1) /(I = 1) + ¢g)

where the values of k\, k3, ¢4, c¢, and ¢ are determined from Table 2.

TABLE 2
Case(/) v ki k3 Cs e Ce
dorp | O O l; L' lo d("o’ a)
BorE | 9% |0 |1+ Lo |4k
cor | S 1o 10 1'% 1o |awa

Remarks. Note that k; and k; are the same k; and k; as appear in Theorem
2, while ¢, and ¢ are similar to the k4, and k¢ (respectively) of the same
theorem. Also, one must heed Convention A in evaluating (9). In Theorems 1
and 2 we assume (—1)ky(—1) = 1; the corollary’s additional hypothesis that x
is trivial implies that k£ is even.

Proof. Let x be the trivial character mod N, so that y = 1'[,I ~ X1, where for

each prime /| N, yx; is the trivial character mod [°"%(¥); note e = e(y;) = 0
for each prime /| N. Let the trace try , x T, be as given by Theorem 2.
Clearly the last three lines of the formula in the statement of Corollary 9 follow
directly from the corresponding lines of Theorem 2. All one has to do is show
how Table 1 “collapses” into Table 2 by showing that co(s, /) = c¢(s, ) for
each fixed s and fixed /| N, for any classification of the prime /, and any
relationship between a = a;(s*> — 4n) and u where ord;(N) = 2u or 2u+1.
We leave the details to the reader.
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