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A SIMPLIFED TRACE FORMULA
FOR HECKE OPERATORS FOR T0(N)

SHEPLEY L. ROSS II

Abstract. Let N and n be relatively prime positive integers, let / be a

Dirichlet character modulo N, and let k be a positive integer. Denote by

$k{N, x) the space of cusp forms on ToiAO of weight k and character / ,

a space denoted simply Sk(N) when x is the trivial character. Beginning

with Hijikata's formula for the trace of T„ acting on Sk(N, x), we develop a

formula which essentially reduces the computation of this trace to looking up

values in a table. From this formula we develop very simple formulas for ( 1 )

the dimension of Sk(N, x) and (2) the trace of T„ acting on Sk(N).

Preliminaries

For each positive integer A, let

r0(A) = |y= (^   J) a,b,c,d€Z,det(y)=l\;

r0(A) is a congruence subgroup of 5L2(Z). Let x be a (Dirichlet) character
mod A. Suppose A = Y[¡\Nl'/l, where each / is a prime and v¡ = ord/(A).

Then x can be written as a product x = lI/i/v Xi of characters, where for each

prime /1 A, Xi is a character mod /"'. The exponential conductor e = e(x¡) is

the smallest value e such that xi is a character mod Ie ; note that e — e(x¡) <

v¡. If x is a character and y — (acd), with a, b, c, d e Z, then by x(y) we

mean x(a) ■ m this paper we will use " | " and " \ " for "divides" and "does not
divide," respectively.

Fix a positive integer k.  For any complex-valued function / and matrix

y = ( « * ) with a, b, c, d e R and det(y) > 0 define

f\y = (det(y))k'2(cT + d)-kf(^±±^

(where we take the positive root if k is odd).

Let J? = {z e C | Im(z) > 0} denote the complex upper half plane, and let

/ be any complex-valued function on %A. The cusps of Tq(A) are the rational
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426 S. L. ROSS II

numbers, along with the point ioo at infinity. We say that / is a cusp form on

T0(A) of weight k and character x if / satisfies

(i)   / is holomorphic on %?,

(ii)   / is 0 at each cusp,

(iii)   /|(«*)=Z(fl)-1/foreach {ac b) e T0(N).

See [Sha, A-L, or Li] for details. The space of cuspforms on To(A) of weight

k and character x is denoted by Sk(N, x), or by Sk(N) if x is the trivial
character.

For each n with (n, N) = 1, let Tn be the standard Hecke operator whose

action on Sk(N, x) is defined by

d-\
-k(1) f\Tn = nk-xYYx(")f(?14±)d

a,db=0 V     "      /

where the first sum is over all pairs of integers a, d satisfying a > 0, ad = n ,

and (a, N) = 1. Note this is the same as the T'n used by Shimura (see 3.5.7 of

[Sha]), and therefore by Hijikata, Pizer, and Shemanske in [H-P-Si, H-P-S2]. If
n = p , where p is a prime not dividing A and x is the trivial character, then

our Tp is the same as the Tp operator of Atkin and Lehner in [A-L]. (Note

however that our weight k is twice the weight k of Atkin and Lehner.)

The simplified formula; Applications

We begin by stating the version of the trace formula for the operator Tn act-

ing on Sk(N, x) as given in Theorem 2.2 of [H-P-Sj] and also in Theorem 2.2

of [H-P-S2]. Denote this trace by trN x kTn .

Theorem 1 (Hijikata-Pizer-Shemanske). Let k be an integer, k>2. Let x be

a character mod A and assume (-l)^(-l) = 1. Write x = T\i\nXi> where

for each prime I dividing N, xi w a character mod /" , where v = ord/(A).

Then for (n,N) — l we have

tTN>XykTn= -^û(S)^^,/)I14(s./'')
s f l\N

+ r3(*)deg(rn) + ¿(v^)^An(l + !)
l\N ^ '

where

¿(v^rM')'
l\N

( 1    ifk = 2 and x is trivial,

\ 0   otherwise,

nkl2~xx(\fn)   if n is a perfect square,

0 otherwise,

2l"-e ife>p + l,

par(/) = { lß + //z_1    if e < p and v is even,

2lM ife < p and v is odd.

S(Vñ) = {
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Here for a fixed prime I \ N, v = ord¡(N), p = [|], and e = e(xi) ■

The meanings of s, a(s), b(s, f), and c'x(s, f, I) are given as follows:

Let s run over all integers such that s2 - An is a positive square or any negative

integer. Hence for some positive integer t and squarefree negative integer m,

s2 - An has one of the following forms which we classify into the cases (h) or (e)

as follows:

(   r2

s2 - An — <

t2, (h)

t2m, 0> m=l (mod 4),       (e)

t2Am,        0 > m = 2, 3 (mod 4).   (e)

Let <D(X) = <bs(X) = X2 - sX + n and let x and y be the roots in C of
<b(X) = 0. Corresponding to the classification of s, put

(min{\ x \, \ y \})k x\x-y\ x sgn^)*,    (h)

L2(xk-l-yk~l)/(x-y). (e)«(*) = { I,a-i_„fc-i

For each fixed s, let f run over all positive divisors oft and let

b(s ,/) = {
&{(s2-4n)l'2/f), (h)

h((s2-An)/p)/co((s2-An)/f2),    (e)

where </3 is Euler's function and h(d) (respectively co(d) ) denotes the class

number of locally principal ideals (resp. \ the cardinality of the unit group) of

the order of Q(\fd) with discriminant d.
Fix a pair (s, f) and let I be a prime divisor of N ; let v = ord/(A) and

p = ord¡(f). Put

Â= {x e Z | O(jc) = 0 (lv+2P), 2x = s(lP)},

B = {xeA\®(x) = 0(lu+2p+x)}.

Let Ap = A(s, f, I) (resp. Bp = B(s, f, I)) be a complete set of represen-

tatives of Ä (resp. B ) mod /"+'', and let B'p = B'(s, f, I) = {s - z\ z e Bp}.

Then

'<     f  l\ = f^xXl{x) if(s2-An)/f2iO(l),
C* \ £,*/(*)+ E,*/0')   if(s2-An)/f2 = 0(l),

where x (resp. y ) runs over all elements of Ap (resp. B'p ). This ends the

statement of the theorem.

Proof. See [Hij, H-P-S1; H-P-S2].

We introduce a classification of prime numbers to be used throughout this

paper. Fix integers n and j , with n > 1, such that s2 - An is a positive square

or any negative integer and write s2 - An as one of t2, t2m , or t2Am as in the

statement of Theorem 1. Let / be any prime that divides either A or t, and
classify / into one of six cases, A, B, C, D, E, or F, depending on how /



428 S. L. ROSS II

divides s2 - An and whether or not / is odd, as follows:

' A if s2 - An = l2ad2,1 is odd, and d is a unit of Z¡,

B if s2 - An = l2au, I is odd, and u is a nonsquare unit of Z¡,

C if s2 - An = l2a+xu, I is odd, and u is a unit of Z¡, or

/ is case^ s2 - An = l2aAw ,l = 2,weZ2,w = 2 (mod 4),

D if s2 - An = 22ad2, I = 2, and d is a unit of Z2,

E if s2 - An = 22au ,l = 2,ueZ2,andu = 5 (mod 8),

IF if 52 - 4« = 22a4ti7 , / = 2, it; e Z2, and w =. 3 (mod 4).

We will sometimes denote the case into which / falls by Case(/). Note that

a = ordi(t), where a is the 'a ' which appears in the expression for s2 - An ,

in whatever case / is actually classified; we will sometimes write a¡(s2-An) to

mean this a.

Also let us introduce a convention to be adhered to throughout this paper:

Convention A. Let / be a prime and let n be any integer. We agree that any

expression of the form /" or /" - 1 is taken to be 0 if n < 0.

We are ready to state the new version of the trace formula.

Theorem 2. Let k be an integer, k > 2. Let x be a character mod A and

assume (-l)fe^(-l) = 1. Write x = Y\i\n Xi > where for each prime I dividing

N, Xi is a character mod /", where v = ord¡(N). Then for (n, N) = 1 we

have

1 + 7

trNtXtkTn=     Y \a(s)b(s)   JI   y(s, l)l[c(s, I)
s     \ l\t,l\N l\N

+ 6(x)dez(Tn) + ô(M^-NY[
l\N

-ô(^)^\\oar(l),
l\N

where S(x), S(\íñ), and par(l) are exactly the same as in Theorem 1.

The meanings of s, a(s), b(s), t, y(s, I), and c(s, I) are as follows :

Let s, a(s), and t be exactly as in Theorem 1. Now fix s and write s2 - An

as one of t2, t2m, t2Am as in Theorem 1. Let

b(s)
( \ ifs2 -An = t2

I   hi wi\ If,il wi\      if c2 _ 4m — /2,h(m)/o)(m)   ifs2 - An = t2m or t2Am, m < 0,

where h(m) is the class number of Q(y/m) and co(m) is one-half the cardinality

of the unit group of Q(y/m).
Keeping s fixed, now fix a prime I with I \t, l\N, and, according to the

classification of I, let a = a¡(s2 -An) be the 'a ' which appears in the expression

for s2 - An and define

'Ia if I is a case A or D prime,

y(s, I) = < (la(l + 1) - 2)1(1 - 1)   if I is a case B or E prime,

(la+x - l)/(l - 1) if I is a case C or F prime.
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Keeping s fixed, now fix a prime l \ N. Let v = ord¡(N), and write v =

2p + ô, where ô = 0 or 1. Let e = e(x¡). Classify I into one of the six cases

A, ... , F, and, according to the classification, let a = a¡(s2 - An) ; if I is a

case A or D prime let d be the 'd' which appears in s2 - An, otherwise let

d=l.  Let xî = Z/(^) + X,(s-=^) ; let %l = Xii**^), where f = 1  if
Case(l) — F, and 0 otherwise. Then c(s, I) is given by the expression

(2)   x! kx lmin{2a''/-x -a+,/-e) + xik2k3 r~x

+ */(§ ) k3 r-S(h4(la-™«K,e-ô)+e _ 1)/(/ _ ,) + ks ¡a-e+e + ^ ¡

where kx, ... , k¿, g, and e are determined from Table 1, by knowing the par-

ity of v and the classification of the prime I. In the table, define d(x, y) = 1

if x < y and 0 otherwise, for any integers x and y. Also, let mino(x, y) =

max(0, min(x, y)). Note also that Convention A must be followed when evalu-

ating (2).

We remark that we have used Theorem 2 to write a Turbo Pascal program

which finds tr^,x,kTn for small values of k , N, and n , and real characters

X-
The proof of Theorem 2 consists of transforming the first line of the formula

given in Theorem 1 into the first line of that given in Theorem 2. We need two

lemmas from [H-P-Sj] or [H-P-S2]. The first of these is

Lemma 3. Let the notation be as Theorem 1. In particular, write s2 - An =

t2, t2m, or t2Am as illustrated there. Let I be any prime dividing N or t and

put t = Ia t0 where (I, t0) = 1. Let f | t and put f = lpfi> with (I, f0) = 1.
Then b(s, f) = a(s, p, 1) -b(s, Iafo) where

a(s, p, l) = <

¡a-p _ ¡a-p-i ¡y-1 ¡s a case a or D prime,

¡a-p _|_ ¡a-p-\ ¡fi ¿y a case ß or g prime,

la~p if I is a case C or F prime.

Note our Convention A in effect here; if p = a we take Ia p x =0.

Proof. See Lemma 2.4 of either [H-P-S.] or [H-P-S2].

Fix 5 as in Theorem 1 and write s2 - An = t2, t2m , or i24m as illustrated

there. Let / | A and define ¿¿(s, p, I) = c'x(s, lp, I) for p = 0, ... , ord¡(t).

Now let f \ t, and note that c'x(s, f, I) depends only on ord/(/) once 5 and

/ are fixed. Write / = lpfo where p = ord¡(f) ; then

c'x(s, f, l) = c'x(s,lpf0,l) = c'x(s, lp, I) = c'¿(s, p, I).

Now, if there are v > 0 distinct primes / satisfying / | t and l\ N, let

{/,}, i=l,...,v,bea list of them; if there are no such primes, then for
convenience set v = 1 and define lx — 1 and a(s, 0, 1) = 1. Next, if A ^ 1

let 4+1, ... , lv+w be a list of the w distinct primes dividing A, while if
A = 1 then for convenience set w = 1 and define lv+x = 1, a(s, 0, 1) = 1

and c'i(s, 0, 1) = 1. We can write t = rjj=r If where a¡ = ord/((r) if /, is a
(bona-fide) prime and a¡ = 0 if /, = 1 . Let / be any divisor of t ; then we
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can write / uniquely as / = JJ^f If ', where 0 < p¡ < a¡. We have

Yb(s,f)]Jc'x(s,f,l)
f\t l\N

(3) a, 0,,+u,     /     /      v+w      \    v+w \

= E- E [b(s,Wn Il4(s>Pi>ii))■
Pl=0 Pv+w=0   \      \ i=l /   i=v+l }

The statement of Lemma 3 in our current notation is that, for fixed px, ... ,

pv+w , with 0 < pi < a¡ for each i, i = 1, ... , v + w , and for some particular

/ = z'o with 1 < z'o < v + w , we have

/ \
v+w

b[s,]llf') =a(s,pk,lk)b
(=1

v+w

(and this is clearly also true if /,-„ = 1). Repeated applications of this equality
transform (3) into

E   "   Y   (a(s' Px' h)"-a(s, Pv+w, lv+w)
p,=0 Pv+w=0

v+w

•¿Mf ••■C-») ; [ c;(s, Pi, /,;
i=v+l

Noting that b(s, t) = b(s), this last expression equals

a\ av+w    ,v+w v+w -,

b(s)Y--- e (ria(5'/,"/')- n <çis>Pi>it))-
Pi=0      pv+w=0^i=l i=v+l

Again for convenience let c'x(s, pi, U) = 1 for i - 1, ... , v ; the above be-

comes

fll Oy+w       /V+W \

/>i=0       />„+„,=0S=l '

u+u; / a, \

= b(s)l[(Ya(s,p,li)c'x,(s,p,li)\
,=i \=o '
v    , a, %       u+iu   /• a/ \

=^)n(Ea(5^'/'))- n (e^'^k'^''*))-
(=1 >=0 '     i=w+l  >=0 'i=\  >=0

All that is needed to prove Theorem 2 is to show two things. First, that

Y?~=o a(s ' P ' '«') = ^(5 ' 7i) f°r eaca '■ » ' = 1, ■ • ■, w , in the case there are

t; > 0 primes / satisfying / | i, /|A; if there are no such primes then we
arranged things so that IlLi(¿^Loa(J' /^, //)) = q(5,0, 1) = 1 which agrees

with the "empty" product Yli\t, i \ n aU) ■ Second, we need to show that

a¡

Ya(s> P> h)Cx(S» P' U) = c(s, li)
p=0
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for each i, i = v + 1, ... , v + w , in the case that there are w > 0 primes /

dividing A; if A = 1 we arranged for flLT+i T%=o<*(s, p, li)c'¿(s, p, /,) =

a(s, 0, l)c'x(s,0, 1) = 1-1 = 1 which agrees with the "empty" product

Ui\N<:(s,l).
Suppose then that / is a prime, l\t, l\N. Then / = /, for some i with

1 < i < v . Let a = ord/(i) ; we show Y,"p=o a(s > P > ̂  = ^(s > ̂  ■

Suppose / is a case ^4 or t5 prime. We have

a a

Y a(s ,p,i) = £(/«-> - r-p-[) = ia- rx =ia = y(s, i).

p=0 p=0

If Case(/) = B or E,

a a a

Y^(s,p,i) = Yla~p+Í2la~p~[
p=0 p=0 p=0

= (la+x-l)/(l-l) + (la-l)/(l-l) = y(s,l).

If Case(/) = C or F,

¿a(s, p, I) = Yla~» = (la+x - l)/(/- 1) = y(s, I).

p=0 p=0

So all that remains is to explicitly evaluate YTp=o<*(s, p, It)c'x(s, p, /,) for

each prime /, | A, and show the result is c(s, /,). Fix / | A and write
a(p) for a(s, p, I) and c(p) for c'x(s,p,l). Now, the task of evaluating

YTp=o a(P)c(P) ano" showing that it equals c(s, I) as given by Table 1 is a long

straightforward one, but extremely tedious. We give some details concerning the
explicit calculation/evaluation of Y?P=o a(P)c(ß) f°r Case(/) = A and ord/(A)

even, leaving all other calculations (i.e., those for Case(/) = B, ... , F, ord¡(N)

even or odd, and Case(/) = A with ord/(A) odd) to the reader. First, let us
summarize all the calculations here:

a

Explicit Value of c(s, I) = Y a(P)c(P)

p=0

condition 1 condition 2

a < p.- 1   e <v - a

e > v - a

a = p e < a

e > a

a > ß e < ß

ß < e <a -

e = a

e > a

condition 1 condition 2       Case(/) = A , v = ord/(A0 odd

i < ß e <v - a x* l2a

e>v-a x* lv+a~e

T,U*(P)C(P)
for Case(/) = A , v = ová¡{N) even

X¡ l2a

y* ^v+a—e

xî i"-x + xiW - »V-1
y* ¡u+a—e

x, /"-' +»(f)(/ - i)i—HV + !)(/"-" - i)/(/ - i) +1)
-i z;/"-1+*,(§)(/-i)/"-1

•((/ + i)(/a-^- i)/(/-i) + /fl-f + i)

/;/"-' +^/(f)(/-i)/i/-1(/a-c + i)
y* [v+a—e
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a>ß e<ß+l X¡lv'x +Xt(^)l'"'12(la-i'- 1)

ß+\<e<a x¡l"~x +Xt(^)lv~l2(la-e+[ - 1)

e = a+\ X¡l"~x    (= X*lv+a-e)

e > a + 1 x* l"+a~e

condition 1 condition 2

a < ß - 1   (none)

a = ß e < a

Case(/) = B , v = ord¡(N) even

0

X/(f)(/+l)/'
o

a > ß

e > a

e<ß */(§)(/ + I)/""1 ((/+1)(/"-"

/¿<e<a-l   /,(§)(/ +!)/"-'((/+ !)(/*

!)/(/- 1)+1)

!)/(/- l) + /a-e + l)

e = a

e > a
*/(§)(/+l)/"-'^-^.)
0

condition 1 condition 2

a < p

a > ß

(none)

e< ß+1

Case(/) = B , v = ord¡{N) odd

0
^(f)(/+l)/"-'2(/fl-" -!)/(/-1)

ß + 1 < e < a   xAj)(l + l)l"-x2(l"-e+[ - !)/(/ - 1)
e > a 0

condition 1 condition 2

a < ß - 1   (none)

a> P e < ß

ß < e < a

e = a+ 1

e > a+ 1

condition 1 condition 2

a < |î — 1   (none)

a = ß e<a+1

e > a+ 1

a > /i+ 1    e < ¿1+ 1

Case(/) = C, v = ord/fAQ even

0

x/(f)/"-1(/+i)(/a-"+1-i)/(/-i)

z/(f)/"-'((/ + i)(/a-f+1 - l)/(/ - 1) + l"~e+i)
xmv-xia-e+x

0

Case(/) = C, u = ordi(N) odd

0

xtCjV"-1
o
Z/(|)/"-i(2/(/"-"-l)/(/- 1) + 1)

ß+\<e<a   *,(§ )lv-x{2l{la-e+x - \)l(l - 1) + 1)

e = a+\ »(f)/»-'
c>fl+l        0

condition 1 condition 2

a < ß — 1    e < i; - a

e > t> - a

a = M e < a

e > a

a = /i+l    e < a - 1

e = a

e > a

a > //+ 1    f < /i

f = a - 1

e = a

e > a

condition 1 condition 2

a < P e <v- a

Case(/) =D, u = orá¡(N) even

y* iv+a—e

xîiv-x+xAv~x
y* ¡v+a—e

xfr-i+W^+xiW
X'lv-X+Xl2l"-X
y* [v+a—e

*;/"-> +2i,/"-' + *,(§)/"((/+ i)(/a-"-' - i) +1)

/¿<e<a-2   /;/"-' +2x¡l"-x

+xi(\)i"((i + \){ia-e~x - i) + /û-e-' + 1)

Xjl"-l+2xilv-x +Xi(%)lv (/"-'-' + 1)

y* pi+a—e

Case(/) = Z>, i; = ord/(/V) odd

e>v -a xi lv+a~e
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a = ß+\    e<a x¡ l"~x + Xßlv~x

e > a xi l"+a~e

a>ß+l    e<ß+\ x1lv~x+Xßlv~x+Xi{^)lv2{la-il-x - 1)

ß + 1 < e < a xi l"~x + X/2/"-1 + *,(§ )/"2(/a-(<?-1)-1 - 1)

e = a

e > a

Xi /"-' + Xi2l"-

XI/"+

condition 1 condition 2

a <ß- 1

a = /¿

a = p-+ 1

a >/¿+ 1

(none)

e < a

e > a

e<a~\

e = a

e > a

e < ß

ß < e < a

e = a

e = a

e > a

1

Case(/) = E , v = ord/(./V) even

0

xAl+i)!"-'
0
¿,2(/+1)/"-'+*/(§)(/+1)/"

*,2(/+l)/"-'
0
X,2(l + I)/""1 + *,(§)(/ + 1 )/"((/ + 1)(/"-"-' - 1) + 1)

X/2(/+ I)/—t -r-^/(§)(/+ 1)/-

•((/+l)(/a-f-'- l) + /û-e-' + l)

X,2(/ + 1)/"-' + »(} )(/ + lj/'i/«-'-1 + 1)

¿,2(/+l)/"->
0

condition 1 condition 2       Case(/) = E , i/ = ord/fA7) odd

a < ß

a = ß+ 1

a > /¿+ 1

0
*/2(/+l)/"-
0

-i
(none)

e < a

e > a

e < P + 1 X/2(/ + 1)/"-' + */(§)(/ + l)/^/"-"-' - 1)

/* + 1 < e < a   x,2(l + l)/"-1 + /,(§)(/ + l)/"2(/a-(e-')-i _ i)

e = a xt2(l+\)lv-x

e > a 0

condition 1 condition 2

a<ß- 1

a = /i

a >/î+ 1

(none)

e < a

e = a-i- 1

e > a+ 1

e < ^

ß < e < a

e = a

e = a+ 1

e > a+ 1

condition 1 condition 2

a < /î — 1
a = ß

Case(/) = F , v = ord¡{N) even

0

0

xii"-
xtiv-

w-
xti"-
0

+*(f)/*

+*(i )/"((/ + l)(/a-"-l) + l)

+*/(§)/*((/ + l)(/a-f-l) + /fl-f + l)

+#($)/»(/■-'+1)

Case(/) = F , ¡/ = ord,(/V) odd

0(none)

e<a+l x//"-1
e > a+ 1 0

a>¿í+l    e</i+l i//"-1 +x;(f)/I/2(/a-'u - 1)

ß + 1 < e < a   XA"'1 + Xi(\)lv2{l"-e+x - 1)

e = a+l x¡lv-x

e > a+ 1 0

In all of what follows, by the "SUM", we mean ££=0 a(p)c(p). The key to

its explicit evaluation is

Lemma 4. Let p be a prime and let w be a character modulo some power of p.

Let e = e(co) be the exponential conductor of co. If o and b are nonnegative
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integers with a + b >e and 2b > e and if u is a unit mod p, then

ST      t    ,      b,     Í Pa<o{u)   ife<b,Y   œ(u + zpb) = {

Proof. This is easy. See Lemma 2.1 of [H-P-Si] or [H-P-S2].

Let Ap and B'p be as in Theorem 1. Specific sets of representatives for Ap

and B'p are calculated by the authors of [H-P-Sj, H-P-S2] in their Lemma 2.5

by "easy but tedious calculations"; we copy them here for reference as

Lemma 5. Let A(s, f, I) = Ap and B'(s, f, I) = B'p be the sets appearing in

Theorem 1. For fixed N, n, s, and I, Ap and B'p depend only on p = ord/(/).

Let v = ordi(N) and set v = 2p or v = 2p + 1. Classify I as case A, B, etc.,
setting a and d according to how I is classified. Then the sets Ap and B'p are

as follows:

Case(/)     v        condition

A odd     a-p<ß Ap = {s-±£¿ + zl2"+2<>-a+i | z e Z/C"^}

B'p = {=*« + z[2p+2p-a+2 | z £ Z//fl-/>-lZj|

a-p>ß+\     Ap = B'p = {í + zl^t>+\ | z e Z/l"Z}

even    a-p<p-\     Ap = {s-^- + zl2^2?-" \ z e Z/l"-i>z}

BP = {S±TL + zp-ii+2f>-a+\ | z e z//0-"-^}!

a-p = ß Ap = {§ + zla | z € Z//"Z}

bp = {!±tá + zl"+x Iz e z//"_1z}

a-p>p+\     A„ = {\ + zlf+P | z e Z//"Z}

B'p = {§ + zl"+P+l \ z e Z/íX-'Z}

B odd     a- p < ß Ap = B'p = 0

a-p>ß + \     Ap = B'p = {i + zlv+P+i | z G Z//"Z}

even    a - p < p - 1     Ap = B'p = 0

a-p = ß Ap = {í + zla\zeZ/l"Z}

B'p = SS

a-p>p+\     Ap = {í + zl^+t>\z£Zlli'Z}

B'p = { § + zl"+P+i | z e z//"-'z}

C odd     a- p < p-\     Ap = B'p = 0

a-p = ß Ap = {í + zla+l |zeZ//"Z}

B'p = 0

a- p>ß+\     Ap = B'p = {s1 + zl^P+i | z 6 Z//"Z}

even    a- p < p- 1     Ap = B'p = 0

a- p>p Ap = {í + zl"+P | z e Z//"Z}

B'p = {§ + z/"+'+1 | z e z//"-'z}

£> oatf     a- p<ß Ap and B'p are the same as for a case A prime

a-p = p+\     Ap = Bp = {s-±Ç4 + zla\zeZ/l»z}

a - p > ß + 2      Ap and B'p are the same as for a case A prime
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even    a — p < p—\

a- p = p

a-p = p+\

odd

even    a

a ■

p>p + 2

P<P

p>p+\

p<ß-\

p = p

Ap and B'p are the same as for a case A prime

Ap = \^i + zla |zeZ//"z}

b'p = {^r +z,a+x Iz e z//""'2}

Ap = {ï + zl"-1 |zeZ//"Z}

B'p = {5-±Ç4 + zla\ze z//"-'z}

Ap and B'p are the same as for a case A prime

B't> 0

a-p> p+\

odd P<M-\

p = p

a -p>p+1

even    a — p < ß - 1

Ap and B'p are the same as for a case D prime,

with d set to 1

Ap = B'p = 0

Ap = {s-if + zla\zeZ/l>'z]

B'p = 0

Ap and B'p are the same as for a case D prime,

with d set to 1

Ap = B'p = 0

Ap = [5-îÇ- + zia+l izez/vz}

B'p = 0

Ap and B'p are the same as for a case A prime

AD = B'=0

a- p = p Ap = {§ + zl" | z 6 Z//"Z}

B'p = [S-±Ç^- + zia+l | z e z/V-'z}

a - p> ß+ \      Ap and B'p are the same as for a case A prime

\lf p = a then set B'p = 0 .

We can now make one more observation: With s fixed and / | A, let f \ t

and p = ord/(/) for some p > 0. Refer to the definition of c'x(s, f, I) as in

Theorem 1. We can actually write

c'x'(s,p,l) = c'x(s,f,l)    as      Y Xi(x) + Y Xi(y)-

For suppose (s2 - An)/(lp)2 ^ 0 (/). Write s2 - An as t2, t2m, or r24m as in

Theorem 1 and write t = lato, where (/, t0) = 1 ; recall this a = a¡(s2 - An).

Clearly if (s2 - An)/(lp)2 ¿ 0 (I) then t2/l2p = /2a-2^o ¿ 0(1), which implies
p = a. However, in every case in which p — a, Lemma 5 shows that the set B'p

is empty; consequently ¿~2yeBi Xi(y) — 0 • Let us write "^sum" and "i^,sum"

for TiX€a„Xi(x) and \ZyiB'pXi(y), respectively, so that c'¡(s, p, I) = ^sum +

75^sum. Finally we are ready to begin evaluating Y?p=o&(p)c(p). Suppose

Case(/) = A and v = ord/(A) is even; write v = 2p . Set a = a¡(s2 - An) and

£ = e(Xi) ■ Ifa — p<p—I then by applying Lemma 4 twice on each of the

sets Ap and B'p as given in Lemma 5, we have

f l"-px1    if e < 2p + 2p - a,
/Lsum = < .„

p 1 0 if e > 2p + 2p - a

and
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, ¡a-p-ix*    ife<2p + 2p-a+l,
B„ sum --

" \0 ife>2p + 2p-a+l.

Notice that if p = a then B'p = 0 ; in this case the above formula gives

l~xX* which is 0 by our convention. Adding Apsum and i^sum, we have for

a - p < p - 1

{(/*-/> + l«-p-i)Xf    ife<2p + 2p-a,

¡a-P-ix* ife = 2p + 2p-a+l,

0 ife>2p + 2p-a+l.

If a- p = p, then by Lemmas 4 and 5 we have

/**/(§)   ife<fl,

0 ife>a

and
¡P~xXl    ife<a+l,

Apsum = I

B'n sum
p \fe>a+l.

Adding ^sum and v3^sum, we have for a- p = p

f ¡p-ix* + />#(§)   ife<a,

(5) c(p) = { /"-'*; ife = a+l,

0 ife>a+l.

Now suppose a - p > p + 1. By Lemmas 4 and 5 we have

I'ZiU)   if e<p + p,

^ I 0 if e> p + p
and

2?^, sum = ^
/*-»*/(§)    ife</i + /7+l,

0 if e >/* + />+1.

(6) c(/,)

Adding Apsum and i^,sum we have for a - p > p + 1

{ (/* + /"-l)Zf(i)   if *</* + />,

/*-»»(§) ife = /i + /»+l,

0 if <? >/Í +/?+1.

Now we are ready to calculate the SUM= Yl"p=o a(P)c(P) under the various

possibilities.
Suppose a < p - 1. Then for p — 0, ... , a we have a - p < p - 1 and

therefore c(p) is given by (4).

Suppose e < 2p - a (= v - a). Then for p = 0, ... , a we have e <

2p + 2p -a;by (A) we have

Ya(p)c(p) = ¿(/""O - l"-P-i)(l°-r + la-p~x)x1
P=o P=o

a

= */* ̂ (/2a"2'' - l2a~2P-2) = xl (l2a - l~2) = xî i2a-

P=o
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Suppose e > 2p - a . Then either e = 2p + 2px - a for some px > 0, or

e — 2p + 2px —a+\ for some px > 0 ; we show the SUM is xi lv+a~e in either

case. Suppose then that e — 2p. + 2px - a for some px > 0 ; note px < a . If p

satisfies p\> p then 2px >2p+l implies e = 2p + 2px - a > 2p + 2p - a + 1 ;
if P\ < P then e = 2p + 2px - a < 2p + 2p - a, so that by (4)

c(p) = iila~P + la~P~l)xï    ^PÏPu

10 if p<px,

and the SUM becomes

/>i —i a

Y a(pwp) + Y a(p)c(p)
p=0 p=P\

a

= 0+ Y(ia~p - ia-p-x)(ia-p + ia-p-l)xî

P=P\

a
_ y*   \ ^ n2a-2p _ i2a—2p-2\ _ y* t2a—2p\ _ y* ju+a-e

P=P\

Suppose e = 2p + 2px - a + 1 for some px > 0 ; note px + 1 < a. If p

satisfies p\ > p then e = 2p + 2px - a + 1 > 2p + 2p - a + 1 ; if px < p then
e < 2p + 2/> - a + 1, i.e., e <2p + 2p - a. We have

C(P)

so that the SUM equals

f (la~p + la~p-x)x1    if P>Pi,

l"-Pi-ixf if p = px,
0 if P<pu

Ya(p)0 + a(px)la-p'-xx1 +   Y   a(p)(la-p + la~p-x)x1
p=0 P=Pi + l

= 0 + (la~Pl - la-Pi-l)la~Pi-lx1

a

+ y (i2a~2p - i2a~2p~2)xi

p=p\+i

_ y* n2a-2p\-\ _ p.a-2Pl-2   ,  ¡2a-2P¡-2\

_ y* i2a—2P\ — \ _ y* iv+a-e

Suppose a > p; then we can write a - po = p for some po > 0. Write the
SUM as

/>o-l a

(7) Y a(P)c(P) + a(Po)c(po) +   E   a(P)c(P)>
P=0 P=Po+l

where we take ^nlö' a(p)c(p) = 0 in the case po = 0. Suppose po > 0 and

consider ^lo' a(P)c(P) ■ If P < A)- 1 then a-p >a-(p0-l) = a-po+1 =

p + 1 so that c(p) is determined using (6).
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Suppose e < p ; then e < p + p for p = 0,...,po~l. From (6),

/>o-l />o-l

Y <*(p)c(p) = Y va~p - ia-p-'w+/"-')*/(§)
p=0 p=0

Po-i

= */(§)(/"+ /*-1)E(/a~'-/a"'"1)

P=o

= xi(hW-\i + i)(/a - ia'p0) = */(§ )/"_1(/ +l)/^/0-" -1)

= x/(§)/"-1(/ + i)(/fl-''-i).

Suppose e > p; then for some /?i > 0 we have e — p + px + 1. Suppose

P < Po-l • Then e = p + px + 1 < p + p iff px + 1 < p ; by (6) we have

(8)

' (lp + lp-l)Xi(h)   if/» >/»i + l,

/"-'//(§) if/> = />!,

0 if/></?!.

Now, /?i + 1 < po - 1 iffp + px + l<p + po-l iff e < a - 1. Suppose this
is the case. We have

Po-l p\-\

Y *{p)c(P) = Y °(p) ■ ° + (/a_/" - ia~Pi~lw{xi{h)
P=o P=o

Po-l

+    £   {la-P_la-P-XW + lß-l)xi{S.)

P=Pi + \

= Xl(s2)((la~e+p+x - l«-'+P)lP-i

+ (lp+lp-X)(l"-P>-X - la-P°))

= xi(s2W~eiß(l - l)l"~l + l*~l(l + W~e+fl - /"))

= xi(i)(ia-eiv~l(i -1) + r~\i + i)(ia~e - i))

= xi(m -1)/"-1 ((/ + Wa-e - !)/(/ -1) + ia~e).

Next, px = po - 1 iff p + p\ + 1 = p + po iff e = a. If this is the case, we have

/>o-l P\-l

Y a(p)c(p) = Y a(P) • 0 + (¡a~Pl - '""""'^"'»(f)

/>=0 p=0

= */(§)(/-i)r-'/a-£.

Finally, if e > a then p + px + 1 > p + p0 so px > po - 1. Thus, p < po - 1
implies p < px - 1 so that by (8)

Po-l po-l

Y<*(p)c(p) = y<*(p)'Q=o-
P=0 p=0

Now consider a(p0)c(p0).   We have a(p0) = la~Pa - la~P^x = IP - ¡P~l =
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/*-'(/- 1), so that by (5) directly

ife<a,    a(po)c(po) = (lp-lp-x)lp-xxï +lp~\l- 1 )/"*/(§)

= {r-i_iu-2)xî+iv-i{l_l)xi{i).

ife = a+l,    a(po)c(p0) = (/" - Z""1)/*"1*; = (Z"-1 ~ lv~2)XÎ ;

if e > a + 1,    a(po)c(po) = 0.

Consider next J2p=Po+i a(P)c(P) • Note that po + 1 < a, for otherwise 1 >

a-po = p>0,a contradiction. If p > p0 + 1 then a- p <a- po-l = p-1;
hence we use (4) to find c(p).

Suppose e <2p + 2(p0 + 1) - a (= a + 2) ; then for p = p0+ 1, ... , a we
have e < 2p + 2p - a, so that

Y ot(p)c(p)= y (ia-p-ia-p-x)(ia-p+ia-p-x)xi

P=Po+\ />=Po+l

_ y*    V^   n2a-2p _ j2a-2p-2\ _ y*j2a-2pa-2 _ „ipi-2

p=Po+l

Suppose e > 2p + 2(p0 + 1) - a (= a + 2). Then either e = 2p + 2px -
a for some px > po + 1 (note px < a or a contradiction arises) or e =

2p + 2px - a + 1 for some px > po + 1. In either case, YiP=Po+x a(p)c(p) =

Xl lv+a~e ; the work done to show this is virtually the same as that which showed

Y?p=oa(P)c(P) - X* l"+a~e under the conditions a < p - 1 and e > 2p - a,

except that 2~2£=o a(P)c(P) must be replaced with Yfp^+i a(p)c(p) \ this has

no effect on the outcome, as c(p) = 0 for each p in either of these two sums.

Now then, to write explicit formulas for (7) let us first add a(po)c(po) to

YTp=Po+x a(p)c(p) and simplify. We have

ife<a:    x* (lv~x ~ lu~2) + Xi(s2W~\l ~ 1) + XÎ lv~2

= x;/"-1 + x/(f)/I'-1(/-i);

if e = a + 1 :    xl (lv~X - lu~2) + XÎ l"'2 = X¡ l"~l = X\ l"+a~e \

ife = a + 2:    0 + xl lv~2 = X* lv+a~e ;

ife>a + 2:    xl lv+a~e ■

Note two things: First, we can combine the last three lines above into

if e > a + 1 :    x! lu+a+e ■

Second, in (7) we take X^lo1 a(P)c(P) = 0 in case Po-0, and this is the case

iff a = p . Therefore, Y,"p=oa(P)c(P) ls given by the above results in the case

a = p. If po > 0 (i.e., if a > p ) then we add YfpZo a(p)c(p) to the above
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results and simplify to find YTp=o a(P)c(P) ■ We have:

if e < p:

zi(i)r-lO + i){ia-ß-i)+xtr-i+xi(i)F'-l(i-i)

= z;/"-1+*(!)('-i)/"-|((/+ Wa-" -i)/(/-i) +i);

if p < e < a - 1 :

x,(l)(i - i)iv-\(i + i)(ia-e - 1)1(1 - 1) + la~e)

+ xVv-x+xi(2v)iv-\i-i)

=x! iv~x+xi(m- w-1«'+l)(l"~e - w-1)+ia~e+o ;

if e = a:

Xl(s2)(l - i)i"-W-e + xl/"-' + xi(s2)iv-x(i - i)

= z;/"-1+*(!)(/-i)/"~1('a- + i);

if e > a + 1 :

o + xliv+a-e = xliv+a-e-

Refer now to Table 1 for c(s, I). If Case(/) = A and v - ord¡(N) - 2p is

even, we have c(s, I) is equal to
y* ;min(2a,i/-l ,u+a—e)

+ Xi(l2)(l - l)lv~l{(l + !)(/»-—«€*«.*) - 1)1(1 - 1) + k5la~e + k6},

where rc5 = d(p + 1, e)d(p + 1, a) and fc6 = d(e, a)d(p, a). We show that
c(s, I) = lLTp=oa(P)c(P) f°r Case(/) = A and even v = ord/(A) = 2p.

Suppose a < p - 1. We have 2a<2/i-2 = i;-2<z;-l so that
min(2a ,v-l, v+a-e) = min(2a, v+a-e). Now, e < v-a iff 2a < v+a-e,

so that c(s, I) gives the x* -term of the SUM properly. Next, a - ma\(p, e) <

a-p<p-l-p = -l; by our convention, then, /"-"«(^.e) -1=0. Also,

a<p-l<p<p+l so that d(p, a) = 0 and d(p + 1, a) = 0 so that
kß = ks-0. Therefore, since each term in the { }'s is 0, the ^/(|)-term is 0.

Suppose a = p. Then min(2a ,v-l,v + a-e)- min(^ - 1, v + a - e),
and moreover, e > a iff v + a-e = min(i^ -I, v + a-e) so that c(s, I) gives

the x* -term properly. If e < a, we have a - ma\(p, e) = a - p = 0 so that

¡a-w*(P,e) _ i = o. Clearly k5 = 0 and h is 1 so the ^(f)-term is given by

c(s, I) to be Xi(j)(l - l)lu~l ■ If e > a, we have a - max(p, e) < a - e < 0,

so that by convention, la-m¡a(p->e) - l = fj; k5 — fc6 = 0 so that each term in

the { }'s is 0, and so no ^/(^-term appears.
Suppose a > p. Then min(2a, v-1, v+a-e) = min(i/-l, v+a-e) ; again

e > a iff v + a - e = min(i/ - 1, v + a - e) so that c(s, I) correctly gives the

^*-term. Now consider the ^/(j)-term. If e < p we have ¡a-max(p>e) = ¡"-p ;

d(p + 1, e) = 0 so that k$ = 0, while k6 = 1. The terms in { }'s become
(/ + l)(la~P - 1)1(1 -l) + i.\f p<e<a-l we have /«-"««^.«) = la~e while
k5 = k6 = 1 and the terms in { }'s become (/ + l)(la'e - l)/(l - 1) + la~e + 1.

If e = a we get /a-™*^) - l = /«-« -1=0; k5 = Iq, = 1 so the terms in {
}'s become la~e + 1. Lastly, if e > a, we have a - max(p, e) = a - e < 0 so

that la-m**(p>e) -1=0; also k5la~e = 0, and k6 = 0 so that each term in the

{ }'sand therefore the entire ^/(f)-term is 0, and we have shown c(s, I) gives

the ^/(f)-term correctly in each case.
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This concludes the proof that Yl"p=o a(P)c(P) = c(s > 0 f°r Case(l) = A and

even v = ord/(A) ; we leave verification in the other cases to the reader.

Example 6. Let A = 3, k = 1, and n — 1, and suppose that X — (\) is the
Legendre symbol. We show how easy Theorem 2 makes the computation of

trN x kTn. First note that since k > 2, the ¿Of)-term of the trace formula

is 0, while both ô(,fn)-terms are 0 because n is not a perfect square. All we

need to do is evaluate J^s. Now, s2 - An < 0 for 0 < ±5 < 5 ; s2 - An is a
perfect square for ±5 = 8.

Suppose 5=1. We have s2 - An = -27, so that t = 3 and m = -3 . The
contribution to ^ for 5 = 1 is then a(l)b(l)c(l, 3). To find c(l, 3), we
note that v = ord3(A) = 1, so p - 0 and Ô = 1, that e = e^(x) = 1, and we

determine that 3 is a case C prime, with a = a3(s2 - An) = 1. By Table 1,

kx = k2 = ks = e = 0, k$ = g = \, k$ = 6, and k$ = d(l, 2)d(0, 1) = 1 ; also
a - max(p, e - Ô) + e = 1. By (2), c(l, 3) = *3(l/2)30(6(3 - l)/2 + 1) = -7 .
We compute a(l) = 60, while b(l) = A(-3)/w(-3) = 1/3. Therefore, the
contribution to ¿ for s = 1 is 60 • (1/3) • -7 = -140.

Similarly, when s = 2, the contribution to Y,s is a(2)b(2)c(2, 3) = 51 •
(2/1) • 1 = 102; if s = 4 the contribution to £s is a(A)b(A)y(A, 2)c(A, 3) =
-90 • (1/3) • 4 • -1 = 120; for s = 5 the contribution is a(5)b(5)c(5, 3) =
180 • (1/3) • 1 = 60 ; for each of these values of s, 3 is a case C prime in the

evaluation of c(s, 3).

Now, if s = 0 or 3, then c(s, 3) = 0. Therefore, there is no need to

evaluate a(s)b(s), nor any products of the y(s, /)-terms; the contribution to

Y,s for either of these values of s is simply 0.

If 5 = 8 then s2 - An = 36, so that t = 6. The contribution to J2S is then
a(8)6(8)y(8, 2)c(8, 3). In finding c(8, 3), we have v = ord3(A) = 1, p = 0
and 5 = 1, e = e-i(x) = 1, and we determine that 3 is a case A prime, with

a = a^(s2 - An) = 1. By Table 1, k2 = ac5 = ks = e = 0, kx = g = 1, and
rc3 = &4 = 2 ; also min(2a ,v-l,a + v-e) = 0, a- max(/z, e - Ô) + e = 1,

Xl =Z3(l) + /3(7) = 2,and /3(8/2) = 1. By (2), c(8, 3) = 2 • 1 • 1 + 0 +
1 • 2 • 1(2(3 - l)/2 + 0 + 0) = 6. We find a(8) = 1/6, while b(S) = 1/2.
Also, y(8, 2) = 2, as 2 is a case Ö prime and a2(s2 - An) = 1 . Therefore, the

contribution to £s for 5 = 8 is (l/6)(l/2) -2-6=1.
By Proposition 7 below, the contributions to J2S °f J an<I ~s are equal, and

so finally we obtain tr^^^ T„ = - £4 = -2(-140+102+120+60+1) = -286.

The following proposition states that for fixed So the contributions of the

terms corresponding to so and -so to the ¿"^ in the trace formula as given

in Theorem 2 are the same. Therefore, the formula in Theorem 2 could be

modified by taking the JZ over aH the nonnegative integers s satisfying s2 - An

is a positive square or any negative integer, and replacing (say) a(s) with 2a(s),

except for 5 = 0.

Proposition 7. Let the notation be as in Theorem 2. Let s eZ satisfy s2 - An
is a positive square or any negative integer. Then

a(-s)b(-s)   J]   y(-s, l)Y[c(-s, I) = a(s)b(s)   J]   y(s, l)l~[c(s, I).
l\t,ljN l\N l\t,l\N l\N

Proof. Fix 5 satisfying the hypothesis, and write s2 - An as t2, t2m , or t2Am

as in Theorem 1. Fix a prime / with I \ t, l\N. Note that b(s) and y(s, I)
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depend only on s2 - An = (-s)2 - An so that b(s) = b(-s) and 7(5, /) =

y(-s, I). Let x and y be the roots in C of X2 - sX + n ; then —x and

-y are the roots of X2 - (-s)X + n , and it follows that a(-s) = (-l)ka(s).

Referring to its definition, note that c(s, I) is of the form

«(*m+»(^))
^W^)H*G).

where Ci, C2, and C3 are functions of I, e = e(xi), v = ord/(A), and

a = ord/(/), where s2 - An = (-s)2 - An = t2, t2m, or t2Am as the case may
be, so that Ci, C2 , and C3 are independent of the sign of s . Therefore, for

the same Cx, C2, and C3, we have c(-s, I) equals

^H^)H*(?)-
First,

t4(a(=4¡s)+a(=Lia))

= ,H)c,(,(^)+,(^)).

Next, it is clear that C3//(^) = //(-l)C3//(f). Furthermore, if C2 ^ 0
then we must have / = 2 and d(e, a + f) = 1, that is, e < a + f. In this

case, we have 0 = 2a+Ad = (s + 2a+fd)/2 - (s - 2a+fd)/2 (mod 2e), that is,

(5 + 2"+fd)/2 = (5 - 2a+fd)/2 (mod 2e), so that

(s + 2a+fd\      _     .   ..     fs-2a+fd\
C2X2 (-2-) = ^^(-O^ (-2-)

,   n„      fs + 2a+fd\
= X2(~l)C2X2 (-2-) •

Therefore, c(-s, I) = xi(-l)c(s, I), and it follows that

]Jc(-s, I) = x(-l)]Jc(s, I).
I\N l\N

Finally then,

a(-s)b(-s)   n   y(-s,l)l[c(-s,l)
l\t,l\N l\N

= (-l)kX(-l)a(s)b(s)   J]   y(s,l)Y[c(s,l).
l\t,l\N l\N

This proves the result, because we assume (in both Theorems 1 and 2) that

The following is easy to show using Theorem 2:
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SO = S

Corollary 8. Let k, x > cmd N be as in Theorems 1 and 2. The dimension of

the space Sk(N, x) is given by the formula

dim(Sk(N, x)) = -s0-sx+d + m-p,

where

( 0 if any one of the following conditions is met: k is

odd; 4 | A; Xi(~l) - -1 or (=p) = -1 for some

odd prime I \N,

\(-\)kl2~xX(ro)2n   otherwise, where r0 e Z satisfies r2. = -1 (mod A)

and n is the number of odd primes which divide N,

0 if any one of the following conditions is met :k = I

or A (mod 6) ; 9 | A ; 2 | A; or (=^) = -1 for some

odd prime /1 A, / ^ 3,

f X(j) n,|jv,/^3 ßi   otherwise, where a — 1 ifk = 2 or 3 (mod 6) and -1

ifk = 0 or 5 (mod 6); ß, = #(1 + n) + /,(1 - rx)

and r\ = -3 (mod f) i/3||tV,

ifk — 2 and x is trivial,

otherwise,

fe-1

si = S

where rx e Z satisfies r2 = -3 (mod A) if(N, 3) = 1,

m =

"{i

2-N]J(l + l/l),       p=l-Hr,ar(l),
1\N l\N

where par(l) is defined as in Theorem 1.

Proof. Since Tx is the identity operator, the trace of Tx acting on Sk(N, x)

gives the dimension of the space, so we need only evaluate Theorem 2 with n

set to 1. Consider the sum over 5 in the first part of the trace formula as given

in Theorem 2. Now, 0, 1, and -1 are the only values of 5 such that 52 - An

is negative, and there are no integral values of 5 such that s2 -An is a positive

square.

First, fix 5 = 0. We have s2 - An — -A = t2Am, where t = 1 and m —

-1 = 3(4). Since i and -i are the roots of <P(X), we find a(0) = (1/A)ik-2

(1 + (-l)k). If k is odd, a(0) = 0; otherwise a(0) = (l/2)(-i)kl2-x. The

class number of Q\/-T is 1, and one-half the cardinality of its unit group is 2

so that b(0) = 1/2. Since t = 1, U.¡\tj^Ny(0,1) = 1. It remains to evaluate

Y\nNc(0, I). Let / be an odd prime dividing A, and set v = ord/(A) ; we

have 52 - An = -A = l2a • -A, where a = 0. Suppose that (=£) = 1 so that

Case(/) = A. Let d¡ e Z¡ satisfy df = -1, so that (2dl)2 = -A. Note that
2d\ is the ' i/ ' which appears in the classification of /, so that (s ± lad)/2 =

(Oil- 2d¡)/2 = ±d¡. Refer to Table 1 to find c(0, /) : We have kx = 1,
min(2a, v-l,a + v-e) = 0, k2 = 0, and */(0/2) = 0 so that c(0,1) =
Xi(di) + Xi(-d,) = Xi(d,)(l + Xi(~y)) ■ If Xi(-l) = -1 then c(0,7) = 0 and
hence the contribution of the 5 = 0 term to the trace is 0, while if X/(-l) = 1

we have c(0,1) = 2xi(d¡).  Now if (^) = -1, so that Case(/) = B, then
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referring to Table 1 for c(0, /) we have kx = k2 = 0 and ;t/(0/2) = 0 so that

c(0, I) = 0 and therefore the contribution of the 5 = 0 term to the trace is 0.

Keep 5 = 0, and suppose now that 1 = 2 and / | A. Then Case(/) = F,

a = 0, ^2(0/2) = 0, and Table 1 for c(0, I) gives kx = 0. Let v = ord2(A) ;
write v = 2p or 2p + 1 as the case may be. If 4 | A then p > 1 so that
d(p, a) = d(p, 0) = 0, thus k2 = 0 and so c(0, 2) = 0. If 2 || A then v = 1
and p = 0, and X2 is the trivial character, so that e = e(x2) = 0. We have
k2 = d(e,a+ l)d(p, a) = d(0, l)d(0, 0) = 1 ; in this case c(0, 2) = ^3*2 =
l.l^2((0 + 20+1.l)/2) = /2(l)=l.

Therefore the contribution of the 5 = 0 term to the trace is 0 unless k is

even, A\A, ^/(-l) = 1 for all odd primes / | A, and (=p) = 1 for all odd
/ | A. Suppose that all these conditions are met. In particular, since A\N

and (=f) = 1 for all odd / | A, there is some r e Z with r2 = -1(A) ; note

r is odd if 2 | A so that ^2(r) = 1. If / is an odd prime dividing A and
d¡ is a unit in Z¡ satisfying df = -1, then Xi(di) = Xi(r) > because d¡ = ±r

(mod /«*W) and //(-l) = 1. Finally then,

II    lXi(di)=    II    2Xi(r) = 2»x(r),
l\N, I odd /| AT,/odd

where n is the number of odd primes dividing A.

Now fix 5=1. We have 52 - An = -3 = t2m, where t = 1 and m = — 3.

The roots jc and y of O(X) = X2 - X + 1 are (1 ± v/z3)/2; deMoivre's

formula gives (xk~x -yk~x)/(x -y) = 2/sin((rC - l)n/3)/(i\/3) so that

t\      iffc = 2,3(6),
a(l) = y\ 0     ifk = 1,4(6),

I -1   ifk = 0,5(6).

The class number of Q\/-3 is 1, and one-half the cardinality of the unit group is

3, so that b(l) = 1/3. Since t = 1, Il,|i,,tjv ?0 , /) = 1 ; it remains to evaluate

n,|ArC(l, /). Let /1 A be an odd prime, / ^ 3. Then s2 - An = -3 = /2fl(-3)

with a = 0. Let v = ord/(A) and set v = 2p or 2p + 1 as appropriate.

Suppose (^) = 1, so that Case(/) = A. Let d¡ be a unit in Z¡ satisfying

df = -3. Referring to Table 1 for c(l, I) we see that k2 = 0, /q = 1, and
lmm(2a,v-\,v+a-e)  =  ¡0 =   i       jf  „   is everi) men   ^  >  a   so that   rf(|i + 1 , û)

and d(p, a) are both 0, hence k5 = kf, = 0, while if ^ is odd, k5 and
/Co are 0 automatically. Since a - max(p, e - ô) < 0, the /c4-term is 0, and

hence for any v , the contribution to c(l, I) from the ^/(|)-term is 0, and so

c(l,l) = Xi((l+di)/2) + xi((l-di/2). If (^) = -l then Case(l) = B; here
kx = 0 while the other rc,-terms are the same as for Case(/) = A. Thus if

(=p) = -1, then c(l, I) = 0 and therefore the contribution of the 5 = 1 term

to the trace is 0.
Suppose now that / | A and / = 3 ; we have s2 - An = -3 = 32a+1(-l),

where a = 0 and -1 is a unit in Z3, so that Case(/) = C. Let v = ord3(A)

and set v = 2p or 2p+ 1. Suppose first that v is even; refer to Table 1 for
c(l, 3). We have kx = k2 = k¿ = 0 ; also d(p, a) = 0 so k$ = 0. Furthermore,
a - max(/7, e) + 1 < 0 so the k4-term is 0. Therefore the ^/(j)-term is 0, so

that if v is even, c(l, 3) = 0. Now, if v is odd, we have kx = k2 = ks = 0,
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and a - max(p, e - 1) < 0 so the rc4-term is 0. Consider k¿. If p > 1 then

d(p, a) = 0, so k(, = 0, and therefore c(l, 3) = 0; combined with the fact

that c(l, 3) = 0 if v is even we have that the contribution of the 5 = 1 term

to the trace is 0 if 32 | A. Suppose 3 || A ; then p = 0, and it follows that

k6 = 1. Therefore c(l, 3) = xÁj) ' 31_1(0 + 0 + 1) = xÁ\) ; since Xi is now
either the trivial character or (f ), we have c(l, 3) = 1 or -1, respectively.

Suppose 1 = 2 and 2 | A; then 52 - An = -3 = 22a(-3) with a = 0 and

-3 = 5 (mod 8) is a unit in Z2, so that Case(/) = E. Refer to Table 1 for
c(l, 2). We have kx = 0. Let v = ord2(A) and set v = 2p or 2p + 1.
Suppose first that v is even. Then p > a so that k2 = k5 = k6 = 0 and the

rc4-term is 0 and therefore c( 1, 2) = 0. If v is odd, then k2 and the fct-term

are again 0, while k5 and k6 are automatically 0, so that c( 1, 2) = 0. Hence,

if 2 | A, the contribution of the 5 = 1 term to the trace is 0.

We have shown that Ui\nc(1> l) = ° unless 9\N> 2\N, and (=A) = 1

for each odd prime / | A, 1^3. Suppose in fact that all these conditions

are satisfied. It is then possible to find r e Z such that r2 = -3 (mod A) if

(3, N) = 1, and r2 = -3 (mod (y)) if 3 || A, and satisfying the following: for

each odd prime / | A, / ^ 3, we have r = ±d¡ (mod l0Td'(Nî), where d¡ e Z¡

is a unit with df = -3 . For each such / we have Xi(\)(Xi(\ +r) + Xi(l~ r)) =

Xi(\)(Xi(\±dl) + Xi(\+dl)) = Xi((\ +d,)/2) + x,((i-d,)/2). Taking {Xi(l2)}

to mean 1 if 3fA and Xi(\) if 3 || A, we have \[,\Nc(l, I) = {xi(j)} •

lV,/¿3(X/((l + di)¡I) + Ml - d¡)/2)) = x(\) \~\t\N,w(Xi(i +r) + Xl(l~ r)).
By Proposition 7, the contribution of the 5 = -1 term to the trace equals

that of the 5=1 term. The remaining terms in the dimension formula come

immediately from the corresponding terms in either Theorem 1 or 2.

Consider the trace formula as given in Theorem 2. If x is the trivial charac-
ter, we can make additional simplifications to the formula, the most important

being that c(s, I) can be given by a very simple table; this is the result of our

next corollary.

Corollary 9. Let k, x, N, and n be as in Theorem 2, and suppose furthermore

that x is the trivial character. Then for (n, N) = 1 we have

trN,XikTn= ~Y \a(s)b(s)   II   7(s, l)J[c0(s, I)
s     \ l\t,l\N l\N

12
+ deg(r„) + á0(v/>7)^A'n(1 + 1//)

l\N

/|JV

where s, a(s), b(s), t, and y(s, I) are exactly the same as in Theorem 2, and

nk/2-\   ifn ¿y a perfect square,

0 otherwise,
MVñ) = {

par0(/) = |
lp + lp~x    ifv = ord,(N) = 2p,

21P ifv = ord,(N) = 2p+l,
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and Co(s, I) is defined as follows. Fix s and a prime / | A. Let v = ord/(A),

write v = 2p + S, where ô = 0 or 1. Classify I into one of the six cases A,

... , F, and referring to how Case(l) is determined, let a = a¡(s2 - An). Let

d(x, y) = 1 if x < y and 0 otherwise, for any x, y e Z. Then cq(s, I) is

given by the expression

(9) A;,2/min(2a',/-1) + hlv~x(cn(la-p+e - 1)1(1 - 1) + c6),

where the values of kx, A:3, c4, cç, and e are determined from Table 2.

Table 2

Case(/)

AorD

BorE

C or F

even

odd
even

odd
even

odd

l-l

l+l

c4

l+l
2

l+l
2

l+l
21

1

0

C6

d(p,a)
0

d(p,a)
0
0

d(p, a)

Remarks. Note that kx and rc3 are the same kx and fc3 as appear in Theorem

2, while c4 and c¿ are similar to the /c4 and k^ (respectively) of the same

theorem. Also, one must heed Convention A in evaluating (9). In Theorems 1

and 2 we assume (-l)kx(-l) = 1 ; the corollary's additional hypothesis that x
is trivial implies that k is even.

Proof. Let x De the trivial character mod A, so that x = LT/iv Xi > where for

each prime / | A, xi is the trivial character mod /ord'W ; note e = e(x¡) = 0

for each prime / | A. Let the trace trN x>kT„ be as given by Theorem 2.
Clearly the last three lines of the formula in the statement of Corollary 9 follow

directly from the corresponding lines of Theorem 2. All one has to do is show

how Table 1 "collapses" into Table 2 by showing that co(s, I) = c(s, I) for
each fixed 5 and fixed / | A, for any classification of the prime /, and any

relationship between a = a/(52 - An) and p where ord/(A) = 2p or 2p + 1.

We leave the details to the reader.

References

[A-L]    A. O. L. Atkin and J. Lehner, Hecke operators on T0(m), Math. Ann. 185 (1970), 134-160.

[Hij]     H. Hijikata, Explicit formula of the traces of the Hecke operators for r0(N), J. Math. Soc.

Japan 26 (1974), 56-82.

[H-P-S] ] H. Hijikata, A. Pizer, and T. Shemanske, The basis problem for modular forms on V0(N),

Mem. Amer. Math. Soc. No. 418, 1989.

[H-P-S2] _, Twists of newforms, preprint, 1988.

[Li]       W. Li, Newforms and functional equations, Math. Ann. 212 (1975), 285-315.

[Sha]     G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton Univ.

Press, Princeton, N. J., 1971.

Department of Mathematics, Bates College, Lewiston, Maine 04240


