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THE STRUCTURE OF RINGS IN SOME VARIETIES
WITH DEFINABLE PRINCIPAL CONGRUENCES

G. E. SIMONS

Abstract. We study varieties of rings with identity that satisfy an identity of

the form xy = yp(x, y), where every term of the polynomial p has degree

greater than one. These varieties are interesting because they have definable

principal congruences and are residually small. Let 'V be such a variety. The

subdirectly irreducible rings in "V are shown to be finite local rings and are

completely described. This results in structure theorems for the rings in y

and new examples of noncommutative rings in varieties with definable principal

congruences. A standard form for the defining identity is given and is used to

show that f also satisfies an identity of the form xy = q(x, y)x . Analogous

results are shown to hold for varieties satisfying xy = q(x, y)x .

1. Introduction

The concept of definable principal congruences originated in universal alge-
bra. A variety "V of (universal) algebras has definable principal congruences

if there is a first-order formula in the language of T/~ that defines principal

congruences for all algebras in y. There are a number of results connecting

definable principal congruences with the number of subdirectly irreducible al-
gebras in a variety, and with the existence of a finite basis for a variety. For
example, McKenzie [M78] proved that a variety (of finite type) with definable

principal congruences and a bound on the size of its subdirectly irreducible al-

gebras is finitely axiomatizable and used this result to prove that paraprimal

varieties are finitely axiomatizable. It was shown by Tulipani [T] that a variety

with definable principal congruences has definable «-generated congruences for

every positive integer n .

An interesting question that has stimulated further work is whether the vari-

ety generated by a finite algebra must have definable principal congruences. This
has been investigated by several authors for different kinds of algebras. McKen-

zie [M78] showed that the only varieties of lattices with definable principal
congruences are the two varieties of distributive lattices (all distributive lat-
tices, all one-element lattices). Building on earlier work of Burns and Lawrence

[BL79], Baker [B] showed that a locally finite variety of groups has definable
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principal congruences if and only if it satisfies the identity [x, y, x] = 1. More

recently, Kiss [K] has developed an algorithm that determines whether a con-

gruence distributive variety generated by a finite algebra has definable principal
congruences.

Less is known about varieties of rings with definable principal congruences.
Since any variety of commutative rings has definable principal congruences, our
interest is focussed on noncommutative rings in varieties with definable princi-
pal congruences. Bums and Lawrence [BL79] gave an example of a noncommu-

tative ring that cannot be in any variety with definable principal congruences.

Earlier work on varieties of rings with definable principal congruences [S83, S86]

has shown that in a variety with definable principal congruences, rings that have
certain 'nice' structural conditions, such as primitivity or primeness, must be
commutative. However, an example of a noncommutative ring in a variety with

definable principal congruences was given in [S83] and more examples appear

in this paper.

This paper deals with the structure of rings in varieties that satisfy an identity
of the form xy = yp(x, y), where all terms of the polynomial p have degree

greater than one. This condition on p excludes the variety of all commutative

rings. These varieties have definable principal congruences and are also residu-

ally small, that is, there is a bound on the size of the subdirectly irreducible rings

in the variety. We find the subdirectly irreducible rings in such a variety and
use this information to get a structure theorem for the finite and semiperfect
rings in the variety. We also obtain a standard form for the defining identity.

This allows us to show that any such variety also satisfies an identity of the

form xy = p(x, y)x . Similar results hold for varieties satisfying this form of

identity.

2. Preliminaries

This section presents some results that are needed later and introduces nota-

tion used throughout the paper.

Throughout, the term 'ring' will mean 'ring with identity' and the term 'alge-

bra' is used in its ring-theoretic sense. Since all our rings have an identity, the

language of rings used is {+,-,-,0,1}. The term 'polynomial' refers to a

polynomial in this language. These can be regarded as (ordinary) polynomials

in noncommuting indeterminates with integer coefficients. If R is a ring, then

we use V(R) for the variety of rings generated by R, J(R) for the Jacobson
radical of R, P(R) for the prime radical of R, Z(R) for the centre of R,
C(R) for the commutator ideal of R (the ideal generated by all commutators

[x, y] (= xy - yx) in R), Nil(i?) for the upper nil radical of R (the unique

largest nil ideal of R) and U(R) for the multiplicative group of units of R .

If the context is clear, we often use just the abbreviations J, P, Z, or C.

The two-sided ideal generated by an element x e R is denoted by either RxR

or (x).

The fundamental criterion for determining whether a variety of rings has

definable principal congruences is given in the following theorem.

Theorem 2.1 [BL79]. If K is a class of rings, then V(K) has definable principal
congruences if and only if K satisfies an identity of the form
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n k

Y^x¡yzi = Y^r'(x, y, z)ys¡(x, y, z)

where n and k are integers, n > k > 1, x = (x\,... , xn), z = (z\.z„)
and r¡(x, y ,z), s¡(x, y, z), 1 < i <k, are polynomials.

If a variety T~ of rings has definable principal congruences, then it satisfies
an identity of the form given in the theorem and a first-order formula defining

principal ideals (congruences) in *V would be

(p(x, y) := 3*i, ... ,xk, z-, ... , zk lx = ^x,yz,J .

If R e 'V and x, y e R, then x e RyR if and only if <p(x, y) holds. If
R is a commutative ring then V(R) has definable principal congruences, since

ELi xtyzt = ly(ELi XiZi).
If a variety T" of rings has definable principal congruences, then any ring

R e 'V will generate a variety with definable principal congruences, since
V(R) ç "V. Thus most of our results are stated for rings generating varieties

with definable principal congruences. Some of the principal results about the
structure of such rings are summarized in the following results. These results
appear in [S83, S86].

Theorem 2.2. Let R be a nontrivial ring. Then V(Mn(R)) does not have defin-

able principal congruences if n > 2.

This result is the key ingredient in proving most of the parts of the following

theorem.

Theorem 2.3. Let R be a ring. If V(R) has definable principal congruences

then
(i) R is a polynomial identity (PI) ring;
(ii) if R is primitive, then R is a field;
(iii) if R is semiprime, then R is commutative;

(iv) if R is an algebra over afield, then all idempotents of R are in the centre

ofR;
(v) // R is an algebra over an infinite field, then R is commutative.

From these results, we can deduce the following theorem on the structure of

any ring in a variety with definable principal congruences.

Theorem 2.4. Suppose that "V is a variety of rings with definable principal con-

gruences and that ReW. Let A be the set of nilpotent elements of R. Then

N is a two-sided ideal of R, N = Nil(Ä), C(R) ç P(R) = A ç J(R) and
R/J(R) is a subdirect product of fields in "V.

Proof. Since 'V has definable principal congruences, R/P is commutative, so

C ç P and thus C is a nil ideal. Then N/C is an ideal of the commutative
ring R/C, so A is a two-sided ideal of R. Clearly, A is the largest possible nil
ideal of R, so A = Nil(R) and Ac/. Since R is a Pi-ring, P = Nil(R) = A
[P,.p. 40]. Finally, R/J is a subdirect product of its primitive images, which

must be fields which are in W.   D
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Corollary 2.5. If 'V is a variety of rings with definable principal congruences,

R e T and J(R) is nilpotent, then J(R) = Nil(Ä) = P(R) = {x e R\x is
nilpotent}.

Corollary 2.6. If 'V is a variety of rings with definable principal congruences

and F is the (relatively) free ring in W, then J(F) = {x e F\x is nilpotent} .

Proof. Since F is a Pi-ring, J(F) = Nil(F) [Ro, p. 134].   D

The following theorem is used in the next section of this paper, but is pre-

sented here because it can be applied in situations other than the one considered

there.

Theorem 2.7. Let W be a variety of rings with definable principal congruences

and let R be a subdirectly irreducible ring in 'V with nonzero characteristic. If

C(R)J(R) = 0, then R has no nontrivial idempotents.

Proof. Suppose that e is an idempotent of R other than 0 or 1. Then eJ is a

two-sided ideal of R, since for x e R and j e J we have (xe-ex)j e CJ = 0,
so xej = exj e eJ. Similarly (1 - e)J is a two-sided ideal of R and since

eJ(~)( 1 -e)J — 0, either eJ = 0 or ( 1 -e)J = 0, as R is subdirectly irreducible.

Without loss of generality, suppose that eJ = 0. Then Re is a two-sided

ideal of R, since for r e R we have e(er - re) e eC ç eJ — 0 and so er =

e2r — ere e Re . Since R is subdirectly irreducible with nonzero characteristic,

it has characteristic pk for some prime p and positive integer k . Then p e J
and ep = pe e eJ = 0, hence Re n Rp — 0. Since Re ^ 0, we must have

Rp = 0. Therefore R has characteristic p . Then R is an algebra over the field

GF(p) and so all idempotents of R are central. Thus e is a nontrivial central

idempotent, but this is impossible since R is subdirectly irreducible. Therefore
R has no nontrivial idempotents.   D

3. Subdirectly irreducible rings in varieties

SATISFYING  XV = yp(x , y)

For the rest of the paper we consider varieties of rings satisfying an identity
of the form xy - yp(x, y), where p is a polynomial in which every monomial

(term) has degree greater than one. Throughout this and the following sections,

'V will denote a variety of rings satisfying an identity of this form. The reason
for this restriction is two-fold: we do not want to consider the identity xy = yx,

since all varieties of commutative rings have definable principal congruences,
and secondly, work of McKenzie [M82] shows that this condition guarantees

the existence of a bound on the size of the subdirectly irreducible rings in the
variety.

It is clear that 'V has definable principal congruences, either by noting that it

satisfies x\yz\ +x2yz2 = l-yAjj(xi, y)zi +p(x2, y)z2) and then using Theorem
2.1 or by observing that for any R e'V and y e R, the two-sided principal

ideal RyR equals the right ideal yR, so the statement 4>(x, y) := 3z(x = yz)

defines principal ideals in "V .

Theorem 3.1. Let ReT. Then J(R) = {x e R\x2 = 0} and J(R)2 = 0.



STRUCTURE OF RINGS IN SOME VARIETIES 169

Proof. Substituting x for y in the identity for "V gives an identity of the form

x2 = x3/(x). Then x2(l -x/(x)) = 0, so if x e J, then x2 = 0. Conversely,

if x2 = 0, Theorem 2.4 shows that x e J. Therefore J(R) = {x|x2 = 0} .
If x e J and y e R, then xy and x(l +y) are in J, so (x(l +y))2 = 0 =

x2 + (xy)2 + x2y + xyx = xyx. If both x, y e J, then xy = yp(x, y) and

every monomial of yp(x, y) contains either x2, y2 or yxy and hence is 0.

Therefore J2 = 0.   G

Corollary 3.2. IfReT then C(R)J(R) = J(R)C(R) = 0.

Proof. By Theorem 2.4 C ç J, so CJ C J2 = 0 and JC ç J2 = 0.   D

Theorem 3.3. There is a finite bound on the size of the fields in 'V and there is

an integer m > 1 such that x = xm is satisfied in all fields in 'V.

Proof. As before, "V satisfies an identity of the form x2 = x3/(x) and the

degree of x2 - x3/(x) bounds the size of the fields in 'V. Thus there are only

finitely many fields in W, with finite orders q\, q2, ... ,qk,for some integer

k . Any integer m > 1 such that m = 1 (modi?, - 1) for i = 1,2, ... , k will
give x — xm in all fields in y. For example, m — 1 + lcm(c7i - 1,... , qk- 1)

is one solution.   D

Theorem 3.4. Let R be a subdirectly irreducible ring in y. Then either R = F

or R/J(R) & F, where F is a field in T.

Proof. If J = 0, then R is a primitive ring, so by Theorem 2.3 it is a field.

Suppose that 7^0. R must have nonzero characteristic since otherwise Z

and Z/gZ = GF(q) would be in y for all primes q, contrary to the preceding
theorem. By Corollary 3.2, CJ = 0 and so Theorem 2.7 shows that R has no

nontrivial idempotents.

R/J is a subdirect product of some set of fields {F¡\i el} in y. Let

7T, : R/J -» F¡ be the ith projection map, for each i e I. Suppose that for

some i € /, it i is not an isomorphism. Then there is some a e R/J such that
a j¿ 0 and n¡(a) = 0. All fields in y satisfy xm = x for some m > 1, so

am~x is a nontrivial idempotent of R/J which lifts to a nontrivial idempotent

of R since J2 = 0. This is a contradiction, so n¡ must be an isomorphism

and R/J is isomorphic to some field in 'V.   D

Theorem 3.5. There is a finite bound on the size of the subdirectly irreducible rings

in "V. If the largest field in "V has q elements, then every subdirectly irreducible

ring in 'V has at most q2 elements. If Rey is a subdirectly irreducible ring

which is not afield, then \R/J(R)\ = \J(R)\ and \R\ = \R/J(R)\2.

Proof. Let R be a subdirectly irreducible ring in T~. If J? is a field, then

Theorem 3.3 gives a bound, say q, on the size of R. Suppose that R is not a

field. By the previous theorem, R/J is isomorphic to a field in y, so it has

at most q elements. Choose a set of coset representatives S = {co, Ci,..., ct]

of J in R, with Co e J. Since R is a local ring, Ci, ... , ct are all units in
R. Let M be the unique minimal nonzero ideal of R and choose a nonzero

element m e M. Define a map y : J -► S as follows. First, put y(0) = en . If

j e J is not zero, then since m e (j), there exists some x e R with m = jx
by the definability of principal ideals in R. We have x = c,; + y for some
coset representative c¡ and some y e J, so m = jx = j(c¡ + y) — jc¡, since
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jy e J2 = 0. Put y(j) = c¡, so that m = jy(j). Note that c, ^ c0, since

jcq e J2 — 0. The map y is well defined, since if 0 ^ j e J and jc¡ = jck
for i\± k, then j(c¡ - ck) = 0. Now c¡ - ck £ J, so it is a unit and therefore

j = 0, a contradiction. Also y is 1-1, since y(j\) = y(j2) = c, implies that

m = 7iC, = 72^1 and then j\ = j2 since c, is a unit. Finally, y is onto since

mc~x e M Ç J for 1 < /* < t and clearly y(mc~x) = c¡. Therefore y is a

bijection, |/| = |5| = \R/J\ and \R\ = \R/J\ \J\ = \J\2 = \R/J\2 < q2 .   D

As noted in the proof of Theorem 3.3, an upper bound for q is given by

the degree of the identity x2 = x3/(x) (that is, the degree of the polynomial

x2 - x3f(x)) obtained by substituting x for y in xy = yp(x, y).

The existence of a finite bound on the size of the subdirectly irreducible rings

in y could have been stated earlier, since Theorem 3.1 of McKenzie's paper

[M82] shows that y is residually small. Since y also has definable principal

congruences, a result of Baldwin and Berman [BB] shows the existence of the

finite bound, but does not determine the size of the bound.

Corollary 3.6. Let R be a subdirectly irreducible ring in y. If R is not afield,

then J(R) is the unique minimal nonzero ideal of R and is the only proper

nonzero ideal of R.

Proof. Suppose that R is subdirectly irreducible and is not a field. Then

Theorem 3.4 shows that R is a local ring. As in the previous proof, let

S = {cq, ... , ct} be a set of coset representatives for J in R, let M be the

unique minimal nonzero ideal of R and choose a nonzero element m e M.

Consider the set mS = {mco, ... , mct}. If mc¡ = mck and i ^ k, then
m(Ci — ck) = 0 and c, - Ck is a unit, since c¡ - ck ^ J. This means that
m = 0, a contradiction. Therefore all the elements of mS are distinct and

so \mS\ = \S\ = \J\ by the previous theorem. Since mS ç 7, we must have

mS = J, but mS Ç M, so J = M by the minimality of M. Since R is a
local ring, J is both the maximal proper and minimal nonzero ideal of R .   D

4. Finite local rings in y

In this section we determine the structure of the finite local rings in y, in

particular the subdirectly irreducible rings in y, and use this information to
find a standard form for the identity defining y. Throughout this section y

has the same meaning as in the previous section.

Our starting point is a theorem of Wilson [W] that gives a way of represent-

ing any finite local ring using matrices. Wilson's theorem uses the Galois rings
introduced by Raghavendran [R] and Janusz [J]. Galois rings are finite, local
rings that can be viewed as a common generalization of finite fields and Z/p"Z.
We use the notation GR(pn , r) for the Galois ring (Z/pnZ)[x]/(f), where /

is a monic polynomial of degree r that is irreducible modulo p. This con-

struction is independent of the choice of / (up to isomorphism). GR(p" , r)

is commutative, has characteristic p" , with the Jacobson radical of GR(pn , r)
being pGR(pn , r) and GR(pn , r)/pGR(pn, r) & GF(pr). The following result

comes from applying the methods used in the proof of Wilson's theorem to the

special case of finite local rings with J2 = 0.

Theorem 4.1. Suppose that R is a finite local ring, with R/J(R) = GF(pr) and

J(R)2 = 0. Then either
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(a) R has characteristic p and is isomorphic to the ring of all matrices of the

form

/a     bx        b2      ■■■      bn   \

0   ox(a)      0      ■■■       0

:      '••      o2(a)    '•■       :

:       0        ■•■      '••       0
\0     .       0    on(a)J

where n>0,   a, b\, ... , b„ e GF(pr) and er., ... , on e Aut(GF(pr)), or

(b) R has characteristic p2 and is isomorphic to the set of all objects of the

form

/a     <t>(b\)        (¡)(b2)      ■■■      (p(b„)   \
0   a{(<j)(a))        0        ■■■ 0

:        '■•        o2(4>(a))    '•• :

;     o        ■•.     ■•.     o
\0       ••• ••• 0    crn((p(a))/

where n > 0, a, b\, ... , b„ e GR(p2, r),

<p : GR(p2, r) - GR(p2, r)/pGR(p2, r) * GF(pr)

is the canonical map and o\, ... , o„e Aut(GF(pr)). These objects form a ring

when operations are performed with the preimages of objects in matrix rings over

GR(p2, r) and then the quotient map <f> is applied to all entries except those in

the first column.

The next lemma simplifies the task of checking whether these finite local rings

satisfy an identity of the form xy = yp(x, y).

Lemma 4.2. Let R be a finite local ring with J(R)2 = 0. Then an identity of
the form xy — yp(x, y), where p is a polynomial, holds in R if and only if an

identity of the form xy = yq(x), where q is a polynomial, holds for all x e R

and y e J.

Proof. Suppose that xy = yp(x, y). If y e J then the product of y and any

term of p containing a y equals 0, since J2 = 0. Take <7(x) = p(x, 0), so

that the terms of q are the terms of p containing only x's. Then xy = yq(x)

for all x e R and all y e J .
For the converse, note that U(R) is finite, so there is an integer m > 1

such that ym = 1 for all y e U(R). Then (1 - ym)(xy - yq(x)) = 0 for all

x, y e R, since either y e J and then xy - yq(x) = 0 or ye U(R) and then
1 -ym — 0. Rearranging the identity yields xy = (1 -ym)yq(x) +ymxy, which

is of the required form.   D

Theorem 4.3. Let R be a finite local ring in y, with R/J(R)^GF(pr). Then
either

(a) R has characteristic p and is isomorphic to the ring of all matrices of the
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form
(a

0 o(a)

0

b2

0

o(a)

bn   \
0

\0 ■■■      0    o(a)J

where n > 0, a,b\, ... ,bne GF(pr) and o e A\xt(GF(pr)), or

(b) R has characteristic p2 and is isomorphic to the set of all objects of the

form
¡a   4>(bi)   (j>(b2)

0    (p(a)       0

!      •••       <p(a)
':       0

\0   .

where n>0, a,b\, ... ,b„e GR(p2, r),

0

and

<Kbn)\
0

0
cp(a)J

<p : GR(p2, r) -> GR(p2, r)/pGR(p2, r) 2 GF(pr)

is the canonical map. These objects form a ring as indicated before.

In either case, there are integers m > 1 and k > 2 such that R satisfies

(1 - ym)(xy - yxk) = 0,    or   xy = (1 - ym)yxk +ymxy.

Proof. By the previous lemma, it is enough to check that xy = yq(x) holds for

all x e R and y e J. We use the description of R given in Theorem 4.1. If
JR has characteristic p, then J(R) consists of all matrices of the given form
with zeros on the diagonal, i.e. a = 0. Substituting

(l

Vo

b\
o\(a)

0

b2

0

02(a)

0
\

0
0

an(a)l

and   y

/O

0

Vo

Cl

0

ci

0

0

Cn\

0

o
0/

in xy = y<7(x) yields ac¡ = c¡q(Oi(a)) = c¡o¡(q(a)) for all a,c¡ e GF(pr).

Note that the diagonal entries of q(x) are just q applied to the diagonal entries
of x. If we let Cj = 1 then we have a = o¡(q(a)) for all a e GF(pr) and

Put a = o\ . Then q(a) =

- yxpi for all x e R and y e J
yxk) = 0, with k = p' and m

i — 1,2,...,«. Therefore o\ = o2 = ■ ■ ■ = o„

o~x(a) = ap' for some integer t. Thus xy

and as in the lemma, we have (1 - ym)(xy

equal to the exponent of U(R).

The other case to be considered is when R has characteristic p2 . The com-

putations are similar to the previous case. In this case, J(R) consists of the

objects of the form
(pc   <p(cx)   ■■■    (j>(cn)\'  0       0      ••■       0

Vo 0   /
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and from xy = yq(x), with y e J , we obtain <j>(a) = <f>(q(a)) = q(a¡(<p(a))) =

Oi((f>(q(a))) and so cp(a) = o¡(<p(a)) for all a e GR(p2, r). Thus er, is the

identity map on GF(pr). If we take q(a) = ap', then in GR(p2, r) we have

px = pq(x) and as before we have (1 - ym)(xy - yxk) = 0 with k = pr and

m equal to the exponent of U(R).   D

Note that the rings given in case (b) are all commutative, while the rings given

in case (a) are commutative if and only if the automorphism a is the identity
map. If a is not the identity map, the rings in case (a) are new examples of

noncommutative rings in a variety with definable principal congruences.

Corollary 4.4. Let R be a subdirectly irreducible ring in y. Then R is iso-

morphic to either

(a) GF(q), for some prime power q.

(b) GR(p2, r), for some prime p and positive integer r, or

(c) the set of 2 by 2 matrices over GF(q) of the form

{O   o(a))

where o e A\xt(GF(q)) and q is a prime power.

Proof. By Theorems 3.4 and 3.5 the subdirectly irreducible rings in y are

either finite fields or finite local rings with J2 = 0. The finite local rings in
y were described in the previous theorem and the only subdirectly irreducible

rings of this form are listed in (b) and (c). In case (b), J(R) = (p), while in

case (c), J(R) — (el2). In both cases, J(R) is the only nonzero proper ideal of

the ring.   D

We will denote by S(pr, t) rings of the kind described in part (c) of the last
theorem, where the entries of the matrices are in GF(pr) and the automorphism

a of GF(pr) is given by o(x) = x'. This implies that t = pk (mod// - 1)

for some integer k . Note that S(pr, t) = GF(pr)[x ; o]/(x2), a quotient of the

skew polynomial ring.
We need a lemma from elementary number theory in the proof of the next

theorem. The proof of the lemma, an induction on the number of congruences,

is omitted.

Lemma 4.5. The system of k linear congruences x = a¡ (mod m¡), i=l,... ,k,

has a solution for x if and only if a, = a¡   (modgcd(m,, mf)), for all i ^ j.

Theorem 4.6. There are integers m > 1 and k > 2 such that y satisfies the

identity
xy -ymxy +y(l -ym)xk .

Proof. It suffices to show that all subdirectly irreducible rings in y satisfy such
an identity. They all satisfy an identity of this form, so we have to find values of

m and k such that one identity holds in all the subdirectly irreducible rings in

y. There is an identity xy = yq(x) that holds in every subdirectly irreducible

ring Rey when x e R and y e J(R). We claim that there is an integer

k > 1 such that we can choose q(x) — xk . If R is a subdirectly irreducible ring

in .y which is not a field, then it is a local ring with quotient field R/J(R) =

GF(pr), for some prime p . The proof of Theorem 4.3 shows that q(x) must
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be an automorphism of GF(pr), so it has the form xp" + (xp' - x)s(x), for

some polynomial s(x). Therefore, if q(x) - xk , then k must be a solution

to the congruence k = pn (modpr - 1), where the value of n depends on the

automorphism.

There are t subdirectly irreducible rings Ri,...,Rt in y which are

not fields, with Rj/J(R¡) = GF(q¿), where q¡ = p¡' and p¡ is prime, and

q(x) = xki + (xqi - x)s,(x), where k¿ = p"'. This implies that k¡ = kj

(modgcd(c7, -1, q¡ — \)) for all ijtj. To prove this, suppose that i ^ j and let

g = gcd(q¡ - 1, qj - 1). Then xg - 1 divides both xqi - x = x(xq'~x - 1) and
xq¡ - x = x(xq'~x - 1), so it divides q(x) - xki - (q(x) - xk>) = xki(xk'~ki - 1)

(assuming that k¡ > k¡ ; otherwise interchange k¡ and kj). Thus xg - 1 di-

vides xk'~ki - 1, (or xk'~k> - 1) so g divides kj - k¡ (or k¡ - kj). In either

case, k¡ = kj  (modgcd(c7, - 1, q}■■ — 1)), for all i ^ j .
Thus by Lemma 4.5 the system of congruences k = k¿ (mod<7¡ - 1), i =

1,2, ... , t, has a solution for k . Therefore we can choose q(x) = xk and so

xy = yxk for all x € R and y e J(R), where R is any subdirectly irreducible

ring in y.
Choose m to be the least common multiple of the exponents of the groups

of units of the subdirectly irreducible rings in y. Then (1 -ym)(xy-yxk) = 0

holds in all subdirectly irreducible rings in y, since these rings are all finite,
local rings and an element y is either a unit, in which case 1 - ym = 0, or is in
J(R), in which case xy -yxk — 0 for any x . Thus xy = (1 -ym)yxk +ymxy

holds in all subdirectly irreducible rings in y, so it holds in all rings in y.   D

It is possible to determine exactly those subdirectly irreducible rings which

can satisfy the kind of identity given in this theorem. A lemma about the
exponent of U(S(pr, t)) is required.

Lemma 4.7. The exponent of U(S(pr, t)) is p(pr - 1).

Proof. Let R = S(pr, t), q = pr and let the image of x e R under the quotient

map R -> R/J be x. R/J S GF(q), so if y e U(R) then y«-1 = 1. Thus
y«-1 = 1 + ; for some j e J. Then yplq~l) = (1 + /)* = 1 + j" = 1, since R

has characteristic p and J2 = 0, so the exponent of U(R) divides p(q — 1).

To see that the exponent is exactly p(q - 1), note that there are elements of

order p and q - 1, ( ¿ j ) and ( g °, ) respectively, where a is a generator of

U(R/J).    D

Theorem 4.8. Consider the equation

xy = ymxy + y( 1 - ym)xk

for integers m > 1 and k > 2. Let p be a prime and let r and t be positive

integers. Then
(a) GF(pr) satisfies this equation if and only if pr - 1 divides m or k = 1

(modi/ - 1),
(b) GR(p2, r) satisfies this equation if and only if pr - 1 divides m and

k = 1   (modpr - 1), and

(c) S(pr, t) satisfies this equation if and only if pr - 1 divides m, kt = 1

(mod// - 1) and if k ^ 1   (mod// - 1), then p(pr - 1) divides m.

Proof. Rewrite the equation in the form ( 1 -ym)(xy-yxk) = 0 and let q = pr.

For GF(q), this equation is equivalent to y( 1 -ym)x( 1 -xk~x) = 0, so if x / 0
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and y 7^ 0 then either xk~x = 1 or ym = 1. Since we can choose either x

or y to be a generator of U(GF(q)), we have either q - 1 divides k - 1 or

q - 1 divides m. For the converse, q - 1 divides k - 1 implies x = xk
for all x, while q - 1 divides m implies y = ym+x for all y. Therefore
(x - xk)(y - ym+x) = 0 = y(l - yw)x(l - x*"1).

For the other two cases, first let R be any one of these rings. Then 7^0

and R/J = GF(q), where q = pr. The quotient map R —► R/J induces

a surjective group homomorphism U(R) —► U(R/J) with kernel 1 + J. If

x e R, then x will denote the image of x in R/J under the quotient map.

If y e U(R) then 1 - ym e J, since otherwise it would be a unit and then

xy -yxk — 0 for all x e R. In particular, if x e J then xk = 0, so xy = 0

and thus x = 0. This is a contradiction since J ^ 0. Therefore ym = 1 in

R/J and so q - 1 divides m .
If R = GR(p2 ,r),let y eJ with y ^ 0. Then xy - yxk = 0 = y(x - x*)

for all x, using the commutativity of R. Therefore x-xk e J, since otherwise

it would be a unit and then y = 0, which is false. Therefore x = xk in R/J

holds for all x and so q - 1 divides k - 1.
If R = S(pr, t) we have xy = yxk for all y e J and all x . In particular,

for x — (^ fl°, ) and y = (° ¿), where a G GF(^), we have a = akt. This is

true for all a e GF(q), so /ci = 1   (modcz - 1).
If k ^ 1 (modi? - 1) and y e Í7(i?), then there is some x such that

xy-yxk e U(R), since if xy-yxk e J for all x then y(x-xk) = 0 in R/J .

This would imply that x = xk in R/J for all x, and so Ac = 1 (modq - 1),

a contradiction. Now xy - yxk e U(R) implies that 1 - ym = 0. Since the

exponent of U(R) is p(q - 1) by Lemma 4.7, p(q - 1) divides m .
For the converse, we consider two cases. First, suppose that k = 1 (modq-

1). For S(pr, t) this implies that t = 1 (modq - 1), so the automorphism o

is the identity and the ring is commutative. Let R denote either this ring or
GR(p2, r), so that R is commutative. Then x - xk e J and y - ym+x e J,

since k = 1 (modcz - 1) and q - 1 divides m imply that x = x and

y = ym+1 in R/J . Therefore (x - xk)(y - ym+x) = 0 since J2 = 0 and the

commutativity of R gives (1 - ym)(xy - yxk) = 0.

For the second case, suppose that k ^ 1 (mod q - 1 ), so that we are dealing
with S(pr, t) only. Let R - S(pr, t). Since kt = 1 (modi? - 1), an easy

computation shows that xy = yxk for all x e R and all y e J. If y e U(R),

then p(q - 1) divides m implies that ym = 1, since the exponent of U(R) is

p(q - 1) by Lemma 4.7. Thus (1 - ym)(xy - yxk) = 0 since either y e J and

the second factor equals 0 for all x, or y e U(R) and the first factor is 0.   D

This result can be used in two ways. Given an equation as in Theorem 4.6,

we can determine all the subdirectly irreducible rings satisfying the equation by

finding values of p, r, and t that meet the indicated conditions. Alternatively,

given the subdirectly irreducible rings in y, we can find an equation of the
form given in Theorem 4.6 satisfied by y by solving the systems of congruences

for m and k given by the conditions indicated above. For example, to find

an equation of the given form that is satisfied by both 5(73, 72) and S(32, 3)
we have to solve the system of congruences m = 0 (mod7(73 - 1)), m = 0

(mod3(32-l)), 49ac= 1  (mod 73 -1 ) and 3k = 1  (mod 32 -1 ). The smallest
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solutions in positive integers to these congruences are m = 9576 and Ac = 691,

so both these rings satisfy xy = y9516xy + y( 1 - y9576)x691.

The theorem also shows that certain combinations of subdirectly irreducible

rings are not possible in the varieties we are considering. For example, no
variety satisfying an identity of the form xy = yp(x, y), where all terms of

p have degree greater than one, can contain the rings S(32, 3) and S(52, 5),

since the variety would satisfy some equation of the form given in Theorem

4.6 and then k would have to satisfy the two congruences 3/c = 1 (mod 8)

and 5k = 1 (mod 24), that is, k = 3 (mod 8) and k = 5 (mod 24). It is
obvious that this system has no solution. In more complicated cases, Lemma

4.5 can be used. The system of congruences for m can always be solved, since
the congruences are all of the form m = 0.

5. Structure results

In this section, we derive some further identities that hold in y and use

them to prove structure theorems for the finite and semiperfect rings in the

variety, y has the same meaning as in the preceding sections.
Our first result is just the statement of a classical theorem true in any variety,

although the results of the previous section give much information about the

subdirectly irreducible rings in y.

Theorem 5.1. Let R be any ring in y. Then R is isomorphic to a subdirect

product of the subdirectly irreducible rings in y.

It is well known that the subdirect product construction is very flexible, too

flexible to give strong structure results in many cases. We can use the identities

given in the next theorem to derive much stronger results for the semiperfect

or finite rings in y.

Theorem 5.2. There is an integer m > 1 such that y satisfies the identities

xmy = yxm,    x2 = xm+2,    xm = (xm)2,     (x -xm+x)(y -ym+x) = 0.

Proof. Let m be the least common multiple of the exponents of the groups of

units of the subdirectly irreducible rings in y and let R be any subdirectly

irreducible ring in y. Then for all x e R, either x e U(R) and so xm = 1

or x e J(R) and so x2 = 0, hence xm = 0 for any m > 1 . Thus xmy — yxm

holds in R. For the second identity, either x is a unit and so xm+2 = xmx2 =

x2 or x e J and then x2 = 0 = xm+2. Thus x2 = xm+2 holds in R,

from which the third identity immediately follows. Finally, note that if x is
a unit then x - xm+x = 0, while if x e J then x - xm+x = x. Therefore

(x - xm+x)(y -ym+x) = 0, since either x or y is a unit and so one factor is 0,

or both x and y are in J, and then xy e J2 = 0.   D

Corollary 5.3. Let Rey. Then all idempotents of R are central.

Proof. If e = e2 e R, then e = em , which is central by the theorem.   D

Theorem 5.4. Let R be a semiperfect ring in y. Then R is isomorphic to a

finite direct product of local rings in y.

Proof. A semiperfect ring contains a finite set of orthogonal local idempotents.

These are all central by Corollary 5.3 so R is isomorphic to a finite direct

product of local rings in y.   D
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Corollary 5.5. Let R be a finite ring in y. Then R is isomorphic to a finite

direct product of finite local rings in y.

The finite local rings in y were described in Theorem 4.3. Note that the

restrictions given by Theorems 4.6 and 4.8 on the subdirectly irreducible rings

in y give similar restrictions on the finite local rings in y, since they are

subdirect products of the subdirectly irreducible local rings in y.

6. Varieties satisfying xy = p(x, y)x

Our previous results also apply to any variety of rings satisfying an identity

of the form xy = p(x, y)x, where p is a polynomial and every term of p

has degree greater than one. It is easy to see that such varieties have definable
principal congruences, either by observing that they satisfy Xiyzi + X2yz2 =

(x\p(y, zi) + x2p(y, z2))-y-l or by noting that principal two-sided ideals are
just principal left ideals.

It is straightforward to check that our earlier proofs are valid for such va-

rieties, in particular, that the subdirectly irreducible rings are finite local rings
with J2 = 0. Then similar arguments as before show that the subdirectly irre-

ducible rings have the same description as before, and that all the subdirectly

irreducible rings in the variety satisfy an equation of the form

(xy -yjx)(l - x") = 0,    or   xy = xyx"+yj(l - xn)x.

This gives us the following theorem, the analog of Theorem 4.6.

Theorem 6.1. Let W be any variety of rings. Then W satisfies an identity of

the form xy = p(x, y)x, where p is a polynomial and every term of p has

degree greater than one, if and only if there are integers n > 1 and 7 > 2 such

that W satisfies
xy = xyx" +yj(l - x")x.

We also have the following analog of Theorem 4.8, which can be proved in

essentially the same way.

Theorem 6.2. Consider the equation

xy -xyx" +yj(l -x")x

for integers n > 1 and j > 2. Let p be a prime and let r and t be positive

integers. Then

(a) GF(pr) satisfies this equation if and only if pr - 1 divides n or j = 1

(mod// - 1),
(b) GR(p2, r) satisfies this equation if and only if pr - 1 divides n and j = 1

(mod// - 1), and
(c) S(pr, f) satisfies this equation if and only if pr - 1 divides n, j = t

(mod// - 1), and if j ^ 1   (mod// - 1) then p(pr - 1) divides n.

Combining these results with their analogs, we can show that the two different

types of varieties are very closely related.

Theorem 6.3. Let W be any variety of rings. Then the following are equivalent:

(a) W satisfies an identity of the form xy = yp(x, y), where p is a polyno-
mial and every term of p has degree greater than one,
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(b) there are integers m > 1 and k > 2 such that W satisfies

xy = ymxy + y ( 1 - ym)xk,

(c) W satisfies an identity of the form xy = p(x, y)x, where p is a polyno-
mial and every term of p has degree greater than one,

(d) there are integers n > 1 and j > 2 such that W satisfies

xy = xyx" +yj(l - x")x.

Proof. It follows from Theorem 4.6 that (a) and (b) are equivalent and from

Theorem 6.1 that (c) and (d) are equivalent. We now show that (b) implies (d).

If R is a subdirectly irreducible ring in W, then it must be of one of the three

types indicated in Theorem 4.4 and it must also satisfy the conditions given in

Theorem 4.8, so there are certain congruences satisfied by m and Ac . If R is

to satisfy an equation of the type given in (d), then n and j must satisfy the

congruences given by the previous theorem. We can certainly solve the system

of congruences for n , since they are all of the form n = 0. In fact, we can

take n = m , since they both satisfy the same set of congruences.

It remains to show that the system of congruences for j has a solution.

The congruences on Ac are either of the form Ac = 1 (mod«? - 1) or Acr = 1

(modq - 1), for various prime powers q . Congruences of the second form can
be written in the form k = s (modq - 1), where st = 1 (mod<7 - 1), since t

is always relatively prime to q - 1. Thus the system of congruences on ac can

be taken to be Ac = s¡ (mod g, - 1), where s¡t¡ = 1 (modtf, - 1) and q¡ is a
prime power, for all i in some finite index set /. In the same notation, the

system of congruences for j is j = t¡ (mod q,■-- 1 ). This system has a solution

if and only if t¡ = th (modgcd(t7, - 1, qh - 1)) for all i, h e I with i ^ h , by
Lemma 4.5. Thus, suppose that i ^ h and let g — %cd(q¡ - 1, qn- 1). Then

s¡ti = 1 (modg) and shth = 1 (modg), so t¡-th = tithsh-thtiSi = titn(sn-Si)
(modg). Since the system of congruences for k has a solution, Lemma 4.5

shows that sn = s¿ (mod g), hence t¡ - tn = 0 (mod g). Therefore the system

of congruences for j has a solution and we can find an equation of the required

form that is satisfied by W .
A similar argument shows that (d) implies (b).   D

Corollary 6.4. Let W be a variety of rings satisfying any (hence all) of the

conditions of the theorem. If R is a ring in W, then the two-sided ideal RyR

generated by an element y e R equals both the left ideal Ry and the right ideal

yR. Both of the statements 3z(x = zy) and 3z(x -yz) hold precisely when

x e RyR and so either of these statements defines principal ideals in R, for any

ReW.

1. Connections with residually small varieties

McKenzie [M82] showed that a variety of rings is residually small if and only
if it satisfies and equation of the form xy = f(x, y), where / is a polynomial
and every term of / has degree at least three. The condition we have considered

is clearly a special case of this condition and all the varieties we have considered

are residually small.
The varieties we have considered and residually small varieties have many

similarities.   For example, in both cases J(R)2 = 0 for all rings R in the
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variety. McKenzie proved that any residually small variety satisfies the equation
(x - x")(y - y") = ((x - x")(y - y"))" for some integer n > 1, while Theorem

5.2 shows that the varieties with definable principal congruences considered in
this paper satisfy (x - x")(y - y") = 0 for some integer n > 1.

However, residual smallness and definable principal congruences are distinct

notions, since there are varieties with definable principal congruences that are

not residually small and there are residually small varieties that do not have

definable principal congruences. For example, the ring given in Theorem 13 of

[S83] generates a variety with definable principal congruences, but since it has
J2 ^ 0 it cannot be in a residually small variety. Conversely, M2(GF(q)) can

be in a residually small variety, but not in a variety with definable principal

congruences, by Theorem 2.2.
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