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A HAAR-TYPE THEORY OF BEST Lx -APPROXIMATION
WITH CONSTRAINTS

ANDRAS KROO AND DARRELL SCHMIDT

Abstract. A general setting for constrained Z,1-approximation is presented.

Let Un be a finite dimensional subspace of C[a, b] and L be a linear op-

erator from Un to C(K) (r = 0, 1) where K is a finite union of disjoint,

closed, bounded intervals. For v , u e C(K) with v < u, the approxi-

mating set is Univ, u) = {p e Un : v < Lp < u on K} and the norm is

\\f\\w = Xf \f\wdx where w a positive continuous function on [a, b]. We

obtain necessary and sufficient conditions for Un (v, u) to admit unique best

|| • ||w-approximations to all / € C[a, b] for all positive continuous w and

all v , u € C(K) (r = 0, 1) satisfying a nonempty interior condition. These

results are applied to several L1-approximation problems including polynomial

and spline approximation with restricted derivatives, lacunary polynomial ap-

proximation with restricted derivatives, and others.

1. Introduction

In this paper we shall study uniqueness of best Li-approximation of con-

tinuous functions by elements of certain convex sets, resulting from imposing

constraints on finite-dimensional spaces. Problems of this type were investi-

gated in the literature of approximation theory mainly for the Loo-norm (see,

e.g., the papers by Chalmers [1] and Chalmers and Taylor [2] and references

therein).
Recently much progress has been made in the study of uniqueness of best

Li-approximation of continuous functions from finite-dimensional spaces. A
Haar-type theory was developed for this setting with the so-called /á-spaces be-

ing analogs of Haar spaces for the Li-norm [4, 5, 9, 10, 13]. In this paper

we are concerned with providing a similar Haar-type theory for constrained

Li-approximation, i.e., giving necessary and sufficient conditions for unique-

ness. In a recent paper by Pinkus and Strauss [11] the problem of uniqueness

of constrained Li-approximation was studied for the special cases of restricted

range and restricted coefficient approximation with constraints imposed by fixed

boundary functions. Our goal is to develop a general theory of constrained Lx-
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approximation imposing constraints by linear operators and thus characterizing

uniqueness in terms of the given operator. Furthermore, our approach also dif-

fers from that in [11] in another respect. Instead of studying uniqueness for

constraints with fixed boundaries we shall give boundary independent charac-
terizations of uniqueness which leads to simpler and more utile descriptions.

On the other hand our results depend on whether we work with continuous or

smooth (C^-boundaries.
We first fix some notations. Cw[a, b] denotes the set of real continuous

functions on [a, b] endowed with the norm ||/|| = / \f(x)\w(x)dx where

w e W—the set of positive continuous functions on [a, b]. Let Un be an

«-dimensional subspace of C[a, b]. Let K be a finite union of disjoint closed

bounded intervals in R, and for r = 0 or 1, denote by C(K) the set of real

continuous (r = 0) or continuously differentiable (r = 1) functions on K.

Consider functions v, u e C(K) (r = 0, 1) satisfying v < u on K and let

L: Un -* C(K) be a linear operator mapping U„ into C(K). Then set

fj„(v , u) = {p e Un : v < Lp < u on K}.

We shall say that Int U„(v, u) ^ <j> if for some p e Un we have v < Lp < u

on K. Recall that U„(v, u) is said to be a uniqueness set in Cw[a, b] if

every f e Cw[a, b] has a unique best approximant in Ü„(v, u). (Note that

we approximate in the Li-norm on [a, b], while the constraints are imposed

on K.)
Recently it has been noted that various necessary and sufficient conditions

for uniqueness of Li-approximation depend on the weight w which defines the

Li-norm. The study of weight independent uniqueness involves the so-called A-

spaces. A subspace Un is called an ,4-space if for every g e U„\{0} and
continuous function a : suppg —► {—1, 1} there exists gx e Un\{0} such that

ogi > 0 on suppg and gx = 0 a.e. on Zo(g). (There and in what follows

Zo(g) = {x e [a,b] : g(x) = 0} and suppg = [a, b]\Z0(g).) It is known
[5, 10, 13] that in order for Un to be a uniqueness subspace in Cw[a, b] for

every w e W it is necessary and sufficient that Un be an ,4-space. The main

goal of the present paper consists in obtaining similar results for constrained

approximation. Thus we shall study the following problem.

Problem. Given U„ c Cw[a, b], r = 0 or 1, and L: U„ -* Cr(K), find a
necessary and sufficient condition so that for every w e W and every v,

u e C(K) with Int Un(v , u) ^ <p, Un(v , u) is a uniqueness set in Cw[a, b].

Thus we shall consider separately the case of continuous boundaries (r = 0)

and Cx-boundaries (r = 1). It turns out that considering C-or C1-boundaries
leads to essentially different solutions and correspondingly distinct applications.

Our paper is organized as follows. §2 provides a complete solution to the

problem outlined above. §3 consists of applications for the case of C-boundaries

while §4 gives various applications for C1-boundaries. It turns out that our the-
ory can be widely applied for different operators and spaces of polynomial and

spline functions. Finally, let us mention that a similar study of constrained

approximation in the Loo-norm is given in our recent paper [6].
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2. General theory of best Lx -approximation with constraints

In this section we give a complete weight and boundary independent char-

acterization of uniqueness for approximating from U„ (v , u) in Cw [a, b]. In

order to accomplish this we shall need the following characterization of best

constrained Li-approximants.

Theorem 2.1. Let L:Un^ C°(K), v, ue C°(K) be such that Int Ün(v, u) ¿

(p, w e W and f e Cw[a,b]. Then p0 e Ü„(v, u) is a best approximant of

f if and only if there exist h e L°°[a, b] with \h\ < 1, points yx, ... , ym e

Z0(v - Lpo), ym+x, ... ,yse Z0(u - Lp0) satisfying dimLUn\ {y¡}s=¡ = s  (0 <

s <n), and positive numbers ax, ... , as such that

(2.1) /   h(f-po)wdx= j   \f-po\wdx
Ja Ja

and for every p eUn

-b m s

(2.2) /   hpw dx + Y, <*i(Lp)(yi) -  £ oci(Lp)(yi) = 0.
Ja i=\ i=m+\

For a function g e C°(K) as above Zo(g) is the set of its zeros. If g e

CX(K) we denote Zx(g) = {x e Z0(g) : g'(x) = 0 if x e IntK}. Our next
theorem is the main result of this paper.

Theorem 2.2. Let L : Un -> C(K) (r = 0, 1). Then the following are equiva-
lent:

(i) For all v , ue C(K) satisfying Int U„(v , u) ^ (f> and w e W, U„(v, u)

is a uniqueness set in Cw[a, b] ;

(ii) for every g e U„\{0}, continuous mapping o : suppg -» {-1, 1} and

points {yi}]=x ç Zr(L(g)) such that dimLUn\ {y¡y_ = s (0 < s < n - 1) there

exists a gx e Un\{0} such that

(2.3) Sï=0   a.e.onZ0(g),

(2.4) ogx > 0   on supp g,

(2.5) (Lgx)(yi) = 0       (l<i<s).

One can notice a simple connection between the above result and the A-

property. Indeed, properties (2.3) and (2.4) of gx are the ones needed for the

^-property, while (2.5) is the extra requirement resulting from the constraints

imposed by operator L. Thus (2.3)-(2.5) combine the ^4-property and the

features of operator L. This combination is reflected in the next definition.

Definition. Let L: Un —> C(K) (r = 0, 1). Then we call Un an Lr-^4-space
if property (ii) in the above theorem holds.

Since Zx(g) ç Z0(g) for every g e CX(K) condition (ii) for r = 1 is less

restrictive than for r = 0. This indicates that the set of L1- ̂ -spaces might be

wider than that of L°-^-spaces. Our various applications will show that this is

the case. Evidently, L°-^4-spaces and L1 -A-spaces are, in particular, ^4-spaces.
We now prove the two theorems stated above.
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Proof of Theorem 2.1. Sufficiency. Let p e Un(v, u), i.e., v < Lp < u. Then

by (2.2)

-b m s

I   hp0wdx= -J2°<i(LPo)(yi)+  J2 ai(LPo)(y¡)
Ja ¡=1 i=m+l

m s

= -^2cxiV(yi)+  J2  atu(yi)
1=1 i=m+\

m s .b

> -^2a¡(Lp)(yi)+  ^2 ati(Lp)(yi)= /   hpwdx.
¡=1 i=m+\ Ja

Using (2.1) we obtain

¡•b rb rb çb

\   \f-Po\wdx=l   h(f-po)wdx<      h(f-p)wdx<      \f-p\wdx
Ja Ja Ja Ja

and po is a best approximant of /.

Necessity. The proof is essentially that ofTheorem 5.1 in [ 11 ]. Assume now that

Po is a best approximant of /. Since U„(v , u) is a convex set, a well-known

characterization of best approximants yields the existence of h e L°°[a, b]

such that \h\ < 1, Ja \f-p0\wdx = Ja h(f -po)w dx and

rb rb ^

(2.6) /  hpowdx> /  hpwdx,       p e Un(v, u).
J a J a

Let {px, ... , p„} be a basis for U„ ,

3 = {-((Lpk)(y))nk=x : y e Z0(v - Lp0)}

U {((Lpk)(y))l=x : y e ZQ(u - Lp0)} C R"

and denote by Q the smallest convex cone containing ¿P . Consider the vector

c = ( fa hpkw dx)k=x in R" and suppose that c g Q. Then there is a hyperplane

supporting Q at the origin which strictly separates c from Q, i.e., for some

ä = (ak)"k=x e R"\{0} we have

n rb "

(2.7) ¿Zak      hpkwdx>0>^2akqk,        q = (qk)"k=x e Q.
k=\     Ja k=\

Set p* = Y!k=\ "kPk e Un\{0} . Then (2.7) yields that ¿hp*wdx>0, Lp* >

0 on Zo(v - Lpo) and Lp* < 0 on Z(u - Lpo). Since Int U„(v , u) ^ <f), for

some p e Un we have v < Lp < u on K. Set pt = p* + t(p - p0) (t > 0).

Then Lpt > 0 on Zq(v - Lp0) and Lpt < 0 on Z0(u - Lp0) for every / > 0.

In addition, / hptw dx > 0 if t > 0 is small enough. Choosing e > 0 to be

sufficiently small we have po + ept e U„(v , u) and

rb rb

/   h(po + ept)wdx > /   hpowdx.
Ja Ja

This contradicts (2.6). Thus ceQ. If c = 0, then (2.2) holds with 5 = 0. Oth-
erwise, tc € co¿P (the convex hull of &) for some t > 0. Since co^3 is closed
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and bounded, pc e co^ where p := sup{t > 0 : te e co^}, 0 < p < oo.

Choose qx, ... , qs e 3a such that pc e co{qx, ... , qs} and s is minimal.

If {qx, ... , qs} were linearly dependent, then / := dimspan{i?i, ... , qs} < s.

But pc is on the boundary of co{<7i, ... , qs} relative to span{#i, ... , qs} and

therefore by the Carathéodory Theorem pc is expressible as a convex combi-

nation of / or fewer vectors in {qx, ... , qs} contradicting the minimality of

s. Thus {q~i, ... , q~s} is linearly independent. We thus have yx, ... ,ym e

Z0(v - Lpo), ym+x, ... ,yse Z0(u - Lp0) where dimLU„\ {yiyM =s (0 < s <

n) and positive numbers ßx, ... , ßs so that

pb m s

p /  hpkwdx = ~Y,ßi(Lpk)(yi) + Yl ßi(LPk)(y.)      (!<*<»)•
Ja !=1 i=m+\

Hence (2.2) holds with a¡ = ßi/p  (1 < i < s).

Proof of Theorem 2.2.  (ii) => (i).

Assume that (ii) holds, but for some w e W, v , u e C(K) with Int U„(v , u)

^ <t>, and f e Cw[a, b] there are two distinct best approximants px, p2 e

ÎJn(v , u) for /. Then (px + p2)/2 e U„(v , u) is also a best approximant and

setting g = px - p2 , we have

Z0(f - (Px + Pi)/2) ç Z0(f - px ) n Z0(f - p2) c Z0(g),

Z0(v - L((px +p2)/2)) C Zr(v -Lpx)n Zr(v - Lp2) C Zr(Lg),

Zo(u - L((px +p2)/2)) C Zr(u -Lpx)n Zr(u - Lp2) C Zr(Lg).

Now choose h ; yx, ... ,ys\ ax, ... , as as in Theorem 2.1 for the best ap-

proximant (px +p2)/2 of /. Let o = sgn(/- (px +p2)/2). Since supp^ ç

supp(/- (px +p2)/2), o maps suppg continuously to {-1,1}. Moreover,

o = h on suppg, and {yi}si=x Ç Zr(Lg). By (ii) there exists a gx e U„\{0}

satisfying (2.3)-(2.5). Therefore

(2.8)        /   hgxwdx= /       hgxwdx= /       ogxwdx= j   \gx\wdx.
Ja ^supp g J supp g Ja

On the other hand (2.2) should hold for p = gx which (in view of (2.5))
contradicts (2.8).

(i) => (ii). Assume that (i) holds. We show now that for given g, a and

{y¡}si=x as in (ii) there exists gx e U„\{0} satisfying (2.3)-(2.5). Let us replace

(2.5) by a seemingly weaker condition (2.5') : y¡(Lgx)(y¡) > 0, where y, = 1

or -1 are chosen arbitrarily (1 < i < s). First we show that the existence of

gï £ U„\{0} satisfying (2.3), (2.4) and (2.5') (with arbitrary y¡ = ±1) implies
existence of gx e Un\{0} satisfying (2.3)-(2.5). For y = (y,)/=i w^a 7i = ±1

(1 < i < s) let gy e Un\{0} be such that (2.3), (2.4) and (2.5') hold for it. Set

A = {((Lg7)(yi))U : y = (7i)U ,  Yi = ±1 (1 < / < s)} ç R°.

If Ö & coA, then there exists fj - (tji)si=i e Rs such that (a,f)) > 0 for

all ä e A which (in view of (2.5')) contradicts the definition of A. Thus

Ö € co ̂ 4 , i.e., there exist yx, ... , y1 and positive numbers ax, ... , a¡ so that

for gx = EÍ=i cLigjt e Un\{0} , (2.3)-(2.5) hold.
Now it suffices to establish the existence of gx e U„\{0} satisfying (2.3),

(2.4) and (2.5'). Let g e Un\{0}, o and {j>/}Lj be as required in (ii) and
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assume without loss of generality that y¡ in (2.5') are chosen so that y¡ = 1

(1 < i < m) and y¡< = -1 (m + 1 < i < s) for some 0 < m < s. Assume that

no gx e U„\{0} satisfies (2.3), (2.4) and (2.5').

Set Ü = {p e Un '■ P = 0 a.e. on Z0(g)} and let Q be a complementary

subspaceof Ù in Un. Thus Un possesses a basis {Pi}"=x suchthat {Pi}'i=x and

{Pi}"=l+X are bases for U and Q, respectively. By the Liapunoff theorem [10]

we can choose h e L°°(Z0(g)) such that \h\ = 1 on Zo(g) and /z ,g)hq = 0

for every q e Q. Let h = o on suppg and h = h on Z0(g). Then \h\ = 1.
Set

'   rb m s y

/   hpkwdx + Ya'(LPk)(yù-  Y a'(LPk)(yi)\      :
Ja i=l i=m+\ / k=x

w eW, a,->0(l<i'<i)lçR".

9s is a convex cone in R" with 0 e£P .

Assume that Ü g 9o, i.e., Ü € Bd^. Let a = (ak)nk=x e R"\{0} define a

hyperplane supporting 9° at Ü. Then setting g* = Y!k=\akPk s Un\{0} we
have

hg*wdx + Y,<*i(Lg*)(y>)-  ¿2 ^(Lg*)(yi)>0
i=l i=m+\

for every w e W and a, > 0, 1 < / < s. Letting g* = p* + q where p* e Ü

and # 6 Q, (2.9) yields that ¿g* > 0 a.e. on [a,b]\ hence hq > 0 a.e. on
Z0(áf) • By definition of h, this is possible only if q - 0 a.e. on Zo(g), i.e.

q = 0 (by definition of U). Thus g* = p* e U and og* > 0 on suppg. In

addition, (2.9) also implies that (Lg*)(y¡) > 0 if 1 < /' < m and (Lg*)(y¡) < 0
if m + 1 < i < s. Thus g* satisfies (2.3), (2.4) and (2.5'), contradicting our

assumption. Thus 0 e 9>, i.e., for some w* e W and a* > 0 (1 < / < s) we

have

rb m s

(2.10) /   hpw*dx + Yo*i(Lp)(yi)-   Y  a*(Lp)(yi) = 0
■'" i=l i=m+\

for every p eU„.

Set /* = \g\h. Since h = o on suppg, /* € C[a, b]. Choose disjoint
closed intervals [a¡, ß(] ç K (1 < i < s) so that y¡ e [a¡, ßt] (1 < i < s)

where a, < /?, if y¡ e BdK and a¡ < y¡ < /?, if y¡ e IntK. Define for r = 0
or 1 and 1 < i < m a function vr on [a,, ß{] by

KL^MI-iy-v,)2,     ifr = 0,

sgn(j; - y,) S*[\(Lg)'(t)\ + (t - y,)2] dt,    if r = 1

Since y i e Zr(Lg) it follows that vr e C([ai, ßi]) (1 < i < m). In addition,

-\Lg\ > vr on [a,, fl¡]\{y¡} and vr < 0 on [a,, /?,] unless y = y, (1 < i <

m). Now we can extend vr to K so that vr 6 Cr(K) and vr < -|Lg| on

K if y # y i   (1 < i < m). Similarly we can construct a function ur e C(K)
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so that ur > \Lg\ on K\{yj}sj=m+X and ur(y¡) = 0 (m + 1 < i < s). Since

dimLU„\ {j,jí = s we can choose g e U„ so that (Lg)(y¿) > 0 (1 < i < m)

and (Lg)(yi) < 0 (m + 1 < i < s). A compactness argument yields that for

/ > 0 sufficiently small vr < L(tg) < ur on K, i.e., Int Un(vr, ur) ^ </>.

Let us show that eg (0 < e < 1) is a best approximant to /* 6 Cw-[a, b]

from Ü„(vr, ur). For 0 < e < 1 we have

vr < -\Lg\ < L(eg) <\Lg\ <ur,

yielding that eg e U„(vr, ur). Furthermore, Z0(vr - L(eg)) = {yx, ... , ym} ,

Z0(ur - L(eg)) = {ym+x, ... ,ys} and since h(f* - eg) = \g\ -ehg > 0,

/ h(f* - eg)w* dx = / \f*-eg\w*dx.
Ja Ja

Thus by Theorem 2.1 and (2.10) eg is a best approximant to /* e Cw-[a, b]

from U„(vr, ur). Since 0 < e < 1 is arbitrary this contradicts (i).

It follows from Theorem 2.2 that uniqueness of best constrained Li-approxi-

mation with C-or C1-boundaries reduces to the study of L°-A or L1 -,4-spaces,

respectively. Lr-^4-spaces (r = 0, 1) are ^4-spaces of special type which com-

bine A -property with certain requirements with respect to operator L. A num-

ber of characterizations and descriptions of ^-spaces are given in the literature.

We shall cite now some of them which will be frequently used in this paper.

The first structural characterization of ,4-spaces was given by Pinkus [9, 10].

The next result due to Wu Li [7] is a simplification of Pinkus' theorem. For

U„ c C[a, b] we set Z(Un) = C]{Z0(p):p e Un}.

Theorem2.3. Let U„ bean n-dimensionalsubspaceof C[a, b] suchthat Z(U„)

n (a, b) = </>. Then Un is an A-space if and only if U„ is a weak Chebyshev

(WT-) space and satisfies the following "splitting" property: if p eU„ and p = 0

on [c,d]  (a<c<d < b), then px[a,d], PX[c,b) e U„ .

It follows easily from the above theorem that if U„ is an A -space with

Z(U„) n (a, b) = <p, then there are finitely many endpoints a — Co < cx <

■■■ < cm < cm+x = b of zero intervals of functions in U„ and Un\(c¡,cM) is a

Haar space (0 < /' < m) (Pinkus [9, 10]). On the other hand Pinkus [9, 10]
also showed that if U„ is an ,4-space and z e Z(Un) n (a, b), then U„ is

the direct sum of two ^-spaces with supports contained in [a, z) and (z, b],

respectively. This and Theorem 2.3 imply that if U„ is an ^4-space in C[a, b]

and no function in Un\{0} vanishes on a nondegenerate subinterval of [a, b],

then U„ is a Haar space on (a, b) (Havinson [3]).

Results mentioned above completely describe the structure of ^4-spaces. An

immediate consequence of Theorem 2.2 shows that the study of L°-^4-spaces can

be reduced to the study of /I-spaces, thus leading to a full structural description

of L°-,4-spaces.

Corollary 2.4. Let L: Un —► C°(K). Then Un is an L°-A-space if and only if
for every {yi}si=x ç K (0 < s < n - 1) such that dim LUn\ {y,y_ = s the set

G[y¡y   = {p eUn: (Lp)(y,) = 0  (1 < / < s)} is an A-space.

The above corollary leads to a simple and elegant characterization of unique-

ness sets for constraints imposed by linear functionals.
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Let U„ c C[a, b] be an «-dimensional space and consider linearly in-

dependent functionals (px,...,q>s e U*. Set Un(a,b) = {p e U„: a¡ <

(Pi(p) < bi (1 < i < s)}, where a = (a¡)si=1, b = (b¡)si=x e Rs and a <

b, i.e., a¡ < bi (1 < i < s). Obviously, U„(a,b) = U„(v,u), where

U„(v, u) is defined as above by L: U„ —> C°(K) with K = {1, 2, ... , s},
v(i) = a¡, u(i) = bi, (Lp)(i) = (pi(p) (1 < i < s). Furthermore, for

arbitrary {Si}1lx ç {1,2,..., s} = K, we have dim LU„\ {Siy = m and

GMti ={peU„: (Lp)(Si) = 0  (1 < i < m)} = fl™, ker^,   (ty = U„).
Thus we obtain the next

Corollary 2.5. Let U„ c C[a, b] and <p¿ e U* ( 1 < i < s) be linearly in-
dependent. Then in order that for every w e W and à, b e Rs such that

lntUn(a, b) t¿ (j), Un(a,b) be a uniqueness set in Cw[a, b] it is necessary

and sufficient that Un and f|™ i kerç^ be A-spaces for every {sx, ... , sm} ç

{1,2,...,s}.

For the special case of q>fs being the coefficient functionals the above corol-

lary is essentially proved in [11].

Although Corollary 2.4 shows that there is an intimate relationship between

the L°-A -property and the A -property, it appears that there is no similar clear

connection between the L'-zi-spaces and ^4-property. However, we can derive

from Theorem 2.2 some useful results which provide a partial characterization

of LA -.4-spaces via ,4-spaces.

For L: U„ - CX(K) and {y,}'w Ç K, set G'{y¡)]__ ={peUn: (Lp)(Vi) = 0

(1 < i < s) and (Lp)'(y¡) = 0 if y¡ e IntK (i < i < s)}. Evidently,
G'iy.y   Q G{y¡y_ . Now from Theorem 2.2 we easily derive the following

Corollary 2.6. Let L: Un -> CX(K) and assume that U„ is an Lx-A-space. If
for given {yi}si=x Q K (0 < s < n — 1) such that dimLUn\ {yiy_ = s we have

^{yA]-¡ = G\y¡y   • then G^y    is an A-space.

Let us note that G[y¡y, | = G',y.y for every {y¡}si=x C BdK yielding that

G{y¡y_ is an ,4-space if Un satisfies the L1 -A-property. In what follows we

shall frequently apply the above necessary condition for L'-^-spaces. Let us

also mention a useful sufficient condition for the L1 -,4-property related to A-

spaces.

Corollary 2.7. Let L:Un-+Cx(K). If for every {y¡}sj=x ç K such that

dim LUn\{y¡y =i = s,

G',  y    is an A-space, then Un is an Lx-A-space.

The converse of Corollary 2.7 does not hold in general. From Theorem 4.1,

it will follow that the space l\2 of polynomials of degree 2 or less is an Lx-A-

space on [-1, 1] with L the identity operator, however, G'^ = span{.x2} is

not an A -space on [-1, 1].
We conclude this section by citing the analogies between the Haar-type the-

ories for constrained Lx- and Lx-approximation. The L-Haar and L'-Haar

properties were found in [6] to completely characterize those subspaces U„ of
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C[a, b] for which U„(v , u) admits unique best uniform approximations to all

/ e C[a, b] for all continuous or smooth, respectively, boundary functions v

and u with \ntUn(v, u) ^ <j>. Among other conditions, the L-Haar property

was found to be equivalent to G{y¡y being a Haar space for all {y¡}si=x Q K

with dim LUn\{y¡y =s. Hence, every L-Haar space is an L°-^4-space. Cor-

respondingly, an analog of Havinson's result holds. That is, if U„ is an L°-^4-

space on [a, b] and no nontrivial element of U„ vanishes on a subinterval

of [a, b], then U„ is an L-Haar space on every [a, ß] C (a, b). As in the

context of this paper, the L'-Haar property was not found to have a simple

equivalent as that above for the L-Haar property; however, useful criteria sim-

ilar to Corollaries 2.6 and 2.7 were obtained.

3. Applications for C-boundaries (L°-yl-sPACEs)

As we have seen in the previous section the C-boundary independent unique-

ness of constrained Li-approximation is completely characterized by the L°-A-

property. In this section we shall consider some examples of L°-,4-spaces.

Throughout this section we set K = [a, b]. It turns out that L°-^-property

is quite restrictive and we shall illustrate this in §3.1 by providing a "piecewise"

bound on the dimension of L°-^4-spaces. Never-the-less, in Lx -approximation

the C-boundary case is not as restrictive as in uniform approximation (see [6]).

We shall present in §3.2 a certain family of spline functions providing a useful

example of L°-v4-spaces.

3.1. A negative result on L°-^4-spaces. An operator L: U„ -» C[a, b] is called

a /c-Rolle operator (k > 0) if whenever p e Un and p(x¡) — 0 (1 < i <

k + 1) for some a < xx < ■■■ < xk+x < b, then (Lp)(y) = 0 for some

y e[xx, xk+x]. Obviously, the identity operator (/) is a 0-Rolle operator. It

is known [6] that if U„ c Ck[a, b] and a¡ e C'~x[a, b] (1 < i < k), then
L = (D + ax(x)I)■■■(D + ak(x)I) is /c-Rolle. (Here and in what follows D
denotes the differentiation operator.) It is easy to see that any k-Rolle operator

L satisfies the following property: if p, q e U„ and p = q on [c, d] (a <
c < d < b), then Lp = Lq on [c,d]. Therefore if L: Un -» C[a, b] is

Ac-Rolle and a <c < d <b, then the operator L: U„\ [£. dx -> C[c, d] given by

Lp\[C,d] - (Lp)\[c,d] is well-defined. In particular Corollary 2.4 immediately

implies that if L: U„ -» C[a, b] is k-Rolle and U„ is an L°-,4-space, then

U„\ [cdx is an L°-^-space for any a <c < d < b .

Our next result restricts the dimension of L°-^-spaces related to Ac-Rolle

operators.

Theorem 3.1. Let L: Un —> C[a, b] be a k-Rolle operator and assume that

Un satisfies the L°-A-property. Consider an arbitrary interval [c, d] ç [a, b]

(c < d) such that whenever p eU„ vanishes on a nondegenerate subinterval of

[c, d] we have p = 0 on [c, d]. Then either LU^^ dx = 0 or C/„|rc ¿x is a

Haar space on (c, d) of dimension at most k + 1.

Proof. Since U„ is an yi-space, according to the description of ^-spaces given

at the end of §2, Un\[C^dx is a Haar space on (c, d). Suppose that LUn\[c tdx ¿0

and dimUn\ [c d] = m > k + 2. Choose (a, ß) c (c, d) such that for some

g eU„ we have Lg / 0 on (a, ß). Let xx, ... , xw_i e (a, ß) be arbitrary.
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Then there exists p e U„ not identically zero on [c, d] such that p(x¡) = 0,

1 < i < m — 1. Since m - 1 > k + 1 it follows from the /c-Rolle property,

that (Lp)(n) — 0 for some r\ e (a, ß). Furthermore, in view of our choice

of interval (a, ß), dimLUn\{„} = 1. Hence by Corollary 2.4, G = G{„} =

{g e Un: (Lg)(n) = 0} is an yl-space. Moreover, if g e G vanishes on a

nondegenerate subinterval of [c, d], then g = 0 on [c, d], yielding that G is a

Haar space on (c, d). On the other hand dim G\[c^d] = dim Un | [c , dx- -1 = m -1

and p e G\ [C,¿]\{0} has m - 1 distinct zeros in (c, d), a contradiction.

When k = 0 (i.e. L = I) the above theorem reduces to a known result by

Pinkus and Strauss [11], concerning restricted range approximation.

Corollary 3.2. If Un is an LP-A-space with L the identity operator, then U„

decomposes into direct sum of one-dimensional A-spaces having disjoint supports.

Proof. Since Un is, in particular, an A -space, we have Un = Ux © • • • © Uln ,

where the U/, are ^-spaces having disjoint interval supports J¡ = [a}-, bj] (1 <

j <l, Z(UJn) n (aj, bj) = (j)). Now let a} = cJ0 < c\ < ■ ■ ■ < cJmj < cJm¡+x = b¡

be the endpoints of zero intervals of functions in  U„ .   Then  U„ I ,¡   ¡ > =
v-t <Ci+\'

Uh\ tr> r' \ is a Haar space of dimension at most 1. (We apply here Theorem

3.1 with k = 0.) This in turn implies that m¡ = 0, since otherwise c\ e Z(U„)

(1 < j < I). Hence for every 1 < j < I, U'n is a Haar space on (a¡, b¡) of

dimension 1.

Example 1. Let L = Dk and Un+X = Un , the set of algebraic polynomials of

degree at most n . If k = n , then D"Yln consists of constant functions. Thus

applying Corollary 2.4 for 5 = 0 and 1 and noting that n„ and n„_i are A-
spaces, we obtain that n„ is an L°-vl-space. On the other hand if 0 < Ac < «—2,

then dimn„ = n + 1 > k + 2 and it follows from Theorem 3.1 that n„ is not

an L°-^4-space.

Example 2. For given a = c0 < cx < ■ ■ ■ < c¡ < c¡+x = b denote by 5"mj

the set of spline functions of order m with / simple fixed knots cx, ... , c¡.

Then &mti c Cm~2[a,b], 9%j <£ Cm~x[a,b], and S"mJ\ [c„Ci+l] = nm_,

(0 < i < I). Let L = Dk , where we need to assume that 0</c<w-2 in

order that Dk:9^m¡ -> C[a, b]. Then dim^n/|[Ci;C/+1] = m > k + 2; hence,

by Theorem 3.1, A?mi is not an L°-^4-space.

3.2. A nontrivial example of an L°-^4-space. Simple examples of L°-v4-spaces

can be provided by applying Corollary 2.5, i.e., letting L be a finite collection

of linear functionals, for instance, coefficient evaluation functionals. In this

section we shall present a spline space satisfying the L°-^4-property for L = Dk .

First we give a general approach to constructing L°-^4-spaces for L = Dk and

then apply it in order to obtain spline spaces with the required properties.

Let do = a < cx < dx < c2 < d2 < ■ ■ ■ < c¡ < d¡ < b = c¡+x. For 1 < i < I let
Ui e Ck[a, b] satisfy the following properties:

(3.1) u¡ = 0   on [a, c¡],

(3.2) /)*«, = 0   on [a, Ci]U[d¡, b],
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(3.3) DkUj > 0   on (c¡, d¡).

Let Uk+¡ = Uk_x © span{«i,...,«/}.

Theorem 3.3. For L = Dk the space Uk+l satisfies the L°-A-property (Ac > 1,

/>1).

Proof. Let us verify at first that [/*    is an ,4-space. Note that dim L£+/ = k+l

and since 1 6 Uk+l, Z(Uk+l) n [a, b] = (f>.
We need to show that Uk+l is a WT-space. Assume, to the contrary, that u e

Uk+l has a strong sign alternation of length k+l+1. Then Dku has a strong sign

alternation of length I + 1, where Dku e DkUk*+l = span{Dkux, ... , Dku¡} .

But by (3.2) and (3.3) no function in DkUk+¡ can have a strong sign alternation

of length greater than /. Thus Uk+l isa WT-space.

To demonstrate the splitting property for Uk+l (see Theorem 2.3), note that

the restriction of Uk+l to (c,, d¡) is the Haar space Uk_x 0 span{w,} , while

its restriction to a nondegenerate interval of the form (d¡, c¡+x) (0 < i <

I) is the Haar space Hk_x (see (3.2)). Thus it suffices to prove the splitting

property for u = p + E,=i a¡ui(P £ L\k_x) vanishing on (Cj, dj) (1 < j < I)

or on (dj, cj+x) (0 < j < I, d¡ < cj+x). If u = 0 on (cj , dj), then by (3.1)

(p + YljZi aiui) + aJuj = 0 on (cj , dj). Thus p + £/=i a,w, eO on [Cj, b]

and otj■■ = 0, because p + J2Í=i QiM¡ is a polynomial of degree < Ac - 1 on

(Cj,b] and Uj\(CjJj) £ l\k_x . Thus ux[a,dj] = P + E/=/ aiu¡ e Uk+i and

uX[Cj,b] = ¿Z'i=j+\ a'ui € uk+i • If w = 0 on (dj, cj+x) where dj < cj+x, then

P + YJi=\aiui = 0 on [dj, cj+x] and thus on [dj, b], too.   So uX[a,c)+{\ =

P + E,=i «/"/ £ uk+i and uX[dj,b] = E/=y+i a>u> e uk+i ■ Hence by Theorem

2.3 Uk+I is an yl-space.

Now we can prove that Uk+l satisfies the L°-^-property with L = Dk .

Obviously, DkUk+l = span{Dkux, ... , Dku¡} and any subset {yx, ... , ys}

C [a, b] for which dimDkUk*+l\{y¡y_ = s (0 < s < I) should satisfy the
property that all y/s belong to distinct intervals (c,, d¡) (1 < j <s, q < i <l).

Let 1 < /'i < ••• < is < I be such that y, e (c¡)., d¡j), 1 < j < s. Then,
evidently,

GMU ={pe U*k+l : (Dkp)(yi) = 0,   1 < i < s}

= nyt_1 © span{Mfc : 1 < Ac < /, Ac ̂ /_,-,   1 < 7 < 5},

and repeating the above argument for G{y.y_ , we obtain that G{yiy is an

^-space. Thus it follows from Corollary 2.4 that Uk+l is an L°-y4-space for
L = Dk.

The above theorem provides a simple method for constructing L°-^4-spaces

if L — Dk . It also shows that an L°-^4-space for a Ac-Rolle operator L with

k > 1 can have arbitrary high dimension and yet not decompose to direct sum

of spaces with disjoint support, as occurs for Ac = 0.

Let us now apply Theorem 3.3 for a certain space of splines with fixed knots.

Consider the space A?k+2,2m-i of splines of order Ac-l-2 with 2m-1 simple

knots c0 = a < cx < ■■■ < c2m_i < b = c2m   (k, m > 1).  Set Sik+22m_x =
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{s e <¥k+2am-\ '■ Dks(c2i) = 0, 0 < i < m}, dim9^k+2t2m_x = k + m.

Then DkSi'k+2am_x = span{vi,... ,vm}, where v¡ s 0 on [a, b]\(c2i-2, c2i),

Vi(c2¡-X) = 1 and v¡ is linear on (c2i-2, C2/-1) and on (c2i-X, c2i) (1 < i <

m). Letting u¡(x) = jxa /j1 ••■ £*"' Vi(tk)dtk---dtx, 1 < i < m, we have

^k+2,2m-i = rii_i 0span{wj, .^, wm} , where u,- (1 < i < m) satisfy (3.1)-

(3.3). Hence, by Theorem 3.3, ^+2,2^-1 is an L°-^-space for L-Dk.

As was previously mentioned, the L°-y4-property is restrictive but not as

restrictive as the L-Haar property for uniform approximation. In [6], it was

found that if L is a nontrivial Ac-Rolle operator on U„ and Un is L-Haar,

then dim Un = n < k + 1. Although the "local dimensions" of L°-^4-spaces are

bounded by Ac + 1 when L is Ac-Rolle, the example of this section demonstrates

that for L — Dk (k > 1) there are L°-^-spaces of arbitrarily large dimension.

Moreover, these spaces can be chosen to be uniformly dense in C[a, b].

4. Applications for C1 -boundaries (L1-^-spaces)

For the operator L = Dk (ac > 1), §3.2 provides spaces of spline functions

of arbitrarily large dimension that are L°-A-spaces. Theorem 3.1 and the re-

marks following Theorem 2.3 suggest that all high dimensional L°-v4-spaces are

necessarily "spline-like." That is, if U„ is an L°-y4-space on [a, b], then there

exist points a = Cq < cx < ■ ■ ■ < cl+x = b where Un\ (Cj_, >Cj) is a Haar space of

dimension k + 1 or less (1 </'</). We shall see in this section that the de-

velopment of Lx-A-spaces takes a different direction as we obtain L1 -.4-spaces

of arbitrarily large "local dimension."
In §4.1, we consider approximation by polynomials with restrictions on the

range and several derivatives, and in §4.2, we study lacunary polynomial spaces

with constraints on the kth derivative. In both of these applications, Birkhoff

interpolation plays a significant role. We refer the reader to chapter 1 of the

text [8] for the definitions of an interpolation matrix and regularity and for
the Atkinson-Sharma regularity theorem. In §4.3, we consider approximation

by polynomials with constraints involving the linear operator D - ai. In the

previous three cases, the nature of uniqueness for uniform approximation is

completely understood, and we make appropriate comparisons. Finally, in §4.4,
we demonstrate that the space of spline functions of order m (m > 4) with

simple knots is an Lx-A-space although it is not an L°-^4-space (L = Dm~3).

4.1. Polynomials with several derivatives. Given integers 0 < kx < k2 < ■•■ <

k¡, we consider the problem of approximating continuous functions by polyno-

mials p e Um satisfying constraints of the form v¡ < Dk'p < u¡ (1 < 1 < /)

where each v¡, u¡ e Cx[a,b]. To put this problem into the context of

this paper, let K = \Ji=x[a¡, b¡] where the intervals [a¡, b¡] (i = 1, ... , /)

are pairwise disjoint and are copies of [a, b] (that is, bi - a¡ = b - a).

Define L = Dk< ■■ ■ Dk> : Um -* CX(K) by Lp = Dk'p, on [a¡, b¡] where

Pi(x) = p(x - a¡ + a) is the translate of p\ [a¿] to [a¡, b¡]. We have

Theorem 4.1. For any 0 < kx < k2 < ■ • ■ < k¡ the space Ilm of polynomials of
degree m or less is an Lx-A-space for L = Dki  ■Dk'   (m>0).

In Example 1, we saw that Ylm (m > k + 1) is not an L°-^-space with

L = Dk , however, Theorem 4.1 implies that Y\m is an Lx-A-space.
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We note that in the uniform norm setting analogous results hold when Aq > 0

[6]. When aci = 0, uniqueness of a best constrained uniform approximation

requires that the function / being approximated satisfy the constraint vx <

f <ux (see [2, 12]). This is not the case for L1-approximation.

Proof of Theorem 4.1. We employ Theorem 2.2. Let g e nm\{0}. By dis-
carding some /c,'s, if necessary, we may assume that k¡ < degg < m. Let

{vi,...,y.s} Q Zx(Lg) and o be a continuous sign function defined on

supp(g). Let Xi, ..., Xß denote the points of sign change of o . Evidently,

{xx,..., Xfi} ç Z(g) n (a, b). For y e [a¡, b¿] let y = y - a,+ a be the
corresponding point in [a, b]. For p e Um, we consider the interpolation

conditions

(4.1a) P(xi) = 0      (l<i<p),

(4. lb)   Dk>p(yi) = DkJ+xp(yi) = 0       (1 < i < s, y¡ e (fl;, bj), 1 < j < I),

(4.le) DkJp(y¡) = 0       (1 < i < s, Vi; e {aj, bj} 1 < ; < /).

Overlaps in (4.1a) and (4.1b) can occur. We construct an "alternate interpola-

tion problem" by possibly removing some of the conditions in (4.1b). If (4.1a)

and (4.1b), impose conditions of the form

p(Xi) = Dp(Xi) = ■■■ = Dk>p(Xi) = Dk'+Xp(xt) = 0

and do not impose a condition on Dk'+2p(x¡), we discard the condition

DkJ+xp(Xi) = 0 if Ac, is even and retain it if Ac, is odd. The resulting se-

quence of conditions has odd length. Assume that (4.1b) imposes conditions of

the form

Dk'p(y) = Dk¡+Xp(y) = ■■■ = Dk"p(y) = Dk"+Xp(y) = 0

where no condition is imposed on Dku+2p(y) and either aci = 0 and y $.

{xx, ... , Xfi} or Ac, > 1 with no condition being placed on Dk'~xp(y). Then

we discard the condition Dk"+Xp(y) = 0 if kv-k¡ is odd and retain it if kv-k¡
is even. The resulting sequence of conditions has even length. Further by the

choice of the discarded conditions, the alternate interpolation problem includes

the condition p(x¡) = 0  (1 < i < p) and (Lp)(y¡) = 0  (I < i <s).
Let E be the interpolation matrix for the alternate interpolation problem

with infinitely many augmented zero columns and where the column index starts

with 0. By the discarding process, E has no odd supported sequences of ones.

Let j be the smallest index where the number of ones in columns 0-j of E is

less than j +1 (j could be 0). Then column j of E is a zero column. Let E'

be the matrix consisting of columns O-(j-l) of E. Then E' contain j ones,
has no odd support sequences, and satisfies the Polya condition, and thus E' is

order regular (see [8, p. 10]). If j - 1 > m, then g e Tlj_x would satisfy the

homogeneous conditions corresponding to E' and thus g = 0, a contradiction.

Thus j < m . Let E" be the matrix consisting of columns 0-j of E. Since
E" corresponds to ;' conditions and dirnü, — j + 1, there exists p e n,\{0}
satisfying the homogeneous conditions of the alternate interpolation problem
corresponding to E" . Further since Dvp — 0 for v > j, p satisfies all of the

conditions of the alternate interpolation problem. In particular, (Lp)(y¡) = 0
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(1 < J < s). Finally, to verify that op > 0 or o(-p) > 0 on suppg, we

show that p changes sign precisely at the points x¡ (1 < i < p). If p fails

to change sign at some x¡, then p would have a zero of even multiplicity

at Xi. Since the sequence of ones in E" starting with column 0 in the row

corresponding to x¡ is odd, then p would have an extra zero at x¡ that is

not specified by E" . So p would satisfy a homogeneous Birkhoff interpolation

problem in IT, with an order regular matrix, and hence p = 0, a contradiction.

If p changes sign at some y e (a, b)\{xx, ... , xß} , then p would have a zero

of odd multiplicity at y. By the construction of the alternate interpolation

problem, p would satisfy a homogeneous Birkhoff interpolation problem in IT,

with an order regular matrix so that p — 0, a contradiction. Thus by Theorem

2.2, nm is an L'-^-space.

4.2. Lacunary polynomials. We consider the lacunary polynomial space Pn =

spanfx^1 = 1, xkl, ... , xkn = xN} where 0 = kx < k2 < ■ ■ ■ < k„ = A are

integers, [a, b] = K = [-1, 1], and L — Dk . Throughout this section, we

assume that N > k + 1 so that L is not a linear functional on P„ .

Theorem 4.2. Let [a, b] = K = [-1, 1]. Then Pn is an Lx-A-space with
L = Dk  (1 < k < N - 1) if and only if

(a) ac,+i - Ac, is odd (1 < i < n - 1), and
(b) xk £Pn or xk, xk+x ePn.

We note that for uniform approximation (a) and (b) are the necessary and

sufficient conditions for the lacunary polynomial space P„ to be L'-Haar. Thus

in this case Pn is Lx-A if and only if it is L'-Haar.

Before proving Theorem 4.2, we state a lemma on lacunary polynomial

spaces. We say that a subspace V¡ (of dimension /) of polynomials is a Haar

space of order r on a set S ç R if the only polynomial p e V¡ that has / zeros

in S counting multiplicities up to order r is p = 0.

Lemma 4.3. Let V¡ = span{jcm', xmi, ... , xm>} where 0 < mx < m2 < ■■• <

m¡ are integers.

(i) V¡ is a Haar space on (-1, 1) if and only if mx = 0 and m¡+x - m¡ is
odd (1 </</-1).

(ii) V¡ is a Haar space on (-1, 0) U (0, 1) if and only if m¡+x - m¡ is odd

(1 <*'</-!) •
(iii) If mx = 0, m2 = 1, and mi+x - m¡ is odd (1 < i < I - 1), then V¡ is a

Haar space of order 2 on [-1, 1].

(iv) If mx > 0 and mi+x - m¡ is odd (1 < i < I - 1), then V¡ is a Haar
space of order 2 on [-1, 0) U (0, 1].

Statements (i), (ii), and (iii) are essentially given in [8, pp. 131-132], and

(iv) readily follows from (ii).

Proof of Theorem 4.2. Let 0 = kx < ••• < km < k < km+x < ••• < k„ = N.
We first prove necessity. Assume that Pn is an L'-yl-space. By Corollary 2.6

with s — 0, G^ — Pn is an ,4-space. Since no function in P„\{0} vanishes

identically on a subinterval of [-1, 1], Havinson's theorem implies that Pn is

a Haar space on (-1, 1). By Lemma 4.3(i), (a) holds.

Suppose that (b) fails. Then xk e P„ and xk+x g Pn . Then dirnD^I {0} =

1 and C{o} = GL = span{x*', ... , xkm , xkm+2, ... , xk"}. Since km+2-km is



HAAR-TYPE THEORY OF BEST i,-APPROXIMATION 315

even, C7{o} is not a Haar space on (-1, 1) and by Havinson's theorem is not

an /4-space. This contradicts Corollary 2.6, and thus (b) holds.

We employ Corollary 2.7 to prove sufficiency. Suppose that (a) and (b)

hold, let {yx, ... , ys} Q[-l, 1] where dimDkPn\ {yit...,y,} = s, and let G' =

G'c -, .   We show that G' is a Haar space on [-1,1] and hence is an

,4-space. If 5 = 0, then G' = Pn is a Haar space by Lemma 4.3(i). Let

r' = #{i: 1 < i < s, y,■ e (-1, 1)} and r" = s - r'. Note also that if

xk <¿ Pn , then {y,, ... , y,} ç [-1, 0) U (0, 1]. Now if 2r' + r" > n-m,

then by Lemma 4.3(iii) or (iv), G' - kerDk\ Pn = span{xfc|, ... , xkm} is a Haar

space on [-1, 1]. We assume that 5 > 1 and 2r' + r" < n - m. Again by

Lemma 4.3(iii) or (iv), dimC = n - 2r' - r". Suppose g e G'\{0} and g

has p = n - 2r' - r" zeros x¡ (1 < i < p). Now g satisfies the following

interpolation conditions

(4.2a) *(*/) = 0       (1 <i<p),

(4.2b) LVg(0) = 0      (1 < ; < N- 1, j ¿k, (2< i< n- 1)),

(4.2c) Dkg(yi) = Dk+xg(yi) = 0       (l<i<r'),

(4.2d) Dkg(y¡) = 0       (r' + l<i<s)

where we assume that y, e (-1, 1) (1 < i < r') and y, e {-1, 1} (r' + l < i <

s). If xk £ Pn , then 0 $. {yx, ... ,ys} and if xk , xk+x e Pn , then Acm+i = Ac

and km+2 = k + 1. As a result, conditions (4.2b) and (4.2c) do not overlap,

and thus (4.2) constitutes p + N+l-n + 2r' + r" = N+l distinct conditions.

Let E be the interpolation matrix for (4.2) with columns indexed 0 - A.

By (a) and the nonoverlapping of (4.2b) and (4.2c), E has no odd supported

sequences. Now E fails to satisfy the Polyá condition; otherwise, E would

be order regular [8, p. 10] and we would then have g = 0. For 0 < j < N,

let Wj be the number of "ones" in columns 0-j of E. For 0 < j < k - 1,

Wj > p+j+l-m = n-2r'-r"+j+l-m > j+1. Also, wk > wk_x+s > k+1.
So for some k+l<j<N,Wj<j. But for k + 1 < j < N, Wj increases
by at most one from column to column. Thus wN < A, a contradiction. Thus

in this last case, G' is a Haar space on [-1,1]. By Corollary 2.7, Pn is an

L1 -A -space.

4.3. The operator D-al. In this section, the approximating space is Ylm and

the constraints are defined by the operator L = D - ai (a ^ 0). Throughout

[a, b] = K = [-1, 1]. By a simple translation, all results can be obtained

for arbitrary [a, b]. It is known that L is a 1-Rolle operator [6] so that if

m > 2, then hm is not an L°-y4-space, (see Theorem 3.1). We determine the

parameters a for which Um is an L'-^-space.

Theorem 4.4. Let [a, b] = K = [-1, 1] and m > 1. Then Um is an Lx-A-

space with L = D - ai if and only if \a\ < m/2.

In [6], the question of when Um is an L'-Haar space with L = D - ai

was studied. The same result was obtained except when m = 1,2. When

m = 1, 2, Um is not L'-Haar for a = m/2.
To prove Theorem 4.4, we shall use two lemmas on interpolation involving

L = D - ai.
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Lemma 4.5. Let {y\,... , ys} ç [-1, 1], vx, ... ,vs be positive integers where

v¡ is even if y¡-e (-1, 1 ), and let I = vx-\-\-vs. If g e nm\{0} and

(4.3) (Lg)(yi) = (Lg)'(yi) = • • • = (Lg)^-xKy,) = 0       (1 < i < s)

then g has at most m+l -I zeros in [-1, 1]. Moreover, if g has m + 1 - /

zeros in (-1, 1), then these zeros are all sign changes of g.

Proof. Suppose that g has m+2-l zeros in [-1, 1]. In [6, Lemma 3.2], it was

shown that strictly between two zeros of g, Lg changes sign or is identically

zero. Since g ^ 0, Lg ^ 0 and so Lg has a sign change between successive

zeros of g. If such a sign change coincides with some y, e (-1, 1), then since

Vi is even we have that (Lg)(y¡) = • • • = (Lg)(v¡)(y¡) = 0. So Lg has m+l-1

zeros in addition to those specified in (4.3). Thus Lg has m + 1 zeros, and

since Lg e Hm , Lg = 0. This is a contradiction.

Suppose g has m+l-I zeros in (-1, 1). As above, Lg has m zeros. We

argue that if a zero of g is not a sign change of g, then Lg picks up an extra

zero. Suppose that g(x) = 0, x e (-1, 1), and g does not change sign at x .

If x t¿ y, (1 < i < s), then g'(x) = 0 and (Lg)(x) = 0. This zero of Lg
was not counted in the argument above. If x = y¡ e (-1, 1), then g(y¡) = 0

and (4.3) imply that g(y¡) — g'(y¡) - ■■■ = g^^(y¡) = 0. Since v¡ is even and

g does not change sign at y,, g^Vi+x\yi) = 0 and (Lg)(w,)(y,) = 0. Again this

extra zero of Lg was not counted in the argument above. Either way, Lg has

m + 1 zeros, a contradiction.

As mentioned before, uniform approximation with constraints defined by

L = D - al was studied by the authors. The following lemma is given in [6,

Lemma 3.7].

Lemma 4.6. (i) If a > -m/2 and p e Tlm\{0} has m zeros in (-1, 1] with

at least one of them in (-1, 1), then (Lp)(-1) ^ 0.
(ii) If a < m/2 and p e nm\{0} has m zeros in [-1, 1) with at least one

of them in (-1, 1), then (Lp)(l) ^ 0.
(iii) If \a\ < m/2 and p e nm\{0} has m - 1 zeros in (-1, 1), then

(Lp)(l)¿0 or (Lp)(-1)¿0.

Proof of Theorem 4.4. For necessity, assume |q| > m/2. Without loss of gen-

erality, a > m/2. We can choose -1 < xx < ■ ■ ■ < xm < 1 so that for

p(x) = Ylh=i(x - xô we bave

Then G{X\ — G',xx has dimension m and contains a nonzero function p having

m zeros in (-1, 1). So G{Xy is not a Haar space on (-1, 1). Since nontrivial

functions in tr{i} have no zero intervals, Havinson's theorem implies that C7{i}

is not an ,4-space. By Corollary 2.6, l\m is not an L'-^-space.

For sufficiency, suppose that \a\ < m/2. Let g e nm\{0}, {yx, ... ,ys} Ç=
Zx(Lg), and er: suppg —► {—1, 1} be continuous. Let r' = #{i : 1 < i < s,

yt e (-1, 1)} and r" = s - r'. Letting v¡ = 2 if y, e (-1, 1) and v¡ = 1 if
y i G {-1, 1} , Lemma 4.5 implies that g has at most m + l - (2r' + r") zeros in

(-1, 1). Let o have p points of sign change xx, ... , xM in (-1,1). Since

{xx,...,xfl}C Z(g), 0<p<m+l- (2r' + r").
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If p = m + 1 - (2r' + r"), then by Lemma 4.5, g changes sign precisely at

the points x¡  (1 < i < p) so that o(±g) > 0 on suppg .

Suppose now that p < m-(2r'+r"). Assume that y¡ e (-1, 1) for 1 < / < r'

and y i = x¡ for 1 < i < Po (0 < po < min(p, r')). We choose p e Um\{0} to
satisfy m linear conditions below. The first p + 2r' + r" conditions are

(4.4a) p(Xi) = 0      (Po + i<i<p),

(4.4b) p(yt) = p'(yi) = 0       (po + 1 < i < r1),

(4.4c) p(y¡) = p'(y¡) = p"(yi) = 0      (1 < i < po),

(4.4d) (Lp)(y¡) = 0      (r'+l<i<s).

The remaining v = m - p- (2r' + r") conditions are as follows. If r" = 0 or

1, choose z e {-1, l}\{ys} and impose the conditions

(4.4e) p(z) = p'(z) = • • • = p("-l)(z) = 0.

If r" = 2, we impose

(4.4f) p(l)=p'(l) = ...=p(")(l) = 0.

In case r" = 2, we drop condition (4.4d) with y, = 1 as it is redundant on

(4.4f).
Finally, we observe that p changes sign precisely at the point xx, ... , x^ .

If p has a sign change in (-1, l)\{xx, ... , xM} or fails to change sign at some

Xi, then p would have a zero in (-1,1) in addition to those specified by

(4.4a, b, c). If r" = 0, then p would satisfy a Hermite problem with m + 1

homogeneous condition so that p = 0. If r" = 1, then p would have m

zeros in (-1, 1] if ys = -1 or in [-1, 1) if ys = 1 with the additional zero in

(-1, 1 ). Lemma 4.6 and (4.4d) would yield a contradiction. Finally, if r" = 2,
Lemma 4.6 and (4.4d) would also lead to a contradiction. Thus p changes sign

precisely at X\,... ,xß. Thus o(±p) > 0 on supp g.
In all cases above, (Lp)(y¡) = 0 (1 < i < s). Hence, by Theorem 2.2, Ylm

is an L'-y4-space.

4.4. Splines and smooth boundaries. Let a = Co < cx < ■ ■ ■ < c¡ < c¡+x = b

and 9% ¡ denote the space of m th order spline functions with simple knots

{d}\=x. We have that S?mJ ç Cm-2[a,b] but 9*mA g Cm-X[a, b]. In §3, we

saw that <5"mj is not a Dk-A-space where k < m - 2. In order to consider

smooth constraint boundaries we require that Dk: 9%j —» Cx[a, b] so that

k < m - 3. In this section, we show that if m > 4, then 9%¡ is an L'-^4-

space with L = Dm~3.

Theorem 4.7. Let K = [a, b] and m > 4. Then 9*mj is an Lx-A-space with
L = Dm-3.

The main step in our proof of Theorem 4.7 involves proving that a certain

subspace of the space 9%j of quadratic splines is a WT-space. For {y¡}f=1 Q

[a,b], let 9*{yiY¡ ( = {pe 9%y. p{y¡) = 0   (1 < i < s, y¡ € {a, b}) and

P(yd=p'(yd = ó (i<i<s, y,e(a, b))}.
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Lemma 4.8. For any {yi}si=x Q [a, b], <5\y.y_   is a WT-space.

The proof of Lemma 4.8 is somewhat technical, and we first give the proof

of Theorem 4.7 and then prove Lemma 4.8.

Proof of Theorem 4.7. Let {yx, ... ,ys} Ç [a, b] and G' = G1, y    = {p e

Sm,i : (Dm~3p)(yi) = 0 (1 < i < s, y¡ e {a,b}) and (D^p)(y¡) =

(Dm-2p)(y¡) = 0 (1 < i < s, y¡ e (a,b))}. By Corollary 2.7, it suffices to

prove that G' is an ^4-space. Since m > 4, 1 e G' so that Z(G') n (a, b) — </>.
Further, G' clearly satisfies the splitting property. Finally, we show that G'

is a WT-space. Set n = dimC and suppose that p e G' has a strong al-
ternation of length n + 1. Since 1, x, ... , xm~4 e G', Dm~^G' = <9\y¡yM

has dimension n - m + 3. But Dm~ip has a strong alternation of length

n + 1 - (m - 3) = n - m + 4 which contradicts Lemma 4.8. Thus G' is a
WT-space, and by Theorem 2.3, G' is an ,4-space. Corollary 2.7 now implies
that 9%j is an Lx-A-space.

To prove Lemma 4.8, we require an additional lemma.

Lemma 4.9. Let U bean n-dimensional WT-space in Cx[a,b]. Then

(i) c/a° := {p e U : p(a) = 0} and £/a00 = {p e U : p(a) = p'(a) = 0} are

WT-spaces, and
(ii) if y e (a, b)  and for some q e U,  q(y) = 0 and q'(y) ^ 0, then

t/°° :={peU: p(y) = p'(y) = 0} is a WT-space.

Proof. If U° = U, then U¡¡ is a WT-space. Suppose t/° ^ U so that

dimU° = n - I. Suppose p e U® has a strong alternation xx < ■■■ < xn

of length n . Since p eU® , xx> a and we may assume that p(xx) > 0. Now

choose p e U so that p(a) = 1. Then for e > 0 sufficiently small, p - ep has

a strong alternation a = Xo < xx < • • ■ < x„ of length n + 1 contradicting the

fact that U is a WT-space. Thus C/° is a WT-space.

If C/°° = C/°, then by the previous case, U®0 is a WT-space. Suppose that

^a00 ^ ua ■ Let m = dim t/a° so that dim C/a00 = m - 1, and suppose that

p e U^ has a strong alternation xx < ■ ■ ■ < xm of length m. Then xx > a

and we may assume that p(xx) > 0. Now choose p e U® so that p'(a) — 1 .

Then it is easy to see that for e > 0 sufficiently small, p - ep has a strong

alternation a < xo < xx < ■■ ■ < xm of length m + 1 which contradicts the fact

that t/a  is a WT-space. Thus t/a° is a IfT-space.

For (ii), dim U®° = m > n - 2. Given p e U®° having strong alternation of

length m + 1, the approach in the previous case yields a function in U having

strong alternation of length m + 3 > n + 1, a contradiction.

Proof of Lemma 4.8. In view of Lemma 4.9(i), it suffices to only consider the

case where {yx, ... ,ys} Q (a, b). The proof is by induction on 5. When

s = 0, <5?{yií^y¡} =9%j is well known to be a WT-space.

Suppose that 9^yiy_ is a WT-space whenever {y,}f=1 ç (a, b) and s <

k-1. Let a <yx < ■■■ <yk <b. Choose the index v so that c„ <yk < cv+x .

We consider two cases.

Case 1. Suppose p = 0 on [cv, cv+x] for all p e ^{yiy=¡ ■ Then 9*{yjy^ =

9*x ®9*2 where 9*x = {p e 9%j : p(y¡) = p'(y,) = 0   (1 < i < k - l)'"and
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p = 0 on [c„ , b]} and 9"1 = {p e 9% j : p = 0 on [a, cu+x]} . By the induction

hypothesis and Lemma 4.9 (i), 9*x\iaiCi/X isa WT-space and thus 9*x isa WT-

space. Similarly, 9*2 is a WT-space and the direct sum 9\y¡y_ = 9*x ®9*2

is a W-T-space.

Case 2. Suppose that for some p e 9*, y , p ^ 0 on [cv, cu+x]. Let us

first suppose that v > 1. Since yk e [cv, cv+x], it follows that p ^ 0 on

[c„ , cv+x]\{yk} and sgn/?(c„) = -sgnp'(c„). Since p^O on[cv, yk), yk.x £

[cv, yk). Also, if yk_x e [cv-X, cv), it would follow that sgnp(cv) = sgnp'(cv)

which is false. Thus {yi}k~x n [cv_x, yk) = </>. Now consider the function

q(x) = (x- cv)\ -   {Jk ~Cv)2 (x - cv.x)l.
(yk -Cv-\)

We have that q e 9*. ,k-\ , q(yk) = 0, and q'(yk) ^ 0. By the induction

hypothesis ^,t-i isa w-T-space, and by Lemma 4.9(ii), 9^y.y isa WT-

space. Finally, if v = 0, then as above k = 1 and q(x) = x - yk suffices in

the use of Lemma 4.9(a).
Finally, the authors conjecture that Theorem 4.7 holds for L — Dk with any

1 < k < m - 3 as well, i.e., 9*mj is an L'-^-space in this case.
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