ON THE p-ADIC COMPLETIONS OF NONNILPOTENT SPACES

A. K. BOUSFIELD

Abstract

This paper deals with the p-adic completion $F_{p \infty} X$ developed by Bousfield-Kan for a space X and prime p. A space X is called F_{p}-good when the map $X \rightarrow F_{p \infty} X$ is a mod- p homology equivalence, and called $F_{p^{-}}$ bad otherwise. General examples of F_{p}-good spaces are established beyond the usual nilpotent or virtually nilpotent ones. These include the polycyclic-by-finite spaces. However, the wedge of a circle with a sphere of positive dimension is shown to be F_{p}-bad. This provides the first example of an F_{p}-bad space of finite type and implies that the p-profinite completion of a free group on two generators must have nontrivial higher mod- p homology as a discrete group. A major part of the paper is devoted to showing that the desirable properties of nilpotent spaces under the p-adic completion can be extended to the wider class of p-seminilpotent spaces.

1. Introduction

In this paper we shall study the F_{p}-completion (or p-adic completion) $F_{p \infty} X$ developed by Bousfield-Kan [6] for a space X and prime p. This completion is well understood when X is nilpotent, and we shall consider other more general spaces. Bousfield-Kan were originally interested in $F_{p \infty} X$ because $\pi_{*} F_{p \infty} X$ served as the natural target of the unstable Adams spectral sequence for X. At about the same time, in work on the Adams conjecture, Sullivan [26] developed his p-profinite completion of X, which agrees up to homotopy with $F_{p \infty} X$ when $H_{*}\left(X ; F_{p}\right)$ is of finite type. Friedlander and others subsequently used $F_{p \infty} X$ in algebraic K-theory and étale homotopy theory [13]. More recently, Miller revived interest in $F_{p \infty} X$ by using it in his proof of the Sullivan conjecture [18]. Now, with the confirmation of the generalized Sullivan conjecture, $F_{p \infty} X$ has acquired new significance (see [12, 17]).

A space X is called F_{p}-good when the map $X \rightarrow F_{p \infty} X$ is a mod $-p$ homology equivalence, and called F_{p}-bad otherwise. Also, X is called F_{p}-complete when $X \rightarrow F_{p_{\infty} X} X$ is a weak equivalence. By [6, p. 24], a space X is F_{p}-good if and only if $F_{p \infty} X$ is F_{p}-complete, and consequently the functor $F_{p \infty}$ acts idempotently on the homotopy category of F_{p}-good spaces. Known examples of F_{p}-good spaces include:
(i) the nilpotent spaces [6, p. 184];

[^0](ii) the spaces with finite fundamental groups [6, p. 215] and other virtually nilpotent spaces [11]; and
(iii) the spaces with p-perfect fundamental groups [6, p. 206]. (A group G is p-perfect when $H_{1}\left(G ; F_{p}\right)=0$.)

Bousfield-Kan observed that an infinite wedge of circles was F_{p}-bad [6, p. 114], but continued to hope that all spaces of finite type might be F_{p}-good. In this paper, we deflate that hope by showing that $S^{n} \vee S^{1}$ is F_{p}-bad for $n \geq 1$. However, we also establish the F_{p}-goodness of a wide class of finite type complexes, including the polycyclic-by-finite spaces. These are the connected spaces whose fundamental groups have polycyclic normal subgroups of finite index and whose higher homotopy groups are finitely generated. To deal with such spaces and others, we devote the first part of the paper to showing that the desirable properties of nilpotent spaces under the p-adic completion actually hold for more general spaces which we call p-seminilpotent.

This paper is organized as follows. In $\S 2$ we introduce the p-seminilpotent group actions. In $\S 3$ we develop the consequent notions of p-seminilpotent groups, spaces, and fibrations. In $\S 4$ we discuss the functor $F_{p \infty}$, and show that it acts idempotently on the homotopy category of p-seminilpotent spaces. In $\S 5$ we discuss the group theoretic p-adic completion functor ()$_{p}^{\wedge}$ and introduce its derived functors. In $\S 6$ we show that the groups $\pi_{i} F_{p \infty} X$ for p-seminilpotent spaces are usually given by $\left(\pi_{i} X\right)_{p}^{\wedge}$, and can always be expressed using derived p-adic completions. In $\S 7$ we prove an F_{p}-goodness theorem which applies to the polycyclic-by-finite spaces and other "virtually p-seminilpotent" spaces. Here, we use techniques developed by Dror-Dwyer-Kan [11] in their work on virtually nilpotent spaces. In $\S 8$ we prepare for the next section by introducing the p-adic G-completion for modules over a group G, and showing that it is particularly well behaved when G is p-seminilpotent polycyclic. This follows from Roseblade's "Artin-Rees lemma" [24]. In $\S 9$ we establish a partial F_{p}-goodness theorem which applies to many spaces of finite type, like $S^{n} \vee S^{1}$, with nonfinitely generated homotopy groups. When such a space X is p-seminilpotent polycyclic below some dimension $n \geq 2$, we show that $H_{i}\left(F_{p \infty} X ; F_{p}\right) \cong H_{i}\left(X ; F_{p}\right)$ for $i \leq 2 n-1$ and that $\pi_{i} F_{p \infty} X$ is the p-adic $\pi_{1} X$-completion of $\pi_{i} X$ for $i \leq 2 n-2$. This is closely related to a result of Dror-Dwyer [10] giving a stable range for integral homology localizations, although we have had to use different techniques to reach our top dimension and cope with mod $-p$ problems. In $\S 10$ we show that $S^{n} \vee S^{1}$ is F_{p}-bad with $H_{2 n}\left(F_{p \infty}\left(S^{1} \vee S^{1}\right) ; F_{p}\right)$ uncountable for $n \geq 2$. Finally, in $\S 11$, we deduce that $S^{1} \vee S^{1}$ is F_{p}-bad with $H_{m}\left(F_{p \infty}\left(S^{1} \vee S^{1}\right) ; F_{p}\right)$ uncountable for $m=2$ or $m=3$ or possibly both. This implies that the p-profinite completion of a free group on two generators must have uncountable higher $\bmod -p$ homology as a discrete group.

While the known examples of F_{p}-good spaces X still seem very diverse, we remark that their completions $F_{p \infty} X$ are all p-seminilpotent. Thus, all known examples of F_{p}-complete spaces are p-seminilpotent.

In [3] the author circumvented the problem of bad spaces by constructing localizations of arbitrary spaces with respect to homology theories. For a space X this gives an $H_{*}\left(; F_{p}\right)$-localization map $X \rightarrow X_{F_{p}}$ which is the homotopically terminal example of an $H_{*}\left(; F_{p}\right)$-equivalence out of X. From the standpoint of [3], $F_{p \infty} X$ is always $H_{*}\left(; F_{p}\right)$-local, and X is F_{p}-good if and only if the
canonical map $X_{F_{p}} \rightarrow F_{p \infty} X$ is an equivalence. In general, although $F_{p \infty} X$ is of independent interest, it may be viewed as an initial stage of a transfinite towerwise construction of $X_{F_{p}}$ (see [9]).

The author wishes to thank H. Miller for reviving his interest in F_{p}-goodness, and is also indebted to E. Dror-Farjoun, W. Dwyer, and D. Kan for ideas underlying the positive results in this paper.

We work simplicially and generally follow the terminology of [6], so that "space" will mean "simplicial set." Throughout this paper, p will denote a fixed prime.

2. BASIC PROPERTIES OF p-SEMINILPOTENT GROUP ACTIONS

Before introducing p-seminilpotent groups, spaces, and fibrations in $\S 3$, we must deal with group actions.
2.1. The p-seminilpotent $Z G$-modules. For a group G, recall that a $Z G$ module M is nilpotent when $(I G)^{n} M=0$ for some $n \geq 0$ where $I G \subset Z G$ is the augmentation ideal. This is equivalent to saying that M has a finite filtration by $Z G$-submodules with trivial G-action on the associated quotients. A $Z G$ module M will be called p-seminilpotent when the $Z G$-modules $M \otimes Z / p$ and $\operatorname{Tor}(M, Z / p)$ are both nilpotent. A nilpotent $Z G$-module is clearly p seminilpotent for all p. Moreover, if G is a finite p-group, then each $Z G$ module is p-seminilpotent.
2.2. The p-seminilpotent group actions. Now let A be a G-group, i.e. a group with a homomorphism $G \rightarrow$ Aut A. A $Z G$-series for A is a finite filtration

$$
A=A_{1} \supset A_{2} \supset \cdots \supset A_{n}=\{1\}
$$

of A by G-invariant subgroups such that each A_{i+1} is normal in A_{i} with A_{i} / A_{i+1} abelian, and thus with A_{i} / A_{i+1} a $Z G$-module. The action of G on A will be called p-seminilpotent when there exists a $Z G$-series $\left\{A_{i}\right\}$ for A such that the $Z G$-modules A_{i} / A_{i+1} are all p-seminilpotent. Such a filtration $\left\{A_{i}\right\}$ will be called a p-seminilpotent $Z G$-series for A. Note that the action of a group G on an abelian group A is p-seminilpotent if and only if A is p-seminilpotent as a $Z G$-module.

Proposition 2.3. Let $f: A \rightarrow B$ be a homomorphism of G-groups. If the G action on A and B is p-seminilpotent, then so is the G-action on $\operatorname{im} f$ and ker f, and also on coker f when $\operatorname{im} f$ is normal in B.

Proof. This follows easily when A and B are abelian. In general, let $\left\{A_{i}\right\}$ and $\left\{B_{j}\right\}$ be p-seminilpotent $Z G$-series for A and B. Then an induction, using Lemma 2.4 below, shows that the $Z G$-modules $\left(A_{i} \cap \operatorname{ker} f\right) A_{i+1} / A_{i+1}$ and $B_{j} /\left(\operatorname{im} f \cap B_{j}\right) B_{j+1}$ are p-seminilpotent. Thus $\left\{A_{i} \cap \operatorname{ker} f\right\}$ is a p-seminilpotent $Z G$-series for $\operatorname{ker} f$, and so is $\left\{(\operatorname{im} f) B_{j}\right\}$ for coker f when im f is normal in B. Likewise, $\left\{f A_{i}\right\}$ is a p-seminilpotent $Z G$-series for $\operatorname{im} f$.

Lemma 2.4. If A and B are G-groups with $Z G$-series $\left\{A_{i}\right\}$ and $\left\{B_{j}\right\}$, then a homomorphism $f: A \rightarrow B$ induces an exact sequence

$$
\begin{aligned}
0 & \rightarrow \frac{\left(A_{i} \cap f^{-1} B_{j+1}\right) A_{i+1}}{A_{i+1}} \xrightarrow{u} \frac{\left(A_{i} \cap f^{-1} B_{j}\right) A_{i+1}}{A_{i+1}} \\
& \stackrel{f}{\rightarrow} \frac{B_{j}}{\left(f A_{i+1} \cap\right.} \frac{\left.B_{j}\right) B_{j+1}}{\rightarrow} \frac{R_{j}}{\left(f A_{i} \cap B_{j}\right) B_{j+1}} \rightarrow 0
\end{aligned}
$$

of $Z G$-modules for each i and j.
Proof. This follows since f induces an isomorphism

$$
\frac{A_{i} \cap f^{-1} B_{j}}{\left(A_{i} \cap f^{-1} B_{j+1}\right)\left(A_{i+1} \cap f^{-1} B_{j}\right)} \cong \frac{f A_{i} \cap B_{j}}{\left(f A_{i} \cap B_{j+1}\right)\left(f A_{i+1} \cap B_{j}\right)}
$$

from coker u to $\operatorname{ker} v$.
Proposition 2.5. Let $A \hookrightarrow B \rightarrow C$ be a short exact sequence of G-groups. If the G-action on A and C is p-seminilpotent, then so is the G-action on B.

This is immediate, but its converse is false. For example, $G=Z / 2$ acts p-seminilpotently on Q by negation, but not on Z or Q / Z when p is odd. This difficulty is often avoided by

Lemma 2.6. Let $A \subset B$ be $Z G$-modules such that the increasing sequence $\{x \in$ $\left.B \mid p^{i} x \in A\right\}$ for $i \geq 0$ attains a maximum \bar{A}. If B is p-seminilpotent, then so are A and B / A.
Proof. Since the exactness of $\bar{A} \mapsto B \rightarrow B / \bar{A}$ is preserved by $Z / p \otimes-$ and $\operatorname{Tor}(Z / p,-), \bar{A}$ is p-seminilpotent. A downward induction now shows that each $\left\{x \in B \mid p^{i} x \in A\right\}$ is p-seminilpotent.

Recall that a group B is called polycyclic when there exists a finite filtration

$$
B=B_{1} \supset B_{2} \supset \cdots \supset B_{n}=\{1\}
$$

of B by subgroups such that each B_{i+1} is normal in B_{i} with B_{i} / B_{i+1} cyclic. The polycyclic groups are closed under the formation of subgroups, quotient groups, and extension groups.

Proposition 2.7. Let $A \subset B$ be G-groups with B polycyclic (as a group). If the G-action on B is p-seminilpotent, then so is the G-action on A, and also on B / A when A is normal in B.
Proof. Using a p-seminilpotent $Z G$-series $\left\{B_{i}\right\}$ for B, we obtain a p-seminilpotent G-series $\left\{A \cap B_{i}\right\}$ for A by 2.6.

In our applications, the action of a group G on a group A will usually include the inner automorphisms of A, i.e. for each $a \in A$ there will exist $g \in G$ such that $a x a^{-1}=g x$ for all $x \in A$. This ensures that the G-invariant subgroups of A are normal.
Proposition 2.8. Suppose that the action of a group G on a group A is p seminilpotent and includes the inner automorphisms of A. Then
(i) G acts nilpotently on each $H_{n}\left(A ; F_{p}\right)$;
(ii) the derived series $\left\{D^{j} A\right\}$ of A is a p-seminilpotent $Z G$-series for A.

Proof. We choose a p-seminilpotent $Z G$-series $\left\{A_{i}\right\}$ for A and note that G acts nilpotently on each $H_{n}\left(A_{i} / A_{i+1} ; F_{p}\right)$. Using the Serre spectral sequence, we inductively deduce that G acts nilpotently on each $H_{n}\left(A / A_{i}, F_{p}\right)$ and thus on each $H_{n}\left(A ; F_{p}\right)$. Hence G acts p-seminilpotently on $H_{1}(A ; Z) \cong A / D^{1} A$ and also on $D^{1} A$ by 2.3. This argument may be repeated inductively to show that G acts p-seminilpotently on each $D^{j} A / D^{j+1} A$ as required.

3. The p-SEminilpotent groups, spaces and fibrations

The familiar concept of nilpotency for groups, spaces, and fibrations (see [6 or 15]) will now be generalized to p-seminilpotency.
3.1. The p-seminilpotent groups. A group G is called p-seminilpotent when the inner automorphism action of G on itself is p-seminilpotent. This is equivalent to saying that G has a finite filtration

$$
G=G_{1} \supset G_{2} \supset \cdots \supset G_{n}=\{1\}
$$

by normal subgroups with abelian quotients G_{i} / G_{i+1} which are p-seminilpotent as $Z G$-modules. Such a filtration is called a p-seminilpotent series for G. Clearly each nilpotent group is p-seminilpotent, and each p-seminilpotent group is solvable. Moreover, by 2.8 , a solvable group G is p-seminilpotent if and only if G acts p-seminilpotently on each derived series quotient $D^{j} G / D^{j+1} G$.

The following four propositions may be deduced from 2.3, 2.5, and 2.7.
Proposition 3.2. If $f: G \rightarrow H$ is a homomorphism of p-seminilpotent groups, then $\operatorname{im} f$ and $\operatorname{ker} f$ are also p-seminilpotent.
Proposition 3.3. For a short exact sequence $G^{\prime} \mapsto G \rightarrow G^{\prime \prime}$ of groups, any two of the following conditions imply the third:
(i) G is p-seminilpotent;
(ii) $G^{\prime \prime}$ is p-seminilpotent;
(iii) the action of G on G^{\prime} is p-seminilpotent.

Proposition 3.4. If $\left\{G_{i}\right\}$ is a p-seminilpotent series for a group G, then the quotient groups G_{i} / G_{i+j} are all p-seminilpotent.

In general, a subgroup or quotient group of a p-seminilpotent group need not be p-seminilpotent. For example, the semidirect product $Q(Z) \rtimes Z$ is p-seminilpotent while $Z(Z) \rtimes Z$ and $(Q(Z) \rtimes Z) / Z(Z)$ are not. However
Proposition 3.5. If G is a p-seminilpotent polycyclic group, then so is each subgroup and each quotient group of G.

The p-seminilpotent (or " p-nilpotent") polycyclic groups have previously arisen in work of Roseblade [24] on the Artin-Rees property for group rings (see 8.4). In his exposition, Passman [19, p. 497] defines them by the conditions of

Proposition 3.6. A polycyclic group is p-seminilpotent if and only if each of its finite quotient groups is p-seminilpotent. A polycyclic finite group is pseminilpotent if and only if it has a normal p-complement (i.e. its elements of order prime to p form a subgroup).
Proof. Let G be a polycyclic group which is not p-seminilpotent, and choose a finite filtration $\left\{G_{i}\right\}$ of normal subgroups with abelian quotients G_{i} / G_{i+1}.

Then G acts nonnilpotently on $G_{i} / G_{i+1} \otimes Z / p$ or $\operatorname{Tor}\left(G_{i} / G_{i+1}, Z / p\right)$ for some i. Since each polycyclic group is residually finite, there is a finite quotient group \bar{G} of G with a corresponding nonilpotent action, and \bar{G} is not p-seminilpotent. Next let B be a finite p-seminilpotent group. The intersection of the mod-p derived series for B gives a p-perfect normal subgroup $N \subset B$ with index a power of p. This N is p-seminilpotent since B is, and $|N|$ is prime to p by
Lemma 3.7. If N is a p-perfect p-seminilpotent finite group, then $|N|$ is prime to p.
Proof. Let $\left\{N_{i}\right\}$ be a p-seminilpotent series for N, and assume inductively that $\left|N / N_{i}\right|$ is prime to p. Using the $H_{*}\left(; F_{p}\right)$-spectral sequence for

$$
N_{i} / N_{i+1} \mapsto N / N_{i+1} \rightarrow N / N_{i}
$$

and the nilpotent action of N / N_{i} on $Z / p \otimes N_{i} / N_{i+1}$, one finds that $Z / p \otimes$ $N_{i} / N_{i+1}=0$. Thus $\left|N / N_{i+1}\right|$ is prime to p.

We shall need the following technical result later.
Proposition 3.8. Let $f: G^{\prime} \hookrightarrow G$ be a monomorphism and $g: G \rightarrow G^{\prime \prime}$ be an epimorphism of p-seminilpotent groups. If $\left\{G_{i}\right\}$ is a p-seminilpotent series for G, then $\left\{f^{-1}\left(G_{i}\right)\right\}$ and $\left\{g\left(G_{i}\right)\right\}$ are p-seminilpotent series for G^{\prime} and $G^{\prime \prime}$.
Proof. This follows using 3.3 since the image of $f: G^{\prime} \rightarrow G / G_{i}$ is p-seminilpotent by 3.2, and since G acts p-seminilpotently on the image of $g: G_{i} \rightarrow G^{\prime \prime}$ by 2.3 .
3.9. The p-seminilpotent spaces and fibrations. A space X is called p-seminilpotent when it is connected, $\pi_{1} X$ is a p-seminilpotent group, and the action of $\pi_{1} X$ on $\pi_{i} X$ is p-seminilpotent for each $i \geq 2$ (after a basepoint is chosen for X). For instance, a Klein bottle or an even dimensional real projective space is p-seminilpotent for $p=2$ but not for p odd. More generally, a fibration $f: X \rightarrow Y$ of connected spaces is called p-seminilpotent when its fiber E is connected and the action of $\pi_{1} X$ on $\pi_{i} E$ is p-seminilpotent for each $i \geq 1$ (after a basepoint is chosen for X). Thus a space X is p-seminilpotent if and only if the fibration $X \rightarrow *$ is p-seminilpotent. Each nilpotent space or fibration is automatically p-seminilpotent for all p. Clearly
Proposition 3.10. For a p-seminilpotent fibration $X \rightarrow Y$ and map $A \rightarrow Y$ of connected spaces, the induced fibration over A is p-seminilpotent.

From 2.3 and 2.5 , we deduce
Proposition 3.11. Let $f: X_{2} \rightarrow X_{1}$ and $g: X_{1} \rightarrow X_{0}$ be fibrations of connected spaces with connected fibers. If any two of f, g and $g f$ are p-seminilpotent, then so is the third.

Thus, for a fibration $f: X \rightarrow Y$ of connected spaces with connected fiber, if any two of X, Y, and f are p-seminilpotent, then so is the third.

Finally, we establish a crucial homological interpretation of p-seminilpotency.
Theorem 3.12. Let $f: X \rightarrow Y$ be a fibration of pointed connected spaces with fiber E. Then f is p-seminilpotent if and only if E is p-seminilpotent and $\pi_{1} Y$ acts nilpotently on each $H_{n}\left(E ; F_{p}\right)$.
Proof. The "only if" part follows as in [6, p. 63], and we assume the "if" hypotheses. Then $\pi_{1} X$ acts p-seminilpotently on $H_{1}(E ; Z) \cong \pi_{1} E / D^{1} \pi_{1} E$.

To show that it does so on $D^{1} \pi_{1} E / D^{2} \pi_{1} E$, we use the generalized MoorePostnikov construction [5, 5.1] to factor f as a composition $f=h g$ of a fibration $g: X \rightarrow \bar{X}$ with connected fiber \widetilde{E} and a fibration $h: \bar{X} \rightarrow Y$ with connected fiber \bar{E} such that $\pi_{i} \bar{E}=0$ for $i \geq 2$ and $\pi_{1} E \rightarrow \pi_{1} \bar{E}$ is onto with kernel $D^{1} \pi_{1} E$. The fibrations $\bar{X} \rightarrow Y$ and $\bar{E} \rightarrow \bar{E}$ are p-seminilpotent. Thus $\pi_{1} Y$ and $\pi_{1} \bar{E}$ respectively act nilpotently on each $H_{n}\left(\bar{E} ; F_{p}\right)$ and $H_{n}\left(\widetilde{E} ; F_{p}\right)$ by the "only if" part. Hence, $\pi_{1} \bar{X}$ acts nilpotently on each $H_{n}\left(\widetilde{E} ; F_{p}\right)$ by 3.13 below, and $\pi_{1} X$ acts p-seminilpotently on $H_{1}(\widetilde{E} ; Z) \cong D^{1} \pi_{1} E / D^{2} \pi_{1} E$. This argument may be repeated inductively to prove the theorem.

Lemma 3.13. Let $g: X_{2} \rightarrow X_{1}$ and $h: X_{1} \rightarrow X_{0}$ be fibrations of pointed connected spaces with connected fibers E_{2} and E_{1} respectively, and let E be the fiber of $h g$. If $\pi_{1} E_{1}$ acts nilpotently on each $H_{n}\left(E_{2} ; F_{p}\right)$, and if $\pi_{1} X_{0}$ acts nilpotently on each $H_{n}\left(E_{1} ; F_{p}\right)$ and $H_{n}\left(E ; F_{p}\right)$, then $\pi_{1} X_{1}$ acts nilpotently on each $H_{n}\left(E_{2} ; F_{p}\right)$.
Proof. Suppose inductively that $\pi_{1} X_{1}$ acts nilpotently on $H_{t}\left(E_{2}, F_{p}\right)$ for each $t \leq n-1$. Then $\pi_{1} X_{2}$ acts nilpotently on $H_{s}\left(E_{1} ; H_{t}\left(E_{2} ; F_{p}\right)\right)$ for $s \geq 0$ and $t \leq n-1$, and on $H_{n}\left(E ; F_{p}\right)$. Thus by Serre spectral sequence argument, $\pi_{1} X_{2}$ acts nilpotently on $H_{0}\left(E_{1} ; H_{n}\left(E_{2} ; F_{p}\right)\right)$, which equals $H_{n}\left(E_{2} ; F_{p}\right) / I H_{n}\left(E_{2} ; F_{p}\right)$ where $I \subset F_{p} \pi_{1} E_{1}$ is the augmentation ideal. Also, $\pi_{1} X_{2}$ acts nilpotently through $\pi_{1} X_{0}$ on $I / I^{2} \cong H_{1}\left(E_{1} ; F_{p}\right)$. Thus by the epimorphism

$$
\frac{I}{I^{2}} \otimes \frac{H_{n}\left(E_{2}, F_{p}\right)}{I H_{n}\left(E_{2} ; F_{p}\right)} \rightarrow \frac{I H_{n}\left(E_{2} ; F_{p}\right)}{I^{2} H_{n}\left(E_{2} ; F_{p}\right)}
$$

$\pi_{1} X_{2}$ acts nilpotently on $I H_{n}\left(E_{2} ; F_{p}\right) / I^{2} H_{n}\left(E_{2} ; F_{p}\right)$. This argument may be repeated inductively to show that $\pi_{1} X_{2}$ acts nilpotently on the successive quotients of $\left\{I^{j} H_{n}\left(E_{2} ; F_{p}\right)\right\}$, and thus on $H_{n}\left(E_{2} ; F_{p}\right)$.

4. On the F_{p}-COMPLETION OF A SPACE

We now return to the Bousfield-Kan F_{p}-completion (or p-adic completion) $F_{p \infty} X$ of a space X, and show that it is particularly well behaved when X is p-seminilpotent. We begin with a "Whitehead theorem" which unifies results of [6, pp. 30 and 113].
Proposition 4.1. For $k \geq 0$, let $f: X \rightarrow Y$ be a map of pointed connected spaces such that $f_{*}: H_{i}\left(X ; F_{p}\right) \rightarrow H_{i}\left(Y ; F_{p}\right)$ is an isomorphism for $i \leq k$ and onto for $i=k+1$. Then $f_{*}: \pi_{i} F_{p \infty} X \rightarrow \pi_{i} F_{p \infty} Y$ is also an isomorphism for $i \leq k$ and onto for $i=k+1$.
Proof. Recall that $F_{p \infty} X$ is the inverse limit of a canonical tower $\left\{\left(F_{p}\right)_{s} X\right\}$ of fibrations under X, and let $J_{s} X$ be the fiber of $\left(F_{p}\right)_{s} X \rightarrow\left(F_{p}\right)_{s-1} X$. For each $s, f_{*}: \pi_{i} J_{s} X \rightarrow \pi_{i} J_{s} Y$ is an isomorphism for $i \leq k$ and onto for $i=k+1$ by [6, p. 32]. Letting K_{s} denote the homotopy fiber of $\left(F_{p}\right)_{s} X \rightarrow\left(F_{p}\right)_{s} Y$, we note that the maps $K_{s} \rightarrow K_{s-1}$ and $J_{s} X \rightarrow J_{s} Y$ have equivalent k-connected homotopy fibers. Hence the homotopy limit K_{∞} of the tower $\left\{K_{s}\right\}$ is also k-connected. Since K_{∞} is the homotopy fiber of $F_{p \infty} X \rightarrow F_{p \infty} Y$, the result follows.

Although $F_{p \infty}$ carries each "mod-p homology type" to a single homotopy type, the resulting homotopy type may sometimes have extraneous mod-p ho-
mology. Recall that a space X is called F_{p}-good when the map $X \rightarrow F_{p \infty} X$ induces an isomorphism $H_{*}\left(X ; F_{p}\right) \cong H_{*}\left(F_{p \infty} X ; F_{p}\right)$ and is called F_{p}-bad otherwise. By [6, p. 26], the functor $F_{p \infty}$ has a triple (or monad) structure, $l:$ Id $\rightarrow F_{p \infty}$ and $\mu: F_{p \infty} F_{p \infty} \rightarrow F_{p \infty}$, on the category of spaces and hence on the pointed homotopy category of spaces. Moreover, the functor $F_{p \infty}$ acts as an idempotent functor on the pointed homotopy category of F_{p}-good spaces. The following result may be used to build examples of F_{p}-good spaces.

Proposition 4.2. Let $E \rightarrow X \rightarrow B$ be a homotopy fiber sequence of pointed connected spaces such that the action of $\pi_{1} B$ on each $H_{i}\left(E ; F_{p}\right)$ is nilpotent. Then
(i) $F_{p \infty} E \rightarrow F_{p \infty} X \rightarrow F_{p \infty} B$ is a homotopy fiber sequence;
(ii) if E is F_{p}-good, then the action of $\pi_{1} F_{p \infty} B$ on $H_{i}\left(F_{p \infty} E ; F_{p}\right)$ is nilpotent;
(iii) if E and B are F_{p}-good, then so is X.

Proof. Part (i) follows from [6, p. 62], part (ii) from [6, p. 91], and part (iii) from the preceding parts using the Serre spectral sequence.

Theorem 4.3. If X is a p-seminilpotent space, then X is F_{p}-good and $F_{p \infty} X$ is p-seminilpotent.
Proof. The Postnikov tower of X can be refined to a tower of p-seminilpotent fibrations with abelian Eilenberg-Mac Lane spaces as fibers. By [6, pp. 183184], these fibers are F_{p}-good and their p-adic completions are nilpotent. The result now follows by $3.12,4.1$, and 4.2.

Theorem 4.4. If $f: X \rightarrow Y$ is a p-seminilpotent fibration of pointed connected spaces with homotopy fiber E, then $F_{p \infty} f: F_{p \infty} X \rightarrow F_{p \infty} Y$ is a p-seminilpotent fibration with homotopy fiber $F_{p \infty} E$.
Proof. This follows by 3.12, 4.2, and 4.3.
Note that f is automatically p-seminilpotent by 3.11 when X and Y are. We conclude that $F_{p \infty}$ acts as an idempotent functor on the pointed homotopy category of p-seminilpotent spaces, and $F_{p \infty}$ preserves homotopy fiber sequences of such spaces. Finally, we must sometimes view $F_{p \infty} X$ from the "homological localization" standpoint [3].
4.5. On $F_{p \infty} X$ as an $H_{*}\left(; F_{p}\right)$-local space. The results of [6, p. 205] show that $F_{p \infty} X$ is always $H_{*}\left(; F_{p}\right)$-local in the sense of [3]. Moreover, for a pointed space X with $H_{*}\left(; F_{p}\right)$-localization $X_{F_{p}}$, there is a canonical map $X_{F_{p}} \rightarrow F_{p \infty} X$ in the pointed homotopy category. This gives an equivalence $X_{F_{p}} \simeq F_{p \infty} X$ if and only if X is F_{p}-good, since each $H_{*}\left(; F_{p}\right)$-equivalence of $H_{*}\left(; F_{p}\right)$-local spaces is a weak equivalence.
4.6. On $\pi_{i} F_{p \infty} X$ as an $H F_{p}$-local group. Since $F_{p \infty} X$ is $H_{*}\left(; F_{p}\right)$-local for a pointed space $X, \pi_{i} F_{p \infty} X$ is an $H F_{p}$-local group for $i \geq 1$ by [3, p. 138]. We refer the reader to [3 or 4] for an account of $H F_{p}$-local groups. By [4, p. 13] they form the smallest class of groups which:
(i) contain the trivial group,
(ii) are closed under central F_{p}-module extensions, and
(iii) are closed under arbitrary inverse limits.

Moreover, an abelian group G is $H F_{p}$-local if and only if G is p-cotorsion (or Ext- p-complete in the sense of [6]), i.e.,

$$
\operatorname{Hom}(Z[1 / p], G) \cong 0 \cong \operatorname{Ext}(Z[1 / p], G)
$$

5. The p-ADIC GROUP COMPLETION AND ITS DERIVED FUNCTORS

In preparation for further work on the homotopy groups $\pi_{i} F_{p \infty} X$, we now study the p-adic completion functor and its derived functors on groups. The examples in 5.7 show the interesting diversity of these derived functors.
5.1. The p-adic completion of a group. For a group A, let $\left\{\Gamma_{n}^{p} A\right\}$ be the lower p-central series with $\Gamma_{1}^{p} A=A$ and with $\Gamma_{n+1}^{p} A$ generated by elements of the form $x y x^{-1} y^{-1} z^{p}$ for $x \in A$ and $y, z \in \Gamma_{n}^{p} A$. This is the fastest descending central series in A with F_{p}-module factors. The p-adic completion of A is defined as in [6, p. 103] to be $A_{p}^{\wedge}=\underset{\longleftarrow}{\rightleftarrows} A / \Gamma_{n}^{p} A$ viewed as a discrete group. Note that the tower $\left\{A / \Gamma_{n}^{p} A\right\}$ is characterized up to pro-isomorphism by its property of cofinality in the system of all p-torsion nilpotent groups of finite exponent under A. Thus, in the construction of A_{p}^{\wedge}, we can use alternative versions of the lower p-central series as in [23]. Note also that if $H_{1}\left(A ; F_{p}\right)$ is finite, then the p-adic completion of A agrees with the p-profinite completion. The close relationship between p-adic completions of groups and of spaces is indicated by the equivalence $\bar{W}(G X)_{p}^{\wedge} \simeq F_{p \infty} X$ shown in [6, p. 109] for a pointed connected space X, where \bar{W} is the simplicial classifying space functor and $G X$ is Kan's free simplicial loop group of X. We now give some basic properties of ()$_{p}^{\wedge}$.
Lemma 5.2. For a homomorphism $f: A \rightarrow B$ of groups, $f_{p}^{\wedge}: A_{p}^{\wedge} \rightarrow B_{p}^{\wedge}$ is onto if and only if $f_{*}: H_{1}\left(A ; F_{p}\right) \rightarrow H_{1}\left(B ; F_{p}\right)$ is onto. If $f_{*}: H_{i}\left(A ; F_{p}\right) \rightarrow H_{i}\left(B ; F_{p}\right)$ is an isomorphism for $i=1$ and onto for $i=2$, then $f_{p}^{\wedge}: A_{p}^{\wedge} \cong B_{p}^{\wedge}$ and $f: A / \Gamma_{n}^{p} A \cong B / \Gamma_{n}^{p} B$ for all $n \geq 1$.
Proof. First, let $f_{*}: H_{1}\left(A ; F_{p}\right) \rightarrow H_{1}\left(B ; F_{p}\right)$ be onto. Then

$$
f_{*}: \Gamma_{n}^{p} A / \Gamma_{n+1}^{p} A \rightarrow \Gamma_{n}^{p} B / \Gamma_{n+1}^{p} B
$$

is onto for all $n \geq 1$ by [4, p. 51], and we obtain a short exact sequence of group towers

$$
\left\{K_{n}\right\} \mapsto\left\{A / \Gamma_{n}^{p} A\right\} \rightarrow\left\{B / \Gamma_{n}^{p} B\right\}
$$

with each $K_{n+1} \rightarrow K_{n}$ onto. Hence $f_{p}^{\wedge}: A_{p}^{\wedge} \rightarrow B_{p}^{\wedge}$ is onto. The converse is clear since $H_{1}\left(B ; F_{p}\right)$ is a quotient of B_{p}^{\wedge}, and the final statement follows by Stalling's argument [25].
5.3. Idempotency properties. The p-adic completion of groups has a triple (or monad) structure given by the obvious homomorphisms $l: A \rightarrow A_{p}^{\wedge}$ and $\mu:\left(A_{p}^{\wedge}\right)_{p}^{\wedge} \rightarrow A_{p}^{\wedge}$. By 5.2, $l_{p}^{\wedge}: A_{p}^{\wedge} \rightarrow\left(A_{p}^{\wedge}\right)_{p}^{\wedge}$ is onto if and only if $l_{*}: H_{1}\left(A ; F_{p}\right)$ $\rightarrow H_{1}\left(A_{p}^{\wedge} ; F_{p}\right)$ is onto. Thus, the p-adic completion acts idempotently on A if and only if $l_{*}: H_{1}\left(A ; F_{p}\right) \rightarrow H_{1}\left(A_{p}^{\wedge} ; F_{p}\right)$ is onto. (Note that l_{*} is always monic.) By [4, p. 57], this idempotency holds whenever $H_{1}\left(A ; F_{p}\right)$ is finite, and thus whenever A is finitely generated. By 5.5 below, it also holds whenever $K(A, 1)$ is F_{p}-good, e.g., when A is p-seminilpotent. However, by [6, p. 114], it fails when A is a free group on an infinite set of generators.
5.4. Derived functors of the p-adic completion. For a group A and $n \geq 0$, we let $c_{n}^{p}(A)$ denote the group $\pi_{n-1} F_{p \infty} K(A, 1)$, which is always $H F_{p}$-local and is p-cotorsion abelian for $n \geq 1$ by 4.6. There is a natural isomorphism

$$
c_{n}^{p}(A) \cong \pi_{n}(G K(A, 1))_{p}^{\wedge}
$$

by 5.1, and we may view c_{n}^{p} as the nth left derived functor of the p-adic completion functor, since $G K(A, 1)$ is a free simplicial group with

$$
\pi_{i} G K(A, 1) \cong \begin{cases}A & \text { for } i=0 \\ 0 & \text { for } i \geq 1\end{cases}
$$

By 4.2, if $A \hookrightarrow B \rightarrow C$ is a short exact sequence of groups such that the action by C on $H_{i}\left(A ; F_{p}\right)$ is nilpotent for $i \geq 0$, then there is an induced homotopy fiber sequence

$$
F_{p \infty} K(A, 1) \rightarrow F_{p \infty} K(B, 1) \rightarrow F_{p \infty} K(C, 1)
$$

which determines a long exact sequence

$$
\begin{aligned}
\cdots & \rightarrow c_{n+1}^{p}(C) \rightarrow c_{n}^{p}(A) \rightarrow c_{n}^{p}(B) \rightarrow c_{n}^{p}(C) \\
& \rightarrow \cdots \rightarrow c_{0}^{p}(B) \rightarrow c_{0}^{p}(C) \rightarrow\{1\}
\end{aligned}
$$

of groups. By 2.8 this applies automatically when the action of B on A is p-seminilpotent. By 4.1 we have

Proposition 5.5. If X is a pointed connected space, then there is a natural isomorphism $\pi_{1} F_{p \infty} X \cong c_{0}^{p}\left(\pi_{1} X\right)$.
5.6. Properties of c_{0}^{p}. The functor c_{0}^{p} has a triple (or monad) structure, $l:$ Id $\rightarrow c_{0}^{p}$ and $\mu: c_{0}^{p} c_{0}^{p} \rightarrow c_{0}^{p}$, induced by that of $F_{p \infty}$, or equivalently by that of $\bar{W}(G())_{p}^{\wedge}$. By the argument of 5.3, c_{0}^{p} acts idempotently on a group A if and only if $l: H_{1}\left(A ; F_{p}\right) \rightarrow H_{1}\left(c_{0}^{p} A ; F_{p}\right)$ is onto. Thus c_{0}^{p} acts idempotently on A when $K(A, 1)$ is F_{p}-good, e.g. when A is p-seminilpotent. Whenever c_{0}^{p} acts idempotently on A, then so does () \hat{p} by our homological criteria, because there is a natural epimorphism $\gamma: c_{0}^{p} A \rightarrow A_{p}^{\wedge}$ induced by the isomorphisms

$$
\pi_{0}\left(G / \Gamma_{n}^{p} G\right) K(A, 1) \cong A / \Gamma_{n}^{p} A
$$

By [6, p. 254], γ has kernel

$$
\lim ^{1} \pi_{1}\left(G / \Gamma_{n}^{p} G\right) K(A, 1) \cong \lim ^{1} \pi_{2}\left(F_{p n} K(A, 1)\right)
$$

which is p-cotorsion abelian (see 4.6). If A is a group with $H_{1}\left(A ; F_{p}\right)$ and $H_{2}\left(A ; F_{p}\right)$ both finite, then this $\lim ^{1}$ term vanishes, and thus $\gamma: c_{0}^{p} A \cong A_{p}^{\wedge}$. In particular, if A is finitely presented, then $c_{0}^{p} A \cong A_{p}^{\wedge}$.
5.7. Examples. To illustrate the interesting diversity of the groups $c_{n}^{p} A$, we observe:
(i) if A is free, then $c_{0}^{p} A \cong A_{p}^{\wedge}$ and $c_{n}^{p} A=0$ for $n \geq 1$ by [6, p. 114];
(ii) if A is nilpotent, then $c_{0}^{p} A \cong \operatorname{Ext}\left(Z_{p^{\infty}}, A\right), c_{1}^{p} A \cong \operatorname{Hom}\left(Z_{p^{\infty}}, A\right)$, and $c_{n}^{p} A=0$ for $n \geq 2$ by [6, p. 167]; if A is p-seminilpotent, there is a similar result by 6.1 below;
(iii) for the infinite general linear group $G L(\Lambda)$ over a ring Λ with identity, $c_{n}^{p} G L(\Lambda)$ is the p-adic algebraic K-group $\pi_{n+1} F_{p \infty}\left(B G L(\Lambda)^{+}\right)$of Λ for $n \geq 0$ by [22];
(iv) for the infinite symmetric group $\Sigma_{\infty}, c_{n}^{p} \Sigma_{\infty}$ is the p-torsion subgroup of the stable homotopy group of spheres $\pi_{n+1} S$ for $n \geq 0$ by a theorem of Priddy as noted in [6, p. 207];
(v) for the symmetric group Σ_{3}, there is a short exact sequence

$$
0 \rightarrow \pi_{n+1} S^{3} \otimes Z / 3 \rightarrow c_{n}^{3} \Sigma_{3} \rightarrow \operatorname{Tor}\left(\pi_{n} S^{3}, Z / 3\right) \rightarrow 0
$$

for $n \geq 0$ by [6, p. 213];
(vi) for a finite group $A, c_{n}^{p} A$ is finite p-group for $n \geq 0$ by [6, p. 212], and is trivial for p prime to $|A|$.

6. The groups $\pi_{*} F_{p \infty} X$ for p-seminilpotent spaces

As in the nilpotent case [6, p. 183], we shall express $\pi_{*} F_{p \infty} X$ in terms of $\pi_{*} X$ using:
6.1. The functors $\operatorname{Ext}\left(Z_{p^{\infty}}, G\right)$ and $\operatorname{Hom}\left(Z_{p^{\infty}}, G\right)$. For an abelian group A, there are natural isomorphisms $c_{0}^{p} A \cong \operatorname{Ext}\left(Z_{p \infty}, A\right), c_{1}^{p} A \cong \operatorname{Hom}\left(Z_{p \infty}, A\right)$, and $c_{n}^{p} A \cong 0$ for $n \geq 2$ by [6, p. 167]. For a p-seminilpotent group G, we deduce that $c_{n}^{p} G=0$ for $n \geq 2$ by 5.4 , and we let $\operatorname{Ext}\left(Z_{p \infty}, G\right)$ and $\operatorname{Hom}\left(Z_{p^{\infty}}, G\right)$ respectively denote $c_{0}^{p} G$ and $c_{1}^{p} G$. When G is nilpotent, these groups have been extensively studied in [6 and 16]. Our notation follows [6], and the reader is warned that $\operatorname{Ext}\left(Z_{p^{\infty}}, G\right)$ and $\operatorname{Hom}\left(Z_{p^{\infty}}, G\right)$ do not in general indicate sets of group extensions or homomorphisms. By 4.3 and 4.6, $\operatorname{Ext}\left(Z_{p \infty}, G\right)$ is an $H F_{p}$-local p-seminilpotent group, while $\operatorname{Hom}\left(Z_{p \infty}, G\right)$ is a p-cotorsion abelian group. By 5.4, a short exact sequence $G^{\prime} \longleftrightarrow G \rightarrow G^{\prime \prime}$ of p-seminilpotent groups induces an exact sequence of groups

$$
\begin{aligned}
0 & \rightarrow \operatorname{Hom}\left(Z_{p^{\infty}}, G^{\prime}\right) \rightarrow \operatorname{Hom}\left(Z_{p^{\infty}}, G\right) \rightarrow \operatorname{Hom}\left(Z_{p^{\infty}}, G^{\prime \prime}\right) \\
& \rightarrow \operatorname{Ext}\left(Z_{p^{\infty}}, G^{\prime}\right) \rightarrow \operatorname{Ext}\left(Z_{p^{\infty}}, G\right) \rightarrow \operatorname{Ext}\left(Z_{p^{\infty}}, G^{\prime \prime}\right) \rightarrow 0
\end{aligned}
$$

Using 3.8, this implies that each monomorphism $H \curvearrowleft G$ of p-seminilpotent groups induces a monomorphism $\operatorname{Hom}\left(Z_{p^{\infty}}, H\right) \rightharpoondown \operatorname{Hom}\left(Z_{p^{\infty}}, G\right)$. The p cotorsion abelian group $\operatorname{Hom}\left(Z_{p \infty}, G\right)$ is torsion free by induction from the case of G abelian. For a p-seminilpotent group G, the natural map $l: G \rightarrow$ $\operatorname{Ext}\left(Z_{p \infty}, G\right)$ will be called the p-cotorsion completion of G. It is part of an idempotent triple on the category of p-seminilpotent groups by 5.6. We say that a p-seminilpotent group G has serially bounded p-torsion when G has a p-seminilpotent series $\left\{G_{i}\right\}$ such that the p-torsion subgroup of each G_{i} / G_{i+1} is of finite exponent. For instance, a p-seminilpotent polycyclic group must have serially bounded p-torsion, and a nilpotent group G has serially bounded p-torsion if and only if its p-torsion subgroup is of finite exponent.

Proposition 6.2. If G is a p-seminilpotent group with serially bounded p-torsion, then $\gamma: \operatorname{Ext}\left(Z_{p^{\infty}}, G\right) \cong G_{p}^{\wedge}$ and $\operatorname{Hom}\left(Z_{p^{\infty}}, G\right) \cong 0$.
Proof. By 5.6 it suffices to show that the tower $\left\{\pi_{2} F_{p n} K(G, 1)\right\}$ is pro-trivial and $\operatorname{Hom}\left(Z_{p^{\infty}}, G\right)=0$. This holds when G is abelian by [6, p. 170] and holds in general by an induction using [6, p. 91].
Theorem 6.3. For a p-seminilpotent space X, there is a splittable natural short exact sequence

$$
0 \rightarrow \operatorname{Ext}\left(Z_{p^{\infty}}, \pi_{n} X\right) \rightarrow \pi_{n} F_{p \infty} X \rightarrow \operatorname{Hom}\left(Z_{p^{\infty}}, \pi_{n-1} X\right) \rightarrow 0
$$

Proof. This follows by applying 4.4 to the Postnikov tower of X. The splittability is trivial for $n=1$ and holds as in [6, p. 183] for $n \geq 2$ since $\operatorname{Ext}\left(Z_{p^{\infty}}, \pi_{n} X\right)$ is p-cotorsion and $\operatorname{Hom}\left(Z_{p^{\infty}}, \pi_{n-1} X\right)$ is torsion free.

Corollary 6.4. For a p-seminilpotent space X whose homotopy groups have serially bounded p-torsion, there is a natural isomorphism $\pi_{n} F_{p \infty} X \cong\left(\pi_{n} X\right)_{p}^{\wedge}$ for $n \geq 1$.
6.5. The p-cotorsion groups. Generalizing the abelian terminology, we call a p-seminilpotent group G p-cotorsion when $l: G \cong \operatorname{Ext}\left(Z_{p \infty}, G\right)$ and $\operatorname{Hom}\left(Z_{p \infty}, G\right)=0$. Applying 6.3 to the F_{p}-complete space $X=F_{p \infty} X(G, 1)$, we find that the groups $\operatorname{Ext}\left(Z_{p^{\infty}}, G\right)$ and $\operatorname{Hom}\left(Z_{p \infty}, G\right)$ are always p-cotorsion. Thus, in the above definition, the condition " $\operatorname{Hom}\left(Z_{p^{\infty}}, G\right)=0$ " is superfluous. For a nilpotent group, our p-cotorsion conditions agree with those of [16 and 6], where the term "Ext-p-complete" is used. For a homomorphism $f: G \rightarrow H$ of p-cotorsion p-seminilpotent groups, $\operatorname{ker} f$ and $\operatorname{im} f$ are also p cotorsion p-seminilpotent by 3.2 and [4, 1.5 and 2.10]. In a short exact sequence $G^{\prime} \mapsto G \rightarrow G^{\prime \prime}$ of p-seminilpotent groups, if any two groups are p-cotorsion, then so is the third by a 5 -lemma argument.

Proposition 6.6. A p-seminilpotent space X is F_{p}-complete if and only if each $\pi_{n} X$ is p-cotorsion.

This follows by 6.3. The p-seminilpotent F_{p}-complete spaces are the only known examples of F_{p}-complete spaces. We now turn to the $H_{*}\left(; F_{p}\right)$-acyclic spaces and first show:

Proposition 6.7. For a group G, the following conditions are equivalent:
(i) G is p-seminilpotent and $H_{i}\left(G ; F_{p}\right)=0$ for all $i \geq 1$;
(ii) G is p-seminilpotent and $H_{i}\left(G ; F_{p}\right)=0$ for $i=1,2$;
(iii) G is p-seminilpotent, $\operatorname{Ext}\left(Z_{p \infty}, G\right)=0$, and $\operatorname{Hom}\left(Z_{p \infty}, G\right)=0$;
(iv) G is solvable and its derived series quotients $D^{n} G / D^{n+1} G$ are uniquely p-divisible for each n;
(v) G has a finite decreasing filtration by normal subgroups $\left\{G_{n}\right\}$ such that G_{n} / G_{n+1} is uniquely p-divisible abelian for each n.

Proof. Clearly (i) implies (ii); (ii) implies (iii) by 4.1; and (iii) implies $F_{p \infty} K(G, 1) \simeq *$, which implies (i). Thus (iii) implies that $H_{1}(G ; Z)$ is uniquely p-divisible, which implies (iv) by induction; (iv) clearly implies (v); and (v) implies (iii) by induction.

A p-seminilpotent group G will be called p-trivial when it satisfies the above conditions. When G is nilpotent, this is equivalent to asserting the existence of unique p th roots in G. However, in general, this does not imply either the existence or uniqueness of p th roots (see [2, pp. 247-248]). By 6.3

Proposition 6.8. A p-seminilpotent space X is $H_{*}\left(; F_{p}\right)$-acyclic if and only if each $\pi_{n} X$ is p-trivial.

7. The F_{p}-GOODNESS OF POLYCYCLIC-BY-FINITE SPACES

Using methods of Dror-Dwyer-Kan [11], we shall prove the F_{p}-goodness of polycyclic-by-finite spaces and other "virtually p-seminilpotent" spaces. Recall
that a group G is polycyclic-by-finite when it contains a polycyclic normal subgroup of finite index. This is equivalent to saying that G is poly-(cyclic or finite), i.e., G has a finite filtration $G=G_{1} \supset G_{2} \supset \cdots \supset G_{m}=\{1\}$ such that G_{i+1} is a normal subgroup of G_{i} with G_{i} / G_{i+1} cyclic or finite for each i. A space X is called polycyclic-by-finite when it is connected with $\pi_{1} X$ polycyclic-by-finite and $\pi_{i} X$ finitely generated for each $i \geq 2$. An action by a group G on a group M is called virtually p-seminilpotent when G has a normal subgroup of finite index which acts p-seminilpotently on M. Our main F_{p}-goodness theorem is:

Theorem 7.1. If X is a pointed connected space with $\pi_{1} X$ polycyclic-by-finite and with $\pi_{1} X$ acting virtually p-seminilpotently on $\pi_{n} X$ for $n \geq 2$, then X is F_{p}-good and $F_{p \infty} X$ is p-seminilpotent.

This will be proved in 7.12. It applies to any polycyclic-by-finite space X since $\pi_{1} X$ automatically acts virtually p-seminilpotently on $\pi_{n} X$ when $\pi_{n} X \otimes$ Z / p and $\operatorname{Tor}\left(\pi_{n} X, Z / p\right)$ are both finite. We shall deal explicitly with this case in 7.2.

A group A is called p-adically polycyclic when A has a finite filtration $A=$ $A_{1} \supset A_{2} \supset \cdots \supset A_{m}=\{1\}$ such that each A_{i+1} is a normal subgroup of A_{i} with $A_{i} / A_{i+1} \quad p$-adically cyclic, i.e., isomorphic to Z_{p}^{\wedge} or to Z / p^{j} for some $j \geq 0$. When A is abelian, this simply means that A is isomorphic to a finitely generated Z_{p}^{\wedge}-module. A space Y is called p-adically polycyclic when Y is connected and $\pi_{n} Y$ is p-adically polycyclic for $n \geq 1$. In 7.13, we shall prove:
Theorem 7.2. If X is a pointed polycyclic-by-finite space, then X is F_{p}-good and $F_{p \infty} X$ is p-adically polycyclic with $\pi_{1} F_{p \infty} X \cong c_{0}^{p}\left(\pi_{1} X\right) \cong\left(\pi_{1} X\right)_{p}^{\wedge}$.

As illustrated by $5.7(\mathrm{v})$, a higher group $\pi_{i} F_{p \infty} X$ may differ profoundly from $\left(\pi_{i} X\right)_{p}^{\wedge}$. For later use, we note
Theorem 7.3. If X is a polycyclic-by-finite space, then X is of finite type, i.e., weakly equivalent to a complex with finitely many cells in each dimension.

This follows from [27, p. 61] using the result [14]:
Theorem 7.4. If G is a polycyclic-by-finite group and R is a commutative Noetherian ring, then G is finitely presented and the group ring $R G$ is (left) Noetherian.

In order to prove 7.1 and 7.2, we require a series of lemmas.
Lemma 7.5. For a group A, the following conditions are equivalent:
(i) A is p-adically polycyclic;
(ii) A is a p-cotorsion p-seminilpotent group with $H_{j}\left(A ; F_{p}\right)$ finite for each j;
(iii) A is a p-cotorsion p-seminilpotent group with $H_{1}\left(A ; F_{p}\right)$ finite;
(iv) A has a p-seminilpotent series $\left\{A_{k}\right\}$ with finitely generated Z_{p}^{\wedge}-module quotients A_{k} / A_{k+1}.
Proof. To show (i) \Rightarrow (ii), we let $\left\{A_{k}\right\}$ be a finite filtration of A with p adically cyclic quotients A_{k} / A_{k+1}, and we assume inductively that A_{k+1} is p seminilpotent. The group A_{k} / A_{k+1} must act nilpotently on each $H_{j}\left(A_{k+1} ; F_{p}\right)$ since $H_{j}\left(A_{k+1} ; F_{p}\right)$ is a finite F_{p}-module, and since each finite quotient of A_{k} / A_{k+1} is a p-group. Thus A_{k} is p-seminilpotent by 3.3 and 3.12 , and (ii) follows. To show (iii) \Rightarrow (iv), we choose a p-seminilpotent series $\left\{A_{k}\right\}$ for
A with p-cotorsion quotients A_{k} / A_{k+1}, for instance, by letting A_{k+1} be the kernel of $A \rightarrow \operatorname{Ext}\left(Z_{p^{\infty}}, A / D^{k} A\right)$. We assume inductively that A / A_{k} has finite F_{p}-homology groups and that A_{k-1} / A_{k} is a finitely generated Z_{p}^{\wedge}-module. Since A / A_{k} acts nilpotently on $H_{1}\left(A_{k} / A_{k+1} ; F_{p}\right)$, and since $H_{1}\left(A / A_{k+1} ; F_{p}\right)$ is finite, we conclude that $H_{1}\left(A_{k} / A_{k+1} ; F_{p}\right)$ is finite. Thus, since A_{k} / A_{k+1} is p-cotorsion abelian, it must be a finitely generated Z_{p}^{\wedge}-module, and (iv) follows. The implications (ii) \Rightarrow (iii) and (iv) \Rightarrow (i) are obvious.
Lemma 7.6. A pointed connected space Y is p-adically polycyclic if and only if Y is an F_{p}-complete p-seminilpotent space with each $H_{j}\left(Y ; F_{p}\right)$ finite.

This follows from 7.5 using
Lemma 7.7. A p-adically polycyclic group G must act p-seminilpotently on a $Z G$-module M when $M \otimes Z / p$ and $\operatorname{Tor}(M, Z / p)$ are finite.
Proof. Since G is $H F_{p}$-local by 4.6 and 7.5 , it has unique q th roots for each prime $q \neq p$. Thus each finite quotient of G is a p-group, and G must act nilpotently on $M \otimes Z / p$ and $\operatorname{Tor}(M, Z / p)$.

In view of 3.12 , the "nilpotent action lemma" of Dror-Dwyer-Kan [11, 5.1] becomes

Lemma 7.8. For a pointed connected space X, let $X \rightarrow K(\varphi, 1)$ and $X \rightarrow$ $K(\psi, 1)$ be fibrations with fibers L and M respectively, such that the induced map $\pi_{1} X \rightarrow \varphi \times \psi$ is onto. If the group ψ and space L are both p-seminilpotent, then ψ acts nilpotently on each $H_{n}\left(M ; F_{p}\right)$.

The "pre-nilpotency lemma" of Dror-Dwyer-Kan [11, 52] becomes
Lemma 7.9. For a pointed connected space Y and p-perfect group φ, if $Y \rightarrow$ $K(\varphi, 1)$ is a fibration whose fiber N is p-seminilpotent with $H_{1}\left(N ; F_{p}\right)$ finite, then Y is F_{p}-good and $F_{p \infty} Y$ is p-seminilpotent.
Proof. First apply the fiberwise F_{p}-completion [6, p. 40] to give a fibration $Y^{\prime} \rightarrow K(\varphi, 1)$ with fiber $F_{p \infty} N$. Then $H_{*}\left(Y ; F_{p}\right) \cong H_{*}\left(Y^{\prime} ; F_{p}\right)$ and $\left(\pi_{1} Y\right)_{F_{p}}$ $\cong\left(\pi_{1} Y^{\prime}\right)_{F_{p}}$, where ()$_{F_{p}}$ denotes the $H F_{p}$-localization of [3 or 4]. Thus there is a natural map $Y^{\prime} \rightarrow K\left(\left(\pi_{1} Y\right)_{F_{p}}, 1\right)$ such that $H_{i}\left(Y^{\prime} ; F_{p}\right) \rightarrow H_{i}\left(\left(\pi_{1} Y\right)_{F_{p}} ; F_{p}\right)$ is iso for $i=1$ and onto for $i=2$. Since $H_{1}\left(\varphi ; F_{p}\right)=0$, the map

$$
H_{1}\left(\pi_{1} F_{p \infty} N ; F_{p}\right) \rightarrow H_{1}\left(\left(\pi_{1} Y\right)_{F_{p}} ; F_{p}\right)
$$

is onto, and thus $\pi_{1} F_{p \infty} N \rightarrow\left(\pi_{1} Y\right)_{F_{p}}$ is onto by [4, 2.13]. Since $\pi_{1} F_{p \infty} N$ is p-adically polycyclic by 7.5 , so is $\left(\pi_{1} Y\right)_{F_{p}}$ by 7.10 below. Thus 7.8 shows that $\left(\pi_{1} Y\right)_{F_{p}}$ acts nilpotently on each $H_{n}\left(M ; F_{p}\right)$ where M is the homotopy fiber of $Y^{\prime} \rightarrow K\left(\left(\pi_{1} Y\right)_{F_{p}}, 1\right)$. Since $H_{1}\left(M ; F_{p}\right)=0,4.2$ shows that Y^{\prime}, and hence Y, is F_{p}-good. Moreover, the space $F_{p \infty} Y^{\prime} \simeq F_{p \infty} Y$ is p-seminilpotent by 3.12.

We have used
Lemma 7.10. If $f: A \rightarrow B$ is a homomorphism from a p-adically polycyclic group A onto an $H F_{p}$-local group B, then B is p-adically polycyclic.
Proof. Let $\left\{A_{k}\right\}$ be a finite filtration of A by subgroups such that each A_{k+1} is normal in A_{k} with $A_{k} / A_{k+1} p$-adically cyclic. Then each $B_{k}=f\left(A_{k}\right)$ is $H F_{p}$-local by [4, 2.12]. Thus the maximal p-perfect subgroup of B_{k} / B_{k+1} is
trivial, and B_{k} / B_{k+1} maps onto its $H F_{p}$-localization by [4, 2.11 and 2.12]. Hence, B_{k} / B_{k+1} is a p-cotorsion quotient of A_{k} / A_{k+1}, and must therefore be p-adically cyclic.
Lemma 7.11. For a polycyclic-by-finite group G, there exists a p-seminilpotent polycyclic normal subgroup $N \subset G$ of finite index.
Proof. Let $M \subset G$ be a polycyclic normal subgroup of finite index. Since $D^{r} M / D^{r+1} M$ is finitely generated for $r \geq 1$, there is a normal subgroup $K \subset G$ of finite index which acts p-seminilpotently on each $D^{r} M / D^{r+1} M$. Since K acts p-seminilpotently on M, it does so on $M \cap K$ by 2.7 . Thus we may let $N=M \cap K$.
7.12. Proof of 7.1. By 4.1 we may assume that X is a Postnikov space with only finitely many nontrivial homotopy groups. Then by 7.11 there is a finite group θ and a map $X \rightarrow K(\theta, 1)$ with p-seminilpotent homotopy fiber N. Let $\varphi \subset \theta$ be the maximal p-perfect subgroup, and note that θ / φ is a finite p-group. Applying 7.9, 4.2, and 3.12 to the associated homotopy fiber sequences

$$
N \rightarrow X^{\prime} \rightarrow K(\varphi, 1), \quad X^{\prime} \rightarrow X \rightarrow K(\theta / \varphi, 1)
$$

we deduce that X^{\prime} and X are F_{p}-good, while $F_{p \infty} X^{\prime}$ and $F_{p \infty} X$ are p seminilpotent.
7.13. Proof of 7.2. By 7.1, X is F_{p}-good and $F_{p \infty} X$ is p-seminilpotent. Thus by $7.6, F_{p \infty} X$ is p-adically polycyclic. The isomorphisms follow by 5.5 and 5.6.

8. The p-adic G-COMPLETION

To prepare for the statement and proof of our next F_{p}-goodness theorem (9.1), we now introduce
8.1. The p-adic G-completion. For a group ring $Z G$, let

$$
I_{p}=\operatorname{ker}(Z G \rightarrow Z / p)
$$

denote the p-adic augmentation ideal. The p-adic G-completion of a $Z G$ module M is given by the $Z G$-module

$$
M_{G}^{\wedge p}=\lim _{\longleftrightarrow} M /\left(I_{p}\right)^{k} M .
$$

We may regard $M_{G}^{\wedge p}$ as a $(Z G)_{G}^{\wedge p}$-module with the obvious multiplication. The towerwise p-adic G-completion of a $Z G$-module M is given by the tower $\left\{M /\left(I_{p}\right)^{k} M\right\}_{k \geq 0}$ viewed as a pro- $Z G$-module (see [1]). This tower is determined up to pro-isomorphism by its property of cofinality in the system of all nilpotent $Z G$-modules under M which are annihilated by powers of p. Note that when G is trivial, the above completions reduce to the p-adic completion $M_{p}^{\wedge}=\lim _{k} M / p^{k} M$ and to the towerwise p-adic completion $\left\{M / p^{k} M\right\}_{k \geq 0}$. In general:

Proposition 8.2. If the action of G on M is p-seminilpotent, then the natural homomorphism $M_{p}^{\wedge} \rightarrow M_{G}^{\wedge p}$ is an isomorphism and $\left\{M / p^{k} M\right\}_{k>0} \rightarrow$ $\left\{M /\left(I_{p}\right)^{k} M\right\}_{k \geq 0}$ is a pro-isomorphism.

Proof. If the action of G on M is p-seminilpotent, then each $M / p^{k} M$ is a nilpotent $Z G$-module and $\left\{M / p^{k} M\right\}_{k \geq 0}$ shares the cofinality property of $\left\{M /\left(I_{p}\right)^{k} M\right\}_{k \geq 0}$.

When N is an $F_{p} G$-module, we may use the augmentation ideal $I=$ $\operatorname{ker}\left(F_{p} G \rightarrow F_{p}\right)$ to construct the p-adic G-completions $N_{G}^{\wedge p}=\lim _{\longleftrightarrow} N / I^{k} N$ and $\left\{N /\left(I_{p}\right)^{k} N\right\}_{k \geq 0}=\left\{N / I^{k} N\right\}_{k \geq 0}$. The following result will allow us to use other towers in place of $\left\{N / I^{k} N\right\}_{k \geq 0}$.
Proposition 8.3. If $\left\{N_{k}\right\}_{k \geq 0}$ is a tower of nilpotent $F_{p} G$-modules under an $F_{p} G$ module N such that $H_{i}(G ; N) \rightarrow\left\{H_{i}\left(G ; N_{k}\right)\right\}_{k \geq 0}$ is a pro-isomorphism for $i=0$ and pro-epimorphism for $i=1$, then $\left\{N_{k}\right\}_{k \geq 0}$ is naturally pro-isomorphic to $\left\{N / I^{k} N\right\}_{k \geq 0}$.
Proof. It suffices to show that $N / I^{m} N \rightarrow\left\{N_{k} / I^{m} N_{k}\right\}_{k \geq 0}$ is a pro-isomorphism for each $m \geq 1$, and this follows by induction using $H_{0}(G ; N) \cong N / I N$ and the exact sequence

$$
H_{1}(G ; N) \rightarrow H_{1}\left(G ; N / I^{m} N\right) \rightarrow I^{m} N / I^{m+1} N \rightarrow 0
$$

As in [8], for our applications of the p-adic G-completion, we need an "ArtinRees theorem." First, recall from 7.4 that the group ring $R G$ is (left) Noetherian for a commutative Noetherian ring R and polycyclic group G. A two sided ideal $J \subset R G$ is said to have the weak Artin-Rees property when for each finitely generated $R G$-module M and submodule $M^{\prime} \subset M$, there exists $r \geq 0$ (depending on M and M^{\prime}) with $J^{r} M \cap M^{\prime} \subset J M^{\prime}$. This inductively implies that the neighborhood systems $\left\{J^{k} M^{\prime}\right\}_{k \geq 0}$ and $\left\{M^{\prime} \cap J^{k} M\right\}_{k \geq 0}$ determine the same topology on M^{\prime}, or equivalently, that the J-adic topology on M^{\prime} is the restriction of the J-adic topology on M. As explained in [7, p. 89] and [19], the following theorem (among other more general results) is due to Roseblade [24].
Theorem 8.4. For p prime, let R be a commutative Noetherian ring such that $R / p R$ is a field. If G is a p-seminilpotent polycyclic group, then the ideal $I_{p}=\operatorname{ker}(R G \rightarrow R / p R)$ has the weak Artin-Rees property.
8.5. Exactness of the p-adic G-completion. Let G be a p-seminilpotent polycyclic group. By 8.4 , on the category of finitely generated $Z G$-modules, the towerwise p-adic G-completion $\left\{M /\left(I_{p}\right)^{k} M\right\}_{k \geq 0}$ is pro-exact, and the p-adic G-completion $M_{G}^{\wedge p}$ is exact. Consequently, for a finitely generated $Z G$-module M or finitely generated $F_{p} G$-module N, the natural homomorphisms

$$
(Z G)_{G}^{\wedge p} \otimes_{Z G} M \rightarrow M_{G}^{\wedge p}, \quad\left(F_{p} G\right)_{G}^{\wedge p} \otimes_{F_{p} G} N \rightarrow N_{G}^{\wedge p},
$$

are isomorphisms. Thus $(Z G)_{G}^{\wedge p}$ and $\left(F_{p} G\right)_{G}^{\wedge p}$ are flat as right modules (and similarly as left modules) over $Z G$ and $F_{p} G$ respectively.

9. A partial F_{p}-Goodness theorem

Our earlier F_{p}-goodness theorem (7.2) applies to many spaces of finite type, but not to those like $S^{n} \vee S^{1}$ for $n \geq 2$ with nonfinitely generated homotopy groups. In fact, $S^{n} \vee S^{1}$ is F_{p}-bad by 10.1 below. Here, we establish a partial F_{p}-goodness theorem (9.1) showing that when a space X of finite type is p seminilpotent polycyclic below some dimension $n \geq 2$, then X is F_{p}-good
below dimension $2 n$. This is closely related to a result of Dror-Dwyer [10] giving a stable range for integral homology localizations.

A space Y is called p-seminilpotent polycyclic when it is p-seminilpotent and the groups $\pi_{i} Y$ are polycyclic for $i \geq 1$. Thus a nilpotent space of finite type is always p-seminilpotent polycyclic.

Theorem 9.1. If X is a pointed connected space of finite type whose $(n-1)$ th Postnikov section $P^{n-1} X$ is p-seminilpotent polycyclic for some $n \geq 2$, then the p-adic completion $X \rightarrow F_{p \infty} X$ induces isomorphisms

$$
\begin{aligned}
H_{i}\left(X ; F_{p}\right) \cong H_{i}\left(F_{p \infty} X, F_{p}\right) & & \text { for } i \leq 2 n-1 \\
\left(\pi_{i} X\right)_{p}^{\wedge} \cong \pi_{i} F_{p \infty} X & & \text { for } 1 \leq i \leq n-1, \\
\left(\pi_{i} X\right)_{\pi_{1} X}^{\wedge p} \cong \pi_{i} F_{p \infty} X & & \text { for } 2 \leq i \leq 2 n-2 .
\end{aligned}
$$

Note that 8.2 already guarantees that $\left(\pi_{i} X\right)_{p}^{\wedge} \cong\left(\pi_{i} X\right)_{\pi_{1} X}^{\wedge p}$ for $2 \leq i \leq n-1$. We devote the rest of this section to proving 9.1.
Lemma 9.2. If Y is a p-seminilpotent polycyclic space and N is a finitely generated $F_{p} \pi_{1} Y$-module, then for each m,
(i) $H_{m}(Y ; N)$ is finite;
(ii) $H_{m}(Y ; N) \cong H_{m}\left(Y ; N_{\pi_{1} Y}^{\wedge p}\right) \cong \lim _{\rightleftarrows}{ }_{k} H_{m}\left(Y ; N / I^{k} N\right)$;
(iii) the map $H_{m}(Y ; N) \rightarrow\left\{H_{m}\left(Y ; N / I^{k} N\right)\right\}_{k \geq 0}$ is a pro-isomorphism.

Proof. By 7.4 and 8.5, it suffices to assume that $N=F_{p} \pi_{1} Y$. Now (i) follows since $H_{*}(Y ; N) \cong H_{*}\left(\tilde{Y} ; F_{p}\right)$ where \widetilde{Y} is the universal covering of Y, and the second isomorphism of (ii) follows since Y is of finite type by 7.3. Since N and $N_{\pi_{1} Y}^{\wedge p}$ are flat left $F_{p} \pi_{1} Y$-modules by 8.5 , it suffices for the first isomorphism of (ii) to show

$$
H_{*}\left(\widetilde{Y} ; F_{p}\right) \otimes_{F_{p} \pi_{1} Y} N \cong H_{*}\left(\widetilde{Y} ; F_{p}\right) \otimes_{F_{p} \pi_{1} Y} N_{\pi_{1} Y}^{\wedge p}
$$

Since Y is p-seminilpotent, $\pi_{1} Y$ acts nilpotently on each $H_{i}\left(\tilde{Y} ; F_{p}\right)$ by 3.12, and it suffices to show

$$
F_{p} \otimes_{F_{p} \pi_{1} Y} N \cong F_{p} \otimes_{F_{p} \pi_{1} Y} N_{\pi_{1} Y}^{\wedge p} .
$$

This follows since

$$
F_{p} \otimes_{F_{p} \pi_{1} Y} N_{\pi_{1} Y}^{\wedge p} \cong \lim _{k}{ }_{k} F_{p} \otimes_{F_{p} \pi_{1} Y} N / I^{k} N \cong N / I N .
$$

Finally, part (iii) follows easily from (i) and (ii).
For X as in Theorem 9.1, let

$$
X^{\prime} \rightarrow X \rightarrow P^{n-1} X
$$

be the Postnikov fiber sequence.
Lemma 9.3. For a commutative Noetherian ring R, each $H_{i}\left(X^{\prime} ; R\right)$ is finitely generated as an $R \pi_{1} X$-module. If $i \leq 2 n-2$ then $\pi_{i} X^{\prime}$ is finitely generated as a $Z \pi_{1} X$-module.
Proof. Since X is of finite type, its universal covering space \tilde{X} has an R chain complex of finite type over $R \pi_{1} X$, and each $H_{i}(\widetilde{X} ; R)$ is a finitely genecated $R \pi_{1} X$-module. Moreover, each $H_{j}\left(P^{n-1} \tilde{X} ; R\right)$ is a finitely generated R-module. The homology result now follows by induction on i, using the Serre
spectral sequence of $X^{\prime} \rightarrow \tilde{X} \rightarrow P^{n-1} \tilde{X}$. The stable homotopy result follows easily from the Z-homology result.

Using the functors $\left(F_{p}\right)_{k}$ of [6, p. 21] for $k \geq 0$, let

$$
X_{k}^{\prime} \rightarrow\left(F_{p}\right)_{k} X \rightarrow\left(F_{p}\right)_{k} P^{n-1} X
$$

be the fiber sequence induced by $X \rightarrow P^{n-1} X$.
Lemma 9.4. For each i

$$
H_{i}\left(X^{\prime} ; F_{p}\right) \rightarrow\left\{H_{i}\left(X_{k}^{\prime} ; F_{p}\right)\right\}_{k \geq 0}
$$

is pro-isomorphic to the towerwise p-adic $\pi_{1} X$-completion of $H_{i}\left(X^{\prime} ; F_{p}\right)$.
Proof. Suppose inductively that this holds for each $i \leq m$. Then for each $i \leq m$ and j,

$$
H_{j}\left(P^{n-1} X ; H_{i}\left(X^{\prime} ; F_{p}\right)\right) \rightarrow\left\{H_{j}\left(P^{n-1} X ; H_{i}\left(X_{k}^{\prime} ; F_{p}\right)\right)\right\}_{k}
$$

is a pro-isomorphism by 9.2 and 9.3. Also for each i and j,

$$
\left\{H_{j}\left(P^{n-1} X ; H_{i}\left(X_{k}^{\prime} ; F_{p}\right)\right)\right\}_{k} \rightarrow\left\{H_{j}\left(F_{p k} P^{n-1} X ; H_{i}\left(X_{k}^{\prime} ; F_{p}\right)\right)\right\}_{k}
$$

is a pro-isomorphism since $\pi_{1} F_{p k} P^{n-1} X$ acts nilpotently on $H_{i}\left(X_{k}^{\prime} ; F_{p}\right)$. Thus

$$
H_{j}\left(P^{n-1} X ; H_{m+1}\left(X^{\prime} ; F_{p}\right)\right) \rightarrow\left\{H_{j}\left(F_{p k} P^{n-1} X ; H_{m+1}\left(X_{k}^{\prime} ; F_{p}\right)\right)\right\}_{k}
$$

is a pro-isomorphism for $j=0$ and pro-epimorphism for $j=1$ by the spectral sequence comparison lemma of [6, p. 92]. Hence $H_{m+1}\left(X^{\prime} ; F_{p}\right) \rightarrow$ $\left\{H_{m+1}\left(X_{k}^{\prime} ; F_{p}\right)\right\}_{k}$ is pro-isomorphic to the towerwise p-adic $\pi_{1} X$-completion by 8.3.
Lemma 9.5. For each $i \geq 1$,

$$
H_{i}\left(X^{\prime} ; Z\right) \rightarrow\left\{H_{i}\left(X_{k}^{\prime} ; Z\right)\right\}_{k \geq 0}
$$

is pro-isomorphic to the towerwise p-adic $\pi_{1} X$-completion of $H_{i}\left(X^{\prime} ; Z\right)$.
Proof. An induction starting with 9.4 and using Bockstein exact sequences shows that

$$
H_{i}\left(X^{\prime} ; Z / p^{m}\right) \rightarrow\left\{H_{i}\left(X_{k}^{\prime} ; Z / p^{m}\right)\right\}_{k}
$$

is pro-isomorphic to the towerwise p-adic completion of $H_{i}\left(X^{\prime} ; Z / p^{m}\right)$ for each $i \geq 1$ and $m \geq 1$. Since $H_{i}\left(X^{\prime} ; Z\right)$ is a finitely generated $Z \pi_{1} X$-module, its p-torsion is of finite exponent by an ascending chain argument, and the map

$$
\left\{H_{i}\left(X^{\prime} ; Z\right) \otimes Z / p^{m}\right\}_{m} \rightarrow\left\{H_{i}\left(X^{\prime} ; Z / p^{m}\right)\right\}_{m}
$$

is a pro-isomorphism. Since $H_{i}\left(X_{k}^{\prime} ; Z\right)$ is a finite p-torsion group, the map

$$
H_{i}\left(X_{k}^{\prime} ; Z\right) \rightarrow\left\{H_{i}\left(X_{k}^{\prime} ; Z / p^{m}\right)\right\}_{m}
$$

is a pro-isomorphism, and the lemma follows.
Lemma 9.6. For each $i \leq 2 n-2, \pi_{i} X^{\prime} \rightarrow\left\{\pi_{i} X_{k}^{\prime}\right\}_{k \geq 0}$ is pro-isomorphic to the towerwise p-adic $\pi_{1} X$-completion of $\pi_{i} X^{\prime}$.
Proof. Since the spaces X^{\prime} and X_{k}^{\prime} are $(n-1)$-connected by [6, p. 30], this stable result follows easily from 9.5.
9.7. Determination of $\pi_{i} F_{p \infty} X$. The results on $\pi_{i} F_{p \infty} X$ in Theorem 9.1 follow by using 6.4 and 9.6 to show that the fiber sequence

$$
X_{\infty}^{\prime} \rightarrow F_{p \infty} X \rightarrow F_{p \infty} P^{n-1} X
$$

has $\pi_{i} X_{\infty}^{\prime}=0$ for $i \leq n, \pi_{i} X_{\infty}^{\prime} \cong\left(\pi_{i} X\right)_{\pi_{i} X}^{\wedge p}$ for $n \leq i \leq 2 n-2, \pi_{i} F_{p \infty} P^{n-1} X$ $\cong\left(\pi_{i} X\right)_{p}^{\wedge}$ for $i \leq n-1$, and $\pi_{i} F_{p \infty} P^{n-1} X=0$ for $i \geq n$.

The results on $H_{i}\left(F_{p \infty} X ; F_{p}\right)$ in 9.1 will be proved using another series of lemmas.

Lemma 9.8. For $n \geq 2$, let Y_{∞} be the homotopy inverse limit of a tower $\left\{Y_{k}\right\}_{k \geq 0}$ of $(n-1)$-connected pointed spaces with finite homotopy groups. Then $H_{i}\left(Y_{\infty} ; F_{p}\right) \rightarrow \lim _{k} H_{i}\left(Y_{k} ; F_{p}\right)$ is an isomorphism for $i \leq 2 n-2$ and onto for $i=2 n-1$.
Proof. This follows using the natural fiber sequences

$$
Y_{k}^{\prime} \rightarrow Y_{k} \rightarrow K\left(\pi_{n} Y_{k}, n\right)
$$

since

$$
H_{i}\left(K\left(\pi_{n} Y_{\infty}, n\right) ; F_{p}\right) \cong \lim _{{ }_{k}} H_{i}\left(K\left(\pi_{n} Y_{k}, n\right) ; F_{p}\right)
$$

for $i \leq 2 n-1$, and since we may inductively assume that $H_{i}\left(Y_{\infty}^{\prime} ; F_{p}\right) \rightarrow$ $\lim _{k} H_{i}\left(Y_{k}^{\prime} ; F_{p}\right)$ is isomorphic for $i \leq 2 n-2$ and onto for $i=2 n-1$.

Lemma 9.9. For a group G with finite $H_{1}\left(G ; F_{p}\right)$, the towers $\left\{F_{p}\left(G / \Gamma_{k}^{p} G\right)\right\}_{k \geq 0}$ and $\left\{F_{p} G / I^{k} F_{p} G\right\}_{k \geq 0}$ are pro-isomorphic under $F_{p} G$.

This follows by [21] and implies that a nilpotent action by G on an $F_{p} G$ module must factor through some lower p-central series quotient of G. Thus the actions in the following lemma are well defined.

Lemma 9.10. For a p-seminilpotent polycyclic space Y and tower $\left\{N_{n}\right\}_{n \geq 0}$ of finite nilpotent $F_{p} \pi_{1} Y$-modules with inverse limit N_{∞}, the maps

are all isomorphisms.
Proof. The left isomorphism follows since Y is of finite type by 7.3 and each N_{n} is finite. The bottom isomorphism follows since Y is F_{p}-good by 4.3 and each N_{n} is nilpotent. For the top isomorphism, first assume $Y=K(Z, 1)$. Since the action of Z_{p}^{\wedge} / Z on each $H_{*}\left(Z ; N_{n}\right) \cong H_{*}\left(Z_{p}^{\wedge} ; N_{n}\right)$ is trivial, the inverse limit action of Z_{p}^{\wedge} / Z on $H_{*}\left(Z ; N_{\infty}\right)$ is also trivial. Hence $H_{*}\left(Z ; N_{\infty}\right) \cong$ $H_{*}\left(Z_{p}^{\wedge} ; N_{\infty}\right)$ by the Serre spectral sequence. Also,

$$
H_{*}\left(Y ; N_{\infty}\right) \cong H_{*}\left(F_{p \infty} Y ; N_{\infty}\right)
$$

for $Y=K(Z / p, 1)$ or for $Y=K(Z / q, 1)$ at a prime $q \neq p$, since a nilpotent action by Z / q on an F_{p}-module must be trivial. We can now assume that Y lies in a fiber sequence $Y^{\prime} \rightarrow Y \rightarrow Y^{\prime \prime}$ of p-seminilpotent polycyclic spaces such that the lemma holds for Y^{\prime} and $Y^{\prime \prime}$. Then

$$
H_{*}\left(Y^{\prime \prime} ; H_{*}\left(Y^{\prime} ; N_{\infty}\right)\right) \cong H_{*}\left(F_{p \infty} Y^{\prime \prime} ; H_{*}\left(F_{p \infty} Y^{\prime} ; N_{\infty}\right)\right),
$$

and we deduce $H_{*}\left(Y ; N_{\infty}\right) \cong H_{*}\left(F_{p \infty} Y ; N_{\infty}\right)$ by the Serre spectral sequence.
Now 9.2 and 9.10 imply

Lemma 9.11. If Y is a p-seminilpotent polycyclic space and N is a finitely generated $F_{p} \pi_{1} Y$-module, then

$$
H_{*}(Y ; N) \cong H_{*}\left(F_{p \infty} Y ; N_{\pi_{1} Y}^{\wedge p}\right)
$$

Lemma 9.12. For a p-seminilpotent polycyclic group G and finitely generated $Z G$-module M with $n \geq 2$, the map

$$
H_{i}\left(K\left(M_{G}^{\wedge p}, n\right) ; F_{p}\right) \rightarrow{\underset{\lim }{\rightleftarrows}}^{k} H_{i}\left(K\left(M / I_{p}^{k} M, n\right) ; F_{p}\right)
$$

is an isomorphism for $i \leq 2 n-1$, and is carried by $H_{0}(G ;-)$ to an epimorphism for $i=2 n$.
Proof. This is elementary for $i \leq 2 n-1$ and follows for $i=2 n$ by showing that $H_{0}(G ;-)$ carries

$$
M_{G}^{\wedge p} \otimes M_{G}^{\wedge p} \otimes F_{p} \rightarrow \lim _{\longleftarrow}\left(M / I_{p}^{k} M \otimes M / I_{p}^{k} M \otimes F_{p}\right)
$$

to an epimorphism. After reduction to the case $M=Z G$, this follows since $H_{0}(G ;-)$ carries

$$
\lim _{\rightleftarrows}{ }_{k}\left(G / \Gamma_{k}^{p} G\right) \otimes \lim _{k}{ }_{k} F_{p}\left(G / \Gamma_{k}^{p} G\right) \longrightarrow \lim _{\rightleftarrows}\left(F_{p}\left(G / \Gamma_{p}^{k} G\right) \otimes F_{p}\left(G / \Gamma_{k}^{p} G\right)\right)
$$

to an epimorphism.
9.13. Proof of Theorem 9.1. It remains to prove $H_{i}\left(X ; F_{p}\right) \cong H_{i}\left(F_{p \infty} X ; F_{p}\right)$ for $i \leq 2 n-1$. By 9.4 and 9.8

$$
H_{i}\left(X_{\infty}^{\prime} ; F_{p}\right) \cong H_{i}\left(X^{\prime} ; F_{p}\right)_{\pi_{1} X}^{\wedge p}
$$

for $i \leq 2 n-2$. Thus by 9.11,

$$
H_{*}\left(P^{n-1} X ; H_{i}\left(X^{\prime} ; F_{p}\right)\right) \cong H_{*}\left(F_{p \infty} P^{n-1} X ; H_{i}\left(X_{\infty}^{\prime} ; F_{p}\right)\right)
$$

for $i \leq 2 n-2$, and it suffices to show that the natural map α in

$$
\begin{array}{rll}
H_{0}\left(P^{n-1} X ; H_{2 n-1}\left(X^{\prime} ; F_{p}\right)\right) \xrightarrow{\alpha} & H_{0}\left(F_{p \infty} P^{n-1} X ; H_{2 n-1}\left(X_{\infty}^{\prime} ; F_{p}\right)\right) \\
& & \\
\searrow^{\gamma} & \\
& H_{0}\left(F_{p \infty} P^{n-1} X ; H_{2 n-1}\left(X^{\prime} ; F_{p}\right)_{\pi_{1} X}^{\wedge p}\right)
\end{array}
$$

is isomorphic. Since γ is isomorphic by 9.11 , it suffices to show that β is isomorphic. By 9.6 and 9.12, the map

$$
H_{j}\left(K\left(\pi_{n} X_{\infty}^{\prime}, n\right) ; F_{p}\right) \longrightarrow \lim _{k} H_{j}\left(K\left(\pi_{n} X_{k}^{\prime}, n\right) ; F_{p}\right)
$$

is isomorphic for $j \leq 2 n-1$ and is carried by $H_{0}\left(F_{p \infty} P^{n-1} X ;-\right)$ to an epimorphism for $j=2 n$. In the tower of fiber sequences

$$
X_{k}^{\prime \prime} \rightarrow X_{k}^{\prime} \rightarrow K\left(\pi_{n} X_{k}^{\prime}, n\right)
$$

the map $H_{j}\left(X_{\infty}^{\prime \prime}, F_{p}\right) \rightarrow \lim _{k} H_{j}\left(X_{k}^{\prime \prime} ; F_{p}\right)$ is also isomorphic for $j \leq 2 n$ by 9.8 and thus

$$
H_{2 n-1}\left(X_{\infty}^{\prime} ; F_{p}\right) \longrightarrow \lim _{k}{ }_{k} H_{2 n-1}\left(X_{k}^{\prime} ; F_{p}\right) \cong H_{2 n-1}\left(X^{\prime} ; F_{p}\right)_{\pi_{1} X}^{\wedge p}
$$

is carried by $H_{0}\left(F_{p \infty} P^{n-1} X ;-\right)$ to an isomorphism as required.

10. On the F_{p}-badness of $S^{n} \vee S^{1}$

For $n \geq 2$, the p-adic completion $S^{n} \vee S^{1} \rightarrow F_{p \infty}\left(S^{n} \vee S^{1}\right)$ induces an $H_{i}\left(; F_{p}\right)$-isomorphism for $i \leq 2 n-1$ by Theorem 9.1. This result is best possible by

Theorem 10.1. For $n \geq 2$, the group $H_{2 n}\left(F_{p \infty}\left(S^{n} \vee S^{1}\right) ; F_{p}\right)$ is uncountable.
This provides the first example of a finite complex which is F_{p}-bad, and we devote the rest of this section to the proof.

By the F_{p}-nilpotent tower lemma of [6, p. 88] for $n \geq 2, F_{p \infty}\left(S^{n} \vee S^{1}\right)$ is equivalent to the homotopy inverse limit of the tower

$$
\left\{M\left(Z / p^{k}, n\right) \vee K\left(Z / p^{k}, 1\right)\right\}_{k \geq 1}
$$

under $S^{n} \vee S^{1}$. Since the homotopy fiber of the pinching (or Postnikov) map

$$
M\left(Z / p^{k}, n\right) \vee K\left(Z / p^{k}, 1\right) \rightarrow K\left(Z / p^{k}, 1\right)
$$

is equivalent to the Moore space $M\left(Z / p^{k}\left(Z / p^{k}\right), n\right)$, the homotopy inverse limit construction gives

Lemma 10.2. For $n \geq 2$, the fiber of the Postnikov map $F_{p \infty}\left(S^{n} \vee S^{1}\right) \rightarrow F_{p \infty} S^{1}$ is equivalent to the homotopy inverse limit of $\left\{M\left(Z / p^{k}\left(Z / p^{k}\right), n\right)\right\}_{k \geq 1}$.

In general, let M_{∞} be the homotopy inverse limit of a tower $\left\{M\left(G_{k}, n\right)\right\}_{k \geq 1}$ of Moore spaces with $n \geq 2$ and G_{k} finite abelian. By 9.8, the natural homomorphism

$$
H_{i}\left(M_{\infty} ; F_{p}\right) \longrightarrow \lim _{\curvearrowleft} H_{i}\left(M\left(G_{k}, n\right) ; F_{p}\right)
$$

is an isomorphism for $i \leq 2 n-2$ and onto for $i=2 n-1$.
Lemma 10.3. The kernel of the above homomorphism for $i=2 n-1$ is isomorphic to the cokernel of

$$
H_{2 n}\left(K\left(G_{\infty}, n\right) ; F_{p}\right) \rightarrow \lim _{{ }_{k}} H_{2 n}\left(K\left(G_{k}, n\right) ; F_{p}\right)
$$

where $G_{\infty}=\lim _{k} G_{k}$.
Proof. We form the homotopy fiber sequences

$$
\widetilde{M}\left(G_{k}, n\right) \rightarrow M\left(G_{k}, n\right) \rightarrow K\left(G_{k}, n\right)
$$

with inverse limit

$$
\widetilde{M}_{\infty} \rightarrow M_{\infty} \rightarrow K\left(G_{\infty}, n\right)
$$

and we consider the exact sequence

$$
\begin{aligned}
\left.H_{2 n} K\left(G_{\infty}, n\right) ; F_{p}\right) & \rightarrow H_{2 n-1}\left(\widetilde{M}_{\infty} ; F_{p}\right) \rightarrow H_{2 n-1}\left(M_{\infty} ; F_{p}\right) \\
& \rightarrow H_{2 n-1}\left(K\left(G_{\infty}, n\right) ; F_{p}\right) \rightarrow H_{2 n-2}\left(\widetilde{M}_{\infty} ; F_{p}\right) .
\end{aligned}
$$

Using 9.8 we find that the last map is an isomorphism for $n \geq 3$ and corresponds to $\lim _{k} \operatorname{Tor}\left(G_{k}, F_{p}\right) \rightarrow 0$ for $n=2$. Thus, by the above exact sequence, the desired kernel is isomorphic to the cokernel of

$$
\partial: H_{2 n}\left(K\left(G_{\infty}, n\right) ; F_{p}\right) \longrightarrow H_{2 n-1}\left(\widetilde{M}_{\infty} ; F_{p}\right)
$$

The lemma now follows from the isomorphisms

$$
\begin{aligned}
& H_{2 n-1}\left(\widetilde{M}_{\infty} ; F_{p}\right) \cong \lim _{k} H_{2 n-1}\left(\widetilde{M}\left(G_{k}, n\right) ; F_{p}\right), \\
& \partial: H_{2 n}\left(K\left(G_{k}, n\right) ; F_{p}\right) \cong H_{2 n-1}\left(\widetilde{M}\left(G_{k}, n\right) ; F_{p}\right) .
\end{aligned}
$$

For an abelian group A and integer n, let $D_{n}(A)=(A \otimes A) / R$ where R is the subgroup generated by all $x \otimes y-(-1)^{n} y \otimes x$ for all $x, y \in A$.

Lemma 10.4. The cokernel in 10.3 is isomorphic to the cokernel of

$$
D_{n}\left(G_{\infty} \otimes F_{p}\right) \longrightarrow \lim _{k} D_{n}\left(G_{k} \otimes F_{p}\right) .
$$

Proof. For each k, there is a natural exact sequence

$$
\begin{aligned}
0 & \rightarrow G_{k} \otimes F_{p} \otimes F_{2} \rightarrow D_{n}\left(G_{k} \otimes F_{p}\right) \rightarrow H_{2 n}\left(K\left(G_{k}, n\right) ; F_{p}\right) \\
& \rightarrow H_{2 n+1}\left(K\left(G_{k}, n+1\right) ; F_{p}\right) \rightarrow 0
\end{aligned}
$$

obtained using the Pontrjagin product and suspension. This sequence for $k=\infty$ maps to the inverse limit of these sequences for $i \leq k<\infty$, which is also exact. Since $G_{\infty} \otimes F_{p} \otimes F_{2}$ and $H_{2 n+1}\left(K\left(G_{\infty}, n+1\right) ; F_{p}\right)$ map by isomorphisms, the lemma follows.
10.5. Reduction of Theorem $\mathbf{1 0 . 1}$ to a lemma. By 10.2 for $n \geq 2$, there is a homotopy fiber sequence

$$
M_{\infty} \rightarrow F_{p \infty}\left(S^{n} \vee S^{1}\right) \rightarrow F_{p \infty} S^{1}
$$

where M_{∞} is the homotopy inverse limit of $\left\{M\left(Z / p^{k}\left(Z / p^{k}\right), n\right)\right\}_{k \geq 1}$. By 9.8 the only nontrivial groups $H_{i}\left(M_{\infty} ; F_{p}\right)$ for $i \leq 2 n-2$ are $H_{0}\left(M_{\infty} ; F_{p}\right) \cong F_{p}$ and $H_{n}\left(M_{\infty} ; F_{p}\right) \cong \lim _{k} F_{p}\left(Z / p^{k}\right)$. Moreover, by 9.9 and 9.11 , the only nontrivial groups

$$
H_{m}\left(F_{p \infty} S^{1} ; H_{i}\left(M_{\infty} ; F_{p}\right)\right)
$$

for $i \leq 2 n-2$ are copies of F_{p} when (m, i) is $(0,0),(1,0)$, or $(0, n)$. Thus for Theorem 10.1, it suffices to show that $H_{1}\left(F_{p \infty} S^{1} ; H_{2 n-1}\left(M_{\infty} ; F_{p}\right)\right)$ is uncountable. Using 10.3 and 10.4, we obtain a natural short exact sequence

$$
0 \rightarrow D_{n}\left(\lim _{\leftarrow} F_{p}\left(Z / p^{k}\right)\right) \rightarrow \lim _{\leftarrow} D_{n}\left(F_{p}\left(Z / p^{k}\right)\right) \rightarrow H_{2 n-1}\left(M_{\infty} ; F_{p}\right) \rightarrow 0,
$$

and it now suffices to show:
Lemma 10.6. The natural homomorphism

$$
H_{0}\left(Z_{p}^{\wedge} ; D_{n}\left(\lim _{\leftrightarrows} F_{p}\left(Z / p^{k}\right)\right)\right) \rightarrow H_{0}\left(Z_{p}^{\wedge} ; \lim _{\leftrightarrows} D_{n}\left(F_{p}\left(Z / p^{k}\right)\right)\right)
$$

has uncountable kernel.
Proof. It suffices to show that

$$
\left(\otimes^{2} \lim _{\leftrightarrows} F_{p}\left(Z / p^{k}\right)\right)_{Z / 2 \times Z_{\hat{p}}} \rightarrow\left(\lim _{\leftrightarrows} \otimes^{2} F_{p}\left(Z / p^{k}\right)\right)_{Z / 2 \times Z_{\hat{p}}}
$$

has uncountable kernel, where $Z / 2$ acts by $x \otimes y \mapsto(-1)^{n} y \otimes x$ and where Z_{p}^{\wedge} acts diagonally. This is equivalent to showing that

$$
\mu_{Z / 2}:\left(\lim F_{p}\left(Z / p^{k}\right) \otimes_{F_{p} Z_{\hat{p}}} \lim _{\leftrightarrows} F_{p}\left(Z / p^{k}\right)\right)_{Z / 2} \rightarrow\left(\lim _{\leftrightarrows} F_{p}\left(Z / p^{k}\right)\right)_{Z / 2}
$$

has uncountable kernel, where μ is the multiplication map for the algebra $\lim _{\leftarrow} F_{p}\left(Z / p^{k}\right)$ and where $Z / 2$ now acts by $x \otimes y \mapsto(-1)^{n} a y \otimes a x$ on the domain and by $x \mapsto(-1)^{n} a x$ on the target of μ, using the antipodal automorphism

$$
a: \stackrel{\lim }{\rightleftarrows} F_{p}\left(Z / p^{k}\right) \rightarrow \lim _{\rightleftarrows} F_{p}\left(Z / p^{k}\right)
$$

Since the target $\underset{\rightleftarrows}{\lim } F_{p}\left(Z / p^{k}\right)$ of μ has

$$
H_{1}\left(Z / 2 ; \lim F_{p}\left(Z / p^{k}\right)\right) \cong \lim _{\longleftarrow} H_{1}\left(Z / 2 ; F_{p}\left(Z / p^{k}\right)\right) \cong \begin{cases}Z / 2 & \text { for } p=2 \\ 0 & \text { for } p \text { odd }\end{cases}
$$

it now suffices to show that $(\operatorname{ker} \mu)_{Z / 2}$ is uncountable. Clearly μ is a $Z / 2$ equivariant $F_{p} Z_{p}^{\wedge}$-module map, where the action of the generator $t \in Z / 2$ commutes with the action of each $r \in F_{p} Z_{p}^{\wedge}$ via $t r=(a r) t$. Note that $F_{p} Z_{p}^{\wedge} \subset$ $\lim _{\leftrightarrows} F_{p}\left(Z / p^{k}\right) \cong F_{p} \llbracket x \rrbracket$, and let K denote the field of fractions of the integral domain $F_{p} Z_{p}^{\wedge}$. By 10.7 below, there exists an element $\sigma \in \underset{\rightleftarrows}{\lim } F_{p}\left(Z / p^{k}\right)$ with $\sigma \notin K$. Hence the element $\xi=\sigma \otimes 1-1 \otimes \sigma$ in $\operatorname{ker} \mu$ is nonzero in $K \otimes_{F_{p} Z_{p}^{\wedge}} \operatorname{ker} \mu$ and $F_{p} Z_{p}^{\wedge} \cong F_{p} Z_{p}^{\wedge} \xi \subset \operatorname{ker} \mu$. Thus $\operatorname{ker} \mu$ is uncountable, and this implies that $(\operatorname{ker} \mu)_{Z / 2}$ is uncountable when $p=2$. For p odd, the elements $\xi^{+}=\frac{1}{2}(\xi+t \xi)$ and $\xi^{-}=\frac{1}{2}(\xi-t \xi)$ are in $\operatorname{ker} \mu$, and at least one of them is nonzero in $K \otimes_{F_{p} Z_{p}} \operatorname{ker} \mu$ because $\xi=\xi^{+}+\xi^{-}$. Either

$$
F_{p} Z_{p}^{\wedge} \cong F_{p} Z_{p}^{\wedge} \xi^{+} \subset \operatorname{ker} \mu \quad \text { or } \quad F_{p} Z_{p}^{\wedge} \cong F_{p} Z_{p}^{\wedge} \xi^{-} \subset \operatorname{ker} \mu
$$

and thus at least one of the groups $\left(F_{p} Z_{p}^{\wedge} \xi^{+}\right)_{Z / 2}$ and $\left(F_{p} Z_{p}^{\wedge} \xi^{-}\right)_{Z / 2}$ is uncountable. Since ()$_{Z / 2}$ is exact on $F_{p}(Z / 2)$-modules for p odd, $(\operatorname{ker} \mu)_{Z / 2}$ is also uncountable.

We have used
Lemma 10.7. There exists an element $\sigma \in \underset{\longleftrightarrow}{\lim } F_{p}\left(Z / p^{k}\right)$ with $\sigma \notin K$, where K is the field of fractions of $F_{p} Z_{p}^{\wedge}$.
Proof. For each nonzero element $c \in \underset{ }{\lim } F_{p}\left(Z / p^{k}\right)$, let $v(c)$ be the nonnegative integer with $c \in I^{v(c)}$ and $c \notin I^{v(c)+1}$ where $I \subset \underset{ }{\lim } F_{p}\left(Z / p^{k}\right)$ is the argumentation ideal. For nonzero elements, $c, d \in \underset{\longleftrightarrow}{\lim } F_{p}\left(Z / p^{k}\right)$, note that $c / d \in \underset{\rightleftarrows}{\lim } F_{p}\left(Z / p^{k}\right)$ if and only if $v(c) \geq v(d)$. Let

$$
D=\left(r, s, m, n, a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{s}\right)
$$

be a list of integers $r, s \geq 1$ and $m \geq n \geq 0$ together with elements a_{1}, \ldots, $a_{r} \in F_{p}$ and $b_{1}, \ldots, b_{s} \in F_{p}$. Let $S_{D} \subset \lim _{\rightleftarrows} F_{p}\left(Z / p^{k}\right)$ be the subset given by all

$$
\frac{a_{1} x_{1}+\cdots+a_{r} x_{r}}{b_{1} y_{1}+\cdots+b_{s} y_{s}}
$$

with $x_{1}, \ldots, x_{r} \in Z_{p}^{\wedge}$ and $y_{1}, \ldots, y_{s} \in Z_{p}^{\wedge}$ where

$$
v\left(a_{1} x_{1}+\cdots+a_{r} x_{r}\right)=m \quad \text { and } \quad v\left(b_{1} y_{1}+\cdots+b_{s} y_{s}\right)=n .
$$

Now S_{D} is closed in $\underset{\leftarrow}{\lim } F_{p}\left(Z / p^{k}\right)$ with respect to the profinite topology. The annihilating ideal of the image element of $b_{1} y_{1}+\cdots+b_{s} y_{s}$ in $F_{p}\left(Z / p^{k}\right)$ has
p^{n} elements, and thus the image of S_{D} in $F_{p}\left(Z / p^{k}\right)$ contains at most $p^{k(r+s)+n}$ elements. Since $F_{p}\left(Z / p^{k}\right)$ contains $p^{p^{n}}$ elements and

$$
\lim _{k \rightarrow \infty}\left(p^{k(r+s)+n} / p^{p^{k}}\right)=0
$$

S_{D} has empty interior in $\underset{\rightleftarrows}{\lim } F_{p}\left(Z / p^{k}\right)$. Thus the countable union $\bigcup_{D} S_{D}$ has empty interior by the Baire theorem. Since this union gives the nonzero elements of $K \cap \lim F_{p}\left(Z / p^{k}\right)$, there exists $\sigma \in \underset{\longleftrightarrow}{\rightleftarrows} F_{p}\left(Z / p^{k}\right)$ with $\sigma \notin K$.

11. On the F_{p}-badness of $S^{1} \vee S^{1}$

For a free group A on $n<\infty$ generators, the space

$$
K(A, 1) \simeq S^{1} \vee \cdots \vee S^{1}
$$

has F_{p}-completion

$$
F_{p \infty} K(A, 1) \simeq K\left(A_{p}^{\wedge}, 1\right)
$$

by [6, p. 114], where the p-adic completion A_{p}^{\wedge} equals the p-profinite completion of A with the topology forgotten as in 5.1 . We showed in [4, p. 57] that $H_{1}\left(A_{p}^{\wedge} ; F_{p}\right) \cong\left(F_{p}\right)^{n}$. With similar methods we can show $H_{1}\left(A_{p}^{\wedge} ; Z\right) \cong\left(Z_{p}^{\wedge}\right)^{n}$, and it is conceivable that $H_{2}\left(A_{p}^{\wedge} ; F_{p}\right)$, like $H_{2}\left(A ; F_{p}\right)$, is always trivial. However, using 10.1 , we shall deduce

Theorem 11.1. For a free group A on at least two generators, the group

$$
H_{m}\left(F_{p \infty} K(A, 1) ; F_{p}\right) \cong H_{m}\left(A_{p}^{\wedge} ; F_{p}\right)
$$

is uncountable for $m=2$ or $m=3$ or both. In particular, the space $S^{1} \vee S^{1}$ is F_{p}-bad.
Proof. Let J denote the free simplicial group $J=G\left(S^{2} \vee S^{1}\right)$ and recall from 5.1 that $\bar{W} J_{p}^{\wedge} \simeq F_{p \infty}\left(S^{2} \vee S^{1}\right)$. Thus by [6, p. 108], there is a natural first quadrant spectral sequence $\left\{E_{i, j}^{r}\right\}$ converging to $H_{i+j}\left(F_{p \infty}\left(S^{2} \vee S^{1}\right) ; F_{p}\right)$ with

$$
E_{i, j}^{1}=H_{j}\left(\left(J_{i}\right)_{p}^{\wedge} ; F_{p}\right), \quad d_{r}: E_{i, j}^{r} \rightarrow D_{i-r, j+r-1}^{r}
$$

Since $J_{0} \cong Z, H_{0}\left(\left(J_{i}\right)_{p}^{\wedge} ; F_{p}\right) \approx F_{p}$, and $H_{1}\left(\left(J_{i}\right)_{p}^{\wedge} ; F_{p}\right) \cong a b J_{i} \otimes F_{p}$, we find that $E_{0, j}^{2}=0$ for $j \geq 2, E_{i, 0}^{2}=0$ for $i \geq 1$, and $E_{i, 1}^{2}=0$ for $i \geq 2$. Thus, since $H_{4}\left(F_{p \infty}\left(S^{2} \vee S^{1}\right) ; F_{p}\right)$ is uncountable by $10.1, H_{2}\left(\left(J_{2}\right)_{p}^{\wedge} ; F_{p}\right)$ or $H_{3}\left(\left(J_{1}\right)_{p}^{\wedge} ; F_{p}\right)$ must be uncountable, where J_{i} is a free group on $i+1$ generators. The theorem now follows from

Lemma 11.2. If $H_{2}\left(\left(J_{2}\right)_{p}^{\wedge} ; F_{p}\right)$ is uncountable, then so is $H_{2}\left(\left(J_{1}\right)_{p}^{\wedge} ; F_{p}\right)$.
Proof. Choose a normal subgroup $N \subset J_{1}$, such that J_{1} / N is a finite p-group and N is free on ≥ 3 generators. Then the sequence

$$
N_{p}^{\wedge} \mapsto\left(J_{1}\right)_{p}^{\wedge} \longrightarrow J_{1} / N
$$

is short exact by 4.2 , and the lemma follows since $H_{i}\left(J_{1} / N ; H_{j}\left(N_{p}^{\wedge} ; F_{p}\right)\right)$ is finite for $j<2$ and uncountable for $(i, j)=(0,2)$.

References

1. M. Artin and B. Mazur, Étale homotopy, Lecture Notes in Math., vol. 100, Springer-Verlag, 1969.
2. G. Baumslag, Some aspects of groups with unique roots, Acta Math. 104 (1960), 217-303.
3. A. K. Bousfield, The localization of spaces with respect to homology, Topology 14 (1975), 133-150.
4. __, Homological localization towers for groups and π-modules, Mem. Amer. Math. Soc., no. 186, 1977.
5. ___, On the homology spectral sequence of a cosimplicial space, Amer. J. Math. 109 (1987), 361-394.
6. A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, 1972.
7. C. J. B. Brookes, Modules over polycyclic groups, Proc. London Math. Soc. 57 (1988), 88108.
8. K. S. Brown and E. Dror, The Artin-Rees property and homology, Israel J. Math. 22 (1975), 93-109.
9. E. Dror and W. G. Dwyer, A long homology localization tower, Comment. Math. Helv. 52 (1977), 185-210.
10.__, A stable range for homology localization, Illinois J. Math. 21 (1977), 675-684.
10. E. Dror, W. Dwyer, and D. Kan, An arithmetic square for virtually nilpotent spaces, Illinois J. Math. 21 (1977), 242-254.
11. W. Dwyer, H. Miller, and J. Neisendorfer, Fiberwise completion and unstable Adams spectral sequences, Israel J. Math. 66 (1989), 160-178.
12. E. M. Friedlander, Étale homotopy of simplicial schemes, Ann. of Math. Studies, no. 104, Princeton Univ. Press, 1982.
13. P. Hall, Finiteness conditions for soluble groups, Proc. London Math. Soc. 4 (1954), 419436.
14. P. Hilton, G. Mislin, and J. Roitberg, Localization of nilpotent groups and spaces, NorthHolland, Amsterdam, 1975.
15. M. Huber and R. B. Warfield, p-adic and p-cotorsion completions of nilpotent groups, J. Algebra 74 (1982), 402-442.
16. J. Lannes, Sur la cohomologie modulo p des p-groupes Abeliens elementaires, Homotopy Theory, Proc. Durham Sympos., 1985 (E. Rees and J. D. S. Jones, eds.), Cambridge Univ. Press, 1987.
17. H. Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. (2) 120 (1984), 39-89.
18. D. S. Passman, The algebraic structure of group rings, Wiley, New York, 1977.
19. D. G. Quillen, An application of simplicial profinite groups, Comment. Math. Helv. 44 (1969), 45-60.
20. __, On the associated graded ring of a group ring, J. Algebra 10 (1968), 411-418.
22.__, Higher K-theory for categories with exact sequences, New Developments in Topology (G. Segal, ed.), Cambridge Univ. Press, 1974.
21. D. L. Rector, An unstable Adams spectral sequence, Topology 5 (1966), 343-346.
22. J. E. Roseblade, Applications of the Artin-Rees lemma to group rings, Sympos. Math. 17 (1976), 417-478.
23. J. R. Stallings, Homology and central series of groups, J. Algebra 2 (1965), 170-181.
24. D. Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. (2) $\mathbf{1 0 0}$ (1974), 1-79.
25. C. T. C. Wall, Finiteness conditions for CW-complexes, Ann. of Math. (2) 81 (1965), 56-69.

Department of Mathematics, Statistics, and Computer Sciences, University of Illinois at Chicago (M/C 249), Chicago, Illinois 60680

[^0]: Received by the editors February 26, 1990.
 1980 Mathematics Subject Classification (1985 Revision). Primary 55P60; Secondary 20E18, 20 J 05.

 Partially supported by the National Science Foundation.

