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ON THE p-ADIC COMPLETIONS
OF NONNILPOTENT SPACES

A. K. BOUSFIELD

Abstract. This paper deals with the p-adic completion FpooX developed by

Bousfield-Kan for a space X and prime p. A space X is called Fp-good

when the map X —» FpooX is a mod-p homology equivalence, and called Fp-

bad otherwise. General examples of Fp-good spaces are established beyond the

usual nilpotent or virtually nilpotent ones. These include the polycyclic-by-finite

spaces. However, the wedge of a circle with a sphere of positive dimension is

shown to be Fp-bad. This provides the first example of an Fp-bad space of

finite type and implies that the p-profinite completion of a free group on two

generators must have nontrivial higher mod-p homology as a discrete group.

A major part of the paper is devoted to showing that the desirable properties

of nilpotent spaces under the p-adic completion can be extended to the wider

class of p-seminilpotent spaces.

1. Introduction

In this paper we shall study the Fp-completion (or p-adic completion) FpooX

developed by Bousfield-Kan [6] for a space X and prime p . This completion is
well understood when X is nilpotent, and we shall consider other more general

spaces. Bousfield-Kan were originally interested in FpooX because ntFpooX

served as the natural target of the unstable Adams spectral sequence for X. At

about the same time, in work on the Adams conjecture, Sullivan [26] developed

his p-profinite completion of X, which agrees up to homotopy with FpooX

when Ht(X ; Fp) is of finite type. Friedlander and others subsequently used

FpooX in algebraic AT-theory and étale homotopy theory [13]. More recently,

Miller revived interest in FpooX by using it in his proof of the Sullivan con-

jecture [18]. Now, with the confirmation of the generalized Sullivan conjecture,

FpooX has acquired new significance (see [12, 17]).

A space X is called Fp-good when the map X -> FpooX is a mod-/? homol-

ogy equivalence, and called Fp-bad otherwise. Also, X is called Fp-complete

when X -* FpooX is a weak equivalence. By [6, p. 24], a space X is i^-good

if and only if FpooX is Fp-complete, and consequently the functor Fpoo acts

idempotently on the homotopy category of i^-good spaces. Known examples

of Fp-good spaces include:

(i) the nilpotent spaces [6, p. 184];

Received by the editors February 26, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 55P60; Secondary 20E18,
20J05.

Partially supported by the National Science Foundation.

©1992 American Mathematical Society
0002-9947/92 $1.00+ $.25 per page

335



336 A. K. BOUSFIELD

(ii) the spaces with finite fundamental groups [6, p. 215] and other virtually

nilpotent spaces [11]; and
(iii) the spaces with p-perfect fundamental groups [6, p. 206]. (A group G

is p-perfect when HX(G; Fp) = 0.)

Bousfield-Kan observed that an infinite wedge of circles was .Fp-bad [6, p. 114],

but continued to hope that all spaces of finite type might be Fp-good. In this

paper, we deflate that hope by showing that S" \/Sx is Fp-bad for n > 1. How-

ever, we also establish the Fp -goodness of a wide class of finite type complexes,

including the polycyclic-by-finite spaces. These are the connected spaces whose

fundamental groups have polycyclic normal subgroups of finite index and whose

higher homotopy groups are finitely generated. To deal with such spaces and

others, we devote the first part of the paper to showing that the desirable prop-

erties of nilpotent spaces under the p-adic completion actually hold for more
general spaces which we call p-seminilpotent.

This paper is organized as follows. In §2 we introduce the p-seminilpotent

group actions. In §3 we develop the consequent notions of p-seminilpotent

groups, spaces, and fibrations. In §4 we discuss the functor Fpoo , and show that

it acts idempotently on the homotopy category of p-seminilpotent spaces. In §5

we discuss the group theoretic p-adic completion functor ( )p and introduce its

derived functors. In §6 we show that the groups 7i¡FpooX for p-seminilpotent

spaces are usually given by (n¡X)p , and can always be expressed using derived

p-adic completions. In §7 we prove an Fp-goodness theorem which applies to the

polycyclic-by-finite spaces and other "virtually p-seminilpotent" spaces. Here,
we use techniques developed by Dror-Dwyer-Kan [11] in their work on virtually

nilpotent spaces. In §8 we prepare for the next section by introducing the p-adic

G-completion for modules over a group G, and showing that it is particularly

well behaved when G is p-seminilpotent polycyclic. This follows from Rose-
blade's "Artin-Rees lemma" [24]. In §9 we establish a partial Fp-goodness the-

orem which applies to many spaces of finite type, like 571 V Sx, with nonfinitely

generated homotopy groups. When such a space X is p-seminilpotent poly-

cyclic below some dimension n > 2, we show that H¿(FpooX ; Fp) = H¡(X ; Fp)

for i < 2n - 1 and that 7CiFpooX is the p-adic 7iiX-completion of %iX for

i < 2 n - 2. This is closely related to a result of Dror-Dwyer [10] giving a

stable range for integral homology localizations, although we have had to use

different techniques to reach our top dimension and cope with mod-p prob-

lems. In §10 we show that S" V Sx is Fp-bad with H2n(Fpoo(Sx V Sx); Fp)

uncountable for n > 2. Finally, in §11, we deduce that Sx vS1 is Fp-bad with

Hm(Fpoo(Sx VS1); Fp) uncountable for m = 2 or m = 3 or possibly both.

This implies that the p-profinite completion of a free group on two generators

must have uncountable higher  mod -p homology as a discrete group.
While the known examples of Fp-good spaces X still seem very diverse, we

remark that their completions FpooX are all p-seminilpotent. Thus, all known

examples of Fp-complete spaces are p-seminilpotent.
In [3] the author circumvented the problem of bad spaces by constructing lo-

calizations of arbitrary spaces with respect to homology theories. For a space X
this gives an H*( ; Fp)-localization map X —> XFp which is the homotopically

terminal example of an i/*( ; Fp)-equivalence out of X. From the standpoint

of [3], FpooX is always H*( ; Fp)-local, and X is Fp-good if and only if the
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canonical map XFp —> FpooX is an equivalence. In general, although FpooX

is of independent interest, it may be viewed as an initial stage of a transfinite

towerwise construction of Xfp (see [9]).

The author wishes to thank H. Miller for reviving his interest in Fp-goodness,

and is also indebted to E. Dror-Farjoun, W. Dwyer, and D. Kan for ideas

underlying the positive results in this paper.

We work simplicially and generally follow the terminology of [6], so that

"space" will mean "simplicial set." Throughout this paper, p will denote a

fixed prime.

2. Basic properties of p-seminilpotent group actions

Before introducing p-seminilpotent groups, spaces, and fibrations in §3, we

must deal with group actions.

2.1. The p-seminilpotent ZG-modules. For a group G, recall that a ZG-

module M is nilpotent when (IG)"M = 0 for some n > 0 where IG c ZG is

the augmentation ideal. This is equivalent to saying that M has a finite filtration

by ZG-submodules with trivial (/-action on the associated quotients. A ZG-

module M will be called p-seminilpotent when the Z (/-modules M <g> Z/p

and Tor(M, Z/p) are both nilpotent. A nilpotent Z (/-module is clearly p-
seminilpotent for all p. Moreover, if G is a finite p-group, then each ZG-

module is p-seminilpotent.

2.2. The p-seminilpotent group actions. Now let A be a G-group, i.e. a group

with a homomorphism G —► Aut A. A ZG-series for A is a finite filtration

A = Ax d A2 D ■■■ D An = {1}

of A by G-invariant subgroups such that each Ai+X is normal in A¡ with

Ai/Aj+X abelian, and thus with Aj/Ai+X a ZG-module. The action of G on
A will be called p-seminilpotent when there exists a ZG-series {A¡} for A

such that the ZG-modules Ai/Ai+X are all p-seminilpotent. Such a filtration

{Ai} will be called a p-seminilpotent ZG-series for A. Note that the action

of a group G on an abelian group A is p-seminilpotent if and only if A is

p-seminilpotent as a ZG-module.

Proposition 2.3. Let f:A—>B be a homomorphism of G-groups. If the G-

action on A and B is p-seminilpotent, then so is the G-action on im/ and

kerf, and also on coker/ when im/ is normal in B.

Proof. This follows easily when A and B are abelian. In general, let {^4,}

and {Bj} be p-seminilpotent ZG-series for A and B. Then an induction,

using Lemma 2.4 below, shows that the ZG-modules (A¿r\ker f)Ai+x/Ai+x and

Bj /(im fnBj)Bj+x are p-seminilpotent. Thus {A¡C\kerf} isa p-seminilpotent
ZG-series for kerf, and so is {(im f)Bj} for coker/ when im / is normal

in B. Likewise, {/A¡} isa p-seminilpotent ZG-series for im/.
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Lemma 2.4. If A and B are G-groups with ZG-series {A¡} and {Bj}, then a

homomorphism f: A -» B induces an exact sequence

Q [(^-n/-1^+1H-+i „^Ajnf-'B^AM

Ai+i ¿i+i

(fAi+xnBj)Bj+x (fAinBj)Bj+x

of ZG-modules for each i and j.

Proof. This follows since / induces an isomorphism

Ajnf-xBj fAjHBj

(Ai n f-xBj+x)(Al+x n f-iBj)    (fAi nBj+x)(fAi+x nBj)

from coker« to kerv.

Proposition 2.5. Let A >-> B -» C 6e a s/iort exact sequence of G-groups. If the

G-action on A and C is p-seminilpotent, then so is the G-action on B.

This is immediate, but its converse is false. For example, G = Z/2 acts

p-seminilpotently on Q by negation, but not on Z or Q/Z when p is odd.

This difficulty is often avoided by

Lemma 2.6. Let Ac B be ZG-modules such that the increasing sequence {x e

B\p'x e A} for i > 0 attains a maximum A. If B is p-seminilpotent, then so

are A and B/A .

Proof. Since the exactness of A >—> B -» B/A is preserved by Z/p ® - and

Tor(Z/p, -), A is p-seminilpotent. A downward induction now shows that

each {x e B\p'x e A} is p-seminilpotent.

Recall that a group B is called polycyclic when there exists a finite filtration

B = BiDB2D-DBn = {l}

of B by subgroups such that each Bi+X is normal in B¡ with B¡/Bi+X cyclic.

The polycyclic groups are closed under the formation of subgroups, quotient

groups, and extension groups.

Proposition 2.7. Let A c B be G-groups with B polycyclic (as a group). If the

G-action on B is p-seminilpotent, then so is the G-action on A, and also on

B/A when A is normal in B.

Proof. Using a p-seminilpotent ZG-series {B¡} for B , we obtain a p-seminil-

potent G-series {AnB¡} for A by 2.6.

In our applications, the action of a group G on a group A will usually include

the inner automorphisms of A , i.e. for each a e A there will exist g eG such

that axa~x = gx for all x e A. This ensures that the G-invariant subgroups

of A are normal.

Proposition 2.8. Suppose that the action of a group G on a group A is p-

seminilpotent and includes the inner automorphisms of A. Then

(i) G acts nilpotently on each H„(A; Fp);
(ii) the derived series {DjA} of A isa p-seminilpotent ZG-series for A.
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Proof. We choose a p-seminilpotent ZG-series {A¡} for A and note that G

acts nilpotently on each Hn(Ai/Ai+x ; Fp). Using the Serre spectral sequence,

we inductively deduce that G acts nilpotently on each Hn(A/Ai, Fp) and thus

on each Hn(A; Fp). Hence G acts p-seminilpotently on HX(A; Z) = A/DXA

and also on DXA by 2.3. This argument may be repeated inductively to show

that G acts p-seminilpotently on each DJA/DJ+XA as required.

3. The p-seminilpotent groups, spaces and fibrations

The familiar concept of nilpotency for groups, spaces, and fibrations (see [6

or 15]) will now be generalized to p-seminilpotency.

3.1. The p-seminilpotent groups. A group G is called p-seminilpotent when

the inner automorphism action of G on itself is p-seminilpotent. This is equiv-

alent to saying that G has a finite filtration

G = GiDG2D- oG„ = {1}

by normal subgroups with abelian quotients G,/G,+i which are p-seminilpotent

as ZG-modules. Such a filtration is called a p-seminilpotent series for G.

Clearly each nilpotent group is p-seminilpotent, and each p-seminilpotent group

is solvable. Moreover, by 2.8, a solvable group G is p-seminilpotent if and only

if G acts p-seminilpotently on each derived series quotient DJG/DJ+XG.
The following four propositions may be deduced from 2.3, 2.5, and 2.7.

Proposition 3.2. If f: G —> H is a homomorphism of p-seminilpotent groups,

then im/ and kerf are also p-seminilpotent.

Proposition 3.3. For a short exact sequence G' >-> G -» G" of groups, any two

of the following conditions imply the third:

(i) G is p-seminilpotent;

(ii) G" is p-seminilpotent;
(iii) the action of G on G' is p-seminilpotent.

Proposition 3.4. If {G,} is a p-seminilpotent series for a group G, then the
quotient groups G¡/Gi+j are all p-seminilpotent.

In general, a subgroup or quotient group of a p-seminilpotent group need

not be p-seminilpotent. For example, the semidirect product Q(Z) x Z is

p-seminilpotent while Z(Z) x> Z and (Q(Z) x Z)/Z(Z) are not. However

Proposition 3.5. If G is a p-seminilpotent polycyclic group, then so is each sub-

group and each quotient group of G.

The p-seminilpotent (or "p-nilpotent") polycyclic groups have previously

arisen in work of Roseblade [24] on the Artin-Rees property for group rings
(see 8.4). In his exposition, Passman [19, p. 497] defines them by the condi-

tions of

Proposition 3.6. A polycyclic group is p-seminilpotent if and only if each of

its finite quotient groups is p-seminilpotent. A polycyclic finite group is p-

seminilpotent if and only if it has a normal p-complement (i.e. its elements

of order prime to p form a subgroup).

Proof. Let G be a polycyclic group which is not p-seminilpotent, and choose

a finite filtration {G,} of normal subgroups with abelian quotients G¡/Gi+X.
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Then G acts nonnilpotently on G,/G,+1<g)Z/p or Tor(G,/G,+i, Z/p) for some

L Since each polycyclic group is residually finite, there is a finite quotient group

G of G with a corresponding nonilpotent action, and G is not p-seminilpotent.

Next let B be a finite p-seminilpotent group. The intersection of the mod -p

derived series for B gives a p-perfect normal subgroup N c B with index a

power of p . This A is p-seminilpotent since B is, and | A| is prime to p by

Lemma 3.7. If N isa p-perfect p-seminilpotent finite group, then \N\ is prime

to p.

Proof. Let {A,} be a p-seminilpotent series for A, and assume inductively

that | A/A, | is prime to p . Using the //»( ; Fp)-spectral sequence for

Ni/Ni+X ~ A/A/+1 -» A/A,

and the nilpotent action of A/A, on Z/p ® N¡/Ni+X , one finds that Z/p <g>

A//A/+! = 0. Thus |A/A,+i| is prime to p .

We shall need the following technical result later.

Proposition 3.8. Let f:G'^>G be a monomorphism and g: G -» G" be an

epimorphism of p-seminilpotent groups. If {G,} is a p-seminilpotent series for

G, then {f~x(G¡)} and {g(G¡)} are p-seminilpotent series for G' and G".

Proof. This follows using 3.3 since the image of /: G' -> G/G¡ is p-seminil-
potent by 3.2, and since G acts p-seminilpotently on the image of g: G¡ —> G"

by 2.3.

3.9. The p-seminilpotent spaces and fibrations. A space X is called p-seminil-

potent when it is connected, %XX is a p-seminilpotent group, and the action of

nxX on 7ijX is p-seminilpotent for each / > 2 (after a basepoint is chosen for

X). For instance, a Klein bottle or an even dimensional real projective space

is p-seminilpotent for p = 2 but not for p odd. More generally, a fibration
f:X—*Y of connected spaces is called p-seminilpotent when its fiber E is

connected and the action of nxX on n¡E is p-seminilpotent for each /* > 1

(after a basepoint is chosen for X). Thus a space X is p-seminilpotent if

and only if the fibration X —► * is p-seminilpotent. Each nilpotent space or

fibration is automatically p-seminilpotent for all p . Clearly

Proposition 3.10. For a p-seminilpotent fibration X —> Y and map A —> Y of

connected spaces, the induced fibration over A is p-seminilpotent.

From 2.3 and 2.5, we deduce

Proposition 3.11. Let f: X2 -> Xx and g: Xx —> Xo be fibrations of connected

spaces with connected fibers. If any two of f, g and gf are p-seminilpotent,

then so is the third.

Thus, for a fibration /: X —> Y of connected spaces with connected fiber, if

any two of X, Y, and / are p-seminilpotent, then so is the third.

Finally, we establish a crucial homological interpretation of p-seminilpotency.

Theorem 3.12. Let f:X—>Y be a fibration of pointed connected spaces with

fiber E. Then f is p-seminilpotent if and only if E is p-seminilpotent and
nxY acts nilpotently on each Hn(E; Fp).

Proof. The "only if part follows as in [6, p. 63], and we assume the "if hy-

potheses.   Then  nxX  acts p-seminilpotently on HX(E;Z) = nxE/DxnxE.
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To show that it does so on DxnxE/D2nxE, we use the generalized Moore-

Postnikov construction [5, 5.1] to factor / as a composition / = h g of a

fibration g : X —► X with connected fiber E and a fibration h^_X —► Y with

connected fiber E such that n¡E = 0 for i > 2 and nxE —> nxE is onto with
kernel DxnxE. The fibrations X —* Y and E -» E are p-seminilpotent. Thus

nxY and nxE respectively act nilpotently on each Hn(E;Fp) and Hn(E;Fp)

by the "only if part. Hence, nxX acts nilpotently on each Hn(E; Fp) by 3.13

below, and nxX acts p-seminilpotently on HX(E; Z) = DxnxE/D2nxE. This

argument may be repeated inductively to prove the theorem.

Lemma 3.13. Let g: X2 —> Xx and h: Xx -» X0 be fibrations of pointed con-
nected spaces with connected fibers E2 and Ex respectively, and let E be the

fiber of h g. If nxEx acts nilpotently on each Hn(E2 ; Fp), and if %xXq acts

nilpotently on each Hn(Ex ; Fp) and Hn(E; Fp), then nxXx acts nilpotently on

each Hn(E2; Fp).

Proof. Suppose inductively that nxXx acts nilpotently on H,(E2,FP) for each

t < n — 1. Then nxX2 acts nilpotently on HS(EX ; Ht(E2 ; Fp)) for s > 0 and

t < n-1, and on Hn(E; Fp). Thus by Serre spectral sequence argument, nxX2

acts nilpotently on H0(EX ; Hn(E2; Fp)), which equals H„(E2 ; Fp)/IHn(E2 ; Fp)

where I c FpnxEx is the augmentation ideal. Also, nxX2 acts nilpotently

through nxXo on I/I2 = HX(EX ; Fp). Thus by the epimorphism

/       Hn(E2,Fp)        IHn(E2;Fp)

I2® IH„(E2;FP)^ I2Hn(E2;Fp)'

nxX2 acts nilpotently on IHn(E2 ; FP)/I2H„(E2 ; Fp). This argument may be
repeated inductively to show that nxX2 acts nilpotently on the successive quo-

tients of {VHn(E2 ; Fp)} , and thus on Hn(E2 ; Fp).

4. ON THE  Fp-COMPLETION OF A SPACE

We now return to the Bousfield-Kan Fp-completion (or p-adic completion)

FpooX of a space X, and show that it is particularly well behaved when X is

p-seminilpotent. We begin with a "Whitehead theorem" which unifies results
of [6, pp. 30 and 113].

Proposition 4.1. For k > 0, let f: X —► Y be a map of pointed connected spaces

such that /*: H¡(X; Fp) —► H¡(Y ; Fp) is an isomorphism for i < k and onto

for i = k + 1. Then /» : 7iiFpocX —> n¡FpooY is also an isomorphism for i < k

and onto for i = k + 1.

Proof Recall that FpooX is the inverse limit of a canonical tower {(FP)SX} of

fibrations under X, and let JSX be the fiber of (FP)SX -* (FP)S_XX. For each

s, /*: 7CiJsX -» 7ijJsY is an isomorphism for i < k and onto for i = k + 1

by [6, p. 32]. Letting Ks denote the homotopy fiber of (FP)SX —> (FP)SY, we

note that the maps Ks —» ̂_i and JSX —> JSY have equivalent k-connected

homotopy fibers. Hence the homotopy limit K^ of the tower {Ks} is also

/c-connected. Since Ä^oo is the homotopy fiber of FpooX —» FpooY, the result

follows.

Although Fpoo carries each "mod-p homology type" to a single homotopy
type, the resulting homotopy type may sometimes have extraneous mod-p ho-
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mology. Recall that a space X is called Fp-good when the map X —> FpooX

induces an isomorphism H*(X ; Fp) = Ht(FpooX ; Fp) and is called Fp-bad

otherwise. By [6, p. 26], the functor Fpoo has a triple (or monad) structure,

i: Id —> Fpoo and p: FpooFpoc -» Fpoo , on the category of spaces and hence on

the pointed homotopy category of spaces. Moreover, the functor Fpoo acts as

an idempotent functor on the pointed homotopy category of Fp-good spaces.

The following result may be used to build examples of Fp-good spaces.

Proposition 4.2. Let E -» X -» B be a homotopy fiber sequence of pointed

connected spaces such that the action of nxB on each H¡(E; Fp) is nilpotent.
Then

(i) FpooF —> FpooX -> FpooB is a homotopy fiber sequence;

(ii) if E is Fp-good, then the action of 7txFpooB on //,(FpooF; Fp) is nilpo-

tent;

(iii) // E and B are Fp-good, then so is X.

Proof. Part (i) follows from [6, p. 62], part (ii) from [6, p. 91], and part (iii)

from the preceding parts using the Serre spectral sequence.

Theorem 4.3. If X is a p-seminilpotent space, then X is Fp-good and FpooX

is p-seminilpotent.

Proof. The Postnikov tower of X can be refined to a tower of p-seminilpotent

fibrations with abelian Eilenberg-Mac Lane spaces as fibers. By [6, pp. 183—

184], these fibers are Fp-good and their p-adic completions are nilpotent. The

result now follows by 3.12, 4.1, and 4.2.

Theorem 4.4. If f: X —> Y is a p-seminilpotent fibration of pointed connected

spaces with homotopy fiber E, then Fpoof: FpooX —> FpooY isa p-seminilpotent

fibration with homotopy fiber FpooE.

Proof. This follows by 3.12, 4.2, and 4.3.

Note that / is automatically p-seminilpotent by 3.11 when X and Y are.

We conclude that Fpoo acts as an idempotent functor on the pointed homo-

topy category of p-seminilpotent spaces, and Fpoo preserves homotopy fiber

sequences of such spaces. Finally, we must sometimes view FpooX from the

"homological localization" standpoint [3].

4.5. On Fpoo A' as an H*( ; Fp)-local space. The results of [6, p. 205] show

that FpooX is always //»( ; Fp)-local in the sense of [3]. Moreover, for a

pointed space X with //»( ; Fp )-localization XFp, there is a canonical map

XFp —► FpooX in the pointed homotopy category. This gives an equivalence

XFp ~ FpooX if and only if X is Fp-good, since each Ht( ; Fp)-equivalence of

H,( ; Fp)-local spaces is a weak equivalence.

4.6. On n¡FpooX asan HFp-local group. Since FpooX is //»( ; Fp) -local for

a pointed space X, n¿FpooX is an HFp-local group for / > 1 by [3, p. 138].

We refer the reader to [3 or 4] for an account of HFp-local groups. By [4, p.

13] they form the smallest class of groups which:

(i) contain the trivial group,

(ii) are closed under central Fp-module extensions, and

(iii) are closed under arbitrary inverse limits.
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Moreover, an abelian group G is HFp-local if and only if G is p-cotorsion (or

Ext-p-complete in the sense of [6]), i.e.,

Hom(Z[l/p], G) S 0 = Ext(Z[l/p], G).

5. The p-adic group completion and its derived functors

In preparation for further work on the homotopy groups UiFpooX, we now

study the p-adic completion functor and its derived functors on groups. The

examples in 5.7 show the interesting diversity of these derived functors.

5.1. The p-adic completion of a group. For a group A, let {TpnA} be the lower

p-central series with YPXA = A and with Tpn+XA generated by elements of the

form xyx~xy~xzp for x e A and y, z e TpnA . This is the fastest descending

central series in A with Fp-module factors. The p-adic completion of A is

defined as in [6, p. 103] to be Ap = lim A/YpnA viewed as a discrete group.

Note that the tower {A/FPA} is characterized up to pro-isomorphism by its

property of cofinality in the system of all p-torsion nilpotent groups of finite

exponent under A. Thus, in the construction of Ap , we can use alternative

versions of the lower p-central series as in [23]. Note also that if Hx (A; Fp) is

finite, then the p-adic completion of A agrees with the p-profinite completion.

The close relationship between p-adic completions of groups and of spaces

is indicated by the equivalence W(GX)p ~ FpooX shown in [6, p. 109] for a

pointed connected space X, where W is the simplicial classifying space functor

and GX is Kan's free simplicial loop group of X. We now give some basic

properties of ( )p .

Lemma 5.2. For a homomorphism f:A—>B of groups, fp: Ap -> Bp is onto if

and only if fi: HX(A; Fp) -> Hx(B; Fp) is onto. If /.: H(A; Fp) - H¡(B; Fp)
is an isomorphism for i = 1  and onto for i = 2, then fp:Ap = Bp   and

f: A/TPA =■ B/FPB for all n > 1.

Proof. First, let / : HX(A; Fp) -> HX(B; Fp) be onto. Then

fi:rp„A/rpn+xA^r»„B/r>>n+xB

is onto for all « > 1 by [4, p. 51], and we obtain a short exact sequence of

group towers

{Kn} ~ {A/FpA} - {B/FpB}

with each Kn+X —> Kn onto. Hence fp:Ap —► Bp is onto. The converse is

clear since HX(B ; Fp) is a quotient of Bp , and the final statement follows by

Stalling's argument [25].

5.3. Idempotency properties. The p-adic completion of groups has a triple

(or monad) structure given by the obvious homomorphisms i: A —> Ap and

p: (A$)$ - ^P . By 5.2, i£: A£ -» (A$)$ is onto if and only if i,: HX(A; Fp)
—► Hx(Ap ; Fp) is onto. Thus, the p-adic completion acts idempotently on A

if and only if z„: HX(A; Fp) -> Hx(Ap; Fp) is onto. (Note that ¡* is always

monic.) By [4, p. 57], this idempotency holds whenever HX(A; Fp) is finite,

and thus whenever A is finitely generated. By 5.5 below, it also holds whenever

K(A, 1) is Fp-good, e.g., when A is p-seminilpotent. However, by [6, p. 114],

it fails when A is a free group on an infinite set of generators.
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5.4. Derived functors of the p-adic completion. For a group A and n > 0,

we let c%(A) denote the group nn-XFpooK(A, 1), which is always HFp-local

and is p-cotorsion abelian for n > 1 by 4.6. There is a natural isomorphism

cpn(A) = *n(GK(A,l)Tp

by 5.1, and we may view cf, as the «th left derived functor of the p-adic

completion functor, since GK(A ,1) is a free simplicial group with

A    for j = 0,
mGK(A,l)

0     for / > 1.

By 4.2, if A >-* B -» C is a short exact sequence of groups such that the action

by C on H¡(A ; Fp) is nilpotent for / > 0, then there is an induced homotopy

fiber sequence

FpooK(A, l)^FpooK(B, l)^FpooK(C, 1)

which determines a long exact sequence

...^cpn+x(C)^cp(A)-^cpn(B)^cp(C)

->...-<£(*)-»cJ(C)-»{l}

of groups. By 2.8 this applies automatically when the action of B on A is

p-seminilpotent. By 4.1 we have

Proposition 5.5. If X is a pointed connected space, then there is a natural iso-

morphism nxFpooX = cP)(nxX).

5.6. Properties of eg . The functor eg has a triple (or monad) structure, i : Id

-> eg and p: c%c% -» eg , induced by that of Fpoo , or equivalently by that of

W(G( ))p . By the argument of 5.3, eg acts idempotently on a group A if and

only if i: HX(A; Fp) -» Hx(c^A; Fp) is onto. Thus eg acts idempotently on

A when K(A, 1) is Fp-good, e.g. when A is p-seminilpotent. Whenever eg

acts idempotently on A, then so does ( )£ by our homological criteria, because

there is a natural epimorphism y: c^A -» Ap induced by the isomorphisms

7to(G/FpG)K(A,l)^A/YpA.

By [6, p. 254], y has kernel

limxnx(G/FpnG)K(A, 1) s lim1 n2(FpnK(A, 1))

which is p-cotorsion abelian (see 4.6). If A is a group with HX(A; Fp) and

H2(A; Fp) both finite, then this lim1 term vanishes, and thus y: c^A = Ap .

In particular, if A is finitely presented, then c^A = Ap .

5.7. Examples. To illustrate the interesting diversity of the groups c^A , we

observe:

(i) if A is free, then c%A s A£ and (fnA = 0 for n > 1 by [6, p. 114];

(ii) if A is nilpotent, then c\A = Ext(Zpœ , A), c\A = Hom(Zp<=o, A), and

c%A = 0 for n > 2 by [6, p. 167]; if A is p-seminilpotent, there is a
similar result by 6.1 below;

(iii) for the infinite general linear group GL(A) over a ring A with identity,

c£GL(A) is the p-adic algebraic K-group nn+xFpoo(BGL(A)+) of A
for n > 0 by [22];
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(iv) for the infinite symmetric group Zoo , c^Xoo is the p-torsion subgroup

of the stable homotopy group of spheres nn+xS for n > 0 by a theorem

of Priddy as noted in [6, p. 207];
(v) for the symmetric group X3, there is a short exact sequence

0 -> itn+iS3 ® Z/3 -» c¿I3 -* Tor(7t„53, Z/3) -+ 0

for «>0 by [6, p. 213];
(vi) for a finite group A, cpnA is finite p-group for n > 0 by [6, p. 212],

and is trivial for p prime to \A\.

6. The groups ntFpooX for p-seminilpotent spaces

As in the nilpotent case [6, p. 183], we shall express ntFpooX in terms of

n*X using:

6.1. The functors Ext(Zpoo, G) and Hom(Zpoc, G). For an abelian group

A , there are natural isomorphisms (%A = Ext(Zpœ , A), c\A S Hom(Zp<x,, A),

and cpA = 0 for n > 2 by [6, p. 167]. For a p-seminilpotent group G,

we deduce that e^G = 0 for n > 2 by 5.4, and we let Ext(Zpoo, G) and

Hom(Zpoc, G) respectively denote c^G and cfG. When G is nilpotent, these

groups have been extensively studied in [6 and 16]. Our notation follows [6],

and the reader is warned that Ext(Zpoo, G) and Hom(Zp<x,, G) do not in gen-

eral indicate sets of group extensions or homomorphisms. By 4.3 and 4.6,

Ext(Zpoo, G) is an HFp-local p-seminilpotent group, while Hom(Zp<x», G) is

a p-cotorsion abelian group. By 5.4, a short exact sequence G' >-* G ^» G" of

p-seminilpotent groups induces an exact sequence of groups

0 -♦ Hom(Zpoo, G') -* Hom(Zpoo, G) -► Hom(Zpoc, G")

-r Ext(Zpoo, G') -» Ext(Zpoc, G) -* Ext(Zp=c, G") -♦ 0.

Using 3.8, this implies that each monomorphism H >-» G of p-seminilpotent

groups induces a monomorphism Hom(Zpoo, H) >-► Hom(Zpoo, G). The p-

cotorsion abelian group Hom(Zpoo, G) is torsion free by induction from the

case of G abelian. For a p-seminilpotent group G, the natural map 1 : G -*
Ext(Zpoo, G) will be called the p-cotorsion completion of G. It is part of an

idempotent triple on the category of p-seminilpotent groups by 5.6. We say
that a p-seminilpotent group G has serially bounded p-torsion when G has a

p-seminilpotent series {G,} such that the p-torsion subgroup of each G,/G,+i
is of finite exponent. For instance, a p-seminilpotent polycyclic group must

have serially bounded p-torsion, and a nilpotent group G has serially bounded
p-torsion if and only if its p-torsion subgroup is of finite exponent.

Proposition 6.2. If G isa p-seminilpotent group with serially bounded p-torsion,

then y: Ext(Zp=c , (?) 2 G£ and Hom(Zp°o, G) s 0.

Proof. By 5.6 it suffices to show that the tower {n2FpnK(G, 1)} is pro-trivial

and Hom(Zpoo, G) = 0. This holds when G is abelian by [6, p. 170] and holds

in general by an induction using [6, p. 91].

Theorem 6.3. For a p-seminilpotent space X, there is a splittable natural short

exact sequence

0 -* Ext(Zp°c , n„X) -* 7t„FpooX —> Hom(Zpoo , nn-XX) -» 0.



346 A. K. BOUSFIELD

Proof. This follows by applying 4.4 to the Postnikov tower of X. The split-
tability is trivial for n = 1 and holds as in [6, p. 183] for n > 2 since

Ext(Zpoo, n„X) is p-cotorsion and Hom(Zpoo, n„-XX) is torsion free.

Corollary 6.4. For a p-seminilpotent space X whose homotopy groups have se-

rially bounded p-torsion, there is a natural isomorphism n„FpooX = (nnX)p for

n>\.

6.5. The p-cotorsion groups. Generalizing the abelian terminology, we call a

p-seminilpotent group G p-cotorsion when i: G = Ext(Zp<x>, G) and

Hom(Zpoc, G) = 0. Applying 6.3 to the Fp-complete space X = FpooX(G, 1),
we find that the groups Ext(Zpoo, G) and Hom(Zpoo, G) are always p-cotorsion.

Thus, in the above definition, the condition "Hom(Zpoo, G) = 0" is superflu-

ous. For a nilpotent group, our p-cotorsion conditions agree with those of
[16 and 6], where the term "Ext-p-complete" is used. For a homomorphism

/: G —» H of p-cotorsion p-seminilpotent groups, kerf and im/ are also p-

cotorsion p-seminilpotent by 3.2 and [4, 1.5 and 2.10]. In a short exact sequence

G' ^-> G ^» G" of p-seminilpotent groups, if any two groups are p-cotorsion,

then so is the third by a 5-lemma argument.

Proposition 6.6. A p-seminilpotent space X is Fp-complete if and only if each

n„X is p-cotorsion.

This follows by 6.3. The p-seminilpotent Fp-complete spaces are the only

known examples of Fp-complete spaces. We now turn to the Ht( ; Fp)-acyclic

spaces and first show:

Proposition 6.7. For a group G, the following conditions are equivalent:

(i) G is p-seminilpotent and H¡(G; Fp) = 0 for all i > 1 ;
(ii) G is p-seminilpotent and H¡(G ; Fp) = 0 for i = 1, 2 ;

(iii) G is p-seminilpotent, Ext(Zpoo, G) = 0, and Hom(Zp<x>, G) = 0 ;

(iv) G is solvable and its derived series quotients D"G/Dn+XG are uniquely

p-divisible for each n ;
(v) G has a finite decreasing filtration by normal subgroups {G„} suchthat

Gn/Gn+X is uniquely p-divisible abelian for each n .

Proof. Clearly (i) implies (ii); (ii) implies (iii) by 4.1; and (iii) implies
FpooK(G, 1) ~ *, which implies (i). Thus (iii) implies that HX(G;Z) is
uniquely p-divisible, which implies (iv) by induction; (iv) clearly implies (v);

and (v) implies (iii) by induction.

A p-seminilpotent group G will be called p-trivial when it satisfies the above

conditions. When G is nilpotent, this is equivalent to asserting the existence

of unique pth roots in G. However, in general, this does not imply either the

existence or uniqueness of pth roots (see [2, pp. 247-248]). By 6.3

Proposition 6.8. A p-seminilpotent space X is //»( ; Fp)-acyclic if and only if

each nnX is p-trivial.

7. THE Fp-GOODNESS OF polycyclic-by-finite spaces

Using methods of Dror-Dwyer-Kan [11], we shall prove the Fp-goodness of

polycyclic-by-finite spaces and other "virtually p-seminilpotent" spaces. Recall
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that a group G is polycyclic-by-finite when it contains a polycyclic normal sub-

group of finite index. This is equivalent to saying that G is poly-(cyclic or finite),

i.e., G has a finite filtration G = Gi D G2 D • ■ ■ D Gm = {1} such that Gi+i is
a normal subgroup of G¡ with G,/Gi+i cyclic or finite for each i. A space X

is called polycyclic-by-finite when it is connected with nxX polycyclic-by-finite

and TiiX finitely generated for each / > 2. An action by a group G on a group

M is called virtually p-seminilpotent when G has a normal subgroup of finite

index which acts p-seminilpotently on M. Our main Fp-goodness theorem is:

Theorem 7.1. If X is a pointed connected space with nxX polycyclic-by-finite

and with nxX acting virtually p-seminilpotently on nnX for n>2, then X is

Fp-good and FpooX is p-seminilpotent.

This will be proved in 7.12. It applies to any polycyclic-by-finite space X

since nxX automatically acts virtually p-seminilpotently on %„X when nnX®

Z/p and Tor(7r„X, Z/p) are both finite. We shall deal explicitly with this case

in 7.2.
A group A is called p-adically polycyclic when A has a finite filtration A =

Ax D A2 D ■ ■ ■ D Am = {1} such that each Ai+X is a normal subgroup of A¡

with A¡/Ai+X p-adically cyclic, i.e., isomorphic to Zp or to Z/pi for some

j > 0. When A is abelian, this simply means that A is isomorphic to a finitely

generated Z^-module. A space 7 is called p-adically polycyclic when Y is

connected and n„Y is p-adically polycyclic for « > 1. In 7.13, we shall prove:

Theorem 7.2. If X is a pointed polycyclic-by-finite space, then X is Fp-good

and FpooX is p-adically polycyclic with nxFpooX = c\(nxX) = (nxX)£ .

As illustrated by 5.7(v), a higher group n¿FpooX may differ profoundly from

(n¡X)p . For later use, we note

Theorem 7.3. If X is a polycyclic-by-finite space, then X is of finite type, i.e.,

weakly equivalent to a complex with finitely many cells in each dimension.

This follows from [27, p. 61] using the result [14]:

Theorem 7.4. If G isa polycyclic-by-finite group and R is a commutative Noethe-

rian ring, then G is finitely presented and the group ring RG is (left) Noetherian.

In order to prove 7.1 and 7.2, we require a series of lemmas.

Lemma 7.5. For a group A, the following conditions are equivalent:

(i) A is p-adically polycyclic;
(ii) A  is a p-cotorsion p-seminilpotent group with  H ¡(A; Fp) finite for

each j ;

(iii) A is a p-cotorsion p-seminilpotent group with HX(A; Fp) finite,

(iv) A has a p-seminilpotent series {Ak} with finitely generated Zp -module

quotients Ak/Ak+X.

Proof. To show (i) => (ii), we let {Ak} be a finite filtration of A with p-

adically cyclic quotients Ak/Ak+X, and we assume inductively that Ak+X is p-

seminilpotent. The group Ak/Ak+X must act nilpotently on each Hj(Ak+x ; Fp)

since Hj(Ak+x ; Fp) is a finite Fp-module, and since each finite quotient of

Ak/Ak+X is a p-group. Thus Ak is p-seminilpotent by 3.3 and 3.12, and (ii)
follows. To show (iii) => (iv), we choose a p-seminilpotent series {Ak} for
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A with p-cotorsion quotients Ak/Ak+X , for instance, by letting Ak+X be the

kernel of A —> Ext(Zpoo, A/DkA). We assume inductively that A/Ak has

finite Fp-homology groups and that Ak_x/Ak is a finitely generated Zp -module.

Since A/Ak acts nilpotently on Hx(Ak/Ak+x ; Fp), and since HX(A/Ak+X ; Fp)
is finite, we conclude that Hx(Ak/Ak+x ; Fp) is finite. Thus, since Ak/Ak+X is
p-cotorsion abelian, it must be a finitely generated Zp -module, and (iv) follows.

The implications (ii) =$■ (iii) and (iv) => (i) are obvious.

Lemma 7.6. A pointed connected space Y is p-adically polycyclic if and only if

Y is an Fp-complete p-seminilpotent space with each Hj(Y ; Fp) finite.

This follows from 7.5 using

Lemma 7.7. A p-adically polycyclic group G must act p-seminilpotently on a

ZG-module M when M®Z/p and Tor(Af, Z/p) are finite.

Proof. Since G is HFp-local by 4.6 and 7.5, it has unique oth roots for each

prime q ^ p. Thus each finite quotient of G is a p-group, and G must act

nilpotently on M <g> Z/p and Tor(M, Z/p).

In view of 3.12, the "nilpotent action lemma" of Dror-Dwyer-Kan [11, 5.1]

becomes

Lemma 7.8. For a pointed connected space X, let X -» K(<p, 1) and X ->

K(y/, 1) be fibrations with fibers L and M respectively, such that the in-

duced map nxX -* (p x y/ is onto. If the group y/ and space L are both

p-seminilpotent, then y/ acts nilpotently on each Hn(M;Fp).

The "pre-nilpotency lemma" of Dror-Dwyer-Kan [11, 52] becomes

Lemma 7.9. For a pointed connected space Y and p-perfect group <p, if Y -»•

K(f, 1) is a fibration whose fiber N is p-seminilpotent with HX(N; Fp) finite,

then Y is Fp-goodand FpooY is p-seminilpotent.

Proof. First apply the fiberwise Fp-completion [6, p. 40] to give a fibration

Y' ^K(<p, 1) with fiber Fp^A. Then H*(Y; Fp) S H*(Y'; Fp) and (nxY)Fp
= (nxY')Fp, where ( )Fp denotes the //Fp-localization of [3 or 4]. Thus there

is a natural map Y' -* K((nx Y)Fp, 1) such that H(Y' ; Fp) -» Hi((nx Y)Fp ; Fp)
is iso for i = 1 and onto for i = 2. Since Hx (<p ; Fp) — 0, the map

Hx(nxFpooN; Fp) - Hx((nxY)Fp ; Fp)

is onto, and thus nxFpooN —> (nxY)Fp is onto by [4, 2.13]. Since nxFpooN is

p-adically polycyclic by 7.5, so is (nxY)Fp by 7.10 below. Thus 7.8 shows that
(nxY)Fp acts nilpotently on each Hn(M;Fp) where M is the homotopy fiber

of r -» ^((7^7)^ , 1). Since HX(M; Fp) = 0, 4.2 shows that Y', and hence
Y, is Fp-good. Moreover, the space FpœY' ~ FpooY is p-seminilpotent by

3.12.

We have used

Lemma 7.10. If f: A -» B is a homomorphism from a p-adically polycyclic

group A onto an HFp-local group B, then B is p-adically polycyclic.

Proof. Let {Ak} be a finite filtration of A by subgroups such that each Ak+X

is normal in Ak with Ak/Ak+X p-adically cyclic. Then each Bk = f(Ak) is
HFp-local by [4, 2.12]. Thus the maximal p-perfect subgroup of Bk/Bk+X  is
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trivial, and Bk/Bk+X maps onto its HFP-localization by [4, 2.11 and 2.12].

Hence, Bk/Bk+X is a p-cotorsion quotient of Ak/Ak+X, and must therefore be
p-adically cyclic.

Lemma 7.11. For a polycyclic-by-finite group G, there exists a p-seminilpotent

polycyclic normal subgroup A c G of finite index.

Proof. Let M c G be a polycyclic normal subgroup of finite index. Since

DrM/Dr+XM is finitely generated for r > 1, there is a normal subgroup K c G

of finite index which acts p-seminilpotently on each DrM/Dr+xM. Since K

acts p-seminilpotently on M, it does so on M n K by 2.7. Thus we may let

N = MnK.

7.12. Proof of '7.1. By 4.1 we may assume that X is a Postnikov space with

only finitely many nontrivial homotopy groups. Then by 7.11 there is a finite

group 6 and a map X —> K(6, 1) with p-seminilpotent homotopy fiber A.

Let (p c 6 be the maximal p-perfect subgroup, and note that 6/q> is a finite

p-group. Applying 7.9, 4.2, and 3.12 to the associated homotopy fiber sequences

A^ X'^K(y, 1),     X'^ X^K(6/(p, 1)

we deduce that X' and X are Fp-good, while FpooX' and FpooX are p-

seminilpotent.

7.13. Proof of 1.2. By 7.1, X is Fp-good and FpooX is p-seminilpotent. Thus
by 7.6, FpooX is p-adically polycyclic. The isomorphisms follow by 5.5 and
5.6.

8. The p-adic G-completion

To prepare for the statement and proof of our next Fp-goodness theorem

(9.1), we now introduce

8.1.   The p-adic G-completion.   For a group ring ZG, let

Ip = ker(ZG - Z/p)

denote the p-adic augmentation ideal. The p-adic G-completion of a ZG-
module M is given by the ZG-module

Mg> = lim k Ml(Ip)kM.

We may regard MqP as a (ZG)gP-module with the obvious multiplication.

The towerwise p-adic G-completion of a ZG-module M is given by the tower

{M/(Ip)kM}k>o viewed as a pro-ZG-module (see [1]). This tower is deter-

mined up to pro-isomorphism by its property of cofinality in the system of all

nilpotent ZG-modules under M which are annihilated by powers of p . Note

that when G is trivial, the above completions reduce to the p-adic completion

Mp = lim kM/pkM and to the towerwise p-adic completion {M/pkM}k>0-

In general:

Proposition 8.2. If the action of G on M is p-seminilpotent, then the nat-
ural .homomorphism Mp —► MqP is an isomorphism and {M/pkM}k>0 -*

{M/(Ip)kM}k>o is a pro-isomorphism.
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Proof. If the action of G on M is p-seminilpotent, then each M/pkM is

a nilpotent ZG-module and {M/pkM}k>0 shares the cofinality property of

{M/(Ip)kM}k>0.

When  A  is an  Fp G-module, we may use the augmentation ideal  / =

ker(FpG —► Fp) to construct the p-adic G-completions N£p = lim k N/IkN

and {N/(Ip)kN}k>o — {N/IkN}k>0 ■ The following result will allow us to use

other towers in place of {N/IkN}k>o ■

Proposition 8.3. If {Nk}k>0 is a tower of nilpotent FpG-modules under an FPG-

module A such that H(G; A) —* {H¡(G; Nk)}k>o is a pro-isomorphism for

i = 0 andpro-epimorphism for i = 1, then {Nk}k>0 is naturally pro-isomorphic

to {N/IkN}k>0.

Proof. It suffices to show that N/ImN -* {Nk/ImNk}k>o is a pro-isomorphism

for each m > 1, and this follows by induction using HQ(G; N) = N/IN and
the exact sequence

Hx(G;N)^Hx(G;N/rN)^ImN/Im+xN^O.

As in [8], for our applications of the p-adic G-completion, we need an "Artin-

Rees theorem." First, recall from 7.4 that the group ring RG is (left) Noetherian

for a commutative Noetherian ring R and polycyclic group G. A two sided

ideal J c RG is said to have the weak Artin-Rees property when for each

finitely generated R G-module M and submodule M' c M, there exists r > 0

(depending on M and M') with J'M n¥'c JM'. This inductively implies

that the neighborhood systems {JkM'}k>0 and {M'nJkM}k>0 determine the

same topology on M', or equivalently, that the /-adic topology on M' is the

restriction of the 7-adic topology on M. As explained in [7, p. 89] and [19],

the following theorem (among other more general results) is due to Roseblade

[24].

Theorem 8.4. For p prime, let R be a commutative Noetherian ring such that

R/pR is a field. If G is a p-seminilpotent polycyclic group, then the ideal

Ip = ker(RG -* R/pR) has the weak Artin-Rees property.

8.5. Exactness of the p-adic G-completion. Let G be a p-seminilpotent poly-

cyclic group. By 8.4, on the category of finitely generated ZG-modules, the

towerwise p-adic G-completion {M/(Ip)kM}k>0 is pro-exact, and the p-adic

G-completion MgP is exact. Consequently, for a finitely generated ZG-module

M or finitely generated FpG-module A, the natural homomorphisms

(ZG)^ ®ZG M -> M? ,        (FPG)AGP ®FpG N - Ng,

are isomorphisms. Thus (ZG)qP and (FpG)gP are flat as right modules (and

similarly as left modules) over ZG and FPG respectively.

9. A partial Fp -goodness theorem

Our earlier Fp-goodness theorem (7.2) applies to many spaces of finite type,

but not to those like Sn V S1 for n > 2 with nonfinitely generated homotopy

groups. In fact, S" v5' is Fp-bad by 10.1 below. Here, we establish a partial

Fp-goodness theorem (9.1) showing that when a space X of finite type is p-

seminilpotent polycyclic below some dimension n > 2, then X is Fp-good
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below dimension 2« . This is closely related to a result of Dror-Dwyer [10]

giving a stable range for integral homology localizations.

A space Y is called p-seminilpotent polycyclic when it is p-seminilpotent

and the groups n¡ Y are polycyclic for / > 1. Thus a nilpotent space of finite

type is always p-seminilpotent polycyclic.

Theorem 9.1. If X is a pointed connected space of finite type whose (n - l)th

Postnikov section Pn~xX is p-seminilpotent polycyclic for some n>2, then the

p-adic completion X —> FpooX induces isomorphisms

Hi(X ; Fp) =Hi(FpooX, Fp)    for i<2n-l,

(iCiX)$ =7tiFpooX forl<i<n-l,

(*iX)%x =?t,FpooX for2<i<2n-2.

Note that 8.2 already guarantees that (7i¡X)£ = (7iiX)*px for 2 < i < n - 1.

We devote the rest of this section to proving 9.1.

Lemma 9.2. // Y is a p-seminilpotent polycyclic space and N is a finitely gen-

erated FpnxY-module, then for each m,

(i) Hm(Y;N) is finite;
(ii) Hm(Y; N) =• Hm(Y; KPY) s lim k Hm(Y ; N/IkN) ;

(iii) the map Hm(Y ; N) -» {Hm(Y ; N/IkN)}k>0 is a pro-isomorphism.

Proof. By 7.4 and 8.5, it suffices to assume that A = FpnxY. Now (i) follows

since H*(Y ; N) = H*(Y ; Fp) where Y is the universal covering of Y, and the

second isomorphism of (ii) follows since Y is of finite type by 7.3. Since A and

N£py are flat left Fp^iT-modules by 8.5, it suffices for the first isomorphism of

(ii) to show

H,(Y; Fp) ®Fpn¡YNSÉH.(Y;Fp) ®Fp7liy N£PY.

Since Y is p-seminilpotent, nxY acts nilpotently on each H¡(Y; Fp) by 3.12,

and it suffices to show

FP®Fp^YN*Fp®FpnxYN*pY.

This follows since

Fp ®FpniY KPY S lim k Fp ®FpK{Y N/IkN S A//A.

Finally, part (iii) follows easily from (i) and (ii).

For X as in Theorem 9.1, let

X' ^ X -^P"~XX

be the Postnikov fiber sequence.

Lemma 9.3. For a commutative Noetherian ring R, each Hj(X' ; R) is finitely

generated as an RnxX-module. If i<2n-2 then n¡X' is finitely generated as

a ZnxX-module.

Proof. Since X is of finite type, its universal covering space X has an R-

chain complex of finite type over RnxX, and each H¡(X ; R) is a finitely gen-

erated itaiX-module. Moreover, each Hj(Pn~xX; R) is a finitely generated

i?-module. The homology result now follows by induction on /, using the Serre
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spectral sequence of X' —> X —► P"~XX. The stable homotopy result follows

easily from the Z-homology result.

Using the functors (Fp)k of [6, p. 21] for k > 0, let

X'k^(Fp)kX^(Fp)kP"-xX

be the fiber sequence induced by X -» Pn~xX.

Lemma 9.4. For each i

Hi(X' ; Fp) -» {Hi(X'k ; Fp)}k>0

is pro-isomorphic to the towerwise p-adic nxX-completion of H¡(X' ; Fp).

Proof. Suppose inductively that this holds for each i < m.   Then for each

i < m and j,

Hj(Pn~xX; H,(X' ; Fp)) -> {Hj(P"~xX ; Hi(X'k ; Fp))}k

is a pro-isomorphism by 9.2 and 9.3. Also for each i and j,

{Hj(Pn-xX;Hi(X'k;Fp))}k - {Hj(FpkP"-xX; Hi(X'k; Fp))}k

is a pro-isomorphism since nxFpkPn~xX acts nilpotently on H¡(X'k; Fp). Thus

Hj(Pn~ X; Hm+x(X'; Fp)) -* {Hj(FpkPn~ X; Hm+x(X'k ; Fp))}k

is a pro-isomorphism for j = 0 and pro-epimorphism for j = 1 by the

spectral sequence comparison lemma of [6, p. 92]. Hence Hm+x(X'; Fp) -*

{Hm+x(X'k; Fp)}k is pro-isomorphic to the towerwise p-adic ^[X-completion

by 8.3.

Lemma 9.5. For each i > 1,

ff,(r;Z)-»{#/(*£ ;Z)}fc>0

is pro-isomorphic to the towerwise p-adic nxX-completion of H¡(X' ; Z).

Proof. An induction starting with 9.4 and using Bockstein exact sequences

shows that
Hi(X';Z/pm)^{Hi(X'k;Z/pm)}k

is pro-isomorphic to the towerwise p-adic completion of H¡(X' ; Z/pm) for

each i > 1 and m > 1. Since H¡(X'; Z) is a finitely generated Z^iX-module,

its p-torsion is of finite exponent by an ascending chain argument, and the map

{H(X' ; Z) ® Z/pm}m -» {H(X' ; Z/pm)}m

is a pro-isomorphism. Since Hi(X'k ; Z) is a finite p-torsion group, the map

Hi(Xk;Z)-*{Hi(X'k;Z/pm)}m

is a pro-isomorphism, and the lemma follows.

Lemma 9.6. For each i <2n - 2, n¡X' —► {7i¡X'k}k>o is pro-isomorphic to the

towerwise p-adic nxX-completion of n¡X'.

Proof. Since the spaces X' and X'k are (n - l)-connected by [6, p. 30], this
stable result follows easily from 9.5.

9.7. Determination of 7iiFpooX. The results on 7iiFpooX in Theorem 9.1 fol-

low by using 6.4 and 9.6 to show that the fiber sequence

Aqo —» rpooX —■> FpooP      X
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has mXLj = 0 for i < n, iiiX'^ £* (HiX)^x for n < i < 2« - 2, tt^F"-1*

=■ fax)* for i < n - 1, and niFp00Pn-xX = 0 for i > n.
The results on Hi(FpooX; Fp) in 9.1 will be proved using another series of

lemmas.

Lemma 9.8. For n > 2, let  7»   be the homotopy inverse limit of a tower

{Yk}k>o °f (n - l)-connected pointed spaces with finite homotopy groups. Then

#¡(7oo ; Fp) —► lim k Hi(Yk ; Fp) is an isomorphism for i <2n-2 and onto for

i = 2« - 1.

Proof. This follows using the natural fiber sequences

rk^Yk-+K(*HYkin)

since

#/(*(*„r«,, n) ; Fp) =■ lim k Hi(K(nnYk , n) ; Fp)

for i < 2« - 1, and since we may inductively assume that //,(7¿, ; Fp) —>

lim k Hj(Yk ; Fp) is isomorphic for i <2n -2 and onto for i = 2n- 1.

Lemma 9.9. For a group G with finite HX(G;FP), the towers {Fp(G/FpkG)}k>o

and {FpG/IkFpG}k>o are pro-isomorphic under FPG.

This follows by [21] and implies that a nilpotent action by G on an FPG-

module must factor through some lower p-central series quotient of G. Thus

the actions in the following lemma are well defined.

Lemma 9.10. Fora p-seminilpotent polycyclic space Y and tower {A„}„>0 of
finite nilpotent FpnxY-modules with inverse limit Nx, the maps

H,(Y; Aoo)     -►      Ht(FpooY; Nx)

timnH,(Y;Nn) -► limnnH.(FpooY; Nn)

are all isomorphisms.

Proof. The left isomorphism follows since 7 is of finite type by 7.3 and each

N„ is finite. The bottom isomorphism follows since 7 is Fp-good by 4.3 and

each N„ is nilpotent. For the top isomorphism, first assume 7 = K(Z , 1).

Since the action of Zf/Z on each H*(Z; A„) = H„(Z£ ; Nn) is trivial, the in-

verse limit action of Zp/Z on H*(Z; Ax.) is also trivial. Hence H*(Z ; Nx) =

H„(Zp ; A») by the Serre spectral sequence. Also,

H^YiNoo)*!!,(Fpoo7; A^)

for 7 = K(Z/p, 1) or for 7 = K(Z/q, 1) at a prime a # p , since a nilpotent
action by Z/q on an Fp-module must be trivial. We can now assume that 7

lies in a fiber sequence Y' ^ Y ^ Y" of p-seminilpotent polycyclic spaces

such that the lemma holds for 7' and 7" . Then

H.(Y" ; H.(Y' ; Nœ)) * H,(FpooY" ; H,(FpooY' ; Nx)),

and we deduce Ht(Y ; Ax.) = H,(FpooY ; JVM) by the Serre spectral sequence.

Now 9.2 and 9.10 imply
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Lemma 9.11. If Y is a p-seminilpotent polycyclic space and N is a finitely

generated FpnxY-module, then

H.(Y;N)*Ht(FpooY;N£pY).

Lemma 9.12. Fora p-seminilpotent polycyclic group G and finitely generated

ZG-module M with n > 2, the map

Hi(K(M£p, n) ; Fp) — lim k H(K(M/IkpM, n) ; Fp)

is an isomorphism for i < 2n -1, and is carried by H0(G; -) to an epimorphism

for i — 2n.

Proof. This is elementary for i < 2n — 1 and follows for i = 2n by showing
that H0(G; -) carries

Mg ® M£p ® Fp -» lim k (M/IkM ® M/IkM ® Fp)

to an epimorphism. After reduction to the case M = ZG, this follows since

Ho(G; -) carries

lim k Fp(G/TpkG) ® lim k Fp(G/TpkG) — lim k (Fp(G/FkG) ® Fp(G/r£G))

to an epimorphism.

9.13.   Proof of Theorem 9.1. It remains to prove H¡(X ; Fp) =" H¡(FpooX ; Fp)
for / < 2« - 1. By 9.4 and 9.8

Hl(X'oc;Fp)^Hi(X';Fp)Anpx

for i < 2/1-2. Thus by 9.11,

H,(P"-XX; H(X';Fp)) * H,(FpooPn~xX ; H¡(X^ ; Fp))

for i <2n -2, and it suffices to show that the natural map a in

Ho(P"-xX;H2n_x(X';Fp))    -^     H0(FpooP"-xX; H^XL, ; Fp))

H0(FpooP»-xX; H2n_x(X'; Fp)hnpx)

is isomorphic.   Since y is isomorphic by 9.11, it suffices to show that ß is

isomorphic. By 9.6 and 9.12, the map

HjiKfaX'^ , n) ; Fp) — lim k Hj(K(nnX'k , n) ; Fp)

is isomorphic for j <2n- 1 and is carried by Ho(FpooP"~xX ; -) to an epi-

morphism for j = 2n . In the tower of fiber sequences

X'k' ̂ X'k^ K(nnX'k , n)

the map Hj(X^ , Fp) —> lim k Hj(Xk ; Fp) is also isomorphic for j < 2« by

9.8 and thus

Hjn-iiXL, ; Fp) -» lim k H2n.x(X'k ; Fp) S H2n_x(X' ; Fpfnpx

is carried by Ho(FpooPn~xX ; -) to an isomorphism as required.
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10. ON THE  Fp-BADNESS OF S" V51

For n > 2, the p-adic completion S" V Sx —> Fpoo(Sn V5l) induces an

H¡( ; Fp)-isomorphism for i < 2n - 1 by Theorem 9.1. This result is best

possible by

Theorem 10.1. For n>2, the group H2n(Fpoo(Sn VS1); Fp) is uncountable.

This provides the first example of a finite complex which is Fp-bad, and we

devote the rest of this section to the proof.

By the Fp-nilpotent tower lemma of [6, p. 88] for n>2, Fpoo(S" V Sx) is

equivalent to the homotopy inverse limit of the tower

{M(Z/pk,n)\JK(Z/pk,l)}k>x

under Sn V Sx . Since the homotopy fiber of the pinching (or Postnikov) map

M(Z/pk , n) V K(Z/pk, 1) — K(Z/pk , 1)

is equivalent to the Moore space M(Z/pk(Z/pk), n), the homotopy inverse

limit construction gives

Lemma 10.2. For n>2, the fiber of the Postnikov map Fpoo(S" V Sx) -> FpooSx

is equivalent to the homotopy inverse limit of {M(Z/pk(Z/pk), n)}k>x.

In general, let M^ be the homotopy inverse limit of a tower {M(Gk, n)}k>x

of Moore spaces with n > 2 and Gk finite abelian. By 9.8, the natural homo-

morphism

HiiMoo ; Fp) -» lim k H(M(Gk, n) ; Fp)

is an isomorphism for i <2n -2 and onto for i = 2n- 1.

Lemma 10.3. The kernel of the above homomorphism for i = 2n - 1 is isomor-

phic to the cokernel of

HtoiKiGn, n) ; Fp) — lim k H2n(K(Gk , n) ; Fp)

where Goo = lim k Gk .

Proof. We form the homotopy fiber sequences

M(Gk, n) — M(Gk, n) -+ K(Gk, n)

with inverse limit

A/«, —» Moo —> K(Goc , n),

and we consider the exact sequence

H2nK(G00 , n) ; Fp) —> ̂ -i(^oo ; Fp) —> //2«-i(Mx. ; Fp)

-» H^-tiKiGeo, n) ; Fp) — H2n^2(Mx ; Fp).

Using 9.8 we find that the last map is an isomorphism for n > 3 and cor-

responds to   lim k Tor(Gjt, Fp) —> 0 for n = 2.  Thus, by the above exact

sequence, the desired kernel is isomorphic to the cokernel of

d : H2n(K(Gx, n) ; Fp) -+ H2n_x(Mx ; Fp).
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The lemma now follows from the isomorphisms

^-lÄ ; Fp) =• hmkH2n-i(M(Gk, n) ; Fp),

d : H2n(K(Gk, n) ; Fp) £ H2n_x(M(Gk , n) ; Fp).

For an abelian group A and integer n , let D„(A) = (A ® A)/R where R is

the subgroup generated by all x ® y - (- l)"y ® x for all x, y e A .

Lemma 10.4. The cokernel in 10.3 is isomorphic to the cokernel of

Dn(G00 ® Fp) -* lim fc D„(G^ ® Fp).

Froo/ For each k, there is a natural exact sequence

0 -» Gfc ® Fp ® F2 -> F>„(G¿ ® Fp) -» H2n(K(Gk, n) ; Fp)

-+H2n+l(K(Gk,n+l);Fp)->0

obtained using the Pontrjagin product and suspension. This sequence for k = oo

maps to the inverse limit of these sequences for i < k < oo , which is also exact.

Since Goo ®FP®F2 and H2n+X ^(G^, n + 1 ) ; Fp) map by isomorphisms, the

lemma follows.

10.5. Reduction of Theorem 10.1 to a lemma. By 10.2 for n > 2, there is a

homotopy fiber sequence

Afoo — Fpoo^vS^FpooS1

where M^ is the homotopy inverse limit of {M(Z/pk(Z/pk), n)}k>x . By 9.8

the only nontrivial groups H^M^, ; Fp) for / < 2« - 2 are i¿b(-Woo ; Fp) = Fp

and Hn(Mœ;Fp) a lim kFp(Z/pk). Moreover, by 9.9 and 9.11, the only

nontrivial groups

Hm(FpocSx ; H^M^; Fp))

for i < 2n - 2 are copies of Fp when (m, i) is (0,0), (1, 0), or (0, n).

Thus for Theorem 10.1, it suffices to show that Hx(FpooSx ; H2n-X(M00 ; Fp)) is

uncountable. Using 10.3 and 10.4, we obtain a natural short exact sequence

0 -» Dn( lim k Fp(Z/pk)) — lim t Dn(Fp(Z/pk)) — H^-^M^ ; Fp) -» 0,

and it now suffices to show:

Lemma 10.6. 77ze natural homomorphism

H0(Z£ ; F»„(lim Fp(Z/pk))) — //0(ZpA ; lim Dn(Fp(Z/pk)))

has uncountable kernel.

Proof. It suffices to show that

(®2 lim Fp(Z/pk))z/2xZ, ^ (lim ®2Fp(Z/p*))2/2xZA

has uncountable kernel, where Z/2 acts by x®y >-»• (-l)"y®x and where ZA

acts diagonally. This is equivalent to showing that

/¿z/2: (lim Fp(Z/pfc) ®fpZ; Jim Fp(Z/pk))z/2 ^ (lim Fp(Z/pk))z/2
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has uncountable kernel, where p is the multiplication map for the algebra

lim Fp(Z/pk) and where Z/2 now acts by x ® y i-> (-l)"ay ® ax on the

domain and by x h-> (-l)"ax on the target of p, using the antipodal automor-

phism

a: lim Fp(Z/pk) -* lim Fp(Z/pk).

Since the target lim Fp(Z/pk) of /¿ has

#i(Z/2; lim Fp(Z/pfc)) s lim ff, (Z/2; /^(Z/p*)) <= j ¡^
Z/2    for p = 2,

for p odd,

it now suffices to show that (kerp)Z/2 is uncountable. Clearly p is a Z/2-

equivariant FpZp -module map, where the action of the generator t e Z/2

commutes with the action of each r e FpZp via tr = (ar)t. Note that FpZp c

lim Fp(Z/pk) = Fp[[x]], and let K denote the field of fractions of the integral

domain FpZp . By 10.7 below, there exists an element o e lim Fp(Z/pk)

with a £ K. Hence the element £ = <7 ® 1 - 1 ® cr in kerp is nonzero

in K ®FpZA kerp and FpZp = FpZpÇ c kerp. Thus kerp is uncountable,

and this implies that (kerp)z¡2 is uncountable when p = 2. For p odd, the

elements £+ = \(£, + t£) and <¡f~ = j(i - tÇ) are in kerp, and at least one of

them is nonzero in K ®FpZ* ker p because Ç = £+ + Ç~ . Either

FpZpA s FpZpA<r c ker a    or    FPZ^ FPZ^~ ckerp,

and thus at least one of the groups (FpZ£Ç+)Z/2 and (FpZ^~)z/2 is uncount-

able. Since ( )z/2 is exact on Fp(Z/2)-modules for p odd, (kerp)Z/2 is also
uncountable.

We have used

Lemma 10.7. There exists an element o e lim Fp(Z/pk) with o $ K, where

K is the field of fractions of FpZp .

Proof. For each nonzero element c e lim Fp(Z/pk), let v(c) be the nonneg-

ative integer with c e /t,(e) and c £ /l,(c)+1 where / c lim Fp(Z/pk) is the

argumentation ideal. For nonzero elements, c, d e lim Fp(Z/pk), note that

c/d e lim Fp(Z/pk) if and only if v(c) >v(d). Let

D = (r,s,m, n,ax, ... , ar,bx, ... ,bs)

be a list of integers r, s > 1 and m > n > 0 together with elements ai, ... ,

ar e Fp and bx, ... , bs e Fp . Let So c lim Fp(Z/pk) be the subset given by

all
aiXi H-harxr

¿iyi + • • • + bsys

with xx, ... , xr e Zp  and yx, ... ,ys eZp  where

v(axxx-\-r-afxr) = m    and    v(bxyx-\-\-bsys)-n.

Now So is closed in lim Fp(Z/pk) with respect to the profinite topology. The

annihilating ideal of the image element of bxyx -\-h bsys in Fp(Z/pk) has
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pn elements, and thus the image of So in Fp(Z/pk) contains at most pk(r+s)+n

elements. Since Fp(Z/pk) contains pp" elements and

lim(pk^r+s)+n/ppk) = 0,
A:—»oo

So has empty interior in lim Fp(Z/pk). Thus the countable union \JdSd

has empty interior by the Baire theorem. Since this union gives the nonzero
elements of K n lim Fp(Z/pk), there exists o e lim Fp(Z/pk) with o £ K.

1 1. ON THE Fp-BADNESS of Sx V Sx

For a free group A on n < oo generators, the space

K(A, l)~Sx V---VS1

has Fp-completion

FpocK(A, 1)~K(A;, 1)

by [6, p. 114], where the p-adic completion Ap equals the p-profinite comple-

tion of A with the topology forgotten as in 5.1. We showed in [4, p. 57] that

HX(A£ ; Fp) * (Fp)n . With similar methods we can show HX(A$ ; Z) a (ZpA)" ,

and it is conceivable that H2(Ap ; Fp), like H2(A; Fp), is always trivial. How-

ever, using 10.1, we shall deduce

Theorem 11.1. For a free group A on at least two generators, the group

Hm(FpooK(A , 1) ; Fp) 2 Hm{A$ ; Fp)

is uncountable for m = 2 or m = 3 or both. In particular, the space Sx VS1 is

Fp-bad.

Proof. Let J denote the free simplicial group J = G(S2 V Sx) and recall from

5.1 that WJ£ ~ Fpoo(S2 V Sx). Thus by [6, p. 108], there is a natural first

quadrant spectral sequence {F(r .} converging to Hi+j(Fpoo(S2 VS1); Fp) with

Eij = Hj((Ji)p ; Fp),    dr: E¡j —► D\_rj+r_x.

Since Jo = Z , H0((Ji)£ ; Fp) « Fp , and HX((J¡)A ; Fp) s abJi®Fp , we find that

Eq j = 0 for j > 2, E2 0 = 0 for i > 1, and E2 , = 0 for / > 2. Thus, since

H4(Fpoc(S2 VSX) ; Fp) is uncountable by 10.1, H2\(J2)$ ; Fp) or H3((JX)£ ; Fp)
must be uncountable, where /, is a free group on i+l generators. The theorem

now follows from

Lemma 11.2. // H2((J2)£ ; Fp) is uncountable, then so is H2((JX)£ ; Fp).

Proof. Choose a normal subgroup A c Jx, such that Jx /A is a finite p-group
and A is free on > 3 generators. Then the sequence

NpA~(Jx)Z^Jx/N

is short exact by 4.2, and the lemma follows since H¡(JX/N; Hj(N£ ; Fp)) is

finite for j < 2 and uncountable for (i, j) — (0,2).
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