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AN ASYMPTOTIC ESTIMATE
FOR HEIGHTS OF ALGEBRAIC SUBSPACES

JEFFREY LIN THUNDER

Abstract. We count the number of subspaces of affine space with a given

dimension defined over an algebraic number field with height less than or equal

to B . We give an explicit asymptotic estimate for the number of such subspaces

as B goes to infinity, where the constants involved depend on the classical

invariants of the number field (degree, discriminant, class number, etc.). The

problem is reformulated as an estimate for the number of lattice points in a

certain bounded domain.

Introduction

The purpose of a height is to give an explicit quantification for how "com-

plicated" an object is. If S is a one-dimensional subspace of Q", the distance
between integral points in S is one way to measure how "complicated" S is.

For such a subspace, the integral points are of the form Zp, where p is a

primitive lattice point, i.e., a point in Z" with coprime coordinates. We define
the height of S, H(S), to be the Euclidean norm of the point p. Now two

primitive lattice points, Pi and p2, will be integral points in the same sub-
space if and only if pi = ±p2. Thus, the number of one-dimensional subspaces

of Q" with height < B is one-half the number of primitive lattice points in

the ball of radius B. By [5, Theorem 459], this number is asymptotically

(1) 2mB
as B —► oo,  where Ç is the Riemann zeta function and V(n) is the volume of

the unit ball in M".
The present paper is concerned with a generalization of this asymptotic for-

mula, where the one-dimensional subspaces of Q" are replaced by rf-dimen-

sional subspaces of K", where 0 < d < n and K is an algebraic number

field. It turns out that there is a natural way to define the height of a d-
dimensional subspace of Kn (see the end of this introduction). Fix the field K

and let M(n, d, B) be the number of ¿/-dimensional subspaces S a Kn with

H(S) < B.

Theorem 1. As B —> oo, we have

M(n,d,B) = a(n, d)Bn + 0(B"-b(n'd)),
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where a(n, d) and b(n, d) are explicit positive constants and the constant im-

plicit in the O notation depends only on K and n .

The values of the constants above are as follows:

Hn,d) = ma^{^,^-^},

where k is the degree of K over Q. Write k = rx + 2r2, where rx is the

number of real embeddings of K into the complex numbers C, and r2 is the

number of pairs of complex conjugate embeddings. Let S be the discriminant,

R the regulator, h the class number, and w the number of roots of unity of

K. Further, let Ck be the Dedekind zeta function of K, and introduce the

function V2(n) = V(2n). Given a function / defined for n = 2, 3, ... and

having nonzero values, introduce the generalized binomial symbol

I ñn, _ f(n)f(n-l)...f(n-d+l)
(Jld) f(2)f(3)---f(d)

defined for 0 < d < n,  with /(2)/(3) • --f(d) to be interpreted as 1 when
d=\. Note that (f\d) = (f\nn_d). With this notation,

hR ( 2» \{"-d)d+l /„Vl+r2

Note the symmetry of the result:  M(n, d, B) = M (n, n- d, B). It is known

(see [11, p. 433]) that

(2) H(S) = H(S±),

where S1- is the "orthogonal complement" of the space S in K" ;  S1- consists

of all vectors a = (ax, a2, ... , an) e Kn such that

a-ß = axßx+ a2ß2 + ■■■ + anß„ = 0

for all ß e S. Since dim/r S1- = n - dimjç S,  this explains the symmetry.

Theorem 1 generalizes two previous results. W. Schmidt [12] proved The-

orem 1 in the special case K = Q. Also, S. Schanuel [10] has done the case
d = 1 with a general number field, although with a slightly different definition

of height. When K = Q and d = 1, we have

so that our theorem implies the asymptotic formula (1).

Theorem 1 has an interpretation in the context of algebraic geometry. As is

well known, subspaces of given dimension d in Kn correspond to points on

a Grassmann variety (see below). Our result may thus be interpreted as count-
ing the number of points of height < B on this (projective) variety. Recently,
Franke, Manin, and Tschinkel [4] have studied the asymptotic behavior of the
number of points with height < B on Fano varieties (i.e., those varieties for

which the anticanonical bundle co~x is ample) which includes Grassmann vari-

eties as a specific example. However, they provide no formula for the constants

in the asymptotic relations. Also, they use the Arakelov height, so the exponent

on B is different. There is no method for counting integral points of height
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< B on a general variety. In our case we succeed because of the definition of

the Grassmann variety in terms of subspaces.

We end this introduction with the definition of the height of subspaces. Such

a definition had first been given in [11]. Let M(K) be the set of places of

K, and let a h-> «(') (1 < i < k) denote the embeddings of K into the

complex numbers, ordered so that the first rx are real and c¿'+rA = «(') for

rx + 1 < i < rx + r2, where 5 denotes the complex conjugate of the number a.

To each nonarchimedean place v e M(K), let | • |„ be the corresponding

absolute value on K, normalized to extend the p-adic absolute value on Q,

where v lies above the rational prime p. We also have the absolute value,

| • \v , for each archimedean place v e M(K), defined by

J |a(,)| for 1 < / < n,

'a'" = \ \a^cAi+rA\xl2   for rx < i < rx + r2,

where v corresponds to the embedding a r-> a'1' and | • | denotes the usual

absolute value on R.

For each place v e M(K), let nv be the local degree. We have the product

formula (see [8, Chapter 5]):

n i<"=i
v€M(K)

for all aeK* = K\{0}.
Given a vector a = (ax, a2, ... , a„) e Kn and ave M(K), put

/ Œ/Li \ai\l)"vl2   if v is archimedean,

\ maxi<,<„ |a,|""    otherwise.

Note that, by the product formula and the definitions,

n 11^11«= n k». n nan„= n n«»»
v€M(K) v€M(K) v€M(K) veM(K)

for all aeK*. Thus, we may define the height of a one-dimensional subspace,

KacK",  a/0,by

H(Ka) = H(cc)=    J]    ||a||„.
v€M(K)

There are other definitions of height. We use this one here in order to simplify

our argument (in particular, the statement of Theorem 2 below).

Let aeK" be as above and denote by [ a ] the fractional ideal generated

by the components, ax, a2, ... , an of a . It is well known (see, for example,

[8, Chapter 5]) that

H    ||a||„ =#([£*])-',
V£M0(K)

where Mo(K) denotes the nonarchimedean places of K and A is the norm of

the ideal.
We thus have

//(«) = A([a])-' .ni|a(')|| = A([a])-' • f[ \\a^\\e',
;=1 i=l
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where || • || denotes the usual norm on C" :

iiaii = ( Ya'a'}

and

It will be convenient to write

H00(a)= nV'Ys
/=]

so that H(a) = A([a])-'i/0O(a).

Now suppose S is a úf-dimensional subspace of K" , where 1 < d < n . If

ax, a2, ... , ad are a basis for S over K, we can form the wedge product (see

[7, Chapter 7]):

ax A a2 A ■ • • A ad 6 K^i,

where (d) is the binomial coefficient, d],^Ldy ■ Also, we have

a. A a2 A • • • A ad e K*(ßx A ß2 A • ■ • A ßd)

if and only if the a's and the ß 's span the same subspace. (For proofs, see

[7].) Thus, the wedge product will give a one-to-one (though not generally onto)

mapping of ^-dimensional subspaces of K" to one-dimensional subpaces of

Ku>. Any such x = ax Aa2 A • • • Aad is called a set of Grassmann coordinates

of S. Such an x is determined up to a scalar multiple. We define the height of

the subspace S as H(S) = H(x). Finally, define

H({0}) = H(K") = 1.

A vector in K^> is called decomposable if it is of the form ax A <x2 A • • • A ad

for vectors ax, ot2, ... , ad in K" . Such vectors, for a fixed d, form a variety,

called the (affine) Grassmannian or Grassmann variety. Given a subspace S,

we may choose [ x ], where x is a set of Grassmann coordinates of S, up to

multiplication by a principal ideal. One may fix an ideal 21 in each ideal class

and count the number of points x on the Grassmann variety with height < B

and with [ x ] = 2t. After dividing out by the action of the units, this translates

loosely into counting "lattice points" on the variety. This is how S. Schanuel

proceeds in [10], when the Grassmann variety is just K" .

Last, but not least, the author would like to take this opportunity to thank
his thesis advisor, W. Schmidt, for the help and encouragment he has given.

2. A SKEWED HEIGHT AND A REDUCTION

The definition of height for a subspace of dimension greater than one given in

§ 1 seems somehow removed from the idea that the height should measure how

"complicated" it is. Recall that we started with a one-dimensional subspace

of Q" and used the distance between integral points of the subspace as the
height. In this case, the integral points are of the form Zp, where p is a

primitive lattice point. In other words, the integral points of a one-dimensional

1 if / < rx

2 ifi>rx.
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subspace of Q" form a sublattice of dimension 1 of Z" (see below). Similarly,

one sees that the integral points of a d-dimensional subspace form a sublattice

of dimension d. Thus, the determinant of the lattice of integral points of the

subspace gives a measure of how "complicated" the subspace is. In fact, this is

what our definition of height turns out to be in the special case K — Q.

Now for a general number field, the integral points of a ^-dimensional sub-

space will form an Ok -module, where Ok is the ring of integers in K. But

this module will not in general be free, so one cannot apply the idea of a deter-

minant without more work. Our first task is to get an alternative definition of

height which generalizes the ideas above.
For X e Rnri © C2"'2 we write

X = (xi, x2, ... , xK),

where
J R"   for 1 < i < rx,

*' S I C"   for rx<i< k.

Let E"* c R"r' e C2"'2 be given by the set of points satisfying

x/+rj = x7       for rx < i <rx+ r2.

For X and Y in EnK ,  we define the inner product of X and Y to be X • Y,

the usual inner product in C"K .  Thus, for X = (xx, x2, ... , xK) and Y =

(yi,y2,...,yK) in e"\

r, ri+2r2

X-Y = Yx>'Yi+ Y *'*■
¡=1 i=r, + \

One easily verifies that, under this inner product, EnK is a_Euclidean vector

space of dimension nx . In particular, X • Y is real and X • Y = Y • X.
We embed K" into EnK as follows: let p: K" -» EnK be defined by

p(a) = (a^,a^,...,a^),

where the maps a >-> a^ denote the embeddings of K into C, ordered as

above.
By a lattice A in a Euclidean space E, we will mean a discrete subgroup of

the additive group E. The dimension of the lattice A is the dimension of the

subspace spanned by A. Suppose Xi, X2, ... , Xm are a basis for A,  so that

m

A = 0ZX,.
1=1

The determinant of A, written det(A), is defined to be

det(A) = f    det   (X, * X,) ]     ,
\i<ij<»i /

where X * Y denotes the inner product in E of X and Y. By convention,

det({0}) = l.
For a subspace S c Kn , we write I(S) for the set SnDK , the integral points

of S.
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Theorem 2. If S is a d-dimensionalsubspace of K" , where 1 < d < n,  then

p(I(S)) is a dx-dimensional lattice in EnK with

H(S) = VW\~ddet(p(I(S))).

(Recall that ô is the discriminant of K.)

This is basically [11, Theorem 1], where a slightly different embedding is used.
The proofs are entirely similar. Theorem 2 is the tool needed to compute the

height of subspaces using a geometric object which is more easily studied than

a point on some variety. Of course, everything we do will have an associated

meaning in the context of Grassmann varieties. But the insight is from the

setting of lattices in a Euclidean space, not from the variety.
We wish to prove Theorem 1 inductively, which means we will need a way to

build up d-dimensional subspaces from smaller pieces. If & is a d-dimensional

subspace of the (d + 1 )-dimensional space S+, then S+ = S © Ka , where

a e K\S. The lattice p(I(S+)) will consist of the lattice p(I(S)) and a piece

coming from a. In particular, the height of S+ will be the product of the height

of S and a term depending on a. We will determine this term explicitly.

For S a subspace of Kn , S^ = {a(i) : a e S} will be a subspace of

(K^)n C r r" if 1 < I < A", ,

if fX<Í< K.

For a subspace V e R" , let Va- be its orthogonal complement. Similarly, for

V a subspace of C" , let V1- be the orthogonal complement:

V1- = {x € C" : x • y = 0 for all y G V}.

Let 7T(!) be the orthogonal projection from R" or C" onto (S^)1- when 1 <

i <rx or rx < i < k , respectively. Define

jC'xjfflx-x««*).

so that

n(X) = (^X\xX),...,n^(xK))

for all X— (xx, ... ,xK) e E"K. Note that n o p is linear on K" and vanishes

only on S. We remark that (S^)1- is not necessarily defined over K^ . When

we write n we assume the subspace, S, is given.

Let à be a nonzero element of the factor space K"/S. We define

3(à) = {aeK:aaeS + D"K}.

Note that the definition of 3(a) indeed only depends on the class, à, of a.

Clearly, 3(a) is a fractional ideal. We define the height of à e K"/S to be

H(ä) = N(3(ä))f[\\n^(a^)\\,

where || • || denotes the usual norm on R" if 1 < z' < rt, or on C" if rx < i <k.
Now 3(aá) = (l/a)3(ä) for any a e K*, where (1/a) denotes the principal

ideal generated by 1/a. Also

J \\n^(aa^)\\ = f[ \a&\ ■ ]\ H^'V0)!! = N(a) f[ \\n^{a{i)
i=i (=i i=i í=i
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Hence, we may define the height of the one-dimensional subspace Kà c K"/S
as H(Kà) = H (à). Note that this skewed height reduces to the usual height

when S = {0}.

Theorem 3. Let S be a d-dimensional subspace of K" , where 0 < d < n, and

let à be a nonzero element of the factor space K"/S. Set S+ = S® Ka. Then

H(S+) = H(S)H(Kä).

Proof. We will use Theorem 2. After multiplying by a suitable constant, we

may assume 3(a) is an integral ideal. Let ax,a2, ... ,aK be a Z-basis for

21 = 3(a). For each i,  1 < i < tc, there is a ß, e S with

ßi + a¡a e DnK,

by the definition of 3(a). Each integral point in S+ will then be the sum of

an integral point in S and rational integral multiples of the points fi¡ + a¡a.

Thus,

K

(3) p(I(S+)) = p(I(S)) © 01p(ßi + a¡a).
í=i

Now for x e S and y € K", we have p(x) and nop(y) are orthogonal. Using

the linearity of nop, and since nop vanishes on S, we obtain

(4) det(p(I(S+))) = det(p(I(S))) • det (0 Zn o p(a¡a)) .

Since 21 is integral, A(2t) is the index of 21 in Dk ■ Thus, as Démodules,

2la has index A(2l) in D^-q. This gives

0Z7t o p(a¡a) = no p(VLa)
/=i

has index A(2l) in

0 Zn o p(b¡a) = no p(DKa),

i=i

where bx,b2, ... ,bK is a Z-basis for £>k-
We have

f det ( 0 Zn o p(bia) ) ]   =    det   (a, • aj),
V   Vil //    l*,J*K

where a, is defined to be n o p(b¡a) for 1 < i < k. From the definition of n

and p, we see that

a.-a^^^fll^)^'))!!2,
i=\
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so that the matrix (a,■■ • a7-)i<i,j<K is the product

[b\l)\\nA)(aA))\\    ...   b{xK)\\n^(a^)\\\

\bkl)\\n^(aA))\\    ..'.    b{KK)\\nW(aW)\\)

f b[l)\\nA)(a^)\\    ...    bP\\nW(aW)\\\

\b[K)\\n^(a^)\\    ■••    bkK)\\nW(<*M)\\)

and the determinant

K

det   (araJ)=ôY\\\nt-i\a^
l<i,j<K .    ,

We thus have

(5) det 0zso/»M Ul^nil^'V0)!!-
\/=l / ¡=1

Theorem 3 now follows from (4),  (5), and Theorem 2.

In what follows, we will also need the following result.

Lemma 1. Let ÍH be an UK-module in K" spanning a subspace of dimension

d and let 2t be any ideal. If we let 219TÍ denote the set of finite sums

| Y aimi '■ a>; € a and m, effl\,

then we have
det(p(KWl)) = N{%)d det(p{M)).

Proof. First suppose 21 is a prime ideal. We will localize. Let S = O*\2l and

Da = S~XDK • Then 9Jta = S~xm and 5_12lima   are both Da -modules with

[SDTa : ̂ -'aOJlia] = [9K : aSDt]   and   [Da : S"1«] = [D* : 21] = A(2l)

(see, for example, [1, Chapter 13]). The purpose of localizing is that Da is a

principal ideal domain, so that 9Jla is a free Da-module of rank d. We thus

have

[9JI : 21971] = [0tta : S-'2lOJta] = [Oa : S-X%\d = N(%)d .

Since p is one-to-one on K" , the result holds for 21 prime, and hence for any

integral 21.
In general, let 21 = *B~X£, where <B and € are both integral ideals. By what

we have shown,

N(*&)d àet(p(Wl)) = det(p(£DJl)) = N(€)d det(p(m)),

which proves the lemma in general.

3. The Main Term and the Main Error Term

We will prove Theorem 1 by induction on n. We will need the following

result.
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Theorem 4. For 1 < d < n, we have M(n, d, B) <c B" , where the constant

implicit in the notation depends only on K and n.

This is one half of [11, Theorem 3]. This will also be a corollary of Lemma

15 below.
We think of K"~x as being embedded in K" :

K"-x = {a = (ax,a2,...,an-X,0)eK"}.

By Theorem 4, M(n - 1, d, B) = 0(B"~X). Thus, it suffices to count d-
dimensional subspaces S of K" satisfying S <t Kn~x. Suppose S is such

a subspace. We then have a unique (d - 1 )-dimensional subspace of K"~x,

namely S~ = S n K"~x,  and a one-dimensional subspace Kà c K"/S~~ with

S = S~ © Ka.

Since S <t K"~x, we may choose the unique representative a of the class à

with last coordinate equal to 1. So a is of the type (ßx, ß2, ... , ßn_x, 1) =

(ß, 1),  say, where ß eK"~x.

Now suppose S~ is a (d - 1)-dimensional subspace of K"~x. Let

p:K"-x ^E("-1)K

be defined as above, with n - 1 in place of n.  For ß in the factor space
K"-x/S-, let

3(~ß) = {a e K : aß e S~ + D"K-X},

as above. Define 3*( ß ) = 3( ß ) n 0K , the largest integral ideal contained in

3(ß).    _

Let (ß,l)eK"/S be the class of (ß, 1). We easily have

3((ß7l)) = {aeK:a(ß,l)eS + DK} = 3*(~ß).

We summarize this discussion with a lemma.

Lemma 2. Let S~ be a (d - l)-dimensional subspace of K"~x, where 1 < d <

n, and ß e Kn~x/S~. Then the d-dimensional subspace S c K" given by

S = S~ © K( ß, 1) has height

r\+r2

(6) H(S) = H(S-)N(3*(~ß )) [] (ll*(/)( ßil))\\2 + If'72,
i=i

where n^ is defined as above, with respect to S~ . There is a 1-1 correspondence

between such pairs (S~ , ß ) and d-dimensional subspaces S c K" with S <£.
K"-x, i.e., if

Sx®K(ßx, l) = S2-®K(ß2, 1),

where Sx , S2~ c K"~x and j?, e K"-x/S~ for i=l and 2, then

Sx = S2~      and        ~ß\ = ~ß2,

and every S c K" with S <£ Kn~x has such a decomposition.

Proof. The only statement remaining to be proven is (6). This is an easy ap-

plication of Theorem 3, using 3*( ß ) = 3( ß, 1).



404 J. L. THUNDER

It will be convenient to have a more compact notation for

f[(\\nW(ßW)\\2 + iy'2.
1=1

We will henceforth write H$(ß, 1) for this quantity.
Define the following sets:

L(%,S,B) = i^eK"-x/S: faÔ, 3(ß) D 21 and Hs(ß, 1) < m*H{S) }

and

1(21, S, B) = {ß e L(2l, S, B) : T(ß) = 21},

where 5 is a (d - 1)-dimensional subspace of K"~x and 21 is any fractional

ideal. Note that L(2t,5, B) is empty if 21 is not integral, since 3*(ß) is

always integral. Denote the cardinalities of L(2t, S, B) and L(2l, S, B) by

A(a, S, B)_and X(7L,S,B), respectively. We will compute L(2l, S, B) and
recapture L(2t, S, B) with an inversion.

Let p be the Möbius function on ideals: p(Ok) = 1, p(tyv) = -1 if ip is a
prime ideal and v - 1 and = 0 otherwise, and /i(2l03) = /¿(2l)/i(03) if 2t and
03 are relatively prime.

One easily verifies that, as in the case for the rational integers (see [5]),

^ f 1   if3 = DK,

<7» £"(,5) = {o   «herw.se.

Lemma 3. For 2t integral,

X(*,S, B) = Yri{£)*(%£~1, S, B/N(<t)).
<t\<n

Proof. For 21 integral,

BN(<£)\X(%,s,B) = Y*(£>s>
/elm >

Setting 03 = 21GT1 gives

A(2i) ;

Thus,

¿(21, S, B) = 5] 1(2103-' , S, B/NVB)).
53|2l

ZM(*r'.S.jfei)

£X(*3_1'5'a4))¿>((Í)-ti« \ V    / /    -.]*3T|2t v   "   C|3

= 1(21,5,5)       (by (7)),

where 3 = 03 C.
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Lemma 4. For 1 < d < n,

M(n,d, B) = YHY,^)^~'. S> B/N(€)) + 0(B"~x),
a    5 c|a

where the first sum is over integral ideals 21 satisfying A(2l) < B,   the sec-

ond sum is over (d - l)-dimensional subspaces S c Kn~x satisfying H(S) <

5/A(2l), and the constant implicit in the O notation depends only on K and

n.

Proof. Note that Hs(ß,l)>l. Thus,

L(%,S,B)cL(%,S,B) = 0   if m)H(S)<l-

By [11, Lemma 8], H(S) > 1, so both sets are empty if A(2l) > B. By Lemma
2 and Theorem 4,

M(n,d,B) = YYJ^>S>Bî + 0(B"-X).
a    5

The lemma follows from Lemma 3.

We estimate M(n,d,B) by estimating X(%<L~X, S, B/N(€)) and using
Lemma 4. We transform this into estimating the number of lattice points in a
domain.

For the remainder of this paper, the constant implicit in the <c notation will

depend only on n and K, unless specifically stated otherwise. Also, we will

use the notation 03"_1 for the subset of K"~x,

03 x 03 x ••• x 03 ,

n— 1 times

where 23 is any fractional ideal.

We map E("_1)K into R("-1)K by a linear transformation T: E(""1)K -►

R(n-1)K, defined by

r(X) = r((Xl,x2,...,xK))

= (xi, x2, ... , xr,, xri+i, xri+2, ... , xri+r2),

where, for x, = (xiX, xi2, ... , x((„_i)) and i = rx + l, rx+2, ... ,rx+r2, we

define
x- = (Reí*,-,), Im(x(1), ... , ReC*,-,,,-.)), ImCx,-^..))).

One sees that the determinant of T is 2~rAn-x). For Y e Rt"-''* , we write

Y = (yi,y2, •■•,yr,+r2),

where
ln~x       for I <i<rx,

')   for rx + 1 < i < rx + r2.

Now let A be an /-dimensional lattice in R^ spanning a subspace V. Let

Xx < X2 < • • ■ < X¡ be the successive minima of A with respect to the unit ball
in V. Pick linearly independent points y, e A (the choice is not necessarily
unique) satisfying |y,| = A¿ for i = 1, 2, ... , I. Define

l-i

A-'=An0Ry;       for / = 1, 2,...,/-l
y=i

r R"-1
h e 1 R2«"-



406 J. L. THUNDER

and A_/ = {0} . Minkowski's second convex bodies theorem [2, Chapter VIII]

asserts that
2'
jdet(A) <XXX2---X¡V(l) < 2ldet(A).

Since the successive minima of A-' are, by construction, Xx < X2 < ■■■ < A/_,

for i < I, we have det(A~') is minimal among sublattices of A of dimension

We have that A(2l£_1, S, B/N(€)) is precisely the number of nonzero lattice

points X e n o p((£21-x)n~x) c £<"-'>* in the domain

jxa«:xel',.dn(H't,r<sisis|,

where V is the subspace of E*"-1'* spanned by nop((<L%~x)n~x). Equivalently,

if we denote by V the composition Ton op, then X(Wrx, S, B/N(€)) is

the number of nonzero lattice points Y e r'((€2l_1)"_1) in the domain

|y e RC-»* : Y e T(V) and  ff (||y/||2 + l)^2 < g(5^(a) | •

For x e (0, 5/A(2l)] and 0 < m < (n - d)x,  let V(%,x,B,m) denote
the sum of the m-dimensional volumes of the projections of the domain

D(x) = |y e *»-"* :   n2(l|y,||2 + l)Ci/2 < ^y|

on the various coordinate spaces obtained by equating (n - d)x - m of the

coordinates to zero. Let F (21, x, B, 0) = 1.

We define the Main Term to be

W V u<£) F(2i ' H{S) ' B ' {tl - d)K)

*ms det(P((<£2l-')'!-1))

and the Main Error Term to be

V(K,H(S),B,m)
EEE E det[(r'((<£2l-1)"-1))-[("-</)K-w1]'
a  c|a  5      m=o LV    vv '     " s

where in both cases the first sum is over integral ideals 21 satisfying A (21) < B

and the third sum is over (d - l)-dimensional subspaces S c K"~x satisfying

H(S) < ß/A(2l).

Lemma 5. For 1 < d < n,

\M(n ,d,B)- Main Term\ « Main Error Term + 0(B"~X).

Proof. Fix a (d - 1)-dimensional subspace S C K"~x and integral ideals 21

and <£. After applying a unitary transformation, t, of R^"-1'*, we have

X(£%L~X, S, B/N(<t)) is the number of nonzero lattice points

Y e T(r((C2t-')"-')) = A c R{"-d)K

in D(H(S)).
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Notice that D(H(S)) is a domain such that any line intersects it in a set of

points which, if not empty, consists of the union of at most (n - d)x intervals.

Also notice that if

Y=(yx,y2,...,y{n_d)K)eD(H(S)),

then

Y' = (y'x,y'2,...,y'(n_d)K)eD(H(S))

if \y'i\ < \y¡\ for 1 < i < (n — d)x. Lemma 5 thus follows from [13, Theorem

2 or the appendix] and Lemma 4.

4. Refinements in the Main Error Term

The terms in Lemma 5 look fairly nasty as they stand, especially the lattices.

It is the goal of this section to get a more workable formulation of Lemma 5.

Let A be a lattice in a euclidean space E, with inner product *, spanning

a subspace V. The polar lattice, Ap, is defined to be the set of all points y e V

with rational integral inner products y * x for all x 6 A.

Lemma 6. Let S be a (d - l)-dimensional subspace of K"~x and let S"~d be

the "orthogonal complement" of S in Kn~x defined in the Introduction.  Let

03 be any fractional ideal. Then, for X= (xx ,x2, ... ,xK) e n o /?(03"_1), the

complex conjugate of X lies in the polar lattice:

X=(xx,x2,...,xri, x^T, ... , x7) € (p(<B-xI(S"-d)))p.

Proof. We have X = Y + Z, where Y = (y*1', y(2>, ... , yM) G p(<Bn-x) and

Z = (zi, z2, ..., Zk) satisfies z, e S^ for /' = 1, 2, ... , k . Let

W = (w(1), w(2), ... , w(K)) e p(<B-xI(Sn-d)).

Then (recall the definition of inner product in E'"-^* )

K K K K

x . w = y * *, = E y(/) •w(0 + Ez' •w<0 = E(y ■ w)(0 »
¡=i        i=i i=i i=i

since z, • w(,) = 0(,) = 0 for all / = 1, 2, ... , k. But since the components of

y are in 03 and the components of w are in 03_1, the product y • w will be

integral. The last sum is the trace of an integer, hence a rational integer, and

the lemma is proved.

We may replace the T'((£%l~x)"~x) occurring in the Main Error Term with

n o p((£Ql~x)n~x), since T is a linear transformation which only introduces a

constant multiple depending on A^and n in the determinant of nop((€^L~x)"~x).

By Lemma 6, we may replace this lattice with (p(Qi£~xI(S"~d)))p. One may

well ask if we are "giving up" too much by doing this. We will show here that

we are not: making this change will only introduce another constant multi-

ple depending on K and n, and, in fact, the two lattices are the same when

K = q.
Every vector in p((<L%-x)"-x) will either be in p(£%-xI(S)) or will be the

sum of a vector in p(S) and a vector in n o p((<¿%.~x)"~x). We thus have, by
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Theorem 2 and Lemma 1,

Het^^firoi-'V-hï     det(/>((£ 2t-1 )"-'))

(8) A(g2t-ir-yi¿i

7Vr(fr2l-i)íí-iv^|íí-1//(ic;)

= ^(Ca-1)"-d>/j¿Í,l"<'Jr7(5)-1.

It is easily shown (see [2, Chapter 1, Lemma 5]) that the determinant of the polar

lattice is the reciprocal of the determinant of the original lattice. Therefore, by
Theorem 2 and Lemma 1,

det(/?(2t<r1/(y!-'i))/>) = [det(^(2Kt-1/(5"-d)))]-1

= N(£QL-x)n-d^\ô\d~nH(S"-d)-x

= VW\2{d~n)det(7r o p(£QL-xI(S))),

since H(Sn~d) = H(S).

For the moment, let A = p(^t€-xI(S"'d)). Let Xx < X2 < ■■■ < X{n_d)K be

the successive minima of A and px < p2 < ■•• < P(n-d)K De the successive

minima of Ap with respect to the unit ball in the space spanned by A. By

Mahler [9] (Theorem VI of Chapter VIII in [2]),

c < XiP{n_d)K_i+x <c'      for i =1,2, ... ,(n-d)x,

where c and c' are constants depending only on (n - d)x .

Using this fact together with Minkowski's theorem yields

(n-d)K-i (n-d)K

[de^A')-')]-1 « n hx« n xJ
;=i j=i+1

ny^ det(A)
n'=1A;        det(A-[(«-^-'l)

for i = 1,  2, ... , (n - d)x. We summarize our discussion up to this point.

Lemma 7. The Main Error Term is
(n-d)K-\

«EEE    E     V(%,H(S),B,m)det(p(m~xI(S)))

'det(p(m-xI(S))-m)'
a c|a  s     m=o yHK v  "     '

where the first sum is over integral ideals 21 satisfying A(2t) < B and the

third sum is over (n - d)-dimensional subspaces S c K"~x satisfying H(S) <

B/N(OL).

We now determine the growth of the successive minima of p(QL£~xI(S)).

Lemma 8. Let aG03/(iS), where S is any subspace of K" and 03 is any frac-

tional ideal. Suppose a / 0 and let X = ||p(a)||. Then there are ax, a2, ... ,
aK e 03/(5), linearly independent over Q, satisfying ||p(a,)|| < X for 1 < i <

k. In particular, if a e K* we have

(9) \\p(aa)\\<c(a)X,

where c(a) is a constant depending only on a.



AN ASYMPTOTIC ESTIMATE FOR HEIGHTS OF ALGEBRAIC SUBSPACES 409

Proof. We have

||^(a)||=ÎÇ||aWll2X

Letting c(a) = maxi<7<<c |a(;)| gives (9).

Now choose a Z-basis ßx, ß2, ... , ßK of Ok- We let a, = y?,a. Then

a, e 03/(5) and ||/>(q,-)|| « \\p(a)\\ for 1 < i < k. Since the /?, 's are a basis

for K over Q,   a¡, a2,... , aK are linearly independent over Q.

Lemma 8 says that the successive minima grow in groups of k. This suggests

that they are coming from lower-dimensional subspaces. We will follow through

with this line of thought.
Let S be an /-dimensional subspace of K" and let 03 be a fractional ideal.

Let Xx < X2 < ■ ■ ■ < X¡K be the successive minima of />(03/(S)). We define
/'-dimensional subspaces S, c 5 and minima px < p2 < ■■■ < Pi, as follows:

So = { 0 } , and recursively

pi+x = min{A/ : there exists an ai+x e 03/(5)

with ai+x i S, and ||/>(a¿+.)|| = X¡}

and

5,+i = St © Kai+X       for 0 </'</- 1.

These subspaces are not necessarily uniquely defined by these conditions; at
each stage one may need to make a choice.

Lemma 9. Let S, 03, and px, p2, ... , p¡ be as above. Let 1 < i < I and let
X'x <X'2< ■■■ < X'iK be the successive minima of />(03/(5,)). Then

4-1)*+/ « Pi < ¿{i-X)K+J      for l<j<K.

Proof. Let ax, a2, ... , a¡ be as above in the definition of the p, 's.   Let

ßx, ß2, ... , ßK be a Z-basis for Dk■ Then, for 1 < j < k and 1 < k < i,

ßjakeSi   and   \\p(ßjak)\\ « \\p(a¡)\\ = p¡,

by Lemma 8 and the construction of 5,. This shows that

%i-i)K+j ^ Kk < ßi       for l<j<K.

Next, for 1 < k < (i - 1)k + 1, pick Yk e p(03/(5,)), linearly independent
over Q, satisfying ||Yfc|| = X'k. Say Y* = p(ßk). Since Yi, Y2,..., Y(,_1)K+1

span a subspace of dimension (i - 1)k + 1 > (i - 1)k in EnK, there must be

ß\, ß'2, ... , ß\ among the ßk 's which are linearly independent over K. Thus,

there are / linearly independent points ß\, ß2, ... , ß\ e 03/(5,), satisfying

||/>()ï[)|| < ¿'(,-i)K+i for 1 < k < i. This implies p¡ < X'{i_X]K+j for 1 <j <k.

We now have a workable method for dealing with the lattices occurring in

Lemma 7.

Lemma 10. Let S bean (n -d)-dimensionalsubspace of K"~x. Let 03 beany

fractional ideal. For 1 < j < k and 1 < i < n - d - 1,

N(<S)i+j/KH(Si) (Hff(gl?)      »« det(/>(03/(S))-[<"-d-'>-^).
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Proof. Let X\ < X2 < ■■■ < X'iK be the successive minima of p(*BI(S¡)), let

X{ < X2 < ■■■ < X'/i+XiK be the successive minima of /j(03/(5,+i)) , and let

X\ < X2 < ■■■ < X(„_d)K be the successive minima of p(*BI(S)). By Lemma 9,

with I = n - d and n - 1 in place of n ,

iK        (U(i+X)K V'\ilK iK        /('"+1)K      \J/K { iK      \

n^fef   »«ik n 4'   »« 114 (jw
/t=l \   llir=lA/fc   / k=\ \k=iK+\      J \k=\      /

(ÍK \ ÍK+j

IIa* (^+i);»<< n^-
A:=l      / fc=l

But by Theorem 2, Lemma 1, and Minkowski's theorem,

i*     /rT(!+),c;"\ /

,mK=,4;        .v ^v7/(5,.)

N&y+J'*H(Si) (^L

and
1K+J

H 4 »« det(p(03/(5))-[('!-</-,')'c-^).

fc=i

Lemma 10 is fairly sharp. However, we will not need to use quite so strong

a result to prove Theorem 1. We now state our final version of the Main Error

Term, the version we will compute below.

Lemma 11. The Main Error Term is <c the maximum over 1 < i < n - d and

i<j<K  of

EEEE v&> H(S)> B> \n-d-(i-l)]K-j)N(m-x)n-d-M-ilK^^,
a  e|a   t   s \   '

where the first sum is over integral ideals 21 satisfying A(2t) < B, the third sum

is over i-dimensional subspaces T c K"~x satisfying H(T) < (/?/A(2l)),/("~d),

and the last sum is over (n - d)-dimensional subspaces S c A^"-1 satisfying

H(S) < B/N(QL) and T = 5,, where 5, is defined with respect to the ideal
2UT,-1.

Proof. Lemma 10 implies that, for 5  an  (n - d)-dimensional subspace of
K"-x,

[det(p(2lC-1/(5))-[,!-ti-(,-1)1'c^)]-1 « N(m-x)-(l-X)-jlKH(Si)-jlK

for 1 < / < n - d - 1 and 1 < j < k. Hence, by Lemma 7, the Main Error

Term is

<< EEEE E F(a'"(S),/*, [«-¿-(¿-i)]*-/)
a  c|a  s   i=i j=\

• N(°L£-x)n-d-i+x->/K   H^
{^   ' H(S¡)J/*'
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By Lemma 9, if X\ < X'2 < •■■ < X'iK denote the successive minima of

/)(2lC_1/(5,)) and Xx < X2 < ■■■ < X/„-d)K denote the successive minima of

p(m-xI(S)),then

((n-d)K      \'/("-^

ii4« n 4
k=\ \  k=l

Hence, by Minkowski's theorem, Theorem 2, and Lemma 1,

N(VL<rlyH(Si) « (N(m-x)n-dH(S))i/{n-d)

and H(Si) < H(SyA"-d). The lemma follows.

5. Some technical lemmas

In estimating the Main Error Term and the Main Term, we will often make

estimates by partial summation. All of these estimates follow the same general

pattern, so we carry out the arguments here and simply quote the following

result when needed.

Lemma 12. Let & be a set together with a function g taking 6 to the ray

[1, oo). Suppose the cardinality of the inverse image of [1, x] satisfies

card{g-x([l,x])} = cxxc> + 0(xc>),

where cx,  c2,  and Ct, are positive constants.  Let M > 1  and let F be a

Cx-function on (0,M) suchthat F'(x)<0 and increasing on (0,M). Then

YF(g(w))< /    xc*-xF(x)dx,
wee

and if F(M) = 0,  then

¡■M /   f2 pM \
Y F(g(w)) = -cx /    xClF'(x)dx+0    /   xCi~lF(x)dx - I    xc>F'(x)dx    ,

where the sums are over elements w e & with g(w) < M and the constant

implicit in the O and -c notation depends on cx and c2 .

Proof. Let M = s + t, where s eZ+ and t e [0, 1). Define Px(x) to be the

number of w e & with x < g(w) < x + 1 and P2(x) = Px(x - 1). Suppose

F(M) = 0. Since g(w) > 1 and F is decreasing,

(-iy Y F(S(W)) > (--i)J(Pj(t)F(l) + Pj(t+l)F(t+l)
w€&

+ --- + Pj(s + t-l)F(s + t-l))

= (-iy(Pj(t)(F(l)-F(t+l))

+ (Pj(t) + Pj(t+l))(F(t+l)-F(t + 2))

+ ... + (Pj(t) + PJ(t+l) + ... + PJ(s + t-l))

■(F(s + t-l)-F(s + t))),

for j equaling 1 or 2,  since F(s + t) = 0.
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Define Rx(x) to be the number of w e 6 with g(w) < x + 1, and define

R2(x) = Rx(x - 2). Since F'(x) is increasing, the mean value theorem gives

YF(g(w))<-Rx(t)F'(l)-Rx(t+l)F'(t+l)-Rx(s + t-l)F'(s + t-l)
wee

and

Y F(g(w)) > - R2(t + 2)F'(t + 2)- R2(t + 3)F'(t + 3)

-R2(s + t-l)F'(s + t-l).

wee

This gives

5-1

Y F(g(w)) + cxY(t + J)C2F'(t + j]
wee /=2

i-i

« Rx(t)F'(l) -Rx(t+ l)F'(t + 1) - Y(t + JY3F'(t + j).
;=2

Since

-Rx(t)F'(l)-Rx(t+l)F'(t+l)<^- [ xc>F'(x)dx
Jo

= xC2F(x)\l + c2 f xc'-xF(x)dx< I xc*-xF(x)dx,
Jo Jo

the second part of the lemma follows. For the first part, we have

Y F(g(w)) < - Rx(t)F'(l) -Rx(t+ l)F'(t + 1)
wee

-Rx(s + t-l )F'(s + t-l) + Rx(s + t)F(s + t)

< - /    xC2F'(x) dx + M^F(M)
J\/2

çM
= -xC2F(x)\1í/2+ /    xc*-xF(x)dx + MC2F(M)

Jl/2

pM
< /    xc*-xF(x)dx.

Jo

For m a positive rational integer, define

Em = {(«i, cx,n2,c2,... ,nm,cm): c¡ e {1, 2}

and c¡ < n¡ < c¡(n - d) for all /}.

For o e¿Zm and x e (0, 1], define

/.       m■■■ \u:'~x duj,
JD«(*)jJi

where Da(x) is given by \~["j=x(u) + l)Cj/2 < 1/x and w, > 0 for all j. Such

integrals will appear in the summands of

V(QL,H(S),B,[n-d-(i-l)]K-j).
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Lemma 13. Let o elm. Unless o = (1, 1), we have f/,(x) < 0 and increasing

on (0, 1].

Proof. We will prove the lemma by induction on m. If m = 1, then

fa(x) =x un<-1 dux = —(x~2^ - I)"1'2,
Jo "1

ft(x) = — (x"2/c> -1)"'/2-1 - ±x-2'c>(x-2'c> - iy'2-x
nx cx

= -(x-2/c'
«1

I)"'/2"1 (x-V« (l - ^\ - lV

and

fa\x) = ^-^x2/c'-'(jc-2/c' - 1)"A2-X il -x~2^ (l - i

+ 1 f^I _ i) x-2/c-i(jc-2/ei _ 1}m/2-i >

proving the lemma in this case, since «i > 2.

Now suppose m > 1 and that the lemma holds for m - 1. Let cr* =

(n2, c2, ... , nm, cm). Unless cr = (1, 1, 1, 1), the lemma holds, without loss

of generality, for fa.. Suppose o / (1, 1, 1, 1). We have
,X-VH_X)M1

fa(x)=   / U,'-V?-Mre,/Va-vX(wÍ + l)C,/2)¿Wl
./o

= I   /" (w-2/C _ l)-./2-l„-2/ci^. f±\ dVt
CX Jx W '

where v = (u\ + l)~Cl/2. Since f/,' certainly exists, we have f/,(x) is

1 ,. 1
— hm T
cx h-^o- h

j  {v-m _ ^«,/2-^-2/c,^. U±h-\ dv

-   /   (v~2tCl — l)'"/2_1t;_2/ci

J x

*(/.-(^)-/.-(^)+/.-©)^

&s£<,"*-"",!",^/-(£r)*

+Äi/j»-"" - """!-'»-2"1 (/- (^ -*• (Î)) *

-(x~2'c> -l)n>'2-xx-2/c>fa.(l)

+ j (v~2'c> - l)"'/2-^-2^'-1/;. g) </«

-  /   (v"2^ - l)ni/2-lv-2/et-lji   f*\ ¿v < Q
-1 A v^'



414 J. L. THUNDER

since f/j.(x/v) < 0 on [x, 1]. By the same type of argument, we have fä(x)

is equal to

_1_
C]

-(X-2/c> _ l)"'/2-^-2^-1/;^!)

>0.

It remains to prove the lemma when a = (1, 1, 1, 1). In this case, an easy

computation gives

r(*-2-U1/2

fa(x)= ((U2+l)-X-X2)Xl2du.
Jo

Arguing as above, we get

,(x-2-l)'/2

fa(x) = -x f ((u2 + iyx -x2)~x/2du
Jo
r(x-2-iy/2

= - / ((u2 + l)~xx~2 - l)~x'2du.
Jo10

which shows the lemma in this case.

Lemma 14. For u > v - 1 > 0
roo      v-M-w-1

rfx= '"'M
f°°    xu-v~x

Jo    (x2 + I)«/2 ~" ~ (u - v)V(u - v)vV(v)

Proof. Let y = (x2 + 1)_1/2,   so that (y~2 - 1)1/2 = x and xdx = -y~3dy.

The integral is then

»i/y.
,0 r\

-   /   (y"2- iyu-v-2)l2yuy-i dy =   I   (1 - y2yu~v)/2-lyv-

Now let z = y2. Then

/" (i-y2y«-*)i2-xyv-xdy = ): f (i-zyu-v)'2-xzvi2-xdz
Jo 2 Jo

ifW)r(t)
2    r(f)     '

by the theory of gamma functions.

Using V(m) = 2nml2/mY(m/2) gives the result.

6. The case « = 2 of Theorem 1

We will assume in this section that k ^ 1, i.e., that K is not Q. For this

case, we may simply quote [12, Theorem 1].

In the case n = 2 of Theorem 1, we have d — 1. Then there is only one

(d - 1)-dimensional subspace of Kn~x, namely {0}. Since //({0}) = 1, we

get the Main Term is

E^C^i!    Cluing * = **)
(io) ac|a T2

= £>(<£)EF(*£>1'Ä>*)Ar(®)^L=f'
t ffl vl*»l
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where the first sum is over integral ideals £ with norm < B and the second

sum is over integral ideals 03 with norm < B/N(<t), since

det(r (03)) = det(r o /,(©)) = 2'2 det(/>(03)) = -^= A(03)

by Lemma 1 and Theorem 2.   Now  F(03£, 1, B, k)  is the volume of the
domain

Í r,+r2 R        1

Yer: Il(lly'-Il2 + 1)*/2^
A(03)A(£)

Letting Ui = ||y,||, we have

^(•BC, 1,B,k)Jx(<B) = -
<B

(11) ^F(03€, l,ß,/c)A(03) = ^F(ir'(2F(2)r2^/CT(A(03)A(ö:)/Jß),

where o = (ex, 1, ... , er¡, 1, er¡+x ,2, ... , er,+n , 2) (see [3, Chapter 2]). De-

fine F(x) = fa(xN(€)/B). By Lemma 13, since k ^ 1, F satisfies the hy-
potheses of Lemma 12. By the Dedekind-Weber theorem (see [6]), the number

of integral ideals with norm < M is h%M + 0(Mx~xlK), where

X =
Wy/\S\

By Lemma 12, letting M = B/N(€),  we have

(12)
i-M I  p2 i-M \

YF(N(fB)) = -hi I    xF'(x)dx + OÍ      F(x)dx - /    xx~xlKF'(x)dx

Integration by parts yields

rM rMI'M pM

hx       xF'(x)dx = -hxxF(x)\$f + hx /    F(x)dx
Jo Jo

i-M        /. i- ri+r2

= hx       x / • • • / T dujdx
Jo J JDa(x/M) j=x

rl     r       r      n+r2

= hxM /   y / • • • / T dujdy
Jo       J JD„iy) jj[

/.oo ,oor,+r2    fT\r,+'2(u2+l)-ei/2

= hXM        .-./    n   r>=> ydy
Jo        Jo    j=x Jo

u r¡+r2    -oo

= %a/] ■ /    uer\u) + \)-<>duj
,_i  ■'07=1

_2*A(<£) U(l)^(l)/    \V(2)V(2))    '

by Lemma 14.   Similar computations give the first integral in the error term

in (12) is « 1  and the second is < (B/N(<t))x-XIK. We thus have, by (11)
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and (12),

2'2

5>(£)EF(Si> 1>#,K)A(03)y/W\
hR ( 2ri \    1
— \çj^A   ï2r^(V(2)YA[V(4)PB2Yn(£)mr2

+ oIb2-x/kYn(£) -(2-1/K)

Now

Y »(¿me)-2 = y mmr2- Y M<w«r
N(<t)<B tCOK N(£)>B

and

Y   N(£)-(2-x"A<1;k(2-1/k) = 0(1).
N(t)<B

Thus, the Main Term is a(2, 1)B2 + 0(Bn-b(A<x">).

Now the Main Error Term is < the maximum over 1 < j < k of

Y Y F(2t' l ' B ' K - J)N(m-xy-JlK    (letting 21 = 03Í)

YY K(®c> ! ,B,K-j)NVB)l-ilK .

(13) a c|"

C     <8

where the first sum is over integral ideals <£ with norm < B and the second sum

is over integral ideals 03 with norm < B/N(€), by Lemma 11. For j = k,

we have the inner sum in (13) is <C B/N(<£). For j <k , the inner sum in (13)

is of the form

Letting

F(x) = f„(xN(<t)/B)x-J>K,

we have that F satisfies the hypothesis of Lemma 12, even in the case o =

(1, 1). Thus, by the Dedekind-Weber theorem and Lemma 12, we have

fB/N(C) /   R   \i-j/K ,i /   o   \1-;7k

by a straightforward computation. So the inner sum is always < (B/N(€))X~J/K .
Hence, the Main Error Term is

« B2~X'K

for k > 2,  and Theorem 1 is proven in the case n — 2.
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7. Computation of the Main Error Term

For the remainder of this paper, we will assume « > 2 and that Theorem 1

holds for n - 1. We will also exploit the symmetery:

M(n,d,B) = M(n, n - d, B).

In this section we will prove

Proposition 1. For d > n/2 the Main Error Term is « 5«-1/k("-¿) .

In order to use Lemma 11, we need the following estimate.

Lemma 15. Let 03 be a fractional ideal and let Sd be a d-dimensional subspace

of K" , where 0<d<n-2. Let H(Sd) = B0 and B > B0. Then the number
of (d + i)-dimensional subspaces S D Sd, where 1 < i <n - d - 1, i.e., where

l<d + i<n-l, satisfying H(S) < B and Sd = Sd is « B"-dBd+i-n . (The
ideal 03 is needed for the definition of Sd, though the bound is independent of
it.)

Proof. We use induction on i. For I = 1 we will simply quote [11, Lemma

10], which is actually stronger than the stated result.
Now let i > 1. Suppose S D Sd with H(S) < B and Sd = Sd. Consider

the subspace 5' = Sd+X. We show that

(14) H(S')<B0

Let X\ < X'2 < ■ < X'dK be the successive minima of p(M(Sd)), let X'{ <

X2 < ■■■ < Wd+X\K be the successive minima of /?(03/(5')), and let Xx < X2<

■■ < \d+i)K De the successive minima of /?(03/(5)). By Lemma 10, Lemma 1,
Theorem 2, and Minkowski's theorem,

(d+\)K dK (d+\)K

A(03)d+l//(5') »«      [  A"»<II4 4
j=\ 7=1      j=dK+\

(d+\)K

»« H(Sd)N(<B)d   H   X"j,

j=dK+\

giving
(d+\)K

H(S') «; H(Sd)N(<B)~x   Yl   X'¡.
j=dK+\

We also have
(d+i)K dx        (d+l)K (d+i)K

N(*)d+iH(s) »« n a, »«ii4 n 4 n 4
;=1 7=1     j=dK+\      j={d+\)K+\

((d+\)K        \'

»« H(Sd)N(*)d      H   X'j     ,

giving

mm (^)   » n *!■
x     v      ' j=dK+\

B^

B~o

'/<
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We thus have

(</+1)k

H(S') « H(Sd)N(<B)~x X'j

j=dK+\

1/'«*»m">®-
giving (14).

Now suppose a subspace 5' of dimension ö? + 1 is given. By the induction

hypothesis, the number of (d + /)-dimensional subspaces S D S' satisfying

H(S) < B and Sd+X = 5' is « Bn-(d+i)H^s>y+I-n_ We therefore must es-

timate the sum YiS1 H(S')d+'~" over (d + 1)-dimensional subspaces 5' D Sd

with
/ B \ 1/(

"(S')<B„(-)     .

We apply Lemma 12 and the case i = 1, with F(x) = xd+l~" and M —

Bo(B/Bo)xl¡, to get

PM

YH(S')d+x-n <nBd+x-n /    x"-d-xF(x)dx

s> Jo

/■M
« Bd+X~" /    x'"1 i/x « ^+1-"A/' = 75^+'-"

^o

The lemma follows.

We are now in a position to estimate the Main Error Term. Note that in

Lemma 11, when i = n - d, the third sum is irrelevant. We will handle this

case later. For now we will concentrate on the case i < n - d.

Lemma 16. Let d > n/2 and fix i and j with 1 < i < n - d and 1 < j < K,
so that [n-d-(i-l)]x-j > 1. Let T bean i-dimensional subspace of Kn~x.

Then

Y V<&, H(S) ,B,[n-d-(i-l)]K- f)H(S) « H(T)x~d (j^J ' ,

where the sum is over (n-d)-dimensional subspaces S c Kn~x satisfying 5, = T

and H(S) < ß/A(2t).

Proof. It suffices to show this for each summand of V(%, H(S), B ,[n - d -

(i - 1)]k - j). Such a summand will be the volume of a domain of the form

ri+r2 B

Y=(yx,y2,...,ym):    J (||y,||2 + l)e^2 <
A(2l)//(5)

where, unless it is 0, y, € R"; and 1 < «/ < e¡(n-d) for j' = 1, 2, ... , rx+r2.

After the change of variables u¡ = ||y/||, we see that such a summand will be

of the form

c f... [nu"/-iduj,
J        J   7=1
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where the domain of integration is given by

B
n(u2+ lY'l2 <_-_

jUj + i)      S #(31)7/(5)
and       Uj > 0,

where Cj e {1, 2}, 1 < n¡ < Cj(n - d), C is a product of measures of

unit spheres, and m < rx + r2. If w;o = 1 and Cj0 = 2 for some jo, the

integral is made larger by changing cj0 to 1. Thus, for each summand of

F(2l, H(S), B, [n - d - (i - 1)]k - j), we are estimating a sum of the form

v_ß_     /A(2i)//(5)\
¿5<N(X)Ja\       B        )>

where a e 2,s, o ^ (1, 1) for some 5 between 1 and rx+r2. We apply Lemma

12 and Lemma 15 to the sum

f(x) = A(^

E*(»),
s      ^ '

letting g(x) = //(ar)1-'*"-'-1 and

We get that this sum is

="<T>'-J(;vy"~'~l/''"~'~V''<,')*'

t4¡))   (1+n/ «?-'<»]+ir1"-""'2^)

«"<r''"(]4)"""'

since (n - i) > d > n/2 > (n - d)> nj/cj. The lemma follows.

We now apply Lemma 12 and the induction hypothesis to Theorem 1, with
g(x) = x"~x,   F(x) = xx-d-J'K,   and M = (5/A(2l) )'/("-<')  to the sum
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¿ZTH(T)l~d~i,K • We get

i-M

YH(T)x-d-jlK «/    g'(x)F(x)dx
r Jo

¡■M
(15) « /    xn-x-d-jlKdx<cLMn-d-ilK

Jo
(    B    \{-n~d~ilK^iAn-d)      (   ß    \i-iJMn-d)

= W = \W))
We now consider the case i = n - d. By an argument entirely analogous to

that in the last section, we have

(16) Yv(*>HW>B>K-JWsr~i/K*(jffä)H   K>

where the sum is over (n - d)-dimensional subspaces 5 c K"~x with H(S) <

B/N(%).
By Lemma 16, (15), and (16), the Main Error Term is

{/     d    \ n-ij/K(n-d)}

YEN(™-lr-d-i+l-J/K (ñw)        j

= max < Bn~ij/K("~dï ^ ff(n\-à-i+\+iJlK(n-d)-JlK y^ jqrgid-n+i-l+j/K

< ßn-l/K{n-d) y* N^-d+l-l/K y^ 1 _

eia

eia

But the number of integral ideals £ with <£ | 2t is < ce A(2()e, where c£ is a

constant depending only on K and e. Letting e = 1/2k gives that the Main

Error Term is

<^ ßn-\/K(n-d) y #(2^)-d+l-l/2(c

a

< Bn-xlK(n-dKK(d - 1 + 1/2k) « ßn-V*(n-d) j

since d >2.

8. Computation of the Main Term

As in §6, we will assume k > 1. In this section we prove

Proposition 2. For n > 2 and n > d > 1, the Main Term is

a(n , d)Bn + 0(B"-X).

We first consider the sum over subspaces.

Lemma 17. For n > 2 and n > d > 1,

yV(*,H(S),B,(n-d)K)= d)C_x(nlNm-X)n-d(_B_Y
^      det(r'((í2t-i)«-')) aKn,a)U{d)ix^   )      ym))

( (B        \«-*(»-l.<*-!)>
+ 0   A(2lí-1)',-í/í-(2l)
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where the sum is over (d - l)-dimensional subspaces S c Kn~x of height less

than or equal to t3/A(21) .

Proof. By (8), we have

det(7t o p((<tVTx)n-x)) = (N(£*-x)sf\ô\)"-dH(S)-x,

giving

*<r((c«-r')) = (*(cyr'*w' ■

By definition, F(2l, //(5), B, (n - d)x) is the volume of the set

{ye R<—» : n(l|y,ll2 +1)«'2 < 7TO5)} •

Thus, setting u¡ = ||y7-|| for j = 1, 2,..., rx + r2, we have

K(», //(5) ,B,(n- d)x) = ((« - </)K(n - ¿))r'(2(n - d)V(2(n - ¿)))r2

*        f (H(S)N(*)\N(%)H(S)Ja V       5       y '

where

a = (ex(n - d), ex, e2(n - d), e2, ... , eri+r2(n-d), eri+f2) ¿ (1, 1)

since K >2. We then have

rF(2t,//(5),/i,(»-^) = /Z2_y"t/
ll/j   ^    det(P((e:2t-')«-1))        l^j

• (20. - rf)K(2(« - ,/)))-A(2t£-')"-^ • Y f. (!W®.) .

We will estimate ¿2sMH(s)N(%)/B) ■ Define f(x) = MxN(%)/B). By Lem-
mas 12 and 13 and the induction hypothesis to Theorem 1, we have

(18)
ErB/N(n)

f(H{S)) =-a(n - I, d - 1) / x"-xf'(x)dx
s J°

( r2 rB/NW \
+ OÍ      xn~2f(x) dx- xH-i-Hn-i.d-Vftfä dx

A straightforward computation gives the integrals in the error term in (18) are
<&(B/N(%))"-x-b(n-x'd-xK

It remains to estimate the main term in (18). We have

rB/N(%) rB/N{<&)
- x"-xf'(x)dx = -xn-xf(x)\0vm) + (n-l) x"-2f(x)dx

Jo Jo

= («-!)/
Jo

'0 JO

rB/N(%)
x"~2f(x)dx.
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Letting y = xN(SA)/B, we have

fB/mW /      R      \"-l     rl

dy

1    /      D      \ ri — 1 rl+r2     /.OO

-¿(to) nj( »r,""'<"^')-"*/2^

=Ki4)""(r^",<!'2+ir"'!^"
. ( n v2o-dx-i(vj

rj

2 + l)-"dv

n-\
_1/t5   y"' ( nV(n)

n\N(K)J      \(n-d)V(n-d)dV(d)

nV(2n)

2(n-d)V(2(n-d))dV(2d)

by Lemma 14. We thus have

«-i

)J    U(n-rf)K(2(n-(« - rf)K(/i - d)dV(d)J    \2(n - d)V(2(n - d))dV(2d)
{7    R    \n-l-b(n-l,d-\)\

+ 0((^)) )'

Hence, by (17),

V(%,H(S),B, (n-d)x)
£ det(T"(€Qt-x)"-x)

n-d

-*-'■--') £ ^sr

/ /     «     \ n-b(n-l,d-l)

+T(,r,r'y
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Since

n-d

t     a\      t      i   a    i\( 2f2 ^       («-O /«\r'+r2a(n,d) = a(n-l,d-l){-Mj      —^ (-,)

/Kwy/^y^)
'Uw \K(2rf); c^(")'

we are done.

Proof of Proposition 2. We first show

(19) £   A(2l)-rfJ]/i(i)A((i)d-'I = ^ + 0(75-1).

N{m)<B e|a ^  '

Letting 2l = 03£,  we get

Y N(%TdYmN(€)n-d= y mmrn   Y   Nw
N{K)<B C|a N(<t)<B N(<B)<B/N{<£)

Using the number of integral ideals of norm < M is O(M) and partial sum-

mation estimates, we get

Y   A(03)-rf = c*(¿) -   E   N^~d

N(<B)<B/N{£) N{<B)>B/N(C)

= ÇK(d) + 0((B/N(€))x-d),

Y p(€)n(€)-" = y pwwt" - Y mw)-"
N(t)<B ffCD* N(t)>B

+ 0(BX~"),

\-d

Cx(n)

and
Y p(€)N(<t)d-x-" < ÇK(n + 1 - d) = 0(1).

N(C)<B

Since d > 2,  (19) follows. Similarly,

Y N(%)b(n-x<d-V-dYß(£)N(£)d-n

N(*)<B t\%

= 0(Bx+b(n~x'd~x')~d) = 0(Bb{n~x'd~x)~x).

Proposition 2 now follows from Lemma 17.

Proof of Theorem 1. By Lemma 5, §6, and Propositions 1 and 2, Theorem 1

is true for d > n/2. But by symmetry, this implies Theorem 1 is true for all
d = 1, 2,... ,n- 1.
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