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THE HELICAL TRANSFORM AS A CONNECTION
BETWEEN ERGODIC THEORY AND HARMONIC ANALYSIS

IDRIS ASSANI AND KARL PETERSEN

Abstract. Direct proofs are given for the formal equivalence of the L2 bound-

edness of the maximal operators corresponding to the partial sums of Fourier

series, the range of a discrete helical walk, partial Fourier coefficients, and the

discrete helical transform. Strong (2, 2) for the double maximal (ergodic)

helical transform is extended to actions of Md and Zd. It is also noted that

the spectral measure of a measure-preserving flow has a continuity property at

oo, the Local Ergodic Theorem satisfies a Wiener-Wintner property, and the

maximal helical transform is not weak (1, 1).

1. Introduction

In [1] the Carleson-Hunt Theorem on the maxima of the partial sums of

the Fourier series of an L2 function was used to prove a continuity property

of the spectral measures of measure-preserving transformations, strengthening

Gaposhkin's necessary and sufficient spectral condition for almost everywhere

convergence of the Cesàro averages of the powers of a normal operator. The

proof depended on computations involving the "rotated ergodic Hubert trans-

form"

uns     v     V^' eikef(Tkx)
Hgf(x) = lim 52  -J-~-

n—»oo *—' K
k=-n

(the ' on the sum means that the term with 0 denominator is omitted), which

we call here the helical transform of / e L1, and on a harmonic analysis

maximal lemma concerning the sequence of maximal partial Fourier coefficients
of an L2 function on the interval. It was this latter lemma that was proved

from the Carleson-Hunt Theorem, by means of some transference arguments

and subharmonicity. This lemma is in fact equivalent to the Carleson-Hunt

Theorem, as is a discrete formulation, which may be amenable to combinatorial
or geometrical analysis, that arises from applying it to step functions (see [10]
for an earlier version). This new discrete formulation we call the case of helical

walks, since it has to do with the mean square of the maximal distances from the

origin achievable by a walker who takes steps of a predetermined size, between
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steps turning through a fixed fraction of the circle, and stopping whenever he

chooses, before setting out on another foray with another fixed turning angle.

Our first purpose is to provide extremely direct and simple proofs for the

implications among these results, thereby clarifying the relationships among

them. This is carried out in §2, where we begin by using a clever argument

from the work of Davenport and Halberstam on the large sieve to show how

the Carleson-Hunt Theorem directly implies (without having to use transference

or subharmonicity) the estimate on helical walks and therefore also the maxi-

mal lemma for partial Fourier coefficients. As in [1], the equivalence with the

boundedness of the maximal helical transform on I2 is then immediate. The

arguments in the other direction are even simpler. A thorough understanding

of the connections among these results extends their range of applicability and

may lead eventually to a simpler proof of all of them.

The main ergodic-theoretic result in [1] was a weak (2,2) estimate for the

double maximal function for the helical transform, the supremum being taken

over both 6 and «. In §3 we extend this result to the case of actions of Rd

and Zd . Of course higher-dimensional analogues of the other equivalent results

mentioned in § 1 hold as well. We can use this result for an action of K to show

that the spectral measure of a measure-preserving flow has a type of continuity at

oo ; this strengthens, for a measure-preserving flow, Gaposhkin's necessary and

sufficient condition for a flow of normal operators to satisfy the Local Ergodic

Theorem. In this connection, we note that the Local Ergodic Theorem satisfies a
Wiener-Wintner property: multiplying inside the integral by e2nise , one obtains

convergence off a set of measure 0 which does not depend on 6 . While we have

made some progress towards the proof of the analogous statement for the helical

transform, the result is not yet in hand. Finally, a few remarks about Lp for

p t¿ 2 : the double maximal helical transform is not weak ( 1, 1 ) ; and for

p > 1, p ^ 2, many of the analogous statements to the foregoing hold, so long
as one allows correctly for the ways that duality and interpolation function in

these cases.
It is a pleasure to acknowledge the helpful suggestions that we have obtained

from Pascal Auscher, James Campbell, John Chalk, and Michael Lacey. The

second author also thanks the Indian Statistical Institute, Calcutta, for hospital-

ity during part of this work and the National Science Foundation for support

through grants DMS-8620132 and DMS-8900136.

2. Equivalents of the Carleson-Hunt Theorem

We will show how to derive the four following statements involving strong

type (2, 2) estimates quickly from one another. As usual, C denotes a constant

that is not necessarily the same from one appearance to the next.

(1) Partial sums of Fourier series (Carleson-Hunt [3, 7]). For h e l2(Z) and

x e [0, 1), let

S*h(x) = sup
n>0

52 *o>2nijx

j=-n

Then there is a constant C suchthat \\S*h\\L2VdA) < C||Â||,2(Z) for all h e l2(Z).

(2) Helical walks. For A = 1, 2, ...  and r = 1,... , N let œr = e2nir¡N .

Then there is a constant C such that for any A,   any v\, ... , vN > 0 and
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any choice of Nr = I, ... , A for r =\, ... , A,

,2N

N ¿-^>A
r=l

Nr

52vmco?
m=l

N

<c52v2m.
m=\

(3) Partial Fourier coefficients [1]. For h e L2[0, 1) and j el, let

I*h(j) = sup
e>0

[ h(x)e~2nijxdx
Ja

Then there is a constant C such that ||/*A||/2(Z) < C||/z||L2[0 ,)  for all h e

L2[0, 1).

(4) Maximal helical transform on I2. For a e l2(Z) and 6 e E define

and   //*a(J) = sup \Hea(j)\.

Then there is a constant C such that for all a e l2(Z), \\H*a\\p < C||a||/2.
( 1 ) => (2) We extract part of an argument used by Davenport and Haberstam

[4] to improve some estimates by Roth and Bombieri on the large sieve. Fix

A = 1, 2, ... , let a = 1/(2A), and let

v(x)= 52
sin(«7ro!)

nna
~2ninx

n=—oo

This function is chosen because its sequence of Fourier coefficients has some

very useful properties. If ya = (X[\-a/2,i] + X[o,a/2])/a, then y/ = ya * ya , so it

follows readily that

V(x) -{
1(1-M)        if||x||<a,

0 if||x||>a,

(where ||x|| = d(x, Z)) ; and if bn = [sin(n7ra)/(n7ta)]2 for n ^ 0,  bo = 1

then

and

-1 oo 2

I   ̂  <*** =l2bl = Ya
u n=—oo

b-2<b],2<(^f    for n<N.

Let xr = r/N for r = I, ... , N,  choose any Ar = 1,

Nr

A, and let

*(*) = ¿2 vire2nimx

m=\

Then
NrJv rat

sr(x) = 52 vme2nimx = W * Tr(x) = /    f/f{y)rr{x - y)dy,

m=\ J-a

so that by Holder's inequality

/a rot Apj    fX+a

¥2(y)dy /    Mx - y)\2dy < — /       \xr(y)\2dy,
-a J—a ^    Jx—a
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and hence,
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,    ,.,     4A  fXr+at    , ,,,,        4A   fx'+a
\Sr(Xr)\2 < -j- / \tr(y)\2dy < — / !sup|Tr(v)|2i/y.

r<N

Therefore, using the fact that the intervals (xr - a, xr + a) are disjoint (the

points xr are "well spaced," in the sense of Davenport and Halberstam) and

(1),

52 \sr(xr)\2 < ^ /' sup \rr(y)\2dy < ^C ¿ §

4A„/7T\2
^1^(2) 5>

m=l

(2) => (3) We may assume that h is a nonnegative step function, taking the

value vm on the interval [(m - 1)/A, m/N), m = I, ... , N. For each j e Z

and any choice of z¡ = (A,/A) + ^ (A, = 0, ... , A, 0 < aj < 1/A),

Pi ,    •• Ä /"ft,-- /•V;/V+áJ
(A)    /   h(x)e-2n,Jxdx = Yvm        e~2n'}Xdx + vN.+i / e-2x,jxdx.

Jo ¿J      •% -W*
If w* = maxm vm , then the second of these terms may be estimated by

if|;l<tf,

ifL/l>^,
cfqk-^/'(e^,-l)|<(Cg*      lf|;l-^'

u I I   C i -i

so that this term contributes to ||/*A||2„„ at most

2 -;*2

AT
C

A
A + 0;*2£ 1 = cÇ<C||A||2.

l>/v

Suppose that e; is chosen for each 7 so as to maximize the first of the two

terms in (A),  which may be written as

-1    Nj
,52 vme-2^m-x^N(e-2nij/N - 1).

2nij
m=\

Evidently the maximizing choice of A, depends only on the congruence class

of j mod A ; thus we write j — kN + r with 1 < r < A and k e Z and
replace N¡ by Nr. The contribution of this term to ||/*/z||22(Z, is therefore at

most

N 2
1

52Vm(ar"
m=\

,2

00       N

cEE
k=—00 r=l

(kN + r)2
,m-l,

(Or

cJ2t2
r=\

Nr

(œr-l)52vmœ?
m=\

_LVA_1
Nr

k¿0 r=\
(k + r/N)2

\(œr- l)52vmCo"m-l\

m=l
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Using \cor - l\/r < C/N on the first of these terms and summing on k and

using (2) on the second, this is bounded by
,2¿ \T AT

C^

A2

N

E
Nr

E VmO)r
m-\ + cWv2m<C±-52v2m = C\\h\\\

N N Il2[0,i).

r=l lw=l m=l m=l

(3) => (2) Apply  (3)  to step functions as above and use the fact that

K — l|/r > C/N for -A/2 < r < A/2.
(3) <r> (4) Let h(x) = EZ-ooake2nikx- Then for all ; e Z,

/Jo

„   .. J?Li   p27i'(k-j)ea,
h(x)e-2n,jxdx = aje+ 52        , _ ■

k=—oo k

OO

Since the discrete Hubert transform Ylh=-oo ak/(k ~ J) is known to be strong

(2, 2) (easily seen by applying the Fourier transform), the result follows imme-

diately.

(2) ̂  (1) For h e l2(1), K>\, and x e [0, 1), let

S*Kh(x) =   sup
\<n<K

Y^ h(j)e2nijx

7=-n

n(x)

5]   h(j)e2niix

=-n(x)

Since this is a continuous function of x, we may choose N > K large enough
that

/Jo
\S*Kh(x)\2dx

is arbitrarily well approximated by a Riemann sum

2

1
N

W
A'E E to

r=l   ;=-Vr

Applying  (2)  twice, to the negative and nonnegative ranges of  /,   this is

bounded by

c 52 toi2 < cm

To be able to transfer estimates of this kind to the ergodic setting, it is nec-

essary to estimate a double maximal function, in which the supremum is taken

over two parameters. This was noted in [1], where a weak type (2, 2) estimate

was proved for the double maximal helical transform on I2, and strong type

(2, 2) was conjectured. It turns out that strong type (2, 2) does indeed follow

from (4) by a method routine in harmonic analysis; we thank an earlier referee

for pointing this out. The application of this method to this particular situation

involves a couple of small but tricky details, so we sketch one way in which it

can be done.

5. Corollary (Strong (2, 2) for the double maximal helical transform on I2 ).

For a e l2(1) and 6 e R define

H**a(j) = sup

n>0

"     e2ni(j-k)8a._k

¿- k
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Then there is a constant C such that for all a e /2(Z),

Wa\\m < C\\a\\P{l).

Proof. Define ae(j) = e2n,Jea(j), and for a function u let DNu(t) - j¡u (■£).

Define

k\(t) = 7*{|r|>l}W.        kN(t)= jX{\t\>N}(t) = DNk,(t),

k(t) = )   fori^O,        k(0) = 0.

Convolutions with k are defined by the usual symmetric singular integrals.

Let (/> be a smooth function on R with compact support and total integral 1.

For a sequence u(n), define ü(t) = u(t) for /el, where (t) denotes the

nearest integer to t. Then u*rv(j) = u*%v(j) for / e Z,  and ||m||/_2(R)   =

IMI/2(Z).
We want to show that sup^ >e \ae*hkN(j)\ is strong (2,2). Now k^-k^ is

integrable on R, with Lx norm independent of A. Therefore, by Minkowski's

inequality, it is enough for us to show that supN £ \ae *R k^(j)\ has I2 norm

bounded by a constant times the I2 norm of a. Since DN(k *</>) = k * £>#(/>,
we may write

a" *k/f = ae *k*Dn</) + az *D¡v(ki — k*<j>).

As in [11, p. 67], from the smoothness of <f> it follows that k\ - k * 4>
is bounded, as well as integrable and monotonie for |x| > 2. Therefore we

may find even integrable functions \p and n which are decreasing functions

of |x| and such that y/ > \<f>\ and n > \k\ - k * 4>\. (The sizes of y/ and n,
and hence the bounding constants obtained in this way, will depend on <p and

its derivative.) Then we may apply the homogeneity and dyadic decomposition

argument found, for example, in [12, pp. 83-84]: the second term is dominated
by

\ae * DN(ki - ki * <t>)\(j) < \a\ * \DNy/\(j)
oo      . -1

= 52 / DNy/(t)\a(j - t)\dt + /   DNy/(t)\a(j - t)\dt
r=0J2'<\t\<2'+> J-\

< 5M£)L„<,.,|aü-,)l¿'
+ C||Hi(|aC/-l)| + |aC/)| + |aO' + i)|)

oo

sE
r=0

2^Ll<J''{J-,)íd'}2'''^^)+CÍM'Mmi)
:\t\<2r+í

oo

< M-a(j) 52 f ^v(^)dt + C||^||,^|a|(;)

/•oo

Ma(j) /    DNys(t)dt + C\\y/\UM\a\(j) < C|^||,7l/|a|C/).
Jl/2

A similar computation applies to the first term, except that a is replaced by

ae * k. Again because of Minkowski's inequality we may just as well consider

ae * k. Taking the supremum on e then yields H*a, so that the estimate after
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the homogeneity argument is C\\n\\\MH*a(j), which is strong (2,2) because

(4) is.

3. Consequences for ergodic theory

The double maximal inequality for the helical transform transfers to the

ergodic-theoretic setting. In [1] the weak (2, 2) version of this result was

used to prove a continuity property at 0 of the spectral measure of a measure-

preserving transformation. Here we extend the double maximal estimate to the

case of actions of 1, Rd, and Zd, d > 1 ; the inequality for a measure-

preserving flow has as a consequence the continuity at oo of its spectral mea-

sure.

6. Theorem (Strong (2, 2) for the double maximal helical transform for m.p.t.'s

and flows). Let T : X —► X be a measure-preserving transformation (m.p.t.) and

{Ts : -oo < s < oo} a measure-preserving flow on a measure space (X ,38, p).

For f eL2(X,33, p) define

H**f(x) = sup
n,6

E
k=-n

,2nik8 f(Tkx)

and

F**f(x) = sup
n,6

Then there is a constant C such that

f
,2nis9 f(Tsx)

ds

Wf\\i < C\\fh   and   \\F"f\\2 < C\\f\\2   for all f e L2(X, &, p).

Proof. Strong (2, 2) for H** follows by means of the usual transference ar-

gument found, for example, in [2] and [13]. We apply this estimate to the time
S map of the flow and a function

/(*)= /     g(Tsx)(f)(s)ds,
J — oo

where g is bounded and measurable on (X, £%, p) and <j> is an infinitely

differentiable function on R with compact support. For such an /, f(Tsx)

is a uniformly continuous function of 5, uniformly in x. Since the set of all

such / is dense in L2, the result will follow. Let

Fn*Ax) =        SUP
i/N<e<N
l/N<n<l

I
r,2nis8

f(TsX)
ds

f<lil<i

Fix A = 1,2,... and choose ô so small that for each x and each 6 e

[1/A, A] the oscillation of e2nis0f(Tsx)/s, as a function of s, is less than

II/H2/A on each subinterval of [1/A, A] of length less than ô. For any 6, n

with 1/A < 6 < A,   1/A < n < I,  define m,n ,x,  and y by n = mô +
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t,  \/n = nô + y, 0 <t, y < a. Write

/Jl<\s\<i

,2nis8 f(Tsx)
ds =

n .

/

(*+!)* e2xiseftTsX)
ds

k=-n
k$[—m ,m — 1]

72nis6 f(Tsx]
ds.

l/>7<M<(n+l)<5
or m(5<|s|<i/

The second term is bounded by 2||/||2, while the first may be written as

E
?2nik&df(Tk:

+

k=-n
k £ [—m,m— 1]

/, U<l*l<

e2xis6       e2nilliSej-^TlsixLiJ.

LfJ¿
í/í.

The second of these terms is also bounded by ||/||2, while the first is no more

than 2H**f, with respect to the transformation T¿. Therefore ||F^*||2 <

C||/||2 with C independent of A,  so the result follows.

7. Remark. By a slight modification of the above argument, we can show that

also

sup
d,n,e

i
Jn<\s\<e

02nis6
f(TsX) ds

is strong (2, 2).

8. Theorem (Two-dimensional case of strong (2, 2) for partial Fourier coeffi-

cients). For h e L2([0, 1) x [0, 1)) and (m,n)el?,  let

I*h(m, n) = sup \ f f h(x, y)e-2ni{mx+n^dx dy
e>0 \Jo   Jo

Then there is a constant C such that ||/*A||/2(Z2) < C||/2||L2(rn;i)Xrn,i)) for all

heL2([0, l)x[0, 1)).

Proof. It seems that an attempt simply to apply the corresponding result for

a one-dimensional action does not quite work; however, a nice trick involving

integrating over sectors, which we found in [5], makes the estimate easy. Thus

we consider

I*h(m, n) — sup
£<0

T    T h(x,y)e-2Ki{mx+ny)dydx
Jx=0 Jv=0lx=0 Jy=0

and a similar I2h(m, n), for which the roles of x and y are interchanged. If

hn(x)= T h(x,y)e-2j""ydy = [h(x,-)Xlo,x](-)V(n),
Jy=0

then, applying the result from the one-dimensional case to each of the functions
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h„, we have

oo

52    rx(m,n)2 = 5252n(m,n)2<52\\hn(x)|2
m ,n=—oo n     m

• 1

= /  52\h"W\2dx = J   Wh(x,-)X[o,x](-)\\h{.)dx

= i     f \h(x,y)\2dydx<\\h\\¡
Jx=0 Jy=0

111-
c=U Jy=0

Beginning with this result, we may follow the same path as in the case of a

one-dimensional action, using it to prove strong (2,2) for the helical transform

and double maximal helical transform on /2(Z x Z), then for the double maxi-

mal helical transform for a pair of commuting m.p.t.'s on a measure space, then

for a pair of commuting continuous-parameter flows of m.p.t.'s. The analogue

of the continuity property of the spectral measure of a m.p.t. (Theorem 2 of

[1], a strengthening of Gaposhkin's necessary and sufficient condition for the

Pointwise Ergodic Theorem), would follow as well. The extensions to actions

of TLd or Rd for any d > 1 can be achieved the same way. Curiously, we do

not see how to deduce the later results in this chain from their one-dimensional

versions directly, without following more or less this route: for example, the

sector trick does not seem to work well on the helical transform for the action

of a pair of commuting m.p.t.'s.

The main use to which the helical transform was put in [1] was to prove that

the spectral measure £ of a m.p.t. has a continuity property at 0:

for any sequence sk -> 0+ and f e L2,        E(0, ek)f(x) -» 0 a.e.

This amounted to a strengthening, for m.p.t.'s, of Gaposhkin's necessary and

sufficient condition for normal operators to satisfy the Pointwise Ergodic The-

orem. Now that the double maximal inequality has been extended to the he-

lical transform for flows, we can show that the spectral measure of the flow
has a similar continuity property at oo, amounting to a strengthening, in the

measure-preserving case, of Gaposhkin's necessary and sufficient condition for

the Local Ergodic Theorem [6].

9. Theorem (Continuity at oo for the spectral measure of a measure-preserving

flow). For a unitary flow {Us : -oo < s < oo} on L2(X, £%, p) with spectral

measure E (a projection-valued measure defined for Borel subsets of R), f e

L2(X, ¿32, p), and any sequence rk —► oo, the properties (1) and (2) below

are equivalent; if {Us} comes from a measure-preserving flow on X, then both

properties hold:
(l)E(-rk,0)f(x)^E(-oo,0)f(x) a.e.

(2) If

then

Fef(x)= lim  I-^LW-ds   and   Ff = F0f,
"^°° J J¡<\s\<n S

FrJ(x) -+ Ff{x) + inE{0}f(x) + 2inE(-oo, 0)f(x)   a.e.
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Proof. Because
?2niuX

lim  / -du = nisgnX,
n^oo J'l<|„|<„      U

we have

and hence

/oo                    p                    plTllUr plTUUk

lim  /-dudE(X)
-oon^°°Ji;<\u\<n            u

/oo in sgn(/l + r)dE(X),
-oo

\[Fr -F] = n i°° [sgn(A + r) - sgn(X)]dE(X)
' ./—oo

= 2nE(-r, 0) + tt(F{0} + F{-r}).

From this equation the equivalence of statements (1) and (2) for any unitary

flow is clear. Moreover, statement ( 1 ) clearly holds for any / in

oo

[} E(-K, K)L2(X, 38 , p),

a dense set in L2(X, 38, p). Since in the case of a measure-preserving flow we

have a maximal inequality for this family of operators (Theorem 6), in this case

both (1) and (2) hold for all / G L2(X, 38, p).

We say that the Wiener-Wintner property holds for a family of a.e. convergent

sequences of functions if there is a single set of measure 0 off of which each

sequence in the family converges pointwise. The interest in this property arises

when the family is indexed by a parameter running through an uncountable set.
This property has facilitated the application of the Pointwise Ergodic Theorem

to the spectral analysis of stationary processes, and we hope that it may do

likewise for the helical transform. At this point, however, we are only able to

note that the property holds for the Local Ergodic Theorem. In order to avoid

having to distinguish between sets of measure 0 and inessential sets (subsets of

sets of measure 0), we will assume in this section that the measure spaces under

consideration are complete.

10. Proposition (Wiener-Wintner property for the Local Ergodic Theorem). Let

{Fi:-oo<5<oo} be a measure-preserving flow on a complete measure space

(X, 33, p) and f e LX(X ,38, p). Then there is a set A c X with p(N) = 0
such that for all 6 eR and x $ A,

lim - / e2%isef(Tsx)ds = f(x).
/-.0+ t J0

Proof. Again the required maximal inequality is already available—it is just

the Maximal Ergodic Theorem for measure-preserving flows—so we only need

to check convergence on a dense set. Even though the handling of these sets

of measure 0 is somewhat delicate, and indeed some of the sets which must

be considered cannot immediately be seen to be measurable, still in this case

Banach's Principle can be applied successfully. Such an approach may be in-

structive if one has in mind eventually to try to prove analogous theorems for
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more complicated operators, but there is also an easy direct proof (we thank

the referee for this observation): we may write

1   fe2niSef{TsX)ds =  1   f f{TsX)ds+ I  [\e2nis8 _ \)f{TsX)ds,
t Jo l Jo l Jo

and bound the second term by a constant times |0|r/*(x) (where /* is the

usual ergodic maximal function), and then easily take the limits as t —> 0.

11. Remark (Failure of weak ( 1, 1 ) for the double maximal helical transform).

H**f(x) (see definition above in (6)) does not satisfy a weak (1,1) maximal

estimate for f e LX(X ,38, p). We know of two ways to see this:
(11.1) M. Lacey and M. Marcus (personal communication) have provided

an example of an independent identically-distributed sequence {Xk} for which

weak (1,1) fails. Using results of [9], they show that we can have Xk e Lx

with

P{\Xk\ > X} ~ (AlogAloglog'^A)-1,        0 < ß < 1,

but with the associated double helical maximal function H** equal to infinity

almost everywhere.

(11.2) Kolmogorov's example of a divergent Fourier series for an L1 func-
tion may also be transferred to this setting. For if the operator H** were weak

(1, 1), then by arguments similar to ones used above (for example using time

ô maps) we could conclude that the analogous operator F** for continuous-

parameter flows (see (6)) is also weak ( 1, 1 ), and in particular this would hold

true for the translation flow on R. Because of the well-known formula (see [7])

4/M = ¿ ' e-2"""/«) i. _ _-2,¡„ f' <■'■""/(') it,2ninx   j    £_¿Ail/// _ p-2ninx   j

Jo        X — t J0
+ Kn*f(x),

where Kn e L°°[0, 1), for the nth partial sum Snf(x) of the Fourier series

of an integrable function / on [0, 1 ), this would imply that Sn is also weak

(1,1), an absurdity in view of Kolmogorov's example of an / e Lx for which

sup„ \S„f(x)\ = oo a.e.

12. Remark (The case p ^ 2).
(12.1) For p > 2, the analogue of statement (3) continues to hold, since

|/*A||/,(Z) < l|/*A||/*(z) < CHAIbro,,) < CHAIRO,D-

(12.2) For 1 < p < 2,  the analogue of statement (3) no longer holds for
all h,  since if it did we would have the chain of inequalities

|L2[(M) < C||/*ft||/I(Z) < C||/*«||/P(z) < CHAH^o, i)

the last member of which does not always dominate the first member.

(12.3) The analogue of statement (4) (the strong (p, p) estimate for the

maximal helical transform on lp), however, does hold for all p, 1 < p <

oo. This can be seen as follows. By the Carleson-Hunt Theorem, if / 6

L^O, 1), p> 1, then also

sup
n Le2ninlf(t)_dt

x -1
eL"[0,l).
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This implies immediately that if / e LP(R), p > 1, then

roo   e2*intf(t}
sup

« /: t
-dt e LP(R)

(subdivide R into intervals of length 1, apply Carleson-Hunt on each interval,
and sum). To obtain a similar estimate when the supremum is taken over all

6 e R rather than just over n e Z, we show (by change of variable) that

therefore " '*7(0
sup
kit /:

,2ni£-

-dt

has LP norm bounded by a constant times the Lp norm of /, with the con-

stant independent of n . The method of [8] then applies to deduce the discrete

maximal inequality from its continuous analogue.

This approach could be used to establish many of the results considered
above, but Remark 12.2 shows that some of the assertions involving /* cannot

be proved in this manner. Curiously, the maximal operator for partial Fourier

coefficients in some cases behaves differently than the maximal operator for

partial sums of Fourier series.
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