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NORMAL FORM AND LINEARIZATION
FOR QUASIPERIODIC SYSTEMS

SHUI-NEE CHOW, KENING LU AND YUN-QIU SHEN

Abstract. In this paper, we consider the following system of differential equa-

tions:

è = oj + G(6,z),        ¿ = Az + f(6,z),

where 6 e Cm , w = {utx, ... , wm) e Rm , z e C" , A is a diagonalizable

matrix, / and 0 are analytic functions in both variables and 27t-periodic in

each component of the vector 6 , © = 0(\z\) and / = 0(|z|2) as z —> 0.

We study the normal form of this system of the equations and prove that this

system can be transformed to a system of linear equations

6 = a>,        z = Az

by an analytic transformation provided that the eigenvalues of A and the fre-

quency co satisfy certain small-divisor conditions.

1. Introduction

Poincaré normal form theory plays an important role in the study of exis-

tence, stability, approximation and bifurcation of solutions of differential equa-

tions. This theory is well known for differential equations in the neighborhood

of an equilibrium point or a periodic motion and may be found in Arnold [1],

Chow and Hale [4], Guckenheimer and Holmes [5], and Meyer [6]. For differ-

ential equations in the neighborhood of invariant tori, the reader may find the
normal form theory, for example, in the recent works of Braaksma and Broer

[3] and B. L. J. Braaksma, H. W. Broer and G. B. Huitema [10].
In this paper, we consider the following system of differential equations:

(1.1) 6 = w + e(6,z),

(1.2) z = Az + f(6,z),

where 6 e Cm, w = (œx, ... , com) e Rm, z e C", A is a diagonalizable

matrix, / and 6 are analytic functions in both variables and 2rt-periodic in
each component of the vector (9,6 = 0(\z\) and / = 0(|z|2) as z —> 0.

Without loss of generality, we can assume A = diag(Ai, ... , Xn).

The idea of normal form theory is to find a transformation which changes

the system of equations (1.1) and (1.2) into the "simplest" one. A special case
occurs when the system of equations (1.1) and ( 1.2) can be changed into a linear

system.
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If the following small-divisor conditions are satisfied

\i(co, k) + (a,X)- eXj\ > °       ,    for ; = 1,..., n,
(1*1 + \a\r

where k is an integer vector, a is a nonnegative integer vector with 1 + e <

\a\, e = 0 or 1, ( , ) is the scalar product, \k\ = \kx\ + ■■■ + \km\, and

|a| = ax + ■■■ + a„ , then we will prove that the system of equations (1.1) and

(1.2) can be transformed to a system of linear equations

6 = oj,        z = Az

by an analytic transformation.

For differential equations with no angle variables, the above result is the

well-known Siegel linearization theorem. For the general case, the result was
announced by Belaga [2] without proof.

In [1] Arnold gives a proof of Siegel's theorem for the analytic map Lx =

Ax + f(x). In [9] Zehnder gives a very nice, simple proof of Siegel's Theorem

using a different approach. However, the method used by Zehnder, in fact,

requires that f(x) be a high order term (much higher than 2). But this can be

carried out by normal form theory.

The purpose of this paper is to present a normal form theory for the system

of equations (1.1) and (1.2) and a proof of the linearization theorem for the

equations (1.1) and (1.2). The proof of the linearization is based on the normal

form theory we present and the method in [9].

The organization of this paper is as follows. In §2, we give the basic lemmas;
in §3, we present a normal form theorem; and in §4, we give a proof of the

linearization theorem.
Acknowledgement. We would like to thank H. Scott Dumas for his helpful

suggestions.

2. Basic lemmas

Set Dr = {(6, z) e Cm x C"||lm0,| < r for j = 1,... , m and \z\ < r}

for r < 1. Let f(6, z) be bounded analytic and 2ii-periodic in 6X, ... , 6m

in Dr. We define

(2.1) \f\r=    sup   \f(6,z)\.
(6,z)€Dr

Using the Fourier-Taylor expansion, we have

(2.2) /=£   £/a,^«e'*>z",

where

A+ = {a = (ax, ... , an)\a.j > 0 is an integer for j = 1,...,«} ,

Nm = {k = (k\,..., km)\kj is an integer for j = 1, ... , m},

(6,k) = 6xkx+--- + 6mkm.

Define

(2.3) f(6,z)= £   £ l^Le'V'Vz»,
aev+fcevm    a'k
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where Cajk are constants satisfying

<2-4> 'c-*¡s PÎTHiî

for some positive constants Co and p.

The conditions (2.4) are small-divisor conditions. Various small-divisor prob-

lems can be found in [ 1, 7 and 9]. One of the basic ways to solve these problems

is to prove that the series / is convergent and to get estimates on / in terms

of / and the domain. For our case, we discuss the Fourier-Taylor series (2.3).

Lemma 2.1. Let f be bounded analytic and 2n-periodic in each component of

6 in Dr.   Then |/Q>fc| < \f\pp-Ms~pW for any 0 < p < r, where \a\ =

ax + --- + a„, \k\ = \kx\ + --- + \km\.

Proof. Let fa = E*6*M/a,*e/<M> • Then

fa k = jÁ- I*• ■■ [nfae-i{6'k)d6x---d6n
Ja'k     (2n)m Jo        Jo

Since fa is analytic and 2^-periodic in 6X, ... , 6m, by Cauchy's theorem,

the path of integration in the above integral can be shifted to dj = Xj ± ip,

0 < p < r, 0 < Xj < 2n (j = 1, ... , m), and choosing the sign equal to the

sign of -kj, if k- ^ 0 and arbitrarily if k¡■■ = 0, we have

(2.5) |/0tJt|<    sup   |/a(0)|e->l*l.
|Im0|</>

It is clear that
i a«/(g,z)

Ja[ ] ~ \a\\       dz<*

>m-

z=0

Using a Cauchy estimate, we have

(2.6) \fa(6)\ < \f\pP-W.

The conclusion follows from (2.5) and (2.6) when 0 < p < r and also holds

when p = r by the boundedness of /.

Lemma 2.2.  (i)  / is analytic, 2n-periodic in each component of 6 in Dr_a .

(ii)   \f\r-a < Cx\f\ro^m+n+^+x\ where Cx = CX(C0, m, n, p) > 0 is con-

stant, and 0 < o < r.

Proof. For each (6, z) e Dr-a , using Lemma 2.1 and the small-divisor condi-

tions (2.4), we obtain

aeN¿ k€Nm

l/a,fcl |c'<g-fc>||r|°
^a ,/c|

< E   E \f»,k\-^(\a\ + \k\re(r-°W(r-o)M
aeJV„+ k€Nm °

< Y   Y \f\rr-lale-r^^r(\a\ + \k\)pe{r-a)W(r-o)^

aev„+ keNm

±hf\r¿Z   E  (r-^-Y (\a\ + \k\)"e-^.
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Since

(r~a\ a   = e\oc\[Hr-a)-\nr] < ß-a\a\ >

the last term is less than or equal to

1
1/1«

aeN+ k€Nm

¿i/i^E E(H + ifci)^_(l"l+|a|)CT-

Since the number of integer vectors (a,k) satisfying |a| + |Ä:| = j is not bigger
than jn+m , we have

¿H/riE E (h + w)^"pl+|a|)CT
° a€N¿ k£Nm

<i\f\r/Zjm+n+lie-ia

< _L|/|r y^(_/-ff)M+»+/ie-y«r(T-(m+«+ii)>

_i.
It is easy to see that (jo)m+n+,le  2ja has an upper bound

M = (2(m + n + p))m+n+f.

Hence the above term is less than

i-lArM Y e-V° a-{m+n+ß) = ±-\f\rM-X aHm+n+ß)

C° 7?o C° i-e-i°

< ^r\f\rM^-o-^m+n+^ = ^rM\f\ro^m+n+'l+xl
Co \a C0

Let Ci = AM/ Co, we have

\f\r-a<Cl\f\rO-(m+n+lt+l).

This completes the proof.

3. Normal form

Consider the following system of differential equations

(3.1) 6 = œ + e(6,z),

(3.2) z = Az + f(6,z),

where 6 e Cm , z e C" , co = (cox,... , œm) e Rm , A = diag(Ai ,...,X„),

and 8 and / are analytic and 27t-periodic in each component of 6 in Dr.

Assume 0 = 0(\z\) and / = 0(|z|2) as z —» 0.  We have the following

normal form theorem.

Theorem 3.1. Assume the following small-divisor conditions hold for a fixed in-
teger M > 0,

(3.3) \i(co, k) + (À, a)-eÀj\ > C0/\k\",
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where k e Nm, k ^ 0, a € A+, \+e <\a\< M, e = 0 or 1, and Co and p
are positive constants. Then the equations (3.1) and (3.2) can be changed to

(3.4) /? = *>+    Y    "aya + o(\y\M),

\<\a\<M

(3.5) j> = ^y+    Y    baya + o(\y\M)

2<\a\<M

by a transformation

(3.6) 6 = ß + <t>(ß,y),        z = y + V(ß,y),

where aa = (aa, ... , a™) and ba = (ba, ... , ¿>") are constant vectors satisfying

ai = 0 if(X,a)¿0 andb¿ = 0 if (X,a)-kj ¿0. 3> = 0(|y|), V = 0(\y\2)
are analytic and 2n-periodic in each component of ß in DrM , where rM is a

positive constant.

Remark. If we do not have the 6 variable, then Theorem 3.1 is the normal

form theorem around a fixed point. If M = 1, the equation (3.2) is already of

the normal form since f = 0(\z\2).

Proof. We prove this theorem by induction on M. Suppose the transformation

(3.6) transforms the system of equations (3.1) and (3.2) to

(3.7) ß = co + h(ß,y),

(3.8) y = Ay + g(ß,y).

Let M = 1. Assume O and *F are first order and second order homoge-

neous polynomials in y respectively. The transformation changes the system of

equations (3.1) and (3.2) to the system of equations (3.7) and (3.8) is equivalent

to (Q>, 4*) satisfying the following equations

(3.9) h + Dfi<i>œ + Dy<&Ay + Dy<t>g + Dß<&h - 6 o (/ + (<D, Wj) = 0,

(3.10)
g + DßVco + DJVAy - A*¥ + Dß*¥h + Dy*¥g - /o (/ + (<D, ¥)) = 0.

Now we solve the equations (3.9) and (3.10). Since M = 1, by observation, we

take *F = 0. Then the equations (3.9) and (3.10) can be reduced to

(3.11) h+ Dßq>co + Dy<A>Ay + Dy<A>g + Dß<Ph - 6 o (/ + (O, 0)) = 0.

Write h = hx + h+ , where hx is first order in y and h+ is a higher order term

in y. Using a Taylor expansion for ©, we have

B(ß + (D, y) = Q(ß, y) + DßB(ß, y)<D + *(<D).

Writing Q(ß, y) = 81 +0+ as for h and comparing the orders of y in (3.11),
we have

(3.12) DßQaj + DyQAy + hx - Sx =0,

(3.13) h+ + Dy<ï>g + Dß<i>h - 6+ - DßQ<& - R(<t>) = 0.

Note the left hand of (3.12) is a first order homogeneous polynomial in y and

that (3.13) is 0(|y|2).
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Let us first solve (3.12) by finding the <P which makes hx  as simple as

possible. Using Fourier expansions for O, hx, 81, we have

& = E ¿2*i,ke'<k'P)ya>
\a\ = \k€Nm

hl'J= E E*i:i*l(k,v,

\a\ = \k€Nm

ö1J= E Y@l:Jkei{k'ß}ya>
\a\=l keNm

where <D = (O1, ... , <Dm), /z1 = (hx'x, ... , hx-m) and 81 = (81-1,...,

81,m). Putting these into (3.12) and comparing the coefficients of ya, we

have

(3.14) ela'i - hl'i = (i(k, co) + (X, a))&k.

Because of the small-divisor conditions (3.3), the following choice is the simplest
for hx.

0 for\k\¿0or(X,a)¿0,

Take

hlJ   = -,
a'k     l eà',o   for 1*1 = ° and <A> a) = °-

a,k
<f¿ )  Ti-^71-r    for fc^O or (A, «)#(),
&ck = ]   i(k,œ) + (X,a)

[0 for|fc| = 0and(A,a) = 0.

Using the small-divisor conditions (3.3) and Lemma 2.2, we find that

*/=E £ *¿y<*,/v
|a| = l k£Nm

is analytic and 2n -periodic in ßx, ... , ßm in Dr_¿ , 0 < ô < r. It is clear that

<E> = 0(\y\). Now we determine h+ . Write (3.13) as follows

(/ + DßQ>)h+ = -Dy®g - Dß<&hx + 8+ + DßQ® + R(<&).

Since DßQ> = 0(\y\), we can choose sufficiently small rx, 0 <rx < r - ô such

that (I+DßO) is invertible and (ß, y) + (0, *F) e £>r for (ß, y) e Dr¡ . Hence

h+ = (I + Dß®)-x(-Dy<S>g - Dß®hx +B+ + Dßm> + /?(<£)).

Therefore the transformation 6 = ß + <f>(ß, y), z = y changes the system of

equations (3.1) and (3.2) to

ß = co + Y a°ya + 0(\y\2),    y = Ay + 0(\y\2),

l«l=i

where aa = (axa , ... , a™),

0, <A,a)#0,
a.i —

&a%    (X,a) = 0.

Assume Theorem 3.1 holds for M = / > 1. We will show that Theorem 3.1
is valid for M = I + 1 .
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By the induction hypothesis, there exists a transformation 6 = ß + <f>l(ß, y),

z = y + xVl(ß, y) which satisfies the requirements of Theorem 3.1 and changes

the system of equations (3.1) and (3.2) to

(3.15) ß = co +   Y   aaya + Q(ß,y),

\<\a\<l

(3.16) y = Ay+   Y  baya + f(ß, y),
2<\a\<l

where 8 = 0(|y|/+1) and / = 0(|y|/+1) are analytic in both variables and

271-periodic in each component of the vector ß in Dri, where r¡ > 0 is a

constant.
Consider the transformation ß = r¡ + cp(n, x), y = x + y/(n, x), where cp

and \p are (/ +l)th order homogeneous polynomials in x and 27i;-periodic in

each component of the vector n. This transformation changes the system of

equations (3.15) and (3.16) to the following system

(3.17) f] = co+   Y   aaxa + h(n, x),

l<\a\<l

(3.18) x = Ax+   Y   baxa + g(n, x),

2<\a\<l

where h = 0(\x\I+x) and g = 0(|x|/+1) are to be determined later. As before,

equivalently, ß = r\ + tf> and y = x + y/ satisfy the following equations.

Y   aa(x + it/(n,x))a + ë(ti + cp,x + i//)

l<|o|</

=   Y   a<*xa + D^tpco + DxcpAx + h

l<\a\<l

+ D^cj) I   Y   a«xa + h\+Dx(t)i   Y   b-x" + S
\l<|a|</ / \2<|a|</

and

Ay/+   Y   ba(x + y/(n, x))a + f

2<\a\<l

=   Y   baxa + g + Dn y/co + Dx y/Ax

2<\a\<l

+ Dr,y/i   Y   aaxa + h\+Dxy/¡   Y   b«xa + 8

\l<|a|</ / \2<|a|</

Since the functions we consider are analytic, we can classify the system of

equations (3.19) and (3.20) into two systems according to the order of x. One
contains only (/ + l)th order terms with respect to x, the other contains higher

order terms.

(3.19)

(3.20)
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By an elementary calculation, we have

(3.21) Y   aa(x + y/(n,x)Y=    Y   aaxa + Rx(y/),

l<\a\<l l<\a\<l

(3.22) Y   ba(x + y/(n, x))a =   Y   baxa + R2(y>),

2<\a\<l 2<\a\<l

where Rx(y/) = 0(|x|/+2) and R2(y/) = 0(|x|/+2). Using a Taylor expansion

for Q(n + 4>, x + y/) and f(n + cp, x + y/), we have

(3.23) ë(n + <f>,x + y/) = ë(n,x) + R3{</>, y/),

(3.24) f(n + <f),x + y/) = f(t1,x) + R4(cp, y/),

where R3{<j>, y/) = 0(|jc|/+2) and R4(cf), y/) = 0(\x\'+2).

We write

ë(n,x) = ël+x + ë+,   f(n,x) = fl+x+f+,

h(n,x) = h'+x+h+,        g(n, x) = gl+x + g+,

where 8/+1, fl+x, hl+x and ^/+1 are (/ + l)th order homogeneous poly-

nomials in x and 8+ = 0(\x\M), /+ = 0(|jc|/+2) , h+ = 0(|jc|/+2) and

g+ = 0(\x\l+2). Hence we can write the system of equations (3.19) and (3.20)
as the following two systems

(3.25) 8/+1 - hl+x = Dncf)co + Dxcj)Ax,

(3.26) fl+x-g'+x =Dvy/co + DxytAx-Ay/

and

(3.28)

(3.28)

h+ + Dnfh+ + Dx4>g+ = 8+ + A3 - £>„</>      E   aaxa + hl+x

\\<\a\<l

-Dxcf>l   Y   aaxa + g!+x) -Rx(ys),

\2<\a\<l }

g+ + Dr,y/h+ + Dxipg+ = f+ + R4-Dtly/i   Y   aaxa + hl+x

\\<\a\<l

-Dxy/[   Y   baxa + gl+x\ -R2(y/).

\2<|o|</ /

Using Fourier expansions for the functions 8/+l = (8/+1 ■ ', ... , 8/+1 ,m), //+1
= (fM>x,...JM'n), hl+x = (h'+x ■>,..., hM'm),  gl+x = (gl+l>1,...,
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g'+i.«), cp = (cpx,..., tpm) and y/ = (y/x,..., y/n), we have

ëi+x>j= y Y®l«kJel{",k)xa

fM,J =

ni+U =

M,j -

y =

y,J =

a\=l+l keNm

Y YtlV^x"'
\a\=l+lkeNm

Y YK+yei{"'k)x\
|o|=/+l k£Nm

|o|=/+l kevm

E JX*^**.
\a\=l+lk€Nm

Y Y<k^'k)xa-
\a\=!+l k€N„

Putting the above functions into the system of equations (3.25) and (3.26) and

comparing the coefficients of e'^'^x" , we have

o£W-*íi,; = ('(«. *> + <*.«»<*•
ll+,l'i-è1:XJ = {i^,k) + (X,a)-kj)¥itk.

Our purpose is to find cj>, y/ suchthat hl+x and gl+x have the simplest form.

By using the small-divisor conditions (3.3), the best choices for hl+x, gl+x are

the following

hM,j_(0 for\k\¿0or(X,a)¿0,

a'k        { ®a,oJ   for|Â:| = Oand(A,a) = 0.

MJ_ f 0 for\k\¿Oor(X,a)-Xj¿0,

èa'k    ~\GJ   for |fc| = 0 and (A, a)-A, = 0.

Define

<t>ik = <

çJ+Ui
öa,0

-   for\k\í0or(X,a)¿0,
i(k, co) + (A, a)

0 for |A:| = 0and (A,a) = 0.

and

fMJ for |A:|^0or (A,a)-A;^0,
VJa,k = {   i(k,co) + (X,a)-Xj

0 for \k\ = 0 and (X,a)- A; = 0.

By using the small-divisor conditions (3.3) and Lemma 2.2, we obtain that

^'= E E<keH"'k)xa
\a\=l+l k€Nm

and
Vi=   E   E ¥Í,kei{"'k)xa

\a\=i+i k<ENm
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are analytic and 27t-periodic in r\ in Z)r;_¿, where 0 < ô < r¡+x. Moreover

~hl+x, gl+x, tp and y/ are solutions of the system of equations (3.25) and (3.26).

We choose r¡+x sufficiently small such that 0 < r/+1 < r¡ - ô ,

Id+D^cp      Dx<p

Dny/      \d+Dxyi

has an inverse and (n, x) + (</>, yi) e Dn for (n, x) e Dn+l. Hence we can
solve the system of equations (3.27) and (3.28) for h+ and q+. Therefore

the transformation ß = n + 4>(n, x), g = x + y/(n, x) changes the system of

equations (3.15) and (3.16) to

t) = co+   Y   aaxa +   Y  aaxa + h+(n, x),

\<\a\<l \a\=l+\

x = Ax+   Y   baxa+   Y  baxa + g+(n,x),

2<\a\<l |q|=/+1

where for |a| < / + 1, aa and ba are the same as those in the system of

equations (3.15) and (3.16), which is given by the induction hypotheses; and

for a = / + 1, aa = (aa, ... , a£) and ba = (bl, ... , b£) are constant vectors

given by

' 0 for (A, a) # 0,

&$J   for (A, a) = 0,

J 0 for (A, a) - X} ¿ 0,

bJa=\&J   for(X,a)-Xj = 0,

and h+ = 0(|jc|/+2) and g+ = 0(\x\'+2).

Take

(3.29)
6 = r] + ®(n, x) = (I + <&) o (/ + ((/>, y/)) = r¡ + cp + <&'(?/ + cp, x + y/),

z = x + y(n,x) = (I + *¥I)o(l + (<p,y/)) = y + y, + ¥(n + cP,x + y/).

Then the transformation (3.29) changes the system of equations (3.1) and (3.2)

to the system of equations (3.4) and (3.5) in which we recognize (ß, y) as

(n, x). Hence the theorem holds for M = I + 1. This completes the proof of

Theorem 3.1.

Corollary 3.2. Let M>2 be fixed. If the small-divisor conditions

\i(co,k) + (X,a)-eXJ\>m^w

holds for all k e Nm and 1 -I- e < |a| < Af, e = 0 or 1, then the equations

(3.1) and (3.2) can be transformed to

ß = co + o(\y\M),       y = Ay + o(\y\M)

by an analytic transformation.

4. Linearization

Consider the following system of differential equations

(4.1) 6 = co + e(6,z),

(4.2) z = Az + f(6,z),
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where 6 e Cm, z e Cn, co = (cox,... ,com) e Rm , A = diag(Ai, ..., A„),

and 8 and / are analytic and 2n-periodic in each component of the vector 6

in L\, where r > 0 is a constant.

We assume 8 = 0(\z\) and / = 0(|z|2) as z -» 0. We have the following

theorem.

Theorem 4.1. If the frequencies co = (cox, ... , com) and eigenvalues X =

(Xx, ... , Xn) satisfy the small-divisor conditions

(4.3) \i{œ,k) + (X,a)-eXj\>       Co for j = 1, ... , n,

and for k e Nm, a e A+, \a\ > 1 + e, where e = 0 or 1, then the system of

equations (4.1) and (4.2) can be transformed to

(4.4) ß = co,

(4.5) y = Ay,

by a transformation

(4.6) 6 = ß + ^(ß,y),
(4.7) z = y + V(ß,y),

where <P and *F are analytic and 2n-periodic in each component of the vector ß

in Dx   for some small r, 0 < r < r, and <P = 0(|y|), *F = 0(|y|2) as y -> 0.
2r

First we describe the idea of the proof. This idea is essentially due to

Rüssmann [8] and Zehnder [9]. In fact, Zehnder uses it to prove Siegel's theo-

rem for maps. Then we prove the theorem precisely.

Without losing generality, we can assume that 8 and / are high order with

respect to z. In fact, by using Corollary 3.2 of the normal form theorem, we can

transform the system of equations (4.1) and (4.2) to a system whose nonlinear

terms have the desired order.
It is not hard to see that (4.6) and (4.7) change the system of equations (4.1)

and (4.2) to the linear system of equations (4.4) and (4.5) if and only if the

transformation satisfies the following equation

(4.8) F(<D, ¥) = D(Q>, V)(co, A)-(0, AV) - (8, /) o (/ + (<p, ¥)) = 0.

We want to apply Newton's method to solve the equation (4.8). Suppose

F(<&, *P) is small (this is reasonable because if we take (O0, *Po) = (0,0)

as an initial iteration, then .F(0, 0) = (&(ß, y), f(ß, y)) is small as long as y
is small). Our goal is to find a better next approximation (4> + u, ¥ + v) such

that F(Q> + u, 4* + v) is smaller, where (u, v) is a small error.

Using a Taylor expansion, we have

(4.9) F(<D + u, ¥ + v) = F(®,x¥) + F'(®, V)(u,v) + /?(<D, "V;u,v),

where R is a high order term in terms of (u, v), and

F'(«I>, ¥)(«,«)

(4-10) = D(u, v)(co,A)-(0, Av) - 0(8, /) o (/ + (<D, ¥)) • (u, v).

If we can solve the following linear equation for (u, v)

(4.11) F(<b,V) + F'(®,x¥)(u,v) = 0,

then we obtain a better approximation (Q> + u, 4* + v).
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Unfortunately, F' has, in general, no inverse nor even a right inverse. So we

cannot solve the linear equation (4.11).

However, F'(<5>, 4*) has an approximate inverse. Namely, F'(<&,*¥) can be

written as

F'(<S>, 4') = L(u,v) + H(u, v),

where L is a linear operator with a right inverse, and H(u, v) is "smaller"

than (u, v).

If we can construct such an approximate inverse L~x, then we can solve the

linear equation F (O, xV)+L(u, v) = 0 for (u, v) and (<P+m, *¥+v) is a better

approximation since F(<P+w, 4/+v) = H(u, v)+R(<i>, 4*; u, v) = "smaller"+

"smaller." Let

(4.12) T(u, v) = D(u, v)(co, A) - (0, Av).

Then

F'(<¡>, V)(u,v) = T(u, v) - D(B, f) o (/ + (O, V))(u,v),

where D(&, f) is the derivative of (8, /). Note T has a right inverse (we

will see this later).
The first attempt is to pick T~x as the approximate inverse of F'(<S>, 4*).

However D(&, /) o (/+ (<p, 4*))(m, v) is not smaller than (u, v). This implies

that we need to choose a different one. Hence, we separate D(Q, /)o(/+(<I>, 4'))

into two parts. One of them will be added to T so that the summation with T

has a right inverse and other part is a smaller term. This strategy can be carried

out as follows.
Differentiating the function (ß, y) -> F($>(ß, y), 4/(/>>, y)), we have

dF(<t>, V)(p,q) = d[D<<t>, T)(w, A)](p, q) - d(0, A*¥)(p, q)

('    ' -D(0,f)o(I + (<l>,V))(Id+d(<!>,V))(p,q),

where (p, q) is analytic and 2n -periodic in ßx, ... , ßm from Dr to Cm x C" .

Comparing (4.13) with (4.10), taking (u, v) = (Id+ii(<I>, 4*))(^, q) and sub-
tracting (4.13) from (4.10), we have

F'(<D, V)(u, v) - dF(®, 4')(Id+¿(<D, "¥))~x(u,v)

= (ld+d(Q>, 4*)) ¡D[(ld+d(<í>, 4,))->, v)](co, A)
(4.14) l

-(°    0Ayid+d((î>,^)rx(u,v)^

= L(u, v).

Hence -0(8, /) o (/ + (<D, 4*)) is decomposed into

-0(8, /) o (/ + (O, 4')) = [-T + L] + [dF(®, 4,)(Id+¿(4>, 40r>, v].

L has a right inverse (to be proved later), and dF(<$>, ̂ )(ld+d(<S>, 4/))_1(w, v)
is smaller than (u, v) since F(<t>, 4*) is small, by a Cauchy estimate, dF(<&, 4*)

is small. We write (4.9) as

F(<D + u, 4' + v) = F(<D, 4*) + L(u, v)

+ dF(<t>, 4/)(Id+¿(<P, 4/))-'(w, v) + R(®, 4*; u, v).
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We should also mention here that each iteration is defined on a smaller do-

main than that of the previous iteration. Fortunately, we will see that the

domain shrinks to a fixed domain rather than one point after infinitely many

iterations.

Before we prove Theorem 4.1, we discuss the operators T and L. From

(4.12) and (4.14) we can see that T and L have the following relation

L(u,v) = (Id+d(<D, 4/))r[(Id+i/(<D, 4'))-1(M, v]

provided that (ld+d(Q>, 4*)) has an inverse. Hence L has a right inverse if

and only if T has a right inverse.

Define a function space H0rr consisting of all analytic functions g(ß, y) =

(Sl(ß > y) > S2(ß> y)) -Dr -* Cm x C" which satisfy the following conditions

(i) g is analytic and 2^-periodic in ßx, ... , ßm;

(ii) gx(ß,y) = 0(\y\),g2(ß,y) = 0(\y\2);

(iii) sup{ß,y)eDr\g(ß,y)\<oo;

with norm \g\r = sup(/?<y)€Dr \g(ß, y)\ and a function space Hx,r = {g e

Ho,r\\dg\r < °o} with norm ||g||r = |g|r + |ú?,g-|r. It is clear that Ho>r and HXr

are Banach spaces.

For the operator T we have the following lemma.

Lemma 4.2. Assume that the small-divisor conditions (4.3) are satisfied. For
each g e Ho,p   (0 < p < r), the equation

(4.16) T(p,q) = g

has a unique solution (p, q) e HXp_g for all 0 < ô < p. Moreover,

\\(p, q)\\p_3 < C2\g\pa-(m+n+x+V ,    forô,0<ô<p,

where C2 = C2(Cq, m, n, p) is a constant depending on Co, m, n, p.

Note the above inequality implies that T has an "inverse" which is bounded

from //o,/) to HXp_g. We denote this operator:  g —» (p, q) by T~x .

Proof. Let p = (px, ... , pm), q = (qx,...,qn), g = (gx, g2), gx = (gx'x,

... , gx'm), and g2 = (g2'x, ... , g2'"). Writing these in the form of Fourier-

Taylor series; namely

pJ(ß,y)= Y Ypi,kei{ß'k)ya>
a6V„+ keNm

\a\>\

qJ(ß,y)= Y T,<kei{ß'k)ya>
a€N+keNm
|a|>2

§l'J(ß,y)= Y Ysi:{e^'k)y\
a€N¿ k€Nm

g2J(ß,y)= Y Y&{ß'k)y\
aev„+ keNm

\a\>2
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then placing these into equation (4.16) and comparing all the coefficients of
e'{ß,k)ya ^ we nave

gU „2,7
nj       _ a"^_ a)       _ _öi,k_
Va<k     i(co,k) + (X,a)'    q"-k     i(co,k) + (X,a)-Xj-

Using Lemma 2.2, we conclude that (p, q) e H0,p-s for any 0 < ô < p, and

\(p, q)\p-s < Cx\g\pS~(m+n+M+X). Using Cauchy estimates, we have

\d(p,q)\p_s < \(p,q)\p_y (f )     < 2m+n+^2Cx\g\pö^m+n+'i+2\

Hence \\(p,q)\\ps < C2\g\pô^m+n+'1+2), where C2 = 2m+n+^+2Cx. This com-

pletes the proof.
Now we prove Theorem 4.1. Define the iteration scheme as follows

(4.17) (00,4*0) = (0,0),

(4.18) {9j+x,Vj+l) = (H>j,^j) + (Uj,Vj),

(4.19)
(Uj,Vj)= -L-lF(d>j,"¥j)

= - (Id+</(<&,-, *¥j))T-l(Id+d(Qj, 4'7))-'F(q>;-, Vj)

for j = 0, 1, ... , where (0;, 4*7) and (u¡, v¡) are defined on Drj and A-;+1

respectively, and r, = ^r( 1 +2_(j+1)), 0<r<l,j = 0,l,..., where r is to

be determined later. We will show that (O,, 4*;) is well-defined and converges

to (<D, 40 e H   i    and that F(0, 41) = 0.
l.jr

We have

(4.20) r7 - r;+, = 2"^+3V.

Define a sequence {e,} by induction, eJ+i = Cj+Xe2, Cq = 1/2C2, where

C > 1 is a constant to be chosen later. It is not hard to check that

(i) Sj = C^2\\)2' ;
(ii) e, —> 0 as j; —► oc ;

(iii) sj+x <jSj< Sj - ej+x.

As we mentioned before, by using the normal form Theorem 3.1, we can

take (6, /) = o(|z|5(,M+"+//+3)). This will decrease the value of r. However,

this will have no effect in our proof since we will choose r > 0 to be sufficient

small. Let C = 8C3(^)<m+"+'i+3), where C3 = max{C2, 1} and e0 = 1/2C2.

We choose r, 0 < r < 1, such that ||(8, f)\\r < e2, and eo < gr. Then we

claim that (07-,4*7-) and (uj,Vj) have the following properties:

(Aj)  (<D;, 4',) is well defined and ||(<D;-, 4//)||0 < e0 - e, ;

(Bj)  \F{*j,Vj)\rj<ej;

(Cj)  \\(Uj,Vj)\\rj<ej+x.
We prove this claim by induction on j . It is sufficient to show the following

statements.
(a) (A0) and (B0) are true;

(b) (Aj) and (Bj) imply (Cj) ;
(c) (Aj) and (Cj) imply (Aj+X);
(d) (Aj), (Bj), (Cj) and (Aj+X) imply (Bj+X).
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Let us look at (a). A0 is trivial since (O0, 4*o) = (0,0). Because of

(S, f) = o(\z\5(-m+n+ß+i)),

(Bo) immediately follows by the choice of r.

Proof of (b). Take ö = \(r¡ - rj+x). By using (Aj), we have

\d{*J,Vj)\r,<l.

Hence

\(Id+d(<í>j, *¥;))-%< 2.

Using Lemma 4.2, (4.19), the choice of ô and (4.20), we have

(Uj,Vj)\rj.s = |(Id-N/(<D;, Vj))T-l(Id+d(<t>j, 4'7))-1F(0;, Vj)\rjs

< 4C2\F(Q>j, x¥j)\rjô^m+n+fi+2] < 4C2<r(m+"+/í+2)e2

/1/'+4\ m+n+p+2

= 4C2(V) *

By using Cauchy estimates, we have

/ ^ ;'+4 \ m+n+ß+3

\d(uj, Vj)\rj+I < \(Uj, Vj)\rj.sS-x < 4C2 [—J t)

Hence (Cj) follows by the choice of C

/2J+4\ w+"+M+3

ll(Wy, Vy)!!^, < 8C2 (-^-J

(t)        j   eJ

<a+le] = ej+l.

Proof of (c). By the choice of r and (Aj), we have

\I + (*j,Vj)\rj<r   and   |rf(<D,-, 4',)|< J.

Hence F(0>;, 4'>) is well defined, (Id+i/(0;, 4/7))"1 exists, and

(|(Id+¿(^,4'J))-1|<2.

Therefore (0,+1, 4//+1) is well defined. By (^7) and (Cj), we have C4/+i).

||(Oj+1 , 4';+i)||,+i < \\(<S>j,Vj)\\rj + \\(Uj, vj)\\rj+l

< eo-£j + ej+x <e0-ej+l.

Finally we show (d). By (4.15), (4.18) and (4.19), we have

F(*j+l, Vj+i) = dF{9j, Vj)(Id+d(<l>j, "Vj))-\uj, vj) + R(4>j, 4'J- ; Uj, Vj),

where

R(Qj, Vj;uj,vj) = J(l-t)^(Q,f) o (I+ (®j,Vj) + t(uj,vj))dt.

Using Cauchy estimates, (4.20), (Bj) and (Cj), we have
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\dF{*j, Vj)(iá+d(9j, Vj)Tl(Uj, vj)\rj+l

<\F(<t>j,Vj)\rj(rj-rJ+x)-x2ej+x

It follows from the choice of r, (Aj), and (Cj) that \I+(Qj, x¥j)+t(uj, Vj)\n <
r. Hence R(Q>j, 4*y ; u¡, vf) is well defined. By a Cauchy estimate, we have

|¿2(8, f)\rJ+l < (f)2|(8, f)\r < 1. Therefore, we have

\R(9j, Vj; Uj, Vj)\rj+i < xj\d2(e, f)\rjJ(uj, Vj)\2j+l < \e2j+x.

Thus |F(0;+i, 4,;+1)|f;+l <e2+1. This completes the proof of the claim.

Proof of Theorem 4.1. By the claim (Cj), we have (O, 4*) = lim^ooiO;, 4/J)

exists in i/i,r/2- From (5;) we conclude lim;^ooF(0;, 4*;) = 0,i.e., F(0, 4*)

= 0. It follows from (Aj) that / + (O, 4*) has an analytic inverse. This com-

pletes the proof.
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