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TENSOR PRODUCTS AND GROTHENDIECK TYPE INEQUALITIES
OF OPERATORS IN ¿„-SPACES

BERND CARL AND ANDREAS DEFANT

Abstract. Several results in the theory of (p, £?)-summing operators are im-

proved by a unified but elementary tensor product concept.

Introduction

Since the pioneering work of Grothendieck in Linear Functional Analysis
there is an extensive literature dealing with operators in Lp-spaces. Still the

most important result in this direction is Grothendieck's integral characteriza-

tion [9] of operators from l\ into l2 : There is a universal constant Kg > 0

such that for every operator S : l\ —► l2 there is a probability measure v on the

unit ball B¡ao of 4o (endowed with its weak* topology) for which

\\Sx\\ < KG\\S\\ J \(x, a)\du(a)

holds for all x e l\. For information on estimates of the constant KG we refer

to [20]. This result which is now called Grothendiek's Theorem—Grothendieck

himself called it "the fundamental theorem of the metric theory of tensor
products"—motivated the following statement of this paper: there is an ab-

solute constant k > 0 such that for every operator S : l\ —► lv ( 1 < v < oo) and

every probability measure p on B¡v, (v' the conjugate index v/(v-l)) there

is a probability measure v on B¡aa with

(J\(Sx,a)\sdp(a)^  ' <k\\S\\J\(x,a)\dv{a);

for all x € /i, where 2 < s < oo and j = | \ — £ |. Operators satisfying

such integral inequalities were defined and intensively studied by Maurey [16]

who proved several deep equivalent characterizations. One of them combined

with our result states that every operator S:l\ —> /„ (1 < v < oo) maps an

unconditional summable sequence (x,) in l\ into a sequence (Sx¡) which is

the product of an absolutely s'-summable scalar sequence (a,) and a weakly s-

summable sequence (y,) in lv , here again 2 < s < oo and j = \j - £ |. Within

the theory of absolutely summing operators which was initiated by Pietsch [22],

our result has the following formulation: If 2 < s < oo and } = | \ — £ |,
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then the composition of an arbitrary operator S : l\ —> lv with an absolutely

s-summing operator T : lv -> E is already absolutely summing.

The proof is based on two powerful concepts, which at a first glance have

nothing in common with each other, and also Kwapien's important extension

[12] of Grothendieck's Theorem, namely: If 1 < v < oo and j = 1 - \j - £ |,

then every operator S : l\ —> /„ is absolutely (r, l)-summing, i.e., it transforms

every unconditional summable sequence of l\ into an absolutely r-summable

sequence of lv . Our first step is to use Kwapien's result and the concept of

Weyl numbers (treated in König [11] and Pietsch [23]) to obtain some weaker

estimates concerning our statement. The next step is to improve these estimates

by a general procedure based on a certain kind of tensor multiplicativity of some

operator norms with respect to tensor products of Lp-spaces.

Along similar lines we study identity operators I from /„ into /„ (1 <

u < v < oo). In particular, we prove for I : lu <—> l2 the following integral

characterization: there is a constant k(u) > 0 (depending just on u ) such that

for every probability measure p on B¡2 there is a probability measure v on

Bi, for which

(J |(x, a)\u'dp(a)\      < k(u) j\(x, a)\dv(a)

holds for all x £ lu . This is a generalization of a well-known characterization of

absolutely (r, l)-summing identity operators I : lu <-> l2 due to Bennett [2] and

(independently) the first author [4], which itself extends old results of Hardy

and Littlewood [10] on continuous bilinear forms on lp x lq   (1 < p, q < oo).

Moreover, we give new integral descriptions of Schatten-von Neumann oper-

ators of type lr.
The paper is divided into two main parts; in the first part we recall the basic

definitions and results of Maurey's theory of (s, /?)-mixing operators and de-

velop our basic tools; in the second part we prove the above-mentioned integral

characterizations of operators acting between Lp -spaces.

1.   (S, /?)-MIXING OPERATORS, WEYL NUMBERS AND

TENSOR MULTIPLICATIVITY

Let us start with some preliminaries. We shall use standard notations and

notions from Banach space theory, as presented in [15]. For the general theory

of Banach operator ideals which was founded by Pietsch, we refer the reader to

the monograph [22].
If E is a Banach space (over the scalar field K = E or C), then Be is its

(closed) unit ball and E' its dual. By W(BE>) we denote the set of all (regular

Borel) probability measures on the weak*-compact space BE'. A family (x,)

in E is called absolutely p-summable (0 < p < oo) if

Up

< oo,lp(xd:=lP(Xi;E):=r£\\xi\A

and weakly p-summable if

Wp(Xi) := Wp(x¡ ; E) := sup i I V |(x,-, a)\" I     \a e BE, V < oo
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(with the obvious modifications for p = oo). By an Lp-space (1 < p < oo) we

mean a Banach space Lp(Sl, Z, p) for some measure space (SI, X, p). The

class of all Lp-spaces includes lp and all spaces lp (:= K" equipped with the

norm lp(')).
As usual 2^(E ,F) denotes the Banach space of all (bounded and linear)

operators S from E to F endowed with the operator norm

||S|| := sup{||Sx|| |x € BE}.

An operator T e S?(E, F) is called absolutely (r, p)-summing (0 < p <
r < oo) if there is a constant p > 0 such that lr(Tx¡) < pwp(x¡), for all finite

sets of elements Xi, ... , x„ € E. In this case the infimum over all possible

p > 0 is denoted by nr,p(T). Then [3°r,P, ^r,p] is a [minij?, l}]-normed

Banach ideal of operators.

By a result of Kwapien

U^H ,P\ ' Kri ,p¡ \ Q V^r-i ,pi > ̂ r2 ,p2] >

if ri < r2, p\ < p2 and \/r\ - \/p\ = l/r2- l/p2. If r = p one gets the ideal
[^p, Tip] of all absolutely p-summing operators. The Grothendieck-Pietsch

domination theorem states that S e ¿Pp(E, F) (0 < p < oo) if and only if

there is a p > 0 and a v e W(BE') for which

iisxii</>(yi<x,a>i^(0)) '

holds for each x e E. In this case again np(T) = min/?. Moreover, we

mention Pietsch's composition formula for absolutely summing operators:

[^s-^r,ns-nr]ç[^p,np],        1 + 1 = 1 <1.

Let us finally recall the definition of a p-nuclear operator. An operator T e

¿2?(E, F) is said to be p-nuclear ( 1 < p < oo) if it admits a representation

oo

t = Y^a'® y i '
i=\

with lp(ai; E')wP'(yi; F) < oo. Put NP(T) := inflp(ai)wpt(y¡). Then the

class JVP of all p-nuclear operators together with Np defines a Banach ideal of

operators and

\JVp, Np] Q[&>p,itp\,        \<p<oo.

1.1. A brief resume of Maurey's theory of (s, p)-mixing operators. Operators of

the following type for the first time were investigated in Maurey's fundamental

thesis [16]:
An operator S € S?(E, F) is called (s, p)-mixing (0 < p < s < oo) if there

is a constant p > 0 such that for every probability measure p e W(Bp') there
is a probability measure v e W(BE') with

(J\(Sx, a)\sdp(a)Sj  S < p (||(x, a)\"dv(a))xl^j ,

for all x € E.
With pStP(S) := infp = minp the class J(s,p of all (s,p)-mixing oper-

ators forms a [min{/?, l}]-normed Banach ideal.  Obviously [^p,p, PP,P] —
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[Ja?, || • ||] and because of the domination theorem it makes sense to define

[■4,,,, Poo,P] := \&p, itp] for 0 < p < oo.

We now recall some basic results about (s, p)-mixing operators most of which

can be found at least implicitly in Maurey's thesis [16] (see also [17]). In a

condensed form the theory of these operators appeared in Pietsch [22] and
Puhl [24]. Most of the following results will be used throughout this paper.

The phrase " (s, /?)-mixing" refers to the following deep characterization by

Maurey [16]: an operator 5 6 S?(E, F) is (s, p)-mixing if and only if it maps

every weakly p-summable scalar sequence (x,) in E into a sequence which can

be written as a product (a,y;) of an absolutely r-summable scalar sequence (a,)

and a weakly s-summable sequence (y¡) in F, where \ + -r = 1.

The following very useful composition formula is an immediate consequence

of the definition: for 0 < p < s < t < oo

(1.1-1) \^t,s '-^s,p, Pt,s- ßs,p] Q [A,p, Pt,p\-

Furthermore, we need a "local" version of the definition of an (s, p)-mixing

operator: By the Grothendieck-Pietsch domination theorem it is easy to see that

an operator S e ^(E, F) is (5, />)-mixing (0 < p < s < 00) if and only if for

every p e W(BF') the mapping

E^F - LS(BF,, p)

x ■*■* (a ~* (Sx, a})

is absolutely /^-summing, i.e, there is p > 0 such that for all Xi, ... , xn € E

dp(a)\     1      <pwp(Xi).

Since the discrete probabilities are (weak*-)dense in W(BF') this implies that
5 € 2f(E, F) is (s, /?)-mixing iff there is a constant p > 0 such that for all

finite families of elements X\, ... , x„ e E and functional b\, ... , bm e F'

( n    / m y/'\l/p

(1.1.2) £(EK5*"W) < pwp(Xi)ls(bk).

Again the infimum over all possible p equals ps,P(S) (compare with [22,

20.1.4]).
Now we recall some basic examples. An immediate consequence of the dom-

ination theorem is the following quotient formula

(1.1.3) [JrSiP,ps¡p] = [aSs-X-^p,7i;l-7Cp}, \<p<S<O0.

In other words, an operator S £ ¿2?(E, F) is (s, p)-mixing iff its composition

with an arbitrary operator T &¿PS(F, Y) is absolutely p-summing, and in this

case

(1.1.3') ps,p(S) = sup{np(TS)\ns(T) < 1}

(see [22, 20.3.1]). Hence Pietsch's composition formula of absolutely summing

operator implies

[^r,7tr]Ç[J^s^p,pStp], 1 + 1 = 1 <1.

¿(/|<Sx,,
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Moreover, the preceding quotient formula can be dualized as follows (cf. [22,

20.3.2])

[1.1.4) 1rs,P,ßs,p] = [A'-yrp7l,Ns,-N-1], l<p<s<oo,

1 + 1 = 1-
s   '   r       p '

i.e., an operator S e Sf(E, F) is (s, p)-mixing iff ST eJ^>(X, F) for every

operator T e jVpl (X, E), and in this case

(1.1.4') Ps,P(S) = sup{Ns,(ST)\Np,(T) < 1}.

The next result again due to Maurey [ 16] shows that the notions of (s, p)-mixing

and absolutely (r, p)-summing operators are closely related. One has

(1.1.5) [^s,p,ps,P}Q[^r,P,nr,p],

(for an easy direct proof see [24]) and for 0 < p < s < 2 this inclusion is strict.

However, for 1 < p < so < s < oo and 1 + 1 = 1

(1.1.6) [&>r,P,nr,p]Q[jrs^p,ps^p]

(cf. [22, 20.1.11 and 20.1.12]).
Finally, we mention that the identity operator on every L9-space (1 < q < 2)

is (2,/?)-mixing (0 < p < 2). This result is due to Kwapien [13] and was

extended by Maurey [16]:

(1.1.7) id£ e^#2,p for all 0 <p < 2, if E has cotype 2

(compare also with [22, 21.4.9 and 20.1.15]). A Banach space E has cotype
q (2 < q < oo)  if there is a constant c > 0 such that for finitely many

X\ , . . .  , Xn £ h

,2      \  V2

dtYr¡wxi
(=i

where r, is the ¿th Rademacher function. Khinchine's inequality shows that

every L9-space (1 < q < oo) has cotype max{<7, 2} . For further information

on this notion we refer to [20].

For a Banach space E with id¿ € Jfs^p we put pSyP(E) := pStP(idE). The

following estimates are known (cf. [22, 22.3.6])

P2,p(lq) < < _.
I C2P'C2q

where

Clp

r(i?)
Up

r(i)

c2p = 2 [r (2?)

forl<^<2,0<,p<2,

forl<^f<2,l</7<2,

c22 = V2,       c2\ = -^

Up
C22 = 2,

~— I Jlli    -    Uli

Ci\ = y/ñ (K = C).

1.2. Mixing operators and Weyl numbers. The following lemma combines the

theory of (s, p)-mixing operators with the concept of Weyl numbers. We just

briefly recall some basic notions (for the general theory of s-numbers see the

monographs [11, 23]).
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The nth approximation number a„(S) of S e Sf(E, F) is defined by

an(S) := infills - T\\ \T e S?(E,F) with rank T < n}

and the ntn Weyl number x„(S) is defined by

xn(S) := sup{an(SX)\E e S?(l2, E) with \\X\\ < 1}.

Clearly, the sequences (a„(S)) and (xn(S)) are nonincreasing and ||5|| =

a\(S) = Xi(S). Moreover, they are multiplicative, i.e., sn+m-\(TS) <

sn(T)sm(S), for se{a,x}, Se5f(E, G), T £&{G, F), and n,meN.
Given 0 < r < oo and 0 < q < oo the Lorenz sequence space lr q is defined

by

lr,q := p /oo|/rfi«l) := ( f;fc,/r_1C )      < °° | >

where (£*) denotes the decreasing rearrangement of (\£n\) ■ For q = oo the

requirement is supposed to mean

/r,oo(í):=«upikI/rÍÍ<oo.
fceN

Clearly, lr := /rr- The spaces lr>q are ordered lexicographically. For 5 6

{a, x} and 0 < r < oo, 0 < # < oo let

^% := {S e 5?\LsrJS) := lr,q((sn(S))) < oo}

be the quasi Banach ideal of all operators with approximation numbers resp.

Weyl numbers belonging to lr,q .

We now establish a close relationship between the Banach ideal J?s,i and

certain Weyl number ideals. This result extends (and is also based on) the

inclusions

-g^ç^Ç-^foo.        2<r<oo,

which are crucial for the theory of eigenvalue distribution of compact operators

and go back to König, Lewis, Pisier and Pietsch (see e.g. [11, 2.a.ll or 23,

2.7.4]). Moreover,

Lx x < nr,2   and   n2 < \2L\ x.

1.2.1. Proposition. Let 7 + 7 = 5

(1) Sfxx cj?s>2 and pSt2<2ALx x.

(2) For every finite rank operator S,   ps,2(S) < 24(l+log(rank5'))L^00(5).

Proof. In order to prove (1) by (1.1.3) it suffices to check â°s • 5CXX ç &2.

Let S G S?XX(E, F) and T € &S(F, Y) C <?S,2(F, Y) C &*Jf , Y). By

the monotonicity and multiplicativity of the Weyl numbers TS e J¿f2xx,  since

00

Y,k-l/2xk(TS) <2Y(2k - l)-l/2xk(T)xk(S)
fc=i k

<2Ll00(T)LxrA(S)

<2ns(T)LxrA(S).

Hence TS e â^ and

n2(TS) < \2LX2A(TS) < 24ns(T)Lx,x(S).
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This completes the proof of (1). The proof of (2) is now easy, since for a

given S with rank S — n

LX,X(S) = J2k-lki'rxk(S) < (1 +logn)L?>00(S).   D
k=\

We finally remark that the preceding proposition can be used to reprove the

following special (but most important) case of a deep result of Maurey [17] (for
the full statement see (1.1.6)).

1.2.2. Corollary. Let 2 < s0 < s < oo and 7 + 7 = 2- Then 3°rt2 QJ?So,2.

Proof. Define 2 < r < r0 < 00 by l/s0 + l/^o = 2 ■ Then ^frxx C ^ ,, and

therefore part (1) of the proposition implies £Pr,2 ç ¿¿?* , ç ^S0t2.   D

1.3. A tensor multiplicativity concept. A simple but striking concept is presented

which is a useful tool to improve various kinds of inequalities and furnishes the

foundation for many modern results in summability and eigenvalue theory.

A subset sf of operators S : K" -* K" (where n G N is arbitrary) is called
tensor stable if for all S G s/(Kn , W) the tensor product operator

S ® S : K" <g> K" = K"2 -» K"2

is again in si (identify K" <g> W with Kn via the bijection tp defined by

<p(e¡ <8> ef) := e(„_i),+; for 1 < i, j < n). Moreover, let A : sf -> R+ be a
function and a > 0. Then A is said to be a-tensor supermultiplicative if for
all S g s/

A(S)2 < aA(S ® S),

whereas it is called a-tensor submultiplicative if

A(S ® S) < aA(S)2,

for all Ses/. The following simple lemma is essential.

1.3.1. Lemma. Let s/ be a tensor stable set of operators S : K" —> K" and X >

0. Moreover, let A : sf —> E+ be a-tensor supermultiplicative and B:j/-»R+
be b-tensor submulitplicative such that for each e > 0 there is c(e) > 0 satisfying

(*) A(S) < c(e)nx+eB(S)

for all n G N and S G sZ(Kn , K"). Then for all n e N and S G sf(Kn , K")
>4(S) < abnxB(S).

Proof. Fix e > 0. Then there is c(e) > 0 such that for all n G N and S G
sf(K",Kn)

A(S)2 < aA(S ®S)< ac(e)n2{X+e)B(S ®S)< abc(e)n2^B(S)2,

and hence
A(S) < (ab)l/2c(e)l'2nUeB(S).

By iteration of this result (c(e) in (*) can be replaced by (ab)l/2c(e)1/2) we

get for all k, n e N and S e s/(Kn , K")

A(S) < (ab)^2~ic(e)2~kn^neB(S).
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Therefore, if for a fixed S G sf(Kn , K") first k tends to infinity and then e

tends to zero the described inequality is obtained.   D

The conclusion of the lemma holds in particular, if instead of (*) there are

constants X, c > 0 such that for all n e N and S e sf(Kn , K")

A(S)<cnx(l+logn)B(S).

Moreover, we mention that the idea of using tensor product techniques to

improve constants in certain inequalities goes back to Russo [25]. Recently,

Pietsch [23] used similar tensor multiplicativity techniques to improve various

eigenvalue estimates of operators.

Two of our main results will follow from the next lemma which is an imme-

diate consequence of the preceding one.

1.3.2. Lemma. For 1 < u, v < oo and 0 < r < oo let [sf, A] , \ß, B] be
two quasi-Banach ideals such that

2exx(lu,lv)CLsi(lu,lv)   and  X(lu, lv) ç &,*„(!», lv).

Moreover, assume that there are constants a, b > 1 with

A(S)2<aA(S®S:lf^lf),

B(S®S:lf ^lf)<bB(S)2,

for all n g N and S e Jî?(lZ, #).   Then for all n e N and S G &(ll, tf)
A(S) < abB(S).

Proof. By the closed graph theorem there are constants c, d > 1 such that for

all S g&(ll,lnv)

A(S) < cLxA(S) < c(\+\ogn)Lx^(S) < cd(l+logn)B(S).

Now the conclusion follows, if we apply the lemma to the set of all operators
S : Kn —> K" , the a-tensor supermultiplicative function

A:S*A(S:12^1Z),

and the è-tensor submultiplicative function

B:S~+B(S:IZ^IZ).   D

Finally, we mention

1.3.3. Lemma. Let 1 < u, v < oo and let [sf, A] be a quasi-Banach ideal.

Assume that there is a constant a > 1 such that for all n G N

^(id:/u"-/„")2<a^(id:/u"2-/^).

Then either

suplid: /„"^ 4") < a;

or there is e > 0 such that for large n

n°<A(id:l"u^O.

Proof. Assume that there is 1 ̂  «n G N such that

^(id : iy -» /*>) > a.
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Put d := a~lA(id : C -► l"°) and e := j\og„od > 0. Moreover, for n > n0

choose m G No such that n2^ > n > «^ .

Then the conclusion follows from

^(id : /„" -» lnv) > A(id : if -+ if)

>adm = a(nQgni>d)m

= a(n2QE)m > an£.   D

1.4. Tensor multiplicativity of some ideal norms. In this section we investigate

tensor submultiplicativity of the operator norm and tensor supermultiplicativity

of the (s, p)-mixing norm with respect to tensor products of L^-spaces. In

particular, we extend results of Bennett [3].

The e-norm and 7t-norm of z G E ® F are denoted by

e(z; E, F) :=sup{|(z, a®b)\ \a G BE>, b e BF>},

n(z;E, F) := inf (¿ ||x,|| ||y,|| \z = ¿x, ®y, 1.

Obviously, e(- ; E, F) < n(- ; E, F). A norm a(-; E, F) on E ® F is called
reasonable, if

e(-;E, F)<a(-;E,F)<n(-;E,F).

By E®aF we denote the completion of the normed space

E®aF:=(E®F ,a(-;E,F)).

It can be seen easily that a given norm a(- ; E, F) on E ® F is reasonable if

and only if for all x G E, y G F,   a(x ® y; E, F) = \\x\\ ||y||,   and for ail

aeE',beF',zeE®F,\(z,a®b)\< \\a\\ \\b\\a(z ; E, F).
Let us give two examples: For 1 < p < oo and z G E <g> F

gp(z;E, F) := inf i lp(xi)wp.(yi)\z = YXi ®yi \ '

and if Tz G Sf(E', F) denotes the operator corresponding to z,

g;(z;E,F):=7tp,(Tz:E'^F).

Both norms are reasonable and were intensivly studied by Chevet, Cohen, and

Saphar (see e.g. [6, 7, 26]). One has

g*p,(z;E, F) = np(Tz : E' -, F) < NP(TZ : E' - F) < gp(z;E,F),

and equality for p = 2. Moreover, for 1 < p < q < oo

gq(z;E,F) <gp(z;E,F),

g;(z;E,F)<g*q(z;E,F).

Obviously a = gp (resp. a = gp) satisfies the metric mapping property: for

Te5?(E,X) and Se5?(F, Y)

\\S®T:E®aF^X®aY\\ = \\S\\\\T\\
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whereas for two arbitrary reasonable norms a(-;E, F) and /?(•; E, F) just

the following estimate holds:

||S|| ||r|| = sup{ß(Sx®Ty;X, Y)\a(x®y; E, F) < 1}

< sup{ß(S®T(z);X, Y)\a(z; E, F) < 1}

= \\S®T:E®aF ^X®ßY\\

(provided S ® T : E ®a F —> X ®ß Y is continuous).  For special norms we

prove

1.4.1.  Proposition. For  1  < u,v < oo  let a(-;E,F) > gu(-;E,F)  and

/?(•; X, Y) < g*,(-; X, Y) be reasonable norms. Moreover, let S G S?(E, X)

and T G S? (F, Y).

(1) If 1 < u< v < oo then

\\S®T:E®aF^X®ßY\\< \\S\\ \\T\\.

(2) In each of the three cases
(a) 2 = v < u < oo and Y has cotype 2,

(b) 1 < v < u = 2 and E' has cotype 2,
(c) 1<u<2<m<oc and E', Y have cotype 2

one has

\\S®T:E®aF^X®ßY\\< p2,v(E')p2,u,(Y)\\S\\ \\T\\.

Proof. Obviously it is sufficient to prove the assertion just for a = gu  and

ß = g*,. Statement ( 1 ) follows by

g*v,(S® T(z);X,Y)< g*u,(S®T(z);X,Y)

<gu(S®T(z);X,Y)

<\\S\\\\T\\gu(z;E,F).

For the proof of (2)(a) consider the commutative diagram

E®guF   S%T   X®g;Y
|id®r ]S®id

E®g2Y     =     E ®g; Y.

Then by (1.1.4') and (1.1.7)

\\S®T:E®gu F -+X®g. 71|

<\\S\\\\id®T:E®glF^E®glY\\
= \\S\\sup{g2(id®T(z); E, Y)\gu(z;E, F) < 1}

< \\S\\ sup{N2(TR : E' -+ Y)\NU(R : E' -+ F) < 1}

<\\S\\p2,u>(T:F->Y)<p2,«>(Y)\\S\\\\T\\.

Dually: Under the assumption of (b) by (1.1.3') and (1.1.7)

\\S®T:E®g2F -tX®^ Y\\

< || r|| US ® id : E ®g; Y -+ X ®í;, Y\\

= \\T\\sup{g;,(S®id(z);X, Y)\g*2(z;E, Y) < 1}

< ||r||sup{7r„(i?S' : X' -» Y)\n2(R : E' -+ Y) < 1}

< \\T\\p2,v(S' : X' - E') < p2,v(E')\\S\\ \\T\\.
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Finally, assume that l<v<2<u<oo and that E', Y have cotype 2. Then

the diagram

E®guF    S^T    X®g. Yau svi

|id<8>r |S<8>id

E ®g* Y     —     E ®g2 Y,

commutes, and hence the assertion is an immediate consequence of (2)(a) and

(2)(b).    D

Let Lp = Lp(Sl, Z, p) be an Lp-space (1 <p < oo). For z = £"_, x¡®gi G
E ® Lp we define

Ap(z;E,Lp):=lj\\YíXi®gi\\pdp\      ;

and for z = £/L, fi®y¡£ LP®F

Ap(z ;Lp,F) := Ap Í ̂ y,■ ® /; ; F, Lp )

(with the usual modifications for p = oo). Then Ap(- ; is, Lp) and Ap(- ; Lp, F)

are reasonable norms and it is well known that (see e.g. [19, 27])

gp(-;E, Lp) <AP(-;E, Lp),

Ap(-;Lp,F)<g*p,(-;Lp,F),

gi(-;E, Li)=Ax(-;E, Lx) = n(-;E,L\),

Ax(- ;L00,F) = gx*(- ; L^ , F) = e(- ; Loo , F).

Hence the preceding proposition has the following corollary which is a proper

extension of a result due to Bennett [3].

1.4.2. Corollary. Let S G &{E, Lv) and T e &(LU,F).

(1) If 1 < u < v < oo, then

||S® T : E ®Au Lu - Lv ®Âv F\\ < \\S\\ \\T\\.

(2) In each of the three cases
(a) 2 = v <u < oo and F has cotype 2,

(b) 1 < v < u = 2 and E' has cotype 2,
(c) \ <v <2 <u<oo and E', F have cotype 2

one has

\\S®T:E ®Au Lu - Lv ®Av F\\ < p2,v(E>2,«>(F)\\S\\ \\T\\.

We remark that this result (in contrast to Bennett's) still includes a variant

of Grothendieck's Theorem namely:

7T2(S : /oo -» h) = || id®S : l2 ®E loo -» h ®a2 All

= ||id®S:/2®Aoo/oo^/2®A2/lll

<^2,l(/l)||S||.
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It was already noted by Bennett [3] that in the cases 1 < v < u < 2 and

2 <v < u < oo an inequality of the form

||S®S:/„"2^/£2||<c(M,i;)||S||2

does not hold, where c(u, v) is a constant just depending on u and v (see

also [22, 22.4.13, second remark]).
We now formulate another special case of 1.4.1.

1.4.3. Corollary. Let a(- ; E, F) < g*,(-; E, F) be a reasonable norm, Xi, ... ,

x„ g E and yi,... ,y„e F.

(1) If 1 <P' < u < oo, then

wp(Xi®yj ; E®aF) < wp(xi)wp(yj).

(2) In each of the two cases

(a) 1 < u < p' = 2,
(b) 1 < u < 2 < p' < oo and F has cotype 2

one has

Wp(x¡®yj;E®aF) < p2tU(lp)p2,p(F)wp(Xi)wp(yj).

Proof. Define

S := £ e, ® Xi G S?(lnp, ,E),        r := J> ® y} G &{%, F).
i j

Then

\\S\\ = wp(Xi),       \\T\\ = wp(yj),

\\S®T: if, ^E®a F\\ = wp(Xi ® y} ; E®aF).

Hence the conclusions follow by 1.4.1 (replace u by p', a by Ap- and ß by

a).    D

We are now ready to study tensor supermultiplicativity of the (s, p)-mixing

norm. The following proposition and its corollary will play a crucial role for

the proofs of our applications. First we set up the following notation: If S G

£?(E, X) and T e ¿f (F, Y) are two operators of finite rank, then S ®T :

E®aF -* X®ß Y, where a(- ; E, F) and ß(- ; X, Y) are reasonable norms, is

again a continuous operator of finite rank. Hence it has a continuous extension

S®T : E®aF -> X®ßY.

1.4.4. Proposition. Let a(-; E, F) < g*,(-; E, F) and /?(•; X, Y) be reason-
able norms. Moreover, let S e £?(E, X) and T g ¿z?(F , Y) be operators of

finite rank.

(1) If 1 <p' < u < oo,  then

Ps,P(S)pStP(T) < pS)P(S®T : E®aF -+ X®ßY).

(2) In each of the two cases
(a) l<u<p' = 2,
(b) 1 < u < 2 < p' < oo and F has cotype 2
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one has

ps,P(S)ps,p(T) < p2,u(lP)ß2,P(F)Ps,P(S®T : E®aF - X®ßY).

Proof Fix xi, ... ,xmeE,yi,... ,ymeF,  au ... , am G X', and bx, ... ,

bm£Y'. Then by (1.1.2)

P/'\ l/"   I m    / m \ WA  1/P

^(5]i(sx,,^)M        EEi^i'*/>!'
,i=l   U=l /      /        \j=l  \/=l

P/s\ XIP

= \Y,[Y,\(s®T(xi®yj)>ak®bMs'
\i.j \k,i

< ps,p(S®T : E®aF -> X®ßY)

• wP(Xi ® yj ; E®aF)ls(ak ® b, ; (X®ßY)'),

and since ß is a reasonable norm on X ® Y

ls(ak®bi;(X®ßY)') = ls(ak)ls(bi).

Hence both assertions follow from the preceding corollary.   G

Exactly in the same way it can be shown that

%r,p(S)Tir,p(T) < nr,p(S®T : E®aF - X®ßY),

for 1 < p' < u < oo , and

7iriP(S)7tr,p(T) < p2,u(lp)p2,p(F)nrtP(S®T : E®aF -* X®ßY),

for 1 < u < p' = 2 or 1 < u < 2 < p' < oo, provided F has cotype 2.

1.4.5. Corollary. Let S G £?(l¡¡ ,X),Te 5f(l¡¡, Y) and let ß be a reasonable
norm on X ® Y.

(1) If 1 <P' < u < oo,  then

ps¡p(S)ps,p(T) < Ps,P(S®T : if -* X®ßY).

(2) If 1 < u < 2 < p' < oo,  then

Ps,P(S)ps,P(T) < p2,u(lP)P2,P(lu)Ps,P(S®T : if - X®ßY).

Since the case p — 2 is the most important for applications we once more

refer to the upper estimates of p2 u(l2) for 1 < u < 2, mentioned at the end

of 1.1.

2. Integral characterizations of operator in Lp spaces

Now we are ready to prove our main results: integral characterizations of

- operators from L\-spaces into Lv-spaces,

- Schatten-von Neumann operators,

- identity operators from /„ into /„ .



68 BERND CARL AND ANDREAS DEFANT

2.1. Operators from L\-spaces into ¿„-spaces. The following important fact

was discovered by Kwapien [12] (see also [3]).

Let l<v<oo,0</?<2 and I < p < r < oo. If 1 < 1 - \\ - 1| then

3'(h,lv)=&r,p(h,lv).

Moreover, this result is best possible in the sense that if r fails to satisfy the

inequality 1 < 1 - |1 - 1| then 5f(lx, lv)i&>r,p(!\, M -

By use of an inclusion formula for absolutely (r, p)-summing operators

(mentioned in the preliminary section) the proof can be restricted to the case

p = 1. In order to prove this case Kwapien interpolates between the points

v = 1,2, and oo. The cases p = 1, v = 1 and p = 1, v = oo are con-

sequences of a result of Orlicz [18], which states that the identity operator on

/i is absolutely (2, 1)-summing, whereas the case p = 1, v = 2 obviously is

Grothendieck's Theorem [9].
We now state a proper extension of Kwapien's result.

2.1.1. Theorem. Let 1 < v < oo and 0 < p <2 < s < oo such that 1 = \j-^\ ■
Then

£?(l\ , lv) = ^s,P(l\ , lv) ,

and for all Sg^(/,,4)

Ps,P(S)<k(p)\\S\\,

where k(p) := P2,P(h)ß2,i(h) ■ In other words, for every S e ^(U , lv) and ev-

ery probability measure p G W(B¡v,) there is a probability measure v g W(Bloo)

such that for all x G h

^J\(Sx,a)\sdp(a)^  S <k(p)^J\(x,a)fdu(a)^  '

(with the obvious modifications if v = oo or s = oo).

Proof. Since

[J?s,2 ••^2,P, Ps,2' P2,P]Q [^s,P, Ps,P]

and id/, G Jt2,p for 0 < p < 2 (see 1.1.1 and 1.1.7), it suffices to prove the

assertion for p = 2. Define 2 < r < oo by 7 + 7 = 5. By 1 -2.1 Proposition

we know £?xx(l\, lv) Q -^,2(A , ¡v), and by Kwapien's theorem 2C(l\, lv) =

^r,l{h, lv) Ç-%,(/! ,/„)•'
Moreover, by 1.4.5(2) and 1.4.2(1) for all S G &(lnx,l$)

ps,2(S)2<k(2)ps,2(S®S:lf-+lf),

\\S®S:lf^lf\\<\\S\\2.

Hence 1.3.2 Lemma implies that for all S G &{lf , /£) ps,2(S) < k(2)\\S\\.
Let now S G 2C(l\, lv) ■ We use the local definition (1.1.2) in order to

show that S is (s, 2)-mixing. Fix X\, ... , xm G l\ and b\, ... , bm e lv> (for
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v = oo the assertion is trivial). For n G N define the operators

o   . in        in
•J/i • 'l   ^ lv

(í,)~»(S(íl,...   ,í„,0,... ),)?=!

i5« : /i - /f

(&)-(£,,... ,i«)

on : A;' ""* V

(«-»(íl,...   ,í»).

Then for all n G N

< Ps,2(Sn)W2(PnXi)ls(Qnbk)

< k(2)\\S\\w2(Xi)ls(bk).

Since for fixed i and k limn-,,*, |(S„Pnx;, Qnbk)\ = |(Sx;, bk)\, we get S G

JTs,2(h,lv) and /iJi2(S)<fc(2)||S||.   D

Following the local techniques of Lindenstrauss and Pelczyñski [14] the the-

orem can be extended to operators acting between so-called Jz^r and 3v,p-

spaces. A Banach space E is called an =2^ ¿-space (1 < <7 < oo, 1 < A < oo)

if for every finite-dimensional subspace M of E there is a finite-dimensional

subspace N of E such that M c N and the Banach-Mazur distance

d(N, I«) := infijo Hr-'ll \T G 2>(N, lnq) bijective} < X,

where n := dim A. Every L?-space is an .2^ ¿-space for all X > 1 and every

space C(X), where X is compact, is an -2^ ¿-space for all X > 1.

By use of 1.1.2 and standard (local) arguments the following extensions of

2.1.1 can be shown:

Let E be an 3\t ¿-space and F an ¿2fv¡tl-space (1 < v < oo). If 0 <

p < 2 < s < oo and 1 = \¿ - 1| then £?(E, F) — Jfs P(E, F), and for all

SeJ?(E,F), ps,p(S)<k(p)Xp\\S\\.
Finally we note some interesting composition formulas (all of which are

equivalent to our theorem). For this we need some more notation. The canoni-

cal embedding of a Banach space E into its bidual E" will be denoted by KE .

Let 1 < p < oo. By definition ¿¿?p is the ideal of all operators S G 2'(E, F)
such that KES factors through an appropriate Lp-space. S G 2f(E, F) be-

longs to the ideal Sp if there is a p G W(BE<) such that KFS factors through

the formal identity C(BE>) -► Lp(p). Moreover, we write S G &>pAwX(E, F) if

S'e&>p(F',E').

2.1.2. Corollary. Let 1 < v < oo and 1 <p <2<s < oo. #" 1 = \\ - 1| rAe«

(1)       =2^,   " -Z\    Ç  ̂ >p  ,
(2) 0>s.%,.3\ç&p,
(3) .2?, • <2\ • J^pi ç J^i,
(4) ^.^-^ç^,
(5) 3['Jp.-0>sç &*»*.&>„.,

(6) J^-^-^ç^1131.

2/í> '/i
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Sketch of the Proof. Let us first check ( 1 ). By definition for every S G

-2t • 2C\(E, F) there are an Li-space L\, an L„-space Lv and operators

X G &{E", L'{),        U G 3(L'[, I»),        Y G 3(L':, F"),

such that the following diagram commutes:

J7"     ^      f"

U U
T II tJ j H

lv( —»        J^v .

Now the bidual of Lx resp. Lv is an 3\ ¿-space resp.^, ¿-space for all X > 1,

and hence U and in particular S" are (s, p)-mixing. But since Se^s,P if

S" G J?s,P (this is an immediate consequence of (1.1.2)), the proof of (1)

is complete. The assertions (2), (3) and (4) now follow by the inclusion

formulas

&*s '^s,P ^ &P >       ^s,p '*A?p' Q ^s' >       *&s,p ' JVp1 Q-^s'

(see (1.1.3), (1.1.4) and [22, 20.2]). Moreover, (3) implies

3\>Sp.ci3v-X'Js.= 3* • &~x = ^dual -&v, >&>~l,

where 5C* denotes the adjoint ideal of 3V which by the Persson-Pietsch trace

duality and a deep factorization theorem of Kwapien equals ^dual • ̂ v< (see

[22, 17.4.3. and 19.3.10]). For the proof of the equality ̂ "'-Jt/ =3*-9i>-x
use e.g. the general quotient formula 4.4.2. of [8]. In a similar way (5) implies

(6).   D

2.2. Schatten-von Neumann classes. By definition the Schatten-von Neumann

classes are
sfr(l2,l2):=3ra(l2,l2),        0<r<oo.

For S esfr(l2, l2) put

Ar(S):=Lf(S)= (f>(S)'
\k=i

A result of Mitjagin which was first published in [12], states that for 2 < r < oo ,

[sfr(h,h),Ar] = [^r,2(l2,h),nT>2]

(see e.g. [23, 2.11.28]). By use of our tensor multiplicative concept one can

even prove the following integral characterization of the Schatten-von Neumann

classes.

2.2.1. Theorem. Let 2<r<oo,0<p<2<s<oo and 7 + 7 = 2-  Tnen

sfr(l2, l2) = J?SyP(l2, l2), and for every S e sfr(l2, l2),

Ar(S)<ps,p(S)<p2iP(l2)Ar(S),

i.e., for all probability measures p G W(B¡2) there is a probability measure

v g rV(B¡2) such that for all x G l2

(J\(Sx,a)\sdp(a)^   S < P2,P(l2)MS) (| |(x, a)\"du(a)

'/'

¡/p
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Proof. As in the proof of 2.1.1 we may restrict our considerations to the case

p — 2. By (the easier part of) Mitjagin's result

tä,2(k, h), Ps,2] Q \&r,2(h,h),1lr,2\ Q [sfr(l2 , l2) , Ar].

For the converse inclusion we again apply 1.3.2 Lemma. One has

Wl . k) Ç ̂ rlooih , h) = SrX,oo(l2 , h)

and by 1.2.1,   3xx(l2, l2) c JtSi2(h, h) •

Moreover, 1.4.5(1) and [23, 2.11.22] imply for all S G 2?{l\ , l\)

Ps,2(S)2 < Ps,2(S ® S : if -» if)       Ar(S ® S : if - if) = Ar(S)2,

and hence by 1.3.2 for all S G S?(l\ , Ç), ps,2(S) < Ar(S).
Using the final argument of the proof of 2.1.1 we get the desired inclusion

[sfr(l2, l2), Ar] ç \Jfs,2(l2, h), ps<2].   O

As a corollary we mention the full statement of Mitjagin's theorem (with a

slightly better norm estimate).

2.2.2. Corollary. Let 2 < r < oo, 0 < p < 2, and p < q < oo with 1 =

- + - — -. Then

Sfr(h,h)=^q,p(h,l2),

and for all S G sfr(l2, l2)

Ar(S) <nq,p(S) < p2,p(l2)Ar(S).

Proof. Since p < 2, q < r and 1 - 1 = \ - \ ,

\&q,P(h, h), nq,p] ç [&>ra(h, h), Jtr>2] ç [sfr(l2, l2), Ar].

Conversely: If 1 + 1 = 1, then 7 + 7 = 3. Hence by the preceding theorem

sfr(l2, l2) ç jrs,p(l2, l2) ç 3PqtP(l2, l2),

and for all S G sfr(l2 , l2)

nq,P(S) < ps,p(S) < p2,p(l2)Ar(S).   O

2.3. Identity operators from lu into lv . The following characterization of those

identity operators I : lu <-> lv ( 1 < u < v < 00) which are absolutely (r, 2)-

summing has been determined by Bennett [2] (see also [3]) and the first author

[4].
Let 1 < u < 2,  1 < u < v < 00, and 2 < r < 00. Then I € ¿Pr 2(lu, /„) if

7<¿-max{l,i}.

Again this result is sharp in the sense that I  fi ^r,2(lu, k) if 7 - 7; +

max{l, 5} =: e > 0. In this case for all « G N

(2.3.1) «£<^,2(id :/„"-/„")

(see the proofs of [4, Theorems 1 and 2]). Especially the case v = 2 has
proved successful in its application to the theory of distribution of eigenvalues
of matrices and integral operators as has been discovered by König, Pietsch,

Retherford, and Tomczak-Jaegermann (see [11, 23]).
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In this section we reprove and extend this result by use of our tensor product

trick within the theory of s-numbers. For this purpose we recall the definition
of Hubert numbers given by Bauhardt [1]. The «th Hubert number of an

operator S G 3(E, F) is defined by

h„(S) := sup{an(YSX)\ \\X : l2 -+ E\\ < 1, ||7 : F -» l2\\ < 1}.

We start with a result which is implicitly found in [21].

2.3.2. Lemma.

(1) Let S G 3(E,F)  with dimE = dim F = rankS = n.  Then for all
\<k<n, hk(S)an_k+l(S-1) < 1.

(2) Let S G S?(E, 1%) with dimE = rank S = n.  Then for all 1 < k <

n, xk(S)an_k+i(S-1) = 1.

Proof.  (1) Let 0 < e < 1 and 1 < k < n . By Bauhardt's characterization [1]

of Hilbert numbers (see also [22, 11.4.3]) there are operators X G S?(l2, E)

and Ye&(F,l%) suchthat \\X\\ < 1, ||7|| < 1, and (I-e)hk(S) id = YSX.
Put p := (1 - e)hk(S) and A := S~x - p~xXY. Since ASX = 0 we have

dim kern A > rank SX = k > k - 1

(note that SX is injective), and in particular

rankv4 = n - dim kern .4 < n — k+l.

Consequently, the conslusion follows by

(1 - e)hk(S)an_k+l(S-1) < /HIS"1 - A\\ < \\X\\ \\Y\\ < 1.

(2) By (1) the inequality < is clear, since xk(S) = hk(S). On the other

hand

l=x„(id:/2"^/2")

< xk(S : E - /2")x„_fc+1(S-' : ln2 -> E)

= xk(S:E^%)an-k+x(S-l:q-+E).   u

As a consequence we prove

2.3.3. Proposition. Let 1 < u < 2 and 1 < u < v < oo. Then for all 1 < k < n

(1) xk(id:l¡¡^l^) = kl/2-l'u.

(2) xfc(id : /„" -^ 4") < km™V'v • im-U".

Proof Since by a result of Pietsch [23, 2.9.8] for 1 < u < 2 and  1 < k <
n, an-k+l(id: l\ —> l¡¡) - kl/u~l/2, the preceding lemma proves ( 1 ).

Let us now prove (2). If 1 < u < 2 < v < oo then for all 1 < k < n

x,(id : /„" - /») < x,(id : /„" - ln2) = kxl2-xl\

The case 1 < u < v < 2 follows by interpolation: Define

fl.= l/u-l/v

"     l/w-1/2'

so that 1 = f + l=â , and let A g 3(l2, ID with \\A\\ < 1. Then by Holder's
inequality for x G l2

lv(Ax)<l2(Ax)elu(Ax)x-e.
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Hence for each subspace M of l2 we conclude with the natural embedding I1^

from M into l2

\\AIl¡, : M -, /»Il < \\Al'à : M -» ln2\\e \\AI1^ : M - l"u\\x~e < \\AI% : M - /2Y,

and consequencely for ail 1 < k < n

ak(A : l2 - /») < ak(A : l2 -> /2")e

(obviously the latter inequlaity holds for the so-called Gelfand numbers which

for operators defined on l2 coincide with the approximation numbers, see [11

or 23]). Finally, we get for all 1 < k < n

x^(id : /„" - /„") < x*(id : /„" - /2")e = k^x'2-x^e = kxlv~Xu.   D

We are now prepared to state the following abstract version of the character-

ization of absolutely (r, 2)-summing identity operators I : lu •-* lv mentioned

at the begining of this section.

2.3.4. Lemma. Let \<u<2,l<u<v<oo, and 2 < r < oo. Let [sf, A]
be a quasi-Banach ideal such that

Srx,Alu,lv)Qsf(lu,lv)ç3rx00(lu,lv).

Moreover, assume that there is a constant a > 1 with

A(id:l^lD2<aA(id:lf^lf),

for all n G N. Then the following alternative holds:

(1) If 1 < 1 - max{l, 1},  then sup„eN A(id : /» -» I*) < a.

(2) If 1 - 1 + max{l, 1} =: e > 0, then nE < A(id : 1% -> /£) for large n .

Proof. (1) We denote by W the tensor stable set for all identity operators

id : K" -» K" , where n G N. Then by assumption A : id ~» A(id : I" —> /") is
an a-tensor supermultiplicative function on W and

||.||:id-||id:/„"^/„"||

is obviously a 1-tensor submultiplicative function on W. Moreover, by the

closed graph theorem and the preceding proposition there is a constant c > 1

such that for all n G N

A(id:lnu ^ lnv) <cLxrA(id:lnu ^ l"v)

= cj^kxl'-xxk(id:lnu^lnv)

k=\

n

= c "S^ y^l/r—l+max{l/w, 1/2}—1/m

k=\

<c(l+logn)||id:/„»^a.

But then the desired inequality follows from 1.3.1.

(2) There is S0 > 0 such that for all 0 < ö < S0

1        1
ex :=-T-h max

r + ô     u {M}-
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Moreover, there is a (uniform) constant c > 1 such that for all 0 < S < ô0 and

n gN

nr+s>2(id : l"u - /») < cLxr+s x(id : l"u - /»)

(see e.g. the proofs of [11, l.d.20 and2.a.ll]). Hence by assumption and (2.3.1)
there is rf > 1 such that for all 0 < ô < ô0 and n G N

^<c^+<M(id :/„"->/„")

< cLx x(id : 11 -> /») < cdA(id : lnu - /»).

Finally if <5 tends to 0 for each fixed n , we obtain (2).   D

An almost immediate consequence of this lemma is the following main result

of this section.

2.3.5. Theorem. Let 1 <u < 2,  1 < w < u < oo and 0 < p < 2 <s < oo.

(1) If 7 > î - ¿ + max{l, 1}, fAe« i G J(s,P(lu, k) and

Ps,P(I •■ lu «-» 4) < P2,P(lu)P2,u(h)-

(2) If \ - 1 + max{l, 1} - 1 =: e > 0,  *A«i i £ Jts,P{lu, k) and

nc < ps,p(id : 11 -» /£),    /or a// heN.

Proof. In order to prove ( 1 ) we first observe the following. Exactly as in the

proof of Theorem 2.1.1 it is enough to show that in the case p = 2 for all

n eN,/*i>2(id:# -*l*) <p2,u(h).
Since by 1.2.1

-2y?i ç^2 c.2^,        7 + 7 = 2'

and by 1.4.5(2) for all «gN

ps,2(id : lnu - lnv)2 < p2,u(h)Ps,i(ià : if - if),

we just apply the preceding lemma.

Finally we prove (2). By (2.3.1) we know that for all n G N

«£<^;2(id:/^/„")<^;2(id: /;-*»),        ^ + 7 = 5-

Since \~$s,p, Ps,p]Q [^,2> ^,2] this implies the desired result.   D

Let us again give a second more analytic formulation of part ( 1 ) : If 1 <

u < 2, l<u<v<oo,0<p<2<s<oo, and 7 > 5 - 1 + max{l, ¿} ,

then for every probability measure p G W(B¡ ) there is a probability measure

v G W(B¡u, ) such that for all x G /„

(j\(x,a)\sdp(a)\     <P2,P(lu)P2,u(l2)(J\(x,a)\pdu(a)\     .

In particular, we reproved the characterization of absolutely (r, 2)-summing

identity operators I : lu <-> /„ (with new estimates for the norms). The full

statement is
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2.3.6. Corollary. Let \ <u <2,  1 < u <v < oo, 0 < p < 2,  and 0 < p <
r < oo.

(1) // 7 < J - 3 + 5 - maxU> 2>>    ^  7 e ^r,p(lu,lv)   and nr,p(I) <

P2,p(lu)ß2,u(l2)-

(2) If 1 - 1 + 1 - 1 + max{l, 1} =: e > O, íAe/i i i &>TtP{lu, lv) and

nE < nr,p(id : l¡¡ -> /£) for all n e N.

Prao/. Since y?s,p, ßs,P\ Q [^°r,P, nr,p] for 1 + 1 = 1, statement (1) is a

consequence of part (1) of the theorem. Part (2) is again an easy consequence

of (2.3.1).   D

We finish this section with the following remark:

For 1 < p, q < oo let A be a continuous bilinear form on lp x lq . Then

(       i \ r/v\ x/r
I   oo     /   oo \

£ \J2\A(ei,ej)\"
V!=l \j=x I   j

<P2,pi(lq')P2,q'(l2)\\A\\,

if 1 < p', q' < 2,  1 < p' < r < oo,   1 < q' < v < oo and 1 + max{l, 1} =
2 _ I _ i
2    p    i'

This comprises and extends the main results of Hardy and Littlewood's paper

[10]. By the last corollary the proof is easy: if Â : lp —> lqi is the linear operator

corresponding to the bilinear form A, then IÂ : lp —» lq, <-^ /„ is absolutely

(r, /?')-summing and

nr,p'(IÂ) < p2,P'(lq')p2,q'(l2)\\A\\,

since 1 = jr - \ + jr - max{l, 1}. Hence

/ oo \ !/r

i^2lv(Âei)r\     < 7irtpl(IÂ)wpl(ei;lp) < p2tl>l(lql)p2,q,(l2)\\A\\.
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