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TENSOR PRODUCTS AND GROTHENDIECK TYPE INEQUALITIES
OF OPERATORS IN L,-SPACES

BERND CARL AND ANDREAS DEFANT

ABSTRACT. Several results in the theory of (p, ¢)-summing operators are im-
proved by a unified but elementary tensor product concept.

INTRODUCTION

Since the pioneering work of Grothendieck in Linear Functional Analysis
there is an extensive literature dealing with operators in L,-spaces. Still the
most important result in this direction is Grothendieck’s integral characteriza-
tion [9] of operators from /; into /,: There is a universal constant K > 0
such that for every operator S:/; — [, there is a probability measure v on the
unit ball B, of /., (endowed with its weak* topology) for which

1Sx]| < K6IS| / \(x, a)|dv(a)

holds for all x € /, . For information on estimates of the constant K; we refer
to [20]. This result which is now called Grothendiek’s Theorem—Grothendieck
himself called it “the fundamental theorem of the metric theory of tensor
products”—motivated the following statement of this paper: there is an ab-
solute constant k > 0 such that for every operator S:/; — [, (1 <v < o0) and
every probability measure x4 on B;, (v’ the conjugate index v/(v — 1)) there
is a probability measure v on B;_ with

(fsx. a>|fdu<a>)”s < ksl [ Itx, a)ldvia;

for all x € /;, where 2 < s < oo and 1 = | — }|. Operators satisfying
such integral inequalities were defined and intensively studied by Maurey [16]
who proved several deep equivalent characterizations. One of them combined
with our result states that every operator S:/; — [, (1 < v < 0o) maps an
unconditional summable sequence (x;) in /; into a sequence (Sx;) which is
the product of an absolutely s’-summable scalar sequence («;) and a weakly s-
summable sequence (y;) in /,, here again 2 < s < oo and 1 =|{—1|. Within
the theory of absolutely summing operators which was initiated by Piets<1:h [22],

our result has the following formulation: If 2 < s < oo and % = |3 - %l,
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then the composition of an arbitrary operator S:/; — [, with an absolutely
s-summing operator T :/, — E is already absolutely summing.

The proof is based on two powerful concepts, which at a first glance have
nothing in common with each other, and also Kwapien’s important extension
[12] of Grothendieck’s Theorem, namely: If 1 <v <oo and :=1-|} -1,
then every operator S :/; — /, is absolutely (r, 1)-summing, i. e it transforms
every unconditional summable sequence of /; into an absolutely r-summable
sequence of /,. Our first step is to use Kwapien’s result and the concept of
Weyl numbers (treated in Konig [11] and Pietsch [23]) to obtain some weaker
estimates concerning our statement. The next step is to improve these estimates
by a general procedure based on a certain kind of tensor multiplicativity of some
operator norms with respect to tensor products of L,-spaces.

Along similar lines we study identity operators I from [, into [, (1 <
u < v < o00). In particular, we prove for I : [, — [, the following integral
characterization: there is a constant k(u) > 0 (depending just on u) such that
for every probability measure u on B, there is a probability measure v on
B, for which

(fiex. a)l“'duw))l/ul < k) [ ltx, @ldvia)

holds for all x € /,. This is a generalization of a well-known characterization of
absolutely (r, 1)-summing identity operators I : /[, — [, due to Bennett [2] and
(independently) the first author [4], which itself extends old results of Hardy
and Littlewood [10] on continuous bilinear formson /, x/; (1<p,q < ).

Moreover, we give new integral descriptions of Schatten-von Neumann oper-
ators of type /.

The paper is divided into two main parts; in the first part we recall the basic
definitions and results of Maurey’s theory of (s, p)-mixing operators and de-
velop our basic tools; in the second part we prove the above-mentioned integral
characterizations of operators acting between L,-spaces.

1. (s, p)-MIXING OPERATORS, WEYL NUMBERS AND
TENSOR MULTIPLICATIVITY

Let us start with some preliminaries. We shall use standard notations and
notions from Banach space theory, as presented in [15]. For the general theory
of Banach operator ideals which was founded by Pietsch, we refer the reader to
the monograph [22].

If E is a Banach space (over the scalar field K =R or C), then Bg is its
(closed) unit ball and E’ its dual. By W (Bg:) we denote the set of all (regular
Borel) probability measures on the weak*-compact space Bg:. A family (x;)
in E is called absolutely p-summable (0 < p < o) if

1/p
Ly(xi) = l(xi; E (lex,””) < 00,

and weakly p-summable if

1/p
Wp(x;) = wp(x;; E) := sup{ (Z| Xi, ") la € BE:} < o0
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(with the obvious modifications for p = c0). By an L,-space (1 < p < o0) we
mean a Banach space L,(Q, X, 1) for some measure space (2, X, u). The
class of all L,-spaces includes /, and all spaces /] (:= K" equipped with the
norm /,()).

As usual Z(E, F) denotes the Banach space of all (bounded and linear)
operators S from E to F endowed with the operator norm

1Sl := sup{[|Sx]| |x € Bg}.

An operator T € Z(E, F) is called absolutely (r, p)-summing (0 < p <
r < oo) if there is a constant p > 0 such that /.(Tx;) < pw,(x;), for all finite
sets of elements x;,..., x, € E. In this case the infimum over all possible
p > 0 is denoted by =, ,(T). Then [& ,, n, ,] is a [min{p, 1}]-normed
Banach ideal of operators.

By a result of Kwapien

['-ngl,m > Try ,171] g [gfz,Pz ’ 7t’z,ﬂz]’

if n<r, py<pyand 1/ry—1/py=1/r,—1/p,. If r=p one gets the ideal
[#,, mp] of all absolutely p-summing operators. The Grothendieck-Pietsch
domination theorem states that S € F,(E, F) (0 < p < o0) if and only if
thereisa p >0 and a v € W(Bg/) for which

isx <o ([ 1ex, a>|pdu<a)) "

holds for each x € E. In this case again n,(7) = minp. Moreover, we
mention Pietsch’s composition formula for absolutely summing operators:

[«@S'ﬂr,ﬂs°ﬂ,]g[@p,ﬂp], %+%=-’}-Sl.

Let us finally recall the definition of a p-nuclear operator. An operator T €
Z(E, F) is said to be p-nuclear (1 < p < o00) if it admits a representation

[o o]
T=Y a®y,
i=1

with [,(a;; E"Ywy (yi; F) < oo. Put Ny(T) := infl,(a;)wy (y;). Then the
class .#, of all p-nuclear operators together with N, defines a Banach ideal of
operators and

[, Np1 C [, 1y, 1 <p<oc.

1.1. A brief résumé of Maurey’s theory of (s, p)-mixing operators. Operators of
the following type for the first time were investigated in Maurey’s fundamental
thesis [16]:

An operator S € L (E, F) is called (s, p)-mixing (0 < p <s < o) if there
is a constant p > 0 such that for every probability measure yu € W (Bp:) there
is a probability measure v € W (Bg:) with

( [, a>|fdu(a))”s <o ([ 1. aypaviay ),

forall x e E.
With u; ,(S) := infp = minp the class .4 , of all (s, p)-mixing oper-
ators forms a [min{p, 1}}-normed Banach ideal. Obviously [#, ,, uy ,] =
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[Z, |l - |I] and because of the domination theorem it makes sense to define
(Aoo,ps loo,p] =[S, mp] for 0 < p < 0.

We now recall some basic results about (s, p)-mixing operators most of which
can be found at least implicitly in Maurey’s thesis [16] (see also [17]). In a
condensed form the theory of these operators appeared in Pietsch [22] and
Puhl [24]. Most of the following results will be used throughout this paper.

The phrase “ (s, p)-mixing” refers to the following deep characterization by
Maurey [16]: an operator S € Z(E, F) is (s, p)-mixing if and only if it maps
every weakly p-summable scalar sequence (x;) in E into a sequence which can
be written as a product («;y;) of an absolutely r-summable scalar sequence (a;)
and a weakly s-summable sequence (y;) in F, where 1+ 1= }, )

The following very useful composition formula is an immediate consequence
of the definition: for 0 < p<s<t<

(1.L.1) [/gt,s’/gs,p, ﬂt,s‘ﬂs,p]gl‘ﬁt,pa Ue,pl-

Furthermore, we need a “local” version of the definition of an (s, p)-mixing
operator: By the Grothendieck-Pietsch domination theorem it is easy to see that
an operator S € Z(E, F) is (s, p)-mixing (0 < p <5 < 00) if and only if for
every u € W(Bp/) the mapping

E—F — Ly(Br', )
X ~ (a~ (Sx, a))

is absolutely p-summing, i.e, there is p > 0 such that forall x;,... ,x, € E

(Z (s, a>|~*du<a>)p/s) " < pupi)
i=1

Since the discrete probabilities are (weak*-)dense in W (Bg/) this implies that
S e Z(E,F) is (s, p)-mixing iff there is a constant p > 0 such that for all
finite families of elements x;, ... , x, € E and functionals b,, ... , b, € F'

n m p/s l/p
(1.1.2) (Z ( (S, bk>|5) ) < pup(xi)ls(by).
k=1

i=1

Again the infimum over all possible p equals u; ,(S) (compare with [22,
20.1.4]).

Now we recall some basic examples. An immediate consequence of the dom-
ination theorem is the following quotient formula

(1'1'3) [‘/[S.Pa ”S,P]zl'@s_l°‘@pan;l'np]’ ISPSSSOO

In other words, an operator S € Z(E, F) is (s, p)-mixing iff its composition
with an arbitrary operator T € % (F, Y) is absolutely p-summing, and in this
case

(1.1.3) s, p(S) = sup{,(TS)|my(T) < 1}

(see [22, 20.3.1]). Hence Pietsch’s composition formula of absolutely summing
operator implies

[P, 1 C Mg, ts,p),  t+ 1=
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Moreover, the preceding quotient formula can be dualized as follows (cf. [22,
20.3.2])

(1.1.4) (e p, psp) =M M7, No- N3, 1<p<s<oo,

i.e., an operator S € Z(E, F) is (s, p)-mixing iff ST € A4 (X, F) for every
operator T € #,/(X, E), and in this case

(1.1.4) s, p(S) = sup{Ny (ST)|Nys (T) < 1.

The next result again due to Maurey [16] shows that the notions of (s, p)-mixing
and absolutely (r, p)-summing operators are closely related. One has

(1.15) (As,ps s, p] €L, Tr,pls %"'%:},;

(for an easy direct proof see [24]) and for 0 < p < s < 2 this inclusion is strict.

However, for 1 <p < sy <s < oo and §+%=%

(1.1.6) ['@r,p, nr,p]g[‘%o,pﬂuSo,P]

(cf. [22, 20.1.11 and 20.1.12]).

Finally, we mention that the identity operator on every L,-space (1 < g < 2)
is (2, p)-mixing (0 < p < 2). This result is due to Kwapien [13] and was
extended by Maurey [16]:

(1.1.7) idg € #; , forall 0 < p <2, if E has cotype 2

(compare also with [22, 21.4.9 and 20.1.15]). A Banach space E has cotype
g (2 € g < o) if there is a constant ¢ > 0 such that for finitely many

X[, cee ,X”GE
) N\ 12
“)

(Zl ||x,~n") Y ( [

where r; is the ith Rademacher function. Khinchine’s inequality shows that
every L,-space (1 < g < oo) has cotype max{qg, 2}. For further information
on this notion we refer to [20].

For a Banach space E with idg € #; , we put u; ,(E):= ps p(idg). The
following estimates are known (cf. [22, 22.3.6])

n

Zri(t)xi

i=1

czq:cz‘p' forl<g<2,0<p<2,

/‘2,p(lq) < {

Cpcy,  for1<g<2,1<p<2,

where

1/p
2
] , e =V2, 62'=ﬁ (K=R),

ap=2r(3)]". wm=2 a=viEk=o.

1.2. Mixing operators and Weyl numbers. The following lemma combines the
theory of (s, p)-mixing operators with the concept of Weyl numbers. We just
briefly recall some basic notions (for the general theory of s-numbers see the
monographs [11, 23]).
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The nth approximation number a,(S) of S € . Z(E, F) is defined by
a,(S) :=inf{||S - T|||T € L (E, F) with rank T < n}
and the nth Weyl number x,(S) is defined by
Xn(S) 1= sup{a,(SX)|E € Z(I,, E) with | X|| < 1}.

Clearly, the sequences (a,(S)) and (x,(S)) are nonincreasing and ||S||

a,(S) = x1(S). Moreover, they are multiplicative, i.e., Spym—1(7S)

Sn(T)sm(S), for sef{a,x}, Se L(E,G), Te X(G,F),and n,meN.
Given 0 < r < oo and 0 < g < oo the Lorenz sequence space /, , is defined

by
o 1/q
L= {é € lolly, 4(&) == (Z kq/"lé,:") < oo} ,

IA

k=1

where (£;) denotes the decreasing rearrangement of (|&,|). For ¢ = co the
requirement is supposed to mean

L oo(&) := sup k7 < 0.
keN

Clearly, [, := [, ,. The spaces /, , are ordered lexicographically. For s €
{a,x} and 0<r<oo, 0 <g<oo let

204 =1{S € ZIL7 (S) := by 4((5n(S))) < o0}

be the quasi Banach ideal of all operators with approximation numbers resp.
Weyl numbers belonging to /, ;.

We now establish a close relationship between the Banach ideal .#; , and
certain Weyl number ideals. This result extends (and is also based on) the
inclusions

«-Z»f[ggrjgzzroo, 2<r<oo,
which are crucial for the theory of eigenvalue distribution of compact operators
and go back to Konig, Lewis, Pisier and Pietsch (see e.g. [11, 2.a.11 or 23,
2.7.4]). Moreover,
Ly w<m and m <1215 .

1.2.1. Proposition. Ler 1 +1=1.
(1) &* C A, and ps,» <24LF .
(2) For every finite rank operator S, ps 2(S) < 24(1+log(rank S))L; . (S).
Proof. In order to prove (1) by (1.1.3) it suffices to check % ,S’,"l CA.
Let Se ZX(E,F) and T€ A(F,Y)C R (F,Y)C L7 (F,Y). By
the monotonicity and multiplicativity of the Weyl numbers 7S € 5’2"1 , since

Sk (TS) < 232k - 1) (Txu()
k=1 k
<2LF (TILE,(S)

< 275(T)L7 4(S).

Hence TS € % and
ny(TS) < 12L5 ((T'S) < 24n(T)L7 ((S).
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This completes the proof of (1). The proof of (2) is now easy, since for a
given S with rankS =n

LY ((S) =) k7'k'"x,(S) < (1 +logn)L¥ (S). O
k=1

We finally remark that the preceding proposition can be used to reprove the
following special (but most important) case of a deep result of Maurey [17] (for
the full statement see (1.1.6)).

1.2.2. Corollary. Let 2<so<s<oo and L +1=1.Then &, , C A, ,.
Proof. Define 2<r<ry<oo by 1/sg+1/ro=14. Then &*  C %~ ,, and

ro,l’

therefore part (1) of the proposition implies %, , C ,?jg‘l C My, O

1.3. A tensor multiplicativity concept. A simple but striking concept is presented
which is a useful tool to improve various kinds of inequalities and furnishes the
foundation for many modern results in summability and eigenvalue theory.

A subset & of operators S : K" — K" (where n € N is arbitrary) is called
tensor stable if for all S € &/ (K", K") the tensor product operator

S®S:K'®K"=K" - K"
is again in & (identify K” ® K" with K" via the bijection ¢ defined by
p(e; ® ej) := ep—1)isj for 1 < i, j < n). Moreover, let 4 : &/ — Rt be a
function and a > 0. Then A is said to be a-tensor supermultiplicative if for
all Sew
A(S)? <aA(S®S),

whereas it is called a-tensor submultiplicative if
AS ®S) < aA(S)?,
for all S € & . The following simple lemma is essential.

1.3.1. Lemma. Let & be a tensor stable set of operators S : K* — K" and A >
0. Moreover, let A:/ — Rt be a-tensor supermultiplicative and B : &/ — R*
be b-tensor submulitplicative such that for each ¢ > 0 there is c(g) > 0 satisfying
(%) A(S) < c(e)n***B(S)
Jorall neN and S € &/ (K",K"). Then forall n e N and S € & (K", K")
A(S) < abn*B(S).

Proof. Fix ¢ > 0. Then there is c(¢) > 0 such that forall n € N and S €
& (K", K")

A(S)? < aA(S®S) < ac(e)n**OB(S ® S) < abc(e)n* ™) B(S)?,
and hence
A(S) < (ab)?c(e)'2n**B(S).

By iteration of this result (c(¢) in () can be replaced by (ab)'/2c(e)'/?) we
get forall k,neN and S € & (K", K")

A(S) < (ab)21 2 ¢(e)* " n*ntB(S).
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Therefore, if for a fixed S € & (K", K") first k tends to infinity and then ¢
tends to zero the described inequality is obtained. O

The conclusion of the lemma holds in particular, if instead of () there are
constants A, ¢ > 0 such that forall » € N and S € & (K", K")

A(S) < cn*(1 + logn)B(S).

Moreover, we mention that the idea of using tensor product techniques to
improve constants in certain inequalities goes back to Russo [25]. Recently,
Pietsch [23] used similar tensor multiplicativity techniques to improve various
eigenvalue estimates of operators.

Two of our main results will follow from the next lemma which is an imme-
diate consequence of the preceding one.

1.3.2. Lemma. For | <u,v<oo and 0<r<oo let [/, A], [#Z, B] be
two quasi-Banach ideals such that

Ll 1) S (s ) and Bl by) € Fogllu, o).
Moreover, assume that there are constants a, b > 1 with
A2 <adA(S®S: I -1y,
B(S®S: 1" —I") < bB(S)?,

forall n € N and S € Z(I?,1"). Then for all n € N and S € Z(I7,I?)
A(S) < abB(S).
Proof. By the closed graph theorem there are constants ¢, d > 1 such that for
all SeZr, I

A(S) < cLy ((S) < c(l +logn)Ly o (S) < cd(1 +logn)B(S).

Now the conclusion follows, if we apply the lemma to the set of all operators
S : K" — K", the a-tensor supermultiplicative function

A:S~AS: I} -1,
and the b-tensor submultiplicative function
B:S~B(S:Il-1I". O

Finally, we mention

1.3.3. Lemma. Let 1 < u,v < oo and let [ , A] be a quasi-Banach ideal.
Assume that there is a constant a > 1 such that for all n € N
AGd: 1" > 1M <adid: 1" - 1),

Then either

supA(id: I} - [J) < a;
neN

or there is € > 0 such that for large n
n® < AGd: I} — I}).
Proof. Assume that there is 1 # ng € N such that

A(d : o - [J°) > a.




OPERATORS IN L,-SPACES 63

Put d := a 'A(id : ;' - [}*) and & := }log, d > 0. Moreover, for n > ng
choose m € Ny such that n2™ > n > n.
Then the conclusion follows from
AGd 17— 1) > A(d 2 18— 19
> ad™ = a(n:)°gnod)m

=a(nd®)™ >an®. O
1.4. Tensor multiplicativity of some ideal norms. In this section we investigate
tensor submultiplicativity of the operator norm and tensor supermultiplicativity
of the (s, p)-mixing norm with respect to tensor products of L,-spaces. In

particular, we extend results of Bennett [3].
The ¢-norm and 7n-norm of z € E ® F are denoted by

e(z; E,F):=sup{|(z,a®b)| |a€ Bg,be B},
n n

n(z; E, F):= inf{Zleill Ilyi|l|2=zxi®yi}.
i=1 i=1

Obviously, &(-; E, F)<n(-; E, F). Anorm «a(-; E, F) on E® F is called
reasonable, if
e(-;E,F)<a(;E,F)<n(;E, F).

By E®.F we denote the completion of the normed space
E®,F:=(EQF,a(-; E, F)).

It can be seen easily that a given norm «(-; E, F) on E ® F is reasonable if
and only if forall x e E, y e F, a(x®y;E,F)=|x||y|l, and for all
a€E ,beF' ,zeE®F,|(z,a®b)| < |al|lbla(z; E, F).

Let us give two examples: For 1 <p<oco and ze EQF

n
&(z; E, F):= inf{lp(xi)wp'(yi)lz =Y x ®y,~} ,
i=1
and if T, € & (FE', F) denotes the operator corresponding to z,
g (z; E, F):=ny(T,: E' - F).

Both norms are reasonable and were intensivly studied by Chevet, Cohen, and
Saphar (see e.g. [6, 7, 26]). One has

8y(z2; E, F)=ny(T,:E' - F) < Ny(T,: E' - F) < gy(z; E, F),
and equality for p = 2. Moreover, for 1 <p <g< oo
gq(Z;E’F)Sgp(Z;E,F)’
g, (z; E,F)< g (z; E, F).

Obviously o = g, (resp. a = g;) satisfies the metric mapping property: for
TeZE,X)and Se Z(F,Y)

IS@T:E®, F - X, Y| =|S|IT|
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whereas for two arbitrary reasonable norms «af(-; E, F) and S(-; E, F) just
the following estimate holds:

ISIIT] = sup{B(Sx @ Ty; X, Y)la(x®y; E, F) < 1}
<sup{B(S®T(2); X, Y)la(z; E, F) < 1}
=IS®T:E®, F - X®3 Y|

(provided S® T : E®, F — X ®3 Y is continuous). For special norms we
prove

1.4.1. Proposition. For 1 < u,v < oo let a(-;E,F) > g,-; E, F) and
B(; X,Y)< gh(-; X, Y) be reasonable norms. Moreover, let S € Z(E, X)
and Te Z(F,Y).
(1) If 1 <u<wv <o then
IS®T:E®. F — X®g Y|l <|IS||[|T]|.
(2) In each of the three cases
(a) 2=v<u<oo and Y has cotype 2,
(b) 1<v<u=2 and E' has cotype 2,
() 1<v<2<u<oo and E', Y have cotype 2
one has
IS®T:E® F = X®p Y|l < p2,0(EVu2,uw(Y)ISIITI.
Proof. Obviously it is sufficient to prove the assertion just for o = g, and
B = g . Statement (1) follows by
8 (S®T(2); X,Y)< gu(S®T(2); X, 7Y)
<guSe®T(z);X,Y)
<ISIITgu(z; E, F).
For the proof of (2)(a) consider the commutative diagram
E ®gu F S'Q’T X ®g2‘ Y

lideT Ts®id
E ®g2 Y = E ®g2‘ Y.

Then by (1.1.4') and (1.1.7)
IS®T:E®g F— X @ Y
<|ISH1dRT : E®g, F — E®g, Y||
= ||S|| sup{g.(1d®T(z); E, Y)|gu(z; E, F) < 1}
< |ISIisup{Nx(TR : E' = Y)|N,(R: E' - F) < 1}
<WISNu2,w(T : F = Y) < pz w (VISIITI
Dually: Under the assumption of (b) by (1.1.3') and (1.1.7)
IS®T:E®q F — X, Y|
SITIIS®id: E®g ¥ — X @, Y|
= ||IT||sup{g, (S ®id(z); X, Y)|g;(z; E, Y) < 1}
< |IT)| sup{my(RS" : X' — Y)|ma(R: E' = ¥) < 1}
<Tp2,0(S": X' — E') < pa o (EDISINTII.
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Finally, assume that 1 <v <2 <u < oo and that E’, Y have cotype 2. Then
the diagram

EggF " XogpY

lideT Ts®id
commutes, and hence the assertion is an immediate consequence of (2)(a) and

(2)(b). O

Let L, = L,(Q,Z, ) bean L,-space (1 <p<oo). For z=Y7  x;®g €
E ® L, we define

1/p
Ap(z; E, Lp) = ( / Iy xie ginpdu) ;

and for z=3Y ] fi®yie [, F

Ap(Z;LpaF):=AP (Zyl®f;aFaLp)
i

(with the usual modifications for p = o0). Then A,(-; E, Ly) and A,(-; L,, F)
are reasonable norms and it is well known that (see e.g. [19, 27])
&5 E, Lp) SAy(-5 E, L),
Ap('; Lp, F) < g;'(°; Lp, F),
& E,L))=A(; E, L) ==n(-; E, Ly),
Ao(*; Loo, F) = &1 (+; Lo, F) = &(+; Lo, F).
Hence the preceding proposition has the following corollary which is a proper
extension of a result due to Bennett [3].
1.4.2. Corollary. Let Se€e Z(E, L,) and T € Z(L,, F).
(1) If 1 <u<v < oo, then
IS® T : E®, Ly = L, ®, F|| < |IS|||IT-
(2) In each of the three cases
(@) 2=v<u<oo and F has cotype 2,

(b) 1<v<u=2 and E' has cotype 2,
(c) 1<v<2<u<oo and E', F have cotype 2

one has

IS® T : E®a, Ly — Ly ®, FIl < pt2,0(E") i, (F)ISIITI.

We remark that this result (in contrast to Bennett’s) still includes a variant
of Grothendieck’s Theorem namely:

(Sl = 1) =|1d®S 1 [, ®¢ los = 12 ®4, 11|
=1id®S : [, ®a, loo = b ®n, 1|
< uz 1 (W)IS-
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It was already noted by Bennett [3] that in the cases 1 < v < ¥ < 2 and
2 <v <u < oo an inequality of the form

IS®S: 1" — 17| < c(u, v)||S|

does not hold, where c(u, v) is a constant just depending on # and v (see
also [22, 22.4.13, second remark]).
We now formulate another special case of 1.4.1.

1.4.3. Corollary. Let o(-; E, F) < g5 (-; E, F) beareasonable norm, x, ... ,
x, €E and y,,... ,yn€F.

(1) If 1 <p'<u<oo, then
Wp(Xi ® yj; E®uF) < wp(xi)wy(y;)).
(2) In each of the two cases
(@) 1<u<p =2,
(b) 1<u<2<p <o and F has cotype 2
one has
Wp(X; ®Yj; EQuF) <ty u(lp) 2, p(F)wp(xi)wp(y;).

Proof. Define
S=)eex e}, E), T:=) eoy L, F).
i J

Then

ISI = wp(xi),  IITIl =wp(y)),
IS® T : 1% — E ®4 F|| = wy(x; ® p;; E&.F).

Hence the conclusions follow by 1.4.1 (replace u by p’, a by A, and B by
a). O

We are now ready to study tensor supermultiplicativity of the (s, p)-mixing
norm. The following proposition and its corollary will play a crucial role for
the proofs of our applications. First we set up the following notation: If S €
Z(E,X) and T € Z(F,Y) are two operators of finite rank, then S® T :
E®.F — X®pY, where a(-; E, F) and B(-; X, Y) are reasonable norms, is
again a continuous operator of finite rank. Hence it has a continuous extension
SQT : EQoF — X&pY .

1.4.4. Proposition. Let o(-; E, F) < g (-; E, F) and B(-; X, Y) be reason-

able norms. Moreover, let S € L (E, X) and T € L (F,Y) be operators of
finite rank.

(1) If 1<p'<u< oo, then

Us,p(S)us, p(T) < ﬂs,p(S®T :EQ.F — X®ﬂY)-

(2) In each of the two cases
(a) 1<u<p' =2,
(b) 1<u<2<p <o and F has cotype 2
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one has
s, p(S)is, p(T) < pa u(lp) itz p(F)pts, p(S®T : EQoF — X®pY).

Proof. Fix x1,... ,Xn€E,y1,... ,ym€F, ay,... ,an€ X',and by, ...,
bm €Y'. Then by (1.1.2)

(5 (Sswear)) " (5 (Smnr))

p/s
(Z E|S®Tx,®y,) ak®b,)|>
J
< s, p(

SQT : EQoF — X&gY)
wp(-xt ®Yj; E®aF)ls(ak ® b[ s (Xé)ﬂy)/) s
and since f is a reasonable normon X ® Y
[s(ak ® bl > (X®ﬂY)l) = ls(ak)ls(bl)-

Hence both assertions follow from the preceding corollary. O

Exactly in the same way it can be shown that
T p(S)7 p(T) <y p(SOT 1 EQF — X&pY),
for 1 <p'<u<oo,and
e, p () p(T) < pi2,ullp) 2, p(F)7r p(SOT : E&oF — X@pY),
for I<u<p'=2o0r 1<u<2<p <o, provided F has cotype 2.

1.4.5. Corollary. Let S€ (!, X), T € £(I",Y) andlet B be a reasonable
normon X®Y.

(1) If 1<p'<u<oo, then
s, p(S)ts p(T) < s p(SET : I — X@pY).
2) If1<u<2<p <oo, then

ts,p(S)ts p(T) < 2 ullp)tta p(l)tts p(SET : I — X&4Y).

Since the case p = 2 is the most important for applications we once more
refer to the upper estimates of u, ,() for 1 < u < 2, mentioned at the end
of 1.1.

2. INTEGRAL CHARACTERIZATIONS OF OPERATOR IN Lp SPACES

Now we are ready to prove our main results: integral characterizations of

- operators from L,-spaces into L,-spaces,
- Schatten-von Neumann operators,
- identity operators from /, into /, .
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2.1. Operators from L,-spaces into L,-spaces. The following important fact
was discovered by Kwapien [12] (see also [3]).
Let 1<v<00,0<p<2and 1<p<r<oo If }5%—|%—1| then

3(11 s [v) Igzr,p(ll s l'u)

Moreover, this result is best possible in the sense that if r fails to satisfy the
inequality 1 < ll, — |3 =1 then Z(I, 1) # % p(Ii, b).

By use of an inclusion formula for absolutely (r, p)-summing operators
(mentioned in the preliminary section) the proof can be restricted to the case
p = 1. In order to prove this case Kwapien interpolates between the points
v=1,2, and co. Thecases p =1,v =1 and p=1,v = 0o are con-
sequences of a result of Orlicz [18], which states that the identity operator on
[; is absolutely (2, 1)-summing, whereas the case p = 1, v = 2 obviously is
Grothendieck’s Theorem [9].

We now state a proper extension of Kwapien’s result.

2.1.1. Theorem. Let 1 <v < oo and 0<p <2<s<oo suchthat 1 =|1-1|.
Then
y(ll > [’U) =‘%S,p(ll s 1’())9

and for all S € Z(1;, )
s, p(S) < k(p)IISII,

where k(p) := uy ,(li)u2,1(l2) . In other words, for every S € Z(I,, l,) and ev-
ery probability measure u € W(B,,) there is a probability measure v € W (B,_,)
such that for all x €

1/p

(/quwumn«m)usskw>( (. a)Pdv(a)

(with the obvious modifications if v = oo or s = ).
Proof. Since

[‘/13,2 "/[Z,pa Ms 2+ 12 p] € [‘/[S,pa Us, pl

and id, € #; , for 0 <p <2 (see 1.1.1 and 1.1.7), it suffices to prove the
assertion for p = 2. Define 2<r<oo by 1 +1=4]. By 1.2.1 Proposition
we know _‘Zfl(l, , ) C A 2(l1, Iy), and by Kwapien’s theorem Z(/,, ;) =
Pal, ) C L (1)

Moreover, by 1.4.5(2) and 1.4.2(1) forall S e (I, I})

Us 2(S)? < k(Qus 2SS I =17y,

IS®S: I — 17| < |IS|I2.

Hence 1.3.2 Lemma implies that for all S € Z (I, ') us,2(S) < k(2)|IS|.
Let now S € Z(/;,1,). We use the local definition (1.1.2) in order to
show that S is (s, 2)-mixing. Fix x;,... ,x, €/, and by, ... , by € I, (for
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v = oo the assertion is trivial). For n € N define the operators

Spilf =1
(él) ~ (S(él y ey én, 0) "')i)?:l
P,:l, -1}
(Gi)~ (15 --- 5 En)
Qn . v' - lv'
(él) (él’-" 96’1)'
Then forall n e N
25\ 12
(Z (21 (SnPaxi ank>|3) )
i k

< s, 2(Sn)w2(Puxi)ls(Qnbi)
< k()18 lwa(x:) s (bc).-

Since for fixed i and k lim,_o [(SyPuXi, Onbi)| = |(Sxi, bi)|, we get S €
Ms2(l, Iy) and pg »(S) <k()IS||. O

Following the local techniques of Lindenstrauss and Pelczynski [14] the the-
orem can be extended to operators acting between so-called % ;- and % ,-
spaces. A Banach space E is called an % ;-space (1 < g < oo, 1 <4< 00)
if for every finite-dimensional subspace M of E there is a finite-dimensional
subspace N of E such that M C N and the Banach-Mazur distance

d(N, Iy := inf{|T|| |T~!|| |T € Z(N, I?) bijective} < 4,

where n:=dimN. Every L,-space is an % ;-space for all A > 1 and every
space C(X), where X is compact, is an %, ;-space forall 1> 1.

By use of 1.1.2 and standard (local) arguments the following extensions of
2.1.1 can be shown:

Let E be an A ;-space and F an %, ,-space (1 < v < o). If 0 <
p<2<s<ooand + =|5- 1| then L(E,F) = M; ,(E, F), and for all
SeL(E,F), ps,p(S) < k(p)Au|SI.

Finally we note some interesting composition formulas (all of which are
equivalent to our theorem). For this we need some more notation. The canoni-
cal embedding of a Banach space E into its bidual E” will be denoted by K.
Let 1 < p < co. By definition %, is the ideal of all operators S € Z(E, F)
such that KpS factors through an appropriate L,-space. S € Z(E, F) be-
longs to the ideal .7, if there isa u € W (Bg/) such that KrS factors through
the formal identity C(Bg) — L,(u). Moreover, we write S € Z(E, F) if
S e &,(F', E').

2.1.2. Corollary. Let 1 <v<oo and 1<p<2<s<oo.If =|5-1| then

(l) "Zl gc"l\' D

2) P-%-KCP,

3 LA S CH,

(4) B My C Sy,

(S) H-SIp - P C PN P,
(6) Sp - P+ Fy C Pl
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Sketch of the Proof. Let us first check (1). By definition for every S €
Y, - A(E, F) there are an L;-space L, an L,-space L, and operators

XeZE", L), UeZL!, L, YeZUL,F",

such that the following diagram commutes:

E/l S_’; FII
lx Ty
Ly 2oL

Now the bidual of L, resp. L, is an .4 ;-space resp..%, ;-space forall 1> 1,
and hence U and in particular $” are (s, p)-mixing. But since S € .4 , if
S" € #;,, (this is an immediate consequence of (1.1.2)), the proof of (1)
is complete. The assertions (2), (3) and (4) now follow by the inclusion
formulas

'@s’-/fs,pggzn /Zs,p’<fp’§=7s’a -/Zs,p'/l/;;’g/’/s"
(see (1.1.3), (1.1.4) and [22, 20.2]). Moreover, (3) implies
_% .J;/ Q.Z)_l '<fs’ =Z}* .’938—1 =@fual-.9zv/ .'935—1 ,

where £* denotes the adjoint ideal of .%, which by the Persson-Pietsch trace
duality and a deep factorization theorem of Kwapien equals 3l . %, (see
[22, 17.4.3. and 19.3.10]). For the proof of the equality .%,~! - % = % . #!
use e.g. the general quotient formula 4.4.2. of [8]. In a similar way (5) implies
(6). O

2.2. Schatten-von Neumann classes. By definition the Schatten-von Neumann
classes are
(L, b) =L D, h), 0<r<oo.

For S € %(l,, ;) put

0o 1/r
A4,(8) == LY(S) = (Z ak(S)’) -
k=l

A result of Mitjagin which was first published in [12], states that for 2 <r < oo,
(AL, b)), A)=[% 21, h), 7, 2]

(see e.g. [23, 2.11.28]). By use of our tensor multiplicative concept one can
even prove the following integral characterization of the Schatten-von Neumann
classes.

2.2.1. Theorem. Let 2 <r<oc0,0<p<2<s<ooand L+1 =1 Then
&, L) =M (I, 1), and for every S € (L, ),
Ar(S) < s, p(S) < w2 p(h)A(S),

i.e., for all probability measures u € W(B,,) there is a probability measure
v € W(By,) such that for all x € I

1/p

(1tsx. ayduta) " < i) 4(S) (fitx. apavi@)
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Proof. As in the proof of 2.1.1 we may restrict our considerations to the case
p = 2. By (the easier part of) Mitjagin’s result
(A 2L, 1), ps 2] CIF 2, ), 1 2] C 4D, 1), Ar]
For the converse inclusion we again apply 1.3.2 Lemma. One has
i, h) CH (b, h) =L (h, h)

and by 1.2.1, £ (L, h) C M x(h, ).
Moreover, 1.4.5(1) and [23, 2.11.22] imply for all S € Z (I}, I})

s 2(S)2 < ps ASOS: I S I)  AS®S: I - IT) = 4,(5)?,
and hence by 1.3.2 for all S € Z(I},13), us,2(S) < A4,(S).

Using the final argument of the proof of 2.1.1 we get the desired inclusion
(L, b)), A) C [ 2(2, ), ps,2]. O

As a corollary we mention the full statement of Mitjagin’s theorem (with a
slightly better norm estimate).

2.2.2. Corollary. Let 2 < r < oo, 0<p <2, and p<q< oo with ; =
1+ 1 -1 Then

(b, b)) = p(h, h),
and for all S € 4,(l,, b))

Ar(S) < 1q,p(S) < p2,p(h)AL(S).

1 1 1
Proof. Since p <2,g <r and 117_5=7_%’

(Zy.o(l, ), 7y ) C[F 2(la, b)), mr 2] C (L, b)), 4.
Conversely: If 1+ i= !l, ,then 1+ 1 =1 Hence by the preceding theorem
(L, ) C My (L, 1) C Py () 1),
and for all S € & (,, L)
Mg,p(S) < Us,p(S) < w2, p(L)A,(S). O

2.3. Identity operators from /, into /, . The fcllowing characterization of those
identity operators I: [, — [, (1 < u < v < oo) which are absolutely (r, 2)-
summing has been determined by Bennett [2] (see also [3]) and the first author
[4].

Let 1<u<2, 1<u<v<oo,and 2<r<oco. Then I € %, ,(ly, L) if
1<l _max{l,1}.

Again this result is sharp in the sense that I ¢ % (L, ) if 1 -
max{i, 1} =:¢ > 0. In this case for all n € N

(2.3.1) n® <myo(id: Iy - L)

+

R |=

(see the proofs of [4, Theorems 1 and 2]). Especially the case v = 2 has
proved successful in its application to the theory of distribution of eigenvalues
of matrices and integral operators as has been discovered by Konig, Pietsch,
Retherford, and Tomczak-Jaegermann (see [11, 23]).
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In this section we reprove and extend this result by use of our tensor product
trick within the theory of s-numbers. For this purpose we recall the definition
of Hilbert numbers given by Bauhardt [1]. The nth Hilbert number of an
operator S € Z(E, F) is defined by

hn(S) :==sup{a,(YSX)||[X : L - E| <1, |Y: F - L|| < 1}.
We start with a result which is implicitly found in [21].
2.3.2. Lemma.
(1) Let S € Z(E,F) with dimE = dimF = rankS = n. Then for all
1<k<n, h(S)a,_x (SH <1
(2) Let S € Z(E,13) with dimE = rankS = n. Then for all 1 < k <
n, X (8)an_kr1(S71) = 1.

Proof. (1) Let 0 <e < 1 and 1 < k < n. By Bauhardt’s characterization [1]
of Hilbert numbers (see also [22, 11.4.3]) there are operators X € & (1§ , E)
and Y € Z(F, I¥) such that |X|| <1, |Y| <1, and (1-¢&)h(S)id=YSX.
Put p:=(1-¢&)h(S) and A:=S! - p~'XY. Since ASX =0 we have
dimkernA4 >rankSX =k >k -1
(note that SX is injective), and in particular
rank A = n —dimkern4d <n -k + 1.
Consequently, the conslusion follows by
(1 — &) (S)an_gs1 (S < pIS™H = Al < IXIY) < 1.
(2) By (1) the inequality < is clear, since xx(S) = A (S). On the other
hand
l=x,(id: 1l - 13)
<xk(S:E = IXpps1(S™': 1} - E)
=xk(S:E = )ap_1 (ST I8 - E). O

As a consequence we prove
2.3.3. Proposition. Let 1 <u<2and 1 <u<v<oo.Thenforall 1 <k<n
(1) xe(id:in — 13) = k21w,
(2) xp(id: {7 — I7) < kmax{1/v,1/2}=1/u,
Proof. Since by a result of Pietsch [23, 298] for 1 <u <2 and 1 <k <
n, ap_ip1(id: 1} — 1) = k=12 | the preceding lemma proves (1).
Let us now prove (2). If 1 <u<2<v<oo thenforall 1<k<n
Xe(id 1P — 1) < xp(id 2 17— 17) = k1271w,
The case 1 < u <wv <2 follows by interpolation: Define
l/u—1/v
lju-1/2"
sothat 1 =%+ 1=¢ ‘andlet 4 €.Z(, ") with ||4]| < 1. Then by Holder’s
inequality for x € [,

6 :=

ly(Ax) < b(Ax)%l,(Ax)' 0.
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Hence for each subspace M of /, we conclude with the natural embedding / k,
from M into /,

1AL M — 12| < | AL - M — B AT - M - 20 < |4 - M - 1P,
and consequencely forall 1 <k <n
a(A:h = 1IN <a(d:L—15)°

(obviously the latter inequlaity holds for the so-called Gelfand numbers which
for operators defined on /, coincide with the approximation numbers, see [11
or 23]). Finally, we get forall 1 <k <n

xe(id I = 1)) < xpe(id 2 1 — 15)0 = k(127108 = felio=le g

We are now prepared to state the following abstract version of the character-
ization of absolutely (r, 2)-summing identity operators I : /, — [, mentioned
at the begining of this section.

234, Lemma. Let 1 <u<2,1<u<v<oco,and 2<r<oo. Let [, A]
be a quasi-Banach ideal such that

L5 b)) S (s ) € oo (lus by)-
Moreover, assume that there is a constant a > 1 with
AGd: 1" > 1M < gd(id: 17 =17y,
for all n € N. Then the following alternative holds:

(1) If L <1 -—max{L, i}, then sup,cyAGd: I} - I) < a.
2) If L - L+ max{}, §} =:e> 0, then n®* < A(id : I} — I7) for large n.

Proof. (1) We denote by % the tensor stable set for all identity operators
id : K" — K", where n € N. Then by assumption A4 :id ~ A(id : I — I7) is
an a-tensor supermultiplicative function on % and

I+l id ~ |lid: 17 — ||

is obviously a 1-tensor submultiplicative function on % . Moreover, by the
closed graph theorem and the preceding proposition there is a constant ¢ > 1
such that for all n € N

AGd: Iy = ) <cLy (id: I} = )
n
=cy kVrlxid 1] — 1)
k=1
n
— Czkl/r—Hmax{l/v,1/2}—l/u

k=1
<c(l+logn)|id: 1] — I7]|.

But then the desired inequality follows from 1.3.1.
(2) There is dyp > 0 such that for all 0 < < Jy

€ '———1—-—1+max 11 >0
ST YYe u v’ 2 :
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Moreover, there is a (uniform) constant ¢ > 1 such that forall 0 < < dJ, and
neN

Trys,2(d: L) — 1)) < cLy, s ((id: lj — [))
(see e.g. the proofs of [11, 1.d.20 and 2.a.11]). Hence by assumption and (2.3.1)
there is d > 1 such that forall 0 <d <J, and ne N

n* < cLs \(id: 1 — I7)
Scly (id: I} — 1)) <cdAGd : [} — 1}).
Finally if § tends to O for each fixed n, we obtain (2). O
An almost immediate consequence of this lemma is the following main result
of this section.
2.3.5. Theorem. Let 1 <u<2, 1<u<v<ooand 0<p<2<s<oo.
() If L >3 -1+ max{i, 1}, then I € 4 ,(Iu, 1,) and
/"s,p(I - lv) < ﬂZ,p(lu).UZ,u(lZ)-
2) If }-Limax{l, i} -L=1¢>0, then I ¢ 4 ,(l,, 1,) and
n® <us p,(id: I} = 1)), forallneN.
Proof. In order to prove (1) we first observe the following. Exactly as in the
proof of Theorem 2.1.1 it is enough to show that in the case p = 2 for all

neN, s (id: 7 — [7) < pa,u(bhr).
Since by 1.2.1

Z <

A

s2g-€ﬂx

+
~ | —
Il
B —

G| —

and by 1.4.5(2) forall n €

ps.2(id 1% = 172 < py (bt o(id 17— 17

we just apply the preceding lemma.
Finally we prove (2). By (2.3.1) we know that for all n € N

2

PSS e alid: B0, S =g
Since [ 4 ,, us,p] C [#; 2, s 2] this implies the desired result. O

Let us again give a second more analytic formulation of part (1): If 1 <
u<2, 1<u<v<oo,0<p<2<s<oo,and 1 >1-14max{l,},
then for every probability measure 4 € W(B,,) there is a probability measure
v € W(B,,) such that for all x €/,

1/p

( [, a>|Sdu<a>)”S < 2 p () tiz, () ( [, a>|"dv<a>)

In particular, we reproved the characterization of absolutely (r, 2)-summing
identity operators [ : [, — [, (with new estimates for the norms). The full
statement is
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2.3.6. Corollary. Let 1 <u<2, 1<u<v<o,0<p<2,and 0<p<
r <oo.

() If $ <3 -3+ 4 -max{}, 3}, then I € P p(ly, by) and 7, (1) <
2, p (L)t u(b).
QU t-3+53—y+max{y,3}=1e>0, then I ¢ & ,(lu,1,) and

nt <m p(id: I — I forall neN.

Proof. Since [#; p, s p] € [P p, Trp] for L4+ 1 =1 statement (1) is a
consequence of part (1) of the theorem. Part (2) is again an easy consequence
of (2.3.1). O

We finish this section with the following remark:
For 1 <p,q <o let A be a continuous bilinear form on I, x l;. Then
l'/'U l/f

YD Al el < 2, p (g a2, (RN,

i=1 \ j=I

f1<p,¢ <2, 1<p <r<oo, 1<¢ <v<ooand ! +max{l, 1}

2 p g
This comprises and extends the main results of Hardy and Littlewood’s paper

[10]. By the last corollary the proof is easy: if A4 : lp — Iy is the linear operator
corresponding to the bilinear form A, then 14 : [, — Iy — [, is absolutely
(r, p')-summing and

Rr,p' (I/i) < 2, p (g, g (L)N1A]],

1, 1 11
-7+ —max{;, ;}. Hence

00 1/r
(E lv(/iei)r) <7y (TA)wp (5 Ip) < w2, pr(lg) 2, g (R)]|4]]-
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