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THE STRONG MAXIMAL FUNCTION ON A NILPOTENT GROUP

MICHAEL CHRIST

Abstract. An analogue of the strong maximal function of Jessen, Marcinkie-

wicz, and Zygmund is shown to be bounded on LP , for all p > 1 , on a

nilpotent Lie group.

1. INTRODUCTION

This is one of a series of papers [Cl], [C2] concerned with non-translation-

invariant singular integral operators and maximal functions. Operators which

are left-invariant with respect to some nilpotent group structure on R" pro-

vide natural models for substantial classes of such objects. In particular, the

study of such operators in [Cl] was a preliminary step in the treatment of a

large, diffeomorphism—rather than group—invariant class of singular averages

in [C2]. Moreover, these invariant examples are of interest in their own right.

The strong maximal function on R" is defined by

Mstrong/(*)=   sup   /      \f(x-ôry)\dy,
r€(R+)"J\y\<l

where r - (r{, ... ,rn) and Sry = (r\y\,... , rny„). It is a classical result

of Jessen, Marcinkiewicz, and Zygmund [JMZ] that for each p > 1, Afstrong

is bounded on IP. In the present article we establish a generalization to the

setting of nilpotent Lie groups.

In R" consider for each 1 < ; < « the maximal function

M,/(jc) = sup / |/(x-(0,...,0,to,0,...,0))|</i,
i€R+ J\s\<\ ,i€R

with the entry ts in the ;th place. Then there is a pointwise bound

Mstrong/(*) < CM\M2 ■ ■ ■ Mnf(x).

Moreover, it follows at once from the boundedness of the Hardy-Littlewood

maximal function on K1 that each A/) is bounded on Lp(Rn), for all p > 1 .

Hence Afstrong is bounded.
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This argument fails to generalize directly to nonabelian nilpotent groups.

Consider the Heisenberg group E1. It may be identified with R3, with group

law

(*i, x2, x3) • (x[, x'2, x3) = (x\ +x[, x2 + x2, Xi + x'3 + 2(x2x[ - XiX2)).

Set 5rx = (riXi, r2X2, r3x3) and observe that ôr is a group automorphism of

H1 only when r3 = r\r2. Our strong maximal function on H1 is defined by

A/strong/M =   sup   /      \f(x-(ôry)~l)\dy.
re(R+)3 ̂ lrl<i

This operator is invariant under left translation. Define also

Myf\x) = sup / \f(x-(0,0, ts)-l)\ds
t€R+ J\s\<l,s€R

and

Msin&f(x) =   sup   / \f(x- (r.w,, r2u2,0)-l)\du.
r€(R+)2J\u\<l,u€R2

Then pointwise MsUongf(x) < CM^Msingf(x). Both Msinê and M3 are defined

by dilations 5r which are automorphisms of the H1 group structure. Again it

follows at once from the one-dimensional result that A/3 is bounded on Lp(Ml)

for all p > 1, and so boundedness of A/strong would follow from boundedness

of Aisj[ng. Moreover by taking / to be continuous but otherwise arbitrary and

letting r3 —> 0 in the definition of M^m^, we find that the boundedness of

A/sing is completely equivalent to that of Afstrong. However there is no simple

majorization of the type A/Sing < AfiA/2, essentially because the submanifold

{x : X3 = 0} is not a subgroup of H1 .

Define a simpler maximal function Afbetter on I1 by restricting r\ = r2 in
the supremum in the definition of A/sing. M^xm is still given by averaging

over lower-dimensional sets, but is simpler than AZ^g because it involves a

supremum only over a single parameter. It is a nonabelian analogue of the

maximal function in R3 defined by

Mparaboloid/M = SUP / \f(X\ - tU\ , X2 ~ tU2 , X3 - t2(u] + u\))\du
oo ;|«|<i,weR2

with the usual Euclidean group structure on R3. The LP boundedness of

A/paraboioid follows from the method of [SW], which relied on the Fourier trans-

form. A/better was treated later by Phong and Stein [PSI, PS2]; the Euclidean

Fourier transform could no longer be directly applied since the Heisenberg group

is not abelian.
Our study of the strong maximal function is based on the technique developed

in [Cl, C2], [RiSl, RiS2]. Two modifications of a technical nature will be
introduced here to adapt the method to multiple-parameter problems.

2. Statement of results

Let g denote a nilpotent Lie algebra of dimension d and let {X¡ : 1 <

; < d} be a basis for g as a vector space. Let G be the unique connected,

simply connected Lie group with Lie algebra g, identify each X¡ with the

corresponding left-invariant vector field on G, and identify G with g via the
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exponential map exp: gnG based at the group identity element, denoted by

0. This identifies G with Rd under the coordinate system (x\, ... , Xj) £

Rd <-> exp(J2xjXj) e G. Haar measure on G is simply Lebesgue measure in

these coordinates, and IP will always be defined with respect to Haar measure.

Write 6rx = (r\X\, ... , rdxf). Throughout the paper R+ denotes (0, oo) and

N = {0, 1,2,...}.
Define

A/strong/M =   sup   /      \f(x • (6ry)~l)\dy.
r£(R+Y J\y\<\

Mf is measurable for each / e L,1^, since r may be restricted to a countable

dense set. It is a generalization to G of the strong maximal function. Our main

result is then

Theorem 2.1.  M%tma% is bounded on LP(G) for all p > 1.

On H1 we have already seen that the boundedness of M may be reduced to

that of an operator which is more singular, but which is defined by a group of

dilations which act as automorphisms of the group structure. The same may be

achieved in general, by passing to a higher-dimensional group as in [RiS 1, RiS2,

C2] (in the latter one passes not to a group, but to a more general setting).

To do this fix an integer 5 such that all commutators of length greater than

s in g are zero. Let h denote the free nilpotent Lie algebra of step s on á

generators Z\,... ,Zd . Let H = exp(h) be the associated connected, simply
connected nilpotent Lie group, and let D be the dimension of h as a vector

space. On H define

MHf(x) =   sup   / \f(x- exP [- /L rJuJZJ
re(R+)d JueRd, \u\<\ '     v L

There is a natural dilation structure on H, since for each r e (R+)d there exists

a unique Lie algebra automorphism ¿r : h h h satisfying ôr(Zj) - r¡Z¡ for

each ;'. Via the exponential map {Sr} goes over to a (multiplicative) group of

automorphisms of H, which we also denote by {ôr} . Then M h is invariant

under both left translation on H and the dilations ôr.

The next lemma reduces matters to the study of A/# . It plays a fundamental

role in the work of Ricci and Stein [RiSl, RiS2], who have emphasized how

various results concerning nilpotent groups equipped with groups of dilations

which are group automorphisms extend to the nonautomorphic case.

Lemma 2.2. There exists a bijective diffeomorphism Q>: H >-^RD which preserves

Lebesgue measure such that if n : RD h-> Rd = G is defined by forgetting the last

D-d coordinates, then 7rí>(exp(¿^w;Z/)(.x)) = e\p(J^UjXj)(n^(x)) for all

x € H and u e Rd.

For the proof [RiSl, RiS2] it suffices to take n to be the quotient map from

H onto G in appropriate coordinates. Suppose MH were known to be bounded

on some LP(H). In RD write x = (nx, x'). Given a compactly supported / G

LP (G), consider for each /V > 0 the function FN(x) = f(nx)xN(x), where xn

denotes the characteristic function of the set {x € RD : \x'\ < N} . There exists
an exponent w such that for any compact region K c G, for all sufficiently

large N,  \\MHFN\\U(Ii) > CNw\\MAvon%f\\mK) and H^H^ ~ Nw\\f\\v .  In

du.
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fact for large N there is a pointwise bound MHFN(x) > M&tTongf(nx) for all

x satisfying nx G K and |x'| < N/2. Thus Afstrong would be bounded on

LP(G). This lifting technique originates in [RoS], in a more general form, and

was applied, in disguise, to maximal functions and Hubert transforms along

curves in [C2]. Its applicability in closely related contexts was pointed out to

this author by A. Nagel and N. Varopoulos.

It is helpful to make a further reduction, to a discretized version of M¡j.

Introduce a nonnegative auxiliary function a G Cq°(R</), identically one on

{u : 1/2 < u¡ < 1 for all i} and supported on {u : 1/4 < u¡ < 2 for all /'}. For

each J eZd let pj be the measure on H defined by

/ fdpj =     f (exp (^2 2~Jiujzj)) a(u) du.

In the definition of MH it suffices to replace the region of integration {|w| < 1}

by {u : 0 < u, < 1 for all /}, for the old A/# is majorized by 2d of the new

ones; by symmetry the boundedness of one implies boundedness of all 2d of

them. Then there is the further majorization

MHf(x) < Csup\f*pj\
j

for all nonnegative / G LXoc(H).

We have seen how the strong maximal function is inextricably linked with

multiple-parameter maximal functions along surfaces. It is therefore natural to

consider such operators from the outset, rather than merely in the free, homo-

geneous setting of M h ■ The next result subsumes Theorem 2.1.

Theorem 2.3. Let d G Z+, let G be a connected, simply connected nilpotent

Lie group of dimension d, and let A be a finite subset of Nd\{(0, 0, ... , 0)}.
For each a e A let Xa be an element of the Lie algebra of G. Consider the

maximal function

Mf(x)=   sup   / / ( x • exp I - V rauaXa
r€(R+)-'-/«€R'',|«|<l V V     a&A

du,

where ra = Y\x<i<d rf' and ua = FT «f • Then M is bounded on LP(G) for all
p>\.

The next result is stronger yet. Let A be a finite subset of Nd\{(0, 0,... , 0)}

and let G be the connected, simply connected nilpotent Lie group whose Lie

algebra is free of some step s on generators {Xa : a € A} . For r g (R+)|/(|, let

6r:G i-> G denote the unique automorphism satisfying ôre\p(Xa) = exp(raXa)

for each a, where ra are the components of r. Let a G Cq°(R<í) be as above.

For each J G Z1^1 define a finite measure pj on G by

fdpj=       f(ô2-Jexp\S2uaXQsjja(u)du

= j f (exp (J2 2~J°uaXa)) a(u) du.

Here 2~J is the |^|-tuple (2-J>< : a G A).
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Theorem 2.4. The maximal function

Mf(x)=  sup \f*pj\
/€NMI

¿5 bounded on LP(G) for all p > 1.

Here it is essential that the dilation group should be discrete, for if we con-

sider the dilates of po by all r G (R-1-)1-41 and take the supremum over all such

r then the resulting maximal function need not be bounded on all LP , p > 1 .

In fact operators of the same general type as the maximal spherical averages in

R" [B, SW] would be of this class.
To deduce Theorem 2.3 from Theorem 2.4 apply the lifting Lemma 2.2 to

reduce matters to the case where G is the free nilpotent group of appropriate

step whose Lie algebra is generated by {Xa} . As remarked before the statement

of Theorem 2.3, it suffices to discretize the dilation group. For p G (R+)

define dilations Sp(x) = Sr(x), where ra = pa. Then {Sp : p G (R+) } is

a subgroup of {Sr}. M is dominated pointwise, for nonnegative /, by the

variant obtained by replacing the dilations {Sr : r = 2J , J g Z^1} by {ôp : p =

21,1 eZd} in its definition.

In Theorem 2.3 it is not assumed that the Xa are linearly independent or

even distinct. Thus the surface {exp(¿^ uaXa): u G Rd} is simply the image

of Rd under any function F : Rd t-> G which is a polynomial in exponential

coordinates on G and maps 0 to itself.

The remainder of the paper is devoted to the proof of Theorem 2.4. I am

grateful to P. Sjögren and M. Cowling for helpful comments and to A. Nagel

and S. Wainger for stimulating conversations. Related results for the Heisenberg

group have been obtained by Ricci and Sjögren [RSj2].

3.  DECOMPOSITION OF THE OPERATOR

We use the following notation: A is a finite subset of Nûf\{0}, g is the

free nilpotent Lie algebra of some step 5 on generators {Xa : a g A}, G is
the associated connected, simply connected nilpotent group, and exp: g h-> G

is the exponential map, based at 0, the group identity element. For each r G

(R+)|y4', Sr is the unique automorphism of g satisfying ôrXa = raXa for all

a, where the ra are the components of r. As earlier we also write ôr for

the corresponding group automorphism of G. For each ß g (Z+)I'4I\{0} , let

gß = {Y g g : ârY = r^Y for ail r G (R+)MI}, a linear subspace of g. For

each a G A let ga be the direct sum of all gß for which ßa ^ 0. Let da be

the dimension of ga as a vector space. For each ß fix a vector space basis

{Yßj : I < j < dim(g;g)} for gß . All but finitely many of the gß equal {0}
and will be ignored. For each a, {Yß j : ßa ^ 0} is a basis for g°. This

establishes an identification qf g" with R^*.
Fix ¿>QGC0°°(ga) satisfying / ba = 1. For â:gN+ set ba,k(x) = 2kd°ba(2kx),

where 2kx - (2fcxi, 2*^2, ... , 2kxdJ ; these dilations will in general not be

automorphisms of g". Define measures aak and Xa >Jt on G by

<*a,k = exp*(ba,k(u)du),

where exp : g° •-> G is the restriction to ga of the exponential map for g,
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exp,(') denotes the push-forward of a measure, and

¿a,k = Oa,k-Oa,k-l     for/c>l.

For K G Z+Ml define

AK=H¿a,Ka,
a€A

where FJ denotes the convolution product of measures, taken according to an

arbitrarily chosen linear ordering of A which will henceforth remain fixed. For

J G Z^l define dilated measures Ay by

JfdAK = Jf(Srx)dAK(x),        r = 2~J.

For each subset E c A define

t£= ]Joa o
a€E

with the convolution product taken again in order of increasing a, and define

xj by

Jfdrj = Jf(ôrx)dxE(x),        r = 2-J.

Let Ô denote the Dirac mass at 0 G G.
There is then the decomposition

S=~[[[(ô-(Tato) + aa<o='[l(S-cTa,o) +   £   CezE>
a€A a€A 0¿ECA

where each ce is an integer. Expanding ô - aa,o = ¿3^1i K,k f°r each a and

then dilating gives for each / G Z1-41

ßj = J2 vj * A7 + z3 Ce'l1j * tj '
K E¿0

where the sum is over all K g (Z+)l/41. This leads to a majorization of the

maximal function %wp\f*pj\ by an infinite sum of maximal functions, one for

each E and one for each K.

Lemma 3.1. For each E ^ 0 and p > 1 i/ze maximal function

S\ip\ f * pj * TE\
J

is bounded on LP(G).

For the proof fix E. As a vector space split g as the direct sum go © goo ,

where go = span{ga : a g E} and goo = span{gy} : ßa = 0 Va G E} . Both are

Lie subalgebras of g. Moreover go is an ideal and goo is nothing but the free

nilpotent Lie algebra of step 5 on \A\ - \E\ generators. Let Go, G^ be the

associated connected, simply connected groups, both regarded as subgroups of

G. Each element of our basis {Yßj} belongs to exactly one of the two subal-

gebras, so both inherit bases and hence the exponential map defines canonical

coordinates on the G¡. Every element of G admits a unique representation

x = wv, where w G G^ and v G Go. Haar measure on G is simply the

product of the two Haar measures.
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Recall the map u >-> exp(^2uaXa) from Rd to G which traces out the

surface on which p0 is supported. Factor it as F^u) • F0(u), where each F¡ :

Rd i-» Gi is a polynomial in canonical coordinates. Go is a normal subgroup,

whence

F00(u) = exp( Y, uax*\
\a$E I

although Fq will in general not have such a simple form.

Po decomposes as

Po=      ¿foot«) * 3f0(u) a(ü) du,
JRä

where ôx denotes here the Dirac mass at x G G. Thus

Po*Tq = J àFea(u) * (sf0(u) * Tq)a(u)du.

Observe that because of the form of the group law, zE is absolutely continuous

and even has a C°° density with respect to Haar measure on Go. So if on

Go we let v equal Lebesgue measure times the characteristic function of a

sufficiently large ball, then Sf0(U) * To - ^v ^or a^ u e support(a). Hence

Po * To < c ( / ¿Fc,(«) a(") du)*v<Cpo*v,

where fio is the measure (ir00),(a(i/)úfw) supported on G^ c G, an analogue

on Goo of po ■

Both subgroups Go, Goo are invariant under the dilation group {3r} since

their Lie algebras are. We write ôr also for the restriction to either. On Go

consider the maximal function

Nf(x)=    sup    / \f(x-(S,y)-l)\dy.
r€(R+)MI JyeG0,\y\<l

Since the Sr are group automorphisms of Go, the simple iteration argument

described in the first two paragraphs of the introduction applies just as for the
strong maximal function in R" and establishes

Lemma 3.2.  TV is bounded on ¿7(Go) for all p > 1.

For any continuous function / defined on G and for each w G Goo set

fwiv) = f(wv). a function on Go . Define

N'f(wv) = Nf^iv).

Since Haar measure on G is the product measure, it follows from Fubini's

theorem that N' is bounded on LP(G) for all p > 1.

We now proceed by induction on \A\, the number of generators of the Lie

algebra, hypothesizing that Theorem 2.4 is already known in the case of fewer

generators. On G^ define fij in terms of fio by dilating in the customary

way, and consider the maximal function

Af/(.x) = sup|/*/i/|,
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precisely the sort of operator with which we began on G. Since goo is the free

Lie algebra of step 5 on \A\ - \E\ generators, M is bounded on LP(G00) for

all p > 1 by the inductive hypothesis. On G define

M'f(x) = sup\f*fiI\,
i

where p¡ denotes also the push-forward of fi¡ to G via the inclusion map.

(To define M' in terms of M as N' was defined in terms of N would require

writing elements of G as x = vw with v G Go and w G Goo rather than

in our usual order.)   Then M'  is bounded on LP(G).   For any continuous,

nonnegative / defined on G, pointwise and for all /

f*(pj*TJ) < C(f*fij)*vj < C (sup f*fi¡j *Vj

< C(M'f) * vj < CN'M'f.

The proof of Lemma 3.1 is complete.

4. The main step

This section is devoted to the proof of

Proposition 4.1. There exists e > 0 such that

sup\f*pJ*Aj{\ < C2"el*l

2

for all f G L2(G) and K G Z+Ml.

By summing over K we conclude the proof of Theorem 2.4 for p = 2 . Other

exponents will be treated in §5.

Following Stein define

SKf(x)=nr\f*pj*Air\
1/2

Proposition 4.1 follows immediately from

Lemma 4.2. There exists e > 0 such that

\\SKf\\2<C2-W\

for all f,K.

Fix K and write Tjf = f*pj*AK . Throughout this section || • ||op denotes

the operator norm on L2(G). We abuse notation slightly by writing \\v\\\ to

denote the total mass of any measure v . Then || 7} ||op < C uniformly in J, K

since \\pj\\i and ||Ay ||i are uniformly bounded. Lemma 4.2 results directly

from the conjunction of the next two lemmas.

Lemma 4.3. There exists e > 0 such that || !7~> ||op < C2~e^ for all K.

Lemma 4.4. There exists e > 0 such that

l|7>r;i|op<c2-£i/-7i

for all I,J G ZW and K e Z+Ml.
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Denote by v the reflection of any measure v about the origin:

ffdP=[f(-x)dv(x).

It may be assumed that all measures under discussion here are real, in which

event the adjoint of an operator Tf = f*v is T* f = f*i>.
The proofs of Lemmas 4.3 and 4.4 rely on the following result, a slight ex-

tension of the main technical lemma of [Cl, §5]. Let D be the dimension

of g as a vector space. Suppose that n > D, <f> G C^(R"), and F G C°°

maps a neighborhood of support(0) to G = RD . Let £ be the push-forward

F*(4>(x) dx), a measure on G. For each D-tuple E = (/i,..., io) of elements

of {1, 2, ... , n] let

jE(x) = det(^L)
\UJLil / l<j,l<D

be the determinant of the Jacobian matrix, where the {Fj : I < j < D} are the

components of F in our canonical coordinate system on G.

Lemma 4.5. Suppose that for each z G support(</>) there exists a subset E and

a multi-index / E N" such that (dyJE/dxy(z)) ^ 0. Then £ is absolutely
continuous with respect to Haar measure on G. Moreover there exist e > 0

and Ci < oo such that for any Co < oo, any p > 0, and any finite measure

v supported on any subset of {y e G : \y\ < Co} of diameter p and satisfying
J 1 dv = 0, we have

lli*Hli<Ci/>>||i.
Another way to phrase the conclusion is that £ belongs to some Sobolev

space L\+e, e > 0. In the hypothesis it is not required that y involve only

those ij present in E.

Proof. By smoothly partitioning the support of <j> into finitely many regions we

may reduce matters to the case where a single E and y satisfy the hypothesis

at all points in the support of </>. Let n > 0 be a small constant to be chosen
below and partition a fixed neighborhood of the support of (j> into a grid of

cubes Q, with sides parallel to the coordinate axes, of common sidelength pi.

Construct a partition of unity {<t>o} with each <])q supported on the cube 2Q

concentric with Q and having twice the sidelength, satisfying H^qIIoo < 1 and

||V</>e||oo<Q>-". Set

£e = F*((j)Q<f>dx).

Q is said to be bad if there exists y G 2Q with |/eO>)| < pn/3, and to be good

otherwise. The measure of the union of the bad cubes is at most Cpn& , for

some à(y) > 0, by Lemma 3.4 of [Cl]. Since

Kq*Hli <lliGllilHi<C|ßl-Hi,
we have for the contribution of the bad cubes

<c£ IßHMIi^C/^iMi
ß bad

T.io * V

iQ bad

as desired.
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It suffices to show that for each good Q,

Hiß*Hli<C/»,|ß|-Hi-

Renumber the coordinates in R" so that E = (1, 2, ... , D). Coordinatize R"

as {(u,v) G RD x R""D} . Write Q = Qi * Q2 with gi c RD and decompose

tQ= [   ivQdv,
J2Q2

where Çq is the push-forward under the map u ^ F(u, v) of the smooth

measure 4>q(u, v)<j>(u, v)du on 2Qi. It is enough to show that

ll^*Hli<Q>elöiHHi

uniformly in v G 2Q2. But since the Jacobian determinant of the function

u •-> f(u, v) is bounded below by pn^ on 2Q\ it follows from the implicit

function theorem that Çq is smooth, and the discussion of equation (5.2) on p.

587 of [Cl] yields the quantitative conclusion

ll<^*f||i<cy-c"|ôiHM|i

for some C < oo. It suffices to choose n so that 1 - Cn > 0. The same

reasoning applies to v * Ç.

Proof of Lemma 4.4. Since the ôr are group automorphisms it may be ar-

ranged by a dilation which does not affect the operator norm that, for each a,

max(/a, Ja) = 0. The operator T¡T} is given by convolution on the right with

Aj*fij*Pi*Af . Assume with no loss of generality that mina£^ Ia < minae/4 Ja .

Then \I - J\ ~ |/|-mina Ia , and it will suffice to show that

||/*/*y*/*7*Af||2<C2-El'l||/||2

for all f £ L2. Let £,o = fij * Pi and take £ to be the convolution product

<fo * £o * lo * £o * • • with D factors of <fo * £o • As in [C1 ] it suffices to show that

||^*Af||1 < C2"el/I

for some e > 0.

Assume, this time with a possible loss of generality but for the sake of sim-

plicity, that mina Ia = Iß , where ß is the smallest a G A, in our fixed linear

ordering on A . Let v be the measure Iß <Kß, dilated by ô2i :

J fdv = jf(o2-,x)dXß,Kß(x).

Then it is enough to show that

llalli <C2-£I'I;

in fact we will obtain a bound C2~£\'\~eKi*. Now \\v\\i < C, v annihilates

constants, v is supported in {x G G : |x| < C2~Ie~cKi>}, and we shall verify

that Ç is a measure of the type analyzed in Lemma 4.5.
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To examine £ adopt coordinates x = (xj : I < j < D) on (R4d)D, where

each xj = (x{, ... , x{) G (Rd)4 and in turn xj = (xj ¡ : 1 < / < d) for

1 < / < 4. Take

<f>(x) = f[f[a(xj).
j=\ i=i

Define F : R4dD » G by

f(x)=n
7=1 L

exp i-£[x/]°2'-*aJ -exp \Y[x}2T2J<>xA

exp l-Y[xÍT2J«Xa) • exp ( Y,lxÍT2hXa

the product taken in order of ascending ;' and according to the group law of G.

F depends implicitly on I, J ; since max(/Q, Ja) = 0 for each a, F is C°° on

a fixed neighborhood of support(</>), uniformly in /, J. F is a homogeneous

polynomial. That is, if tx is defined for all t G R and x G R4dD by multiplying

each component of x by i, and if F(x) is written as exp(¿^a ¡ Qa,i(x)Ya¡¡)

in terms of our fixed basis for g, then each Qa / is a homogeneous polynomial.

This holds because the group law of G and the map I^uh exp(£ uaXa)

are homogeneous. Consequently there exists M such that for each subset E

of {C = (;,í,a):;G{l,2,...,í/},zG{l,2,3,4},aG^} with \E\ = D ,
the Jacobian determinant

Je = det
dF\

dxUceE

is a homogeneous polynomial of degree M, or is identically zero. Here Xr

denotes xj a.

Lemma 4.6. There exists E such that Je does not vanish identically.

Consequently for this E there exists t with |t| = M such that dTJE/dxT

is a nonzero constant which may depend on I, J. This lemma is a direct

consequence of the next result, proved implicitly in [Cl] (see the proof there
that the three formulations of " y generates G " are equivalent). The argument

will not be repeated here. In the following statement Je denotes the Jacobian

determinant defined as above, but with F replaced by O.

Lemma 4.7. Let h be a nilpotent Lie algebra and H the associated connected,

simply connected nilpotent group. Let D be the dimension of h as a vector

space. Suppose that n is a positive integer, B a finite subset of N"\{0}, and

{Xß : ß g B} is a subset of h which generates it as a Lie algebra.   Define

<b:(R")D^H by

%.yfl) = n«P   E^i
;=i

Then at least one of the Jacobian determinants Je is not identically zero.
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Now the measure £ = fi¡ * pj * fij * p¡ * • • • is nothing but F*((/)(x) dx), so

£ and v satisfy the hypotheses of Lemma 4.4, with p < C2~^~cKf, whence

for each /, J there exists C¡ t j such that

as desired, s is independent of /, J since there are only finitely many possible
values of E and y. However we need to know that C¡ t j may also be taken

to be independent of /, /. This follows from compactness considerations.

Permit each component Ia and Ja to take on the value -oo, always with the

stipulation that max(/a, Ja) — 0 for each a. The convention is of course

that 2_°° = 0 in the definition of F. Then F is still C°° uniformly in
I, J. Lemma 4.6 remains valid with the same proof, hence Qtj is uniformly

bounded by compactness.

We have assumed that Iß = min{/Q} occurs when ß is the smallest of the

a. In the general case it suffices to show that

< C2~tls¡

i

where now

/ fdXa,Ka,, = / f(ôrx)dXa>Ka(x), r = 2
-i

The factor C*Yla<ßXa,Ka,, has the same properties as does Ç for our purposes,

uniformly in I, K ; indeed so does the convolution of £ with any finite measure

supported in a fixed compact region, v should now be taken to be XßKß I and

Lemma 4.4 again applies.

The same arguments establish Lemma 4.3. By homogeneity matters reduce
to the case 7 = 0. Then Ç should be taken to be the convolution product of

factors po and fio, convolved with Yla<ß^a,Ka, where Kß = max{A^a}, and

v should be taken to be XßKß.

5. Exponents p / 2

Lemma 5.1. For each p > 1  there exists C < oo such that the IP operator

norm of f *-> sup/I/* pj * AK\ is majorized by C(\ + \K\)D.

Since the L2 operator norm is at most C2-£l*l we may interpolate to find

that for each p g (1, oo) there exists n > 0 such that the IP operator norm

is actually no worse than C2~i\K\. Summation over all K eZ+ completes the

proof of Theorem 2.4.
To prove the lemma recall a variant of the Hardy-Littlewood maximal func-

tion on R1. For 0 < t < 1 and some y o satisfying \yo\ < 10 define

M/(x) = T-1sup/ \f(x-2-iy)\dy.
j€Z J\y-y0\<i'

Then M is bounded on L"(R) for all p > 1, with bound Cplog(l + t_i) ;
see for instance [S]. Combining this result with the iteration and majorization

argument sketched in the introduction and employed in the proof of Lemma

3.2 gives
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Lemma 5.2. For each p > 1 there exists Cp < oo such that for all x G (0, I], all

Euclidean balls B contained in a fixed compact region of G, and all f G LP(G),

sup|5|-' [\f(x.[ô2-jy]-l)\dy
j Jb

<Cp[log(l + \B\-l)]D

The measure A* is absolutely continuous and in fact has a C°° Radon-

Nikodym derivative with respect to Haar measure, for all K G Z+ . Applying

Lemma 5.2 in a straightforward way results in Lemma 5.1.

Since this paper was completed, interesting results concerning analogous sin-
gular integral operators, in the abelian case, have been obtained by Ricci and

Stein.
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