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This paper is dedicated to Glenn Schober

Abstract. For a > 0 let ^ denote the class of functions defined for \z\ < 1

by integrating 1/(1 - xz)a against a complex measure on |jc| = 1 . A function

g holomorphic in |z| < 1 is a multiplier of !?a if / e&a implies gf £ ^a .

The class of all such multipliers is denoted by J!a . Various properties of

Jta are studied in this paper. For example, it is proven that a < ß implies

¿#a C Jtß , and also that Jta C H°° . Examples are given of bounded functions

which are not multipliers. A new proof is given of a theorem of Vinogradov

which asserts that if /' is in the Hardy class Hl , then / € Jlx . Also the

theorem is improved to f'eH1 implies / 6 Jta , for all a > 0 . Finally, let

a > 0 and let / be holomorphic in \z\ < 1. It is known that / is bounded

if and only if its Cesàro sums are uniformly bounded in |z| < 1 . This result

is generalized using suitable polynomials defined for a > 0.

1

Let A = {z: \z\ < 1} and T = {z: |z| = 1}, and let Jf denote the set of
complex-valued Borel measures on Y. For a > 0, let ^ denote the family of

functions / for which there exists peJA such that

(1) f^ = SrW^Mx)t       |Z|<1-

Here we choose the branch of 1/(1 - z)a which equals 1 when z = 0.

This class of functions has been studied extensively in the case a = 1 [1,7,

8, 10, 15, 16]. More recently, the families SFa (a ^ 1) were introduced in [13].
Closure properties of the families AFa were studied by the present authors in

[9].
The following two results were proven in [13], and will be useful here.

Theorem A. For a > 0, / e SFa if and only if f e &~a+x.

Theorem B. If f eS^ and g e &ß, then fg e S^+ß .

For f e?«, let

(2) H/ll^r = inf{||/¿|| :peJA such that (1) holds}.

With this norm, ^ is a Banach space. As an example, suppose that / e SFa ,

p is a positive measure, and (1) holds. Then \\f\\$r - \\p\\. In the case a — 1,
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this was first observed by P. Bourdon and J. A. Cima, who showed in [1] that

if v e JK is any other representing measure for /, then

\\p\\ = p$) = f(0) = ^\dv(x)<\\v\\.

We note that by an easy argument, the infimum in (2) is actually attained.

Let {fn: n = 1, 2, ...} be a sequence of functions in &~a and suppose that

/„ —> / in the norm (2). It is easy to show that this implies that fn —> f

uniformly on compact sets. To see that the converse is false in the case a = 1,

let fn(z) = z" for |z| < 1. Then fn converges uniformly on compact sets

to the function f(z) = 0. On the other hand, suppose that pn e JK is any

measure representing /„ . Then since

z" = /rr=^^"(x)'

it follows that

1=     x" dpn(x) < j 1 d\pn\(x) = \\pn\\.

This shows that for each n, ||/„||^ > 1, so that the sequence /„ does not

converge to / in norm. In the case a ?¿ 1 , a similar example can be constructed.

Definition. Suppose that / is holomorphic in A. Then / is called a multiplier

of &a if g e 9-a => fg e 9*.

The family of all such multipliers is denoted by Jfa .
Suppose that / e JKa for some a > 0. An application of the Closed Graph

Theorem shows that the map A: S^ -> AFa defined by K(g) = fg is continuous.
Equivalently, A is a bounded operator on ^ , so that

sup{||/g||^:g€^, \\g\Wa< 1}<oo.

This last quantity will be denoted by ||/||^ , and with this norm Jfa is itself a

Banach space.

This paper is concerned with the multiplier families Jfa . The family Jix

has been studied in [10], [15], and [16], and various properties of Jix which

were developed there will be generalized to Jfa for a/1. For example, S. A.

Vinogradov [16] has shown that if /' is in the Hardy space Hx, then / e Jfx.

We give a new proof of this result, and show that if /' 6 Hx, then f e JAa,

for every a > 0. Also we show that if / e J£a , then / is bounded, and that

/ has a number of other properties. Examples are given of bounded functions

which are not in any JKa for a > 0.

Finally, suppose that / is holomorphic in A, and let f(z) = X^oa"z" •

Let

, v     \-^ n-j + 1       :
°n{z) = Y      n+l     aJzJ-

7=0

It is a classical result that / is bounded if and only if the Cesare sums o„(z)

are uniformly bounded for |z| < 1, and that in this case ||ff„||#°o < ||/||//°°,
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« = 0,1,.... This result is generalized here where o„ is replaced by suitable

polynomials depending on a > 0.

2

In this section various properties of the families JZa are studied. The fol-

lowing lemma will be useful.

Lemma 2.1. Let f be holomorphic in A, and let a > 0. Then f e ¿%a if and
only if f(z)/(1 -xz)a e9a for every x with \x\ = 1 and there exists a constant

M such that ||/(z)/(l - xz)a\?a < M for \x\ = l.

Proof. First suppose that / e JAa. Then multiplication by / is a bounded

operator on ¿^ , and there is a constant M such that

(3) Wfg\Wa<M\\gUa

for all g e SFa. In particular, (3) holds for all functions of the form g(z)

= 1/(1 - xz)a , where \x\ = 1. Since ||1/(1 - xz)a\^a = 1, this implies that

||/(z)/(l - xz)a\\gra < M for all |;c| = 1.

For the converse, let g eAFa. Then for some peJi,

8{z)-Irlï^xWd^x)-

To show that fg e 9a, it is enough to consider the case in which p is a prob-

ability measure. Then g is the limit in the topology of uniform convergence
on compact subsets of A of functions of the form

k=\     v       k '

where pk > 0, ]£¡t=i Pk = 1 » l*fcl = 1 > and « is a natural number.
For such a function h ,

(4) mh{2) = ±ßi-M-.

By the assumption, there is a measure vkeJf with \\vk\\ < M such that

„ •/"(Z) ,   = f ,t    1    ,   dvk(x).
(l-XkzY        Jr(l-XZ)a        *V    >

Letting X = Ylk=\ ̂ kvk . (4) can be written as

where keJt and ||A|| < ELi PkPkW < -^ELi A** = M ■
Since {le jf: ||A|| < M} is compact, an argument using subsequences now

yields a measure o eJÍ with ||cr|| < M and f(z)g(z) = /r 1/(1 -jcz)Qúfer(.x).

Therefore fgeAFa, and f eJ?a.
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Theorem 2.2. If 0 < a < ß, then JtacJAß.

Proof. Let f e Jfa. By 2.1, it is enough to show that f(z)/(l - xz)ß e A?ß
for every x with |x| = 1, and to show that there is a constant A such that

\\f(z)/(l-xz)ß\\9-ß<N,for |x| = l.

Since / e J?a , the lemma implies that there is a constant M with

\\f(z)/(l-xz)a\\^<M,     for |*| = 1.

Equivalently, for any * with |x| = 1, there is a measure pxeJA such that

(5) (Ä = /r(T=W^^
and \\px\\<M.

Since
/(*) A?)

(l-xz)ß      (1 -xzy(l-xz)ß-a'

(5) yields that

Az)
(l-xz)ß- {jr(l-yz)«dßx{y))(l-xz)ß-°

= JT(l-yzr(l-lz)ß-^dUx{y)-

For every * and y with |x| = |y| = 1, there is a probability measure vXtV

such that

(

Therefore

1 1 /" 1
i-^771-Til— =   /   71-TâdUx y(w)      [2, p. 415].
1 -yz)a (1 -xz)ß-a     JT(l-wz)ß       'y

jé^y = Il Jj^y dux,y(w)dpx(y).

Because ||^,y|| < 1 and \\px\\ < M, an argument as in the proof of Lemma

2.1 shows that there is a measure XeJZ with ||A|| < M and such that

(l-xz)ß=\v(l-sz)ßdX{s)-

This shows that /(z)/(l - xz)ß e &ß , and that ||/(z)/(l - xz)ß\\grß < M.

Next we obtain several properties of functions in Jta . First it is shown that

such functions are bounded.

Theorem 2.3. Let a > 0 and let f eJfa. Then f e H°°, and \\f\\H°° < ll/IU, ■

Proof. Let M be a constant with \\f\\^a < M. Let z0 = rew   (0 < r < 1) and

let x = e~'e .

Since / eJKa, there is a measure pxeJ! with \\px\\ < M and such that

/(*)     _  f        1
(1 -xz)

It follows that

: = SrT^Wrd"M
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Letting z = z0 in (6) yields

(7) !/(«")! IXrAk)" dllAA-l/Mly)<M.

Since (7) holds for all r and 6 , it follows that / e H°° and \\f\\H«, < M,
for every M with M > \\f\Ua. Therefore, \\f\\H~ < \\f\U .

Theorem 2.4. Lei a > 0, and to f eJAa. Then fe&á, and \\f\\gra < ||/||^ .

Proof. Let /(z) = 1 for |z| < 1. Since

I(z)- / —-r-dm(x),
v ;    Jr(l-xz)<*      v  "

where m denotes normalized Lebesgue measure, I e 9a. Also, since m is a

positive measure, the remark in § 1 shows that

(8) l|/lk = W = i.
Since /' eJHa and I e 9a, it follows that f = fi e 9a . Also, since

ll/lk = ll//lk < ll/lk IMk.
(8) implies that

(9) ||/lk < ll/lk-  °
We note that the inequality (9) is sharp, because I eJ(a and \\I\\gra = 1.

As an application of Theorem 2.4, let

1 °°
(10) Tr-~Va=YAn^)zn      (I'K1).

and suppose that / 6 Jfa where f(z) = 2~Z^Loanz" (lzl < 1) • The theorem

asserts that for some peJ?,

Equations (10) and (11) imply that

an =A„(a) J xndp(x).

Since A„(a) = 0(na~x), and since \Jrxndp(x)\ < \\p\\, this shows that the

coefficients of / obey |a„| = 0(na~x).

In the case 0 < a < 1 , this coefficient estimate provides additional infor-

mation on functions in Jfa. Suppose that / is holomorphic in A, and that

Az) - Y,7=o a"z" ■ In [16] it was shown that if X^o l<a«I log(« + 2) < co, then

/ 6 Jix . In particular, the function f(z) = J^Lo(i/n3)z2" is in Jfx, but for

m = 2" , am t¿ 0(ma~x), for each a (0 < a < 1). This shows that / £ J[a

for a < 1. The first author and E. A. Nordgren have shown that J[x ^ JH2, and

also that for0<a</?<l,^^ Jfß . It is an open question to determine if

JKa / J(ß for all a ^ ß .
It was shown in [9] that 9~a is closed under composition with disk automor-

phisms z —> (z + 0/(1 + £z), where |<^| < 1. This will be used in the proof of

the next theorem, which asserts the same result for Jia .
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Theorem 2.5. Let a> 0. If f eJAa, |{| < 1, and g(z) = f((z + {)/(l + ¡fz)),
then g e JKa.

Proof. Let h e 9a, and let k(z) = h((z - £,)/(! - £z)). Since the map w =

(z - £,)/(! - \\z) is an automorphism of A, the result in [9] quoted above

shows that k e 9~a. Since / e Jfa, it follows that m = fk e 9*. A second

application of the result in [9] implies that m((z + £)/(! + ~c\z)) e ^ . Since

m (t£)-'(t£Ht&)-'»*>-
this shows that g eJAa.

The following theorem generalizes a result in [16], which showed that if

/ € ./#i, then / has finite radial variation in every direction.

Theorem 2.6. For each a > 0 there is a constant Aa such that if f eJfa, then

the radial variation of f in the direction 6 obeys V(f, 6) < Aa\\f\\^ for all
6.

Proof. Suppose that / e Jfa for some a > 0. If |<j;| = 1 then there is a

measure p$ such that

(12) /(z)„    li N   = / „    1    x   dpt(x).
K    ' y '(i-£,z)a     Jr(l-xz)a   ^cv  '

Also, if M = H/IU , and e > 0, then ||^|| < M + e for |{| = 1.
It follows from (12) that

.,, f(l-Zz)a-l(x-j)j    .  .
f(z) = aJr—(r-J^—dpi(x),

and therefore
■ i

(13) l\f'(rUdr<_ajU^- (i-rr-x\x-^\dr
d\Pi\(x).

rxÇ\°+l

Let / denote the inner integral on the right-hand side of (13). Because

|1 - rxf|a+1 = {|1 - rx||2}(a+1)/2 = {(1 - r)2 + r\l -x||2}(a+1)/2

>{(l-r)2 + r2|l-x£|2}(a+1)/2,

it follows that
(l-r)a~xb<r_;

-Jo  {(1-
dr = J,

r)2 + r2¿2}(a+l)/2

where b = |1 - xf|. The change of variables y = rb/(l - r) shows that

J = Jo° (i+y2)(»+i)/2 dy = Ba. This integral converges since Jx°° 1/yß dy converges

for ß > 1. Therefore (13) yields that

/  \f'(rl)\dr <a [ Bad\p^(x) < Aa(M + e),
Jo Jr

where Aa = aBa . Let e —► 0, the theorem is established.   D

Let feJ?a. As a consequence of Theorem 2.6, the radial limit limr^xf(rel6)

exists for all 6 . Also, note that the conclusion of the theorem implies that /

is bounded.
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As an application of Theorem 2.6, we next give a number of simple examples

of bounded functions which are not in Ma for any a > 0.

As a first example, let f(z) — (1 - z)~', using the principal branch of the

logarithm. Then / is holomorphic in A, and since |/(z)| = e-Arg(1-z), it

follows that |/(z)| < en/2 for |z| < 1. It is easy to verify that / maps the

interval [0,1) onto the circle T covered infinitely often and hence the curve

w — f(r) > 0 < r < 1, is not rectifiable. It follows by Theorem 2.6 that / £ Jfa
for any a > 0.

In [9], it was shown that if / is holomorphic in A, then / e J(a for all

a > 0. In particular, this implies that a finite Blaschke product belongs to Jfa

for a > 0. Theorem 2.5 provides a second proof of this fact, as follows. Let

I(z) = z for |z| < 1. It is clear that I e JAa for a > 0. If |<j;| < 1, then

Theorem 2.5 implies that

l(l+f) = l+fejra,      fora>0.
\l+£,z)      1+Çz

Since the finite product of functions in Jta is itself in Jfa, this proves the

assertion.
We next show that there are infinite Blaschke products which are not in J(a

for any a > 0. Let f(z) = U7=\(an ~ z)/(l - a„z) where an = 1 - 1/2",

« = 1,2,.... In [6] it was shown that there is a constant A > 0 such that

if pn — \(an + an+x) then \f(pn)\ > A for n = 1,2, ... . It follows that

Jo \f(r)\dr - oc, so that by Theorem 2.6, / f Jia for a > 0.
We note that in [10], it was proved that an inner function belongs to J?x if

and only if it is a Blaschke product with the sequence of zeros satisfying the

Frostman condition.

The next example shows that a function holomorphic in A and continuous in

A need not be in Jfa for any a > 0. In [17], L. Zalcman described a bounded
region D such that dD is a Jordan curve, z = 1 e dD, and z = 1 is not

rectifiably accessible from the interior of D. Since dD is a_Jordan curve, any

conformai mapping of A onto D extends continuously to A. Let / be such
a map with /(l) = 1 . Then / f J?a , since the curve w = f(r), 0 < r < 1,

is not rectifiable. The argument in [17] even shows that the power series for /
is uniformly convergent on dA. Hence even with this additional condition we

can still have / ^ Jfa for all a > 0.
The examples above give bounded functions for which the radial variation in

one direction is infinite. A stronger result is presented in [14], where examples

are given of infinite Blaschke products B(z) for which the radial variation

V(B, 6) = oo for almost all 6. Also, [14] includes the construction of a

function / holomorphic in A and continuous in A for which V(f, 6) = oo

for almost all 6 .

3

In this section a condition is shown to be sufficient for membership in JAa

for every a > 0. Let Hx denote the Hardy space of functions / that are

holomorphic in A and such that

sup   /    |/(ri>'e)|i/0<oo.
0<r<\ JO
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In [16, p. 20] it was proved by Vinogradov that if /' 6 Hx then f e JAX .
This result is generalized to f'eHx implies / e JAa for every a > 0. This

strengthens the result in [9] which asserts that if / is holomorphic in A then

f eJKa for every a > 0.
We begin by giving a new proof of Vinogradov's theorem. It may have

independent interest especially since it shows that this result is related to the

class of functions of bounded mean oscillation [5, p. 222]. Let ¿% denote the

set of functions / holomorphic in A which can be expressed as / = g + h ,

where g and h are holomorphic in A, Re g is bounded in A, and Im h is

bounded in A. If / € 38 then ||/||.# is defined by inf(|| Re g\\oo + || Im A||oo)
where g and h vary over all pairs as above. Here ||w||oo = sup|z|<i \u(z)\ for

any function u defined in A.

Lemma 3.1. Let f be holomorphic in A and suppose that there is a holomorphic

function g and a constant M > 0 such that

(14) \f(z) + g(z)\<M    for\z\<l.

Then fz& and \\f\\cg<M.

Proof. Let s = Re/, r = Im /, u = Re g, and v = Im g. The function

G defined by G(z) = \[f(z) + g(z)] is holomorphic in A and Re G(z) =

\[s(z) + u(z)]. Hence (14) implies that |Re G(z)\ < \M for |z| < 1. The

function H defined by H(z) = \[f(z) - g(z)] is holomorphic in A and

ImH(z) = \[t(z) + v(z)]. Hence (14) implies |ImJ7(z)| < \M for
|z| < 1. Since / =G + H this yields f eSS . Moreover ||/||^ < || Re G||oo+

||Imff||oo<J/.

Lemma 3.2. Let f e H°° and let g be defined by

<"> «w-ÎjCt^*
for |z| < 1. Then \g'(z)\ < 5||/||tf<x>/|l-z| for |z| < 1, where B is an absolute

constant.

Proof. We first show that if |z| < 1 and a is the line segment from w = 0 to

w — z then

(16) /rr-^l^l^ïï-^-
Ja\l-W\2 2|1-Z|

This is clear if z = 0. Also if z is real and z ^0 then we have

• i

/ ti-ñ\dw\ = \z\ /   7i-r^dt
./Jl-u;|21     '     "Jo  (l-^)2 1-z

and hence (16) follows.  Henceforth assume that |z| < 1  and z is not real.

Then

[ -—l—¡í\dw\ = \z\ I
7a|l-^|2 JO

dt
o  (l-tz)(l-fz

1
^ilog-r-^-logT^}

-zJBl-
— dw
w
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where ß is the arc on the circle that is centered at w = 1 and goes from z to

z . Let 6 denote the angle subtended by the arc ß and let L denote the length
of ß. Then |z - z| = 2| 1 - z| sin(0/2) and L = |1 — z\6 . Therefore

L 1      . ,  .        |z|        1     _ 0/2       |z|        n

|1-wj|2'     '-|z-z||l-z|        sin(0/2)|l -z| - 2|1 - z| '

since 0 < 6/2 < n/2. This proves (16).
From (15) we obtain zg'(z) + g(z) - f(z)/(l - z). Hence an integration by

parts yields

Z2gl{z)=z_m_ (z),£M./2iw
l-z       S{ '     1-z     Jo   1-w

Jo  (1

dw
w

zßz}_h(zi   r h(w)

l-z      l-z+ Jo   (l-w)2™

where

(17) h(z)= [Z f(w)dw
Jo

for |z| < 1. Clearly (17) implies \\h\\H<» < ||/||/r~ = A/. It follows that

Therefore ( 16) implies that

|zV(z)|<(2+|)A/^f4^     for|z|<l.

The function G defined by G(z) = (1 - z)z2g'(z) is analytic in A, has at

least a second order zero at z = 0 and satisfies |G(z)| < BM for |z| < 1

where B = 2 +n/2.   Hence  |C7(z)| < BM\z\2  for |z| < 1   and therefore

\g'(z)\<BM/\l-z\.   D

Lemma 3.3. Suppose that f e H°° and g is defined by

for \z\ < 1. Then g e ¿% and \g\gg < -4||/||h» where A is an absolute
constant.

Proof. By equation (18) and Lemma 3.2, there is an absolute constant B such
that

(19) |?'W!<*    for |z| < 1.

Let |z| < 1 and let y denote the circle centered at 1 which passes through z

and has radius r - \ 1 - z|. Let S denote the subarc of y from z to z. Then

g(z)-g(z)= / g'(w)dw
Jö

and hence ( 19) implies that

\g(z) - g(z)\ < ëïnîL^ (length of Ô ) < |i?||/||„- .
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An application of Lemma 3.1 in the special case where the functions there

are related by g — -f implies that g e 3§ and \\g\\& < A\\f\\H°° where

A = nB/2.    D

Lemma 3.4. Suppose that f and g are functions holomorphic in A and let F

and G be defined by

(20) F(z) = T^J f(w)dw

and

(21) G(z) = - iZrL-g(w)dw.
Z Jo   i — w

Then

(22) / * f(eie)G(e~ie) d6 = [ * F(ew)g(e-W) dd.
Jo Jo

Proof. There is a number R > 1  such that f(z) = Y,n°=oa"z" an(^ S(z) -

Y,n°=obnz" for \z\< R. Then F also is holomorphic in {z: |z| < R} and G

is holomorphic in A except possibly for a logarithmic singularity at z = 1. In
particular, G e Hx (in fact, G e H" for all p > 0). For |z| < R we have

. .1   / oo \ .00

w-rb/ Î2>-')*-rhEïTï<1-'",>
\«=o        / «=o

Oof H^OofoO "l

n=0 V. fc=0       J        n=0 lfc=n

Therefore

-27T OO      /  OO \ °°f "1

(23)   /    F(e"),(e-»)rf« = 2n Y [Y ^T   *" = 2* £    ¡TÏ ^ h    "

For |z| < 1, we have

îjfffit1»)--)*
,/u    \«=0 U=o

OO       / . fi

n=0  \ k=0      )

If 0 < r < 1 then

r2n °° (  n      "     \
/    f(eie)G{re-'B)dd = 2* J]   -^- £ ft* } r" = tf (r).
•^ ^oVM + 1^o    /

Since the series defining H converges at r = 1, Abel's theorem gives

r2n °°  Í   n       "      \
(24)       Bmjf^    f(eie)G(re-w)d6=li^_H(r) = 2nY[^rf-lYbA
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Also, because f(e'e) is bounded and G e Hx it follows that

(25) lim  /   f(eie)G(re~ie)d6 = /   f(eie)G(e~ie)dd.
r^\-Jo Jo

Therefore by (23), (24), and (25),

r2n °° (  n      "     \      r2n
/    F(ei6)g(e-ie)d6 = 2nY\-^r-xYbA=       Aew)G(e-ie)d6.   D

We thank D. J. Hallenbeck for pointing out and rectifying an error in our

initial proof of Lemma 3.4.

Theorem C (Vinogradov). // f'eHx, then f eJ?x.

Proof. Suppose that /' e Hx and |£| = 1. We first note that

m = i Az)
t-z    fl-fz"

Therefore by Lemma 2.1, it is enough to show that f(z)/(£, -z) e&[, and that

there is a constant M > 0 such that \\f(z)/(c¡ - z)\\grx < M for all |£| = 1.

Also note that
Az)

-—if (w)dw + /(0)
Ç-z Ç-z Jo J K~'~ ' Z-z'

Since f(0)/(ct - z) G 9[ and since ||/(0)/(i - z)||^ = |/(0)|, it suffices to

show that the function (£, - z)~x /Qz f'(w) dw belongs to &[ and that for some

M > 0, ||(í - z)-1 /0Z f'(w)dw\\^ < M for all |£| = 1. The argument is

carried out with Ç = 1 and a similar argument serves for all £ providing the

same bound on the norm.

1      fz
g(z) =- /   f(w)dw    for |z| < 1

i-z Jo

In our formulation we replace /' by /. In other words, assume that f e Hx

and let
i      rz

(26)
í - ¿ JO

Then g(z) = ft/(l - z) - (1 - z)~x ¡¡ f(w) dw , where ft = /„' f(w) dw
First note that

|ft|< jf |/(to)| \dw\< j\f(w)\\dw\

It follows that

(27)

<2¡     \f(eie)\d6 = n\\f\\H¡    [4, p. 46].

II    ft
l-z <x\\J\\w

Next let k(z) = (1 - z)_1 Jz f(w)dw . Let A denote the space of functions

holomorphic in A and continuous in A. To show that k e &[ it suffices to

prove that there is a constant A > 0 such that

/ * k(reiB)h(e-ie)d6
\Jo

(28) <A\ \H°



388 R. A. HIBSCHWEILER AND T. H. MacGREGOR

for 0 < r < 1  and for ail h e A.   This inequality will be obtained where

A = B\\f\\Hi and B is an absolute constant. This will imply that

(29) Hfcll* < B\\f\\w

and it then follows from (26), (27), and (29) that \\g\\^ < (n + B)\\f\\H¡ .
By first making the change of variables z —> pz where 0 < p < 1 and then

letting p -» 1, we may assume that / and h are holomorphic in A. Then k

is holomorphic in A. We now show that it suffices to prove that

/ M k(ew)h(e~ie)dd
\Jo

(30) <C|L/ï|ff.||A||ffo

where C is an absolute constant. For 0<r<l let F(r) = J02* k(rew)h(e'e)d6 .

Assuming(30) we get |.F(1)| < CH/H^iH/»!^.» . Since F is continuous in [0, 1],

there exists r0 (0 < r0 < 1) such that \F(r)\ < 2\F(1)\ forr0<r<l.
Therefore

(31) \F(r)\<2C\\f\\Hi\\h\\H-     forr0<r<l.

Suppose now that 0 < r < r0. Then

\F(r)\ < f K \k(reie)\ \h(e-w)\dd < \\h\\H- [ * \k(rQew)\d6.
Jo Jo

Without loss of generality we may assume that / ^ 0. Then k ± 0, ||/||//i > 0,

and J02n \k(r0eie)\d6 > 0.   Therefore for some D > 0,  /02* \k(r0ew)\dd =

D\\f\\Hi . It follows that

(32) |/r(r)|<Z)||/||ff.||A|||fc0     for0< r<r0.

Letting B = max(2C, D), relations (31) and (32) imply that

\F(r)\<B\\f\\w\\h\\Hoo     for0<r<l.

This proves (28).

It remains to prove the assertion (30). Let m(z) = z~x /0Z(1 -w)~xh(w) dw .

Lemma 3.3 implies that m e 38 and ||/n||^ < C||ft||^oo for an absolute con-

stant C. We have m = p + q where p and q are holomorphic in A and

u = Re p and v = Im q are bounded and ||m||oo + IMIoo < C||ft||//oo. Now

/ * f(ew)m(e-w)d6= [ * f(ei9)p(e-w)d6 + [ * f(ew)q(e-w)d6.
Jo Jo Jo

Using power series and the orthonormal relations for the trigonometric func-

tions, this equals

/   f(eie)u(e-ie)d6 + i [   f(ew)v(e~ie)d6.
Jo Jo

Hence

/   f(eie)m(e-w)d6
Jo

<ll"lloo||/|||fi + ||«||oo||/||/f

= (iMioo+iMU)imiff.

<C||/||„,||A|U,~.
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Because of Lemma 3.4, this yields

/ n k(eie)h(e~ie)d6
Jo

<C\\f\\H4h\\H°

which is the required inequality.    G

The argument used to prove Theorem C does not depend on the duality theo-

rem about Hx and BMO proved by C. Fefferman [5, p. 245]. It is interesting to

note that the function g defined in Lemma 3.3 can be shown to have bounded

mean oscillation by a fairly direct argument.

The essential ideas for proving Theorem C as developed above are due to

Boris Korenblum [12]. The authors would like to thank Korenblum for several

helpful conversations about multipliers.

Theorem 3.5. // f'eH1, then f e JAa for all a>0.

Proof. Let f'eH1. By Theorem C, / e Jfx , and by Theorem 2.2 it follows
that / e J?a for every a > 1.

In the case 0 < a < 1, let g e ^a, and let h = fg. By Theorem A, it
suffices to show that h' e S^+x.

Since g e A?a, Theorem A implies that g' e ^a+x . By the previous part of

the proof, / e ^a+x, and therefore

(33) fg'€&â+i.

Because f'eH1, it follows that f e&[ [4, p. 34]. By assumption, g e 5Fa
and so Theorem B implies that

(34) f'ge&á+i.

Since h! = fg' + f'g, (33) and (34) show that h' e A?~a+X, or equivalently,
heSFa. This proves that f eJTa for 0 <a < 1 .   G

Theorem 3.5 is sharp, since there are functions / such that f'eHp

(0 < p < 1) and / is not bounded. By Theorem 2.3, such functions are

not multipliers.
One example where Theorem 3.5 applies concerns bounded convex maps.

Suppose that / is holomorphic in A and that / maps A one-to-one onto a

bounded convex region. Since the boundary C of such a region is rectifiable

and since C is a Jordan curve, it follows that /' € Hx [4, p. 44]. Therefore,

/ 6 JAa, for a > 0.

Suppose that f(z) — Yln°=oanzn is holomorphic in A. Let

n

Sn(z) = YaJzJ

7=0

and
1      "

an(z) = J^jYSJ^-
y'=0

By a classical result [3, p. 439], the function / is bounded if and only if the
sequence on(z) is uniformly bounded for n = 0, 1, ...  and for |z| < 1, and
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in this case, ||/||#°o = sup{||(7„||tf°o :« = 0,1,...}. This result is generalized

in this section, in terms of polynomials which are generated in the study of the

multiplier problem.

Definition. For f(z) = Y,T=oa»zn   i\z\ < 1), let

Pn(z\at) = —— {A„(a)ao + An-.x(a)axz + ■ ■ ■ + Ax(a)an-Xz"-X + A0(a)a„zn}
An(a)

where a>0,« = 0,l,..., and z e C.

Theorem 4.1. If f eJAa, then \\Pn(z; a)||*~ < \\fUa for n = 0, 1, ... .

Proof. Let / e Jia and suppose that M > \\f\\jt • If |x| = 1 then we have

/(z)/(l-xz)«e^. Also,

1
Az)- < M    for all |x| = 1.

9-a(1-XZ)«|

Therefore for each x  (|x| = 1) there is a measure pxeJi such that

(35) f(z),t    1   .   = / „    l   .   dpx(y),
v    ' JK '(l-xz)a     JT(l-yz)a  ^v/;'

and \\px\\ < M for |x| = 1.
If Az) = ZLo^z" , then /(z)/(l - xz)a = EZo^" where

bn = A0(a)a„ + Ax(a)a„-Xx + ■■ ■ + A„-i(a)axx"~x + An(a)a0xn .

If

I 1 °°
-dpx(y) = Yc"z"'

rd-vz)

then

c„ =An(a) / y"dpx(y).

Because of (35), b„ = c„, or

(36) x*Pn(^\c\=Jy*dfix{y).

Since \\px\\ < M for |x| = 1, (36) implies that \Pn(l/x; a)\ < M for
|x| = 1 and n = 0, 1, ... . Equivalently |P„(z;a)| < M for |z| = 1 and

hence \\Pn(z ; a)||#oo < M. Since this holds for every M > \\f\\^a, this proves

the theorem,   a

The next results generalize the statement made previously concerning the
Cesare sums on(z) for a function holomorphic in A. Note that on(z) =

P„(z ; 2) since the binomial coefficient A„(2) = n + 1 for n = 0, 1, ... .

Theorem 4.2. Suppose that f is holomorphic in A and that \P„(z ; a)\ < M for

\z\ < 1 and « = 0, 1, ... . Then f e H°° and ||/||ff~ < M.
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Proof. Let f(z) = E^=oa«z"  for lzl < l-   Assume that 0 < r < 1  and

|x| = 1. Then

= Y(YAn-k(^kXk)r"
n=0 \k=0 /

oo

= YAn(a)Pn(x;a)r".
n=0

Therefore

^-—\f(rx)\<Y¿n(<*)\Pn(x-,a)\rn
(1-r)v       ; «=o

oo .

<MYM«)rn=MK—-,
n=0 ^ '

and so |/(rx)| < M. Since this holds for all r and x, it follows that |/(z)| <

M for |z| < 1.   G

The following lemma will be used to establish a partial converse to Theorem

4.2. The kernels Tn(6; a) introduced in the lemma are well known, and are

studied in [18].

Lemma 4.3. Let po-\ and for k = 1,2, ... let pk(6) = coskd. Also let

A„(a)
Tn(6\a) = -^-YAn_k(a)pk(6).

k=o

(a) If a > 2 then Tn(6 ; a) > 0 for 0 < 6 < 2n and n = 0, 1,
(b) If 1 < a < 2 there is a constant B(a) such that

P2it

^- /    \Tn(6;a)\d6<B(a)     for n = 0, 1, ... .
2n Jo

Proof. First consider the case a = 2. Then (a) is a known fact and the argument

for it is as follows. Since An(2) = n + 1 for n = 0, 1, ... ,

T«(° ;2) = ̂ tt 1 rLYL+¿(" " k+1) coske}

2¿„V      " + 1/ 2n + l\  sini0  ]   ~

This proves (a) when a = 2.



392 R. A. HIBSCHWEILER AND T. H. MacGREGOR

Suppose that a > 0 and ß > 0. Then
°° 111

S^° + ̂ "°(rr^r=(i-z).(1-z),
oo oo

= YA"(<*)znYAn(ß)z"
n=0 n=0

= Y\YAn-k(<*)Ak(ß))zn.
n=0  U=0 J

This shows that
n

(37) An(a + ß) = YA-k(<*)Ak(ß).
k=o

Now assume that a > 2. From (37), it follows that
n

A„(a)Tn(6; a) = YA"~^a^^d">
k=o

n     (n-k \

Y\YAn-k-j(2)Aj(a-2)\ßk(e)
k=0 [j=0 )

= Y\YAn-J-k(^k(e)\Aj(a-2)
j=0 U=o J

n

= YTn-j(e;2)An-j(2)Aj(a-2).
7=0

Because A„-j(2) > 0, Aj(a - 2) > 0, and T„-j(6; 2) > 0, this implies that
A„(a)T„(6 ; a) > 0. This proves (a) for a > 2 .

A proof of (b) is contained in [18, Vol. 1, p. 94], where it is shown that the

kernel

K"{9) = An(ß+l)^Ä"-k{ß)Dk{6)

is "quasipositive" for 0 < ß < 1.  Here Dk(6) denotes the Dirichlet kernel

5 T,kj=-k e¡Jd ■ Note tnat Kn~HS) = T„(6 ; a), and since 1 < a < 2 by assump-

tion, this establishes (b).   G

The authors would like to thank B. Muckenhoupt, who provided the proof

of (a) for a > 2, and who pointed out that this fact is known.

Theorem 4.4. For each a > 1 there is a constant C(a) such that if f e H°°,

then

(38) \\Pn(z;a)\\Hoo<C(a)\\f\\Hoo,

for n = 0,1,... . When a>2, (38) holds with C(a) = 1.

Proof. The orthonormal relations for the trigonometric functions imply that

(39) ^JKf(zeie)Tn(6;a)d6 = l-Pn(z; a)

for |z| < 1 .
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Suppose that a > 2, |z| < 1, and / e H°° . Then (39) and (a) in Lemma

4.3 imply that

j\Pn(z; a)\ < ¿ jT \\f\\H~Tn(6;a)dd = ±\\f\\H~ .

This proves the theorem in the case a > 2.

Now suppose that 1 < a < 2, |z| < 1, and / e H°° . Then (39) and (b) in
Lemma 4.3 imply that

i|i>„(z; a)| < 11/11//-¿ / * \Tn(6;a)\d6 < £(a)||/||*~ •

This proves the theorem where C(a) = 25(a).   G

The assertion in Theorem 4.4 does not hold for a = 1. This is because

there are functions bounded and holomorphic in A such that the sequence of

partial sums sn  is not uniformly bounded in A [3, p. 444].   Also note that

Pn(z; l)=sn(z).
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