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FINITE DETERMINATION ON ALGEBRAIC SETS

L. KUSHNER

Abstract. The concept of finite relative determination was introduced by Porto

and Loibel [P-L] in 1978 and it deals with subspaces of R" . In this paper we

generalize this concept for algebraic sets, and relate it with finite determination

on the right. We finish with an observation between Lojasiewicz ideals and

finite relative determination.

Introduction

We shall denote by %(ri) the R-algebra of germs of differentiable maps and,

by m(«) its maximal ideal, and by R[x] the R-algebra of polynomials with

coefficients in R. If / is a germ, jmf(0) will denote the Taylor expansion up

to degree m of f around the origin, and (dfi) will denote the ideal of ê'(n)

generated by dfi/dXj, the partial derivatives of /. If jq(n, 1) denotes the

space of 17-jets, then nq: %(n) -> jq(n, 1) is the canonical map which assigns

;V(0) to each /.
Let S be a germ of a subset of R" containing the origin and J the ideal of

germs which vanish at S. Let Gs be the subgroup of diffeomorphisms which

are the identity on S. Let / and g be germs such that jkg(0) = jkf(0) and

fi - g £ J . We want to give necessary and sufficient conditions to show that g

is in the G s orbit of /.
The works of Mather [M] and Porto-Loibel [P-L] solve the case for S the set

of zeros of the ideals (xx, ... , xn) and (xx, ... , xs) respectively. In this work
we solve the case for more general algebraic sets (Theorem 16), for example,

the set x2 - y3 = 0. We also give two theorems (Theorems 19 and 20) relating

finite determinacy on the right and finite determinacy with respect to Gs for a

particular algebraic set S which generalizes Theorem 1.10 of [P-L]. We finish

with a theorem relating Lojasiewicz's ideals and finite relative determination.

Let S be a germ of a subset of R" containing the origin and / the ideal of

germs that are zero in S. We consider S? , the ideal of germs of vector fields

whose coordinates belong to J . If cf>t is a one-parameter group germ for X in

5?, then <f>, restricted to S is Id, the identity map.

Let Gs be the group of germs of diffeomorphisms of R" such that the iden-

tity is restricted to S.

Theorem 0. The tangent space of Gs at the identity is JC.
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Proof. Let X £^f and consider <j>t, the one-parameter group of X ; it is clear

that 00 = Id, (p1, £ Gs, and §¡(pt(x) = X o 4>,(x) ; if we set t = 0 we get

§-tct>t(x)\t=o = X(x)£TlaGs.
Conversely, given v £ TXdGs, there exists y: I -> Gs with y(0) = Id and

y(0) = v . Since y(i) e Gs it follows that y(t)(x) = x Vx 6 S. Then y(0)(x) =
0 Vx e S and v is zero in S.

Definition 1. Let / £ m(n). We say / is /c-determined relative to Gs if given

g such that jkfi(0) = jkg(0) and f - g £ J, there exists 4> £ Gs such that

g = f°(p-

We state without proof:

Theorem 2. Let to £ R be fixed, let fi and g be in m(n) with f\$ = g\s, and

let F: R" x R -► R be given by F(x, t) := F,(x) = (1 - t)f(x) + tg(x). Then
the following assertions are equivalent:

(A) There exists a germ H : R" x R —> R" such that

(1) H(x,t) = x;t~to, x~0, x£S,
(2) Ht0 = ld,

(3) FtoHt = Ft0;t~t0,

where ~ means near t0.

(B) r/zere exwi5 a germ /¡:R"xR-»R" swc/z í/zaí

(1) EUw¡(x,t)hi(x,t) + ^(x,t) = 0; t~to,
(II) /z;(x,Ó = 0; í~/0. *~0, x£S,

where h = (hx,h2, ... ,h„).     D

Observation. Let

(3')        ¿lx"(/!(/'x)' °^7(X' ° + yrm'x)'t] = °'
;=1 '

where H = (hx, ... ,hn). Then (1), (2), (3) are equivalent to (1), (2), (3').

Definition 3. Let / be an ideal of R[x], the ring of polynomials in xx, ... , x„

variables, let z(I) = {x £ R"|/(x) = 0 V/ £ 1}, and suppose 0 G z(I). Then

/ = {/ g r(«)|/|z(/) = 0}. We say / is radical if / = / .

Some examples. (I) If I = (xx, ... , xs), then / is generated by {xj, ... , xs}.

(2) If  /  =   v*;*/)"</<]~7~"   with  5 + í   <   «, then   /   is generated by

(3) If / = (xix2, X1X3, x2X3), n = 3, then / = / .

In (3) it is clear that z(I) = R x {0} x {0} U {0} x R x {0} u {0} x {0} x R.

By Hadamard's lemma we get for / in / :

f(xx , X2, X3) = XiX2^i2 + XiX3g|3 +X2X3gi3-l-X^ii + x\g22 + X2gn .

Now

/(xi,0,0) = 0^g,i(x,,0,0) = 0,

/(0,x2,0) = 0^g22(0,x2,0) = 0,

/(0,0,x3) = 0^g33(0,0,x3) = 0.
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Then

x2gxi(Xi , x2, x3) = x\(gX, (Xi , x2, x3) - gXl(x,, 0 , 0))

= x, (x2hx (xx, x2, X3) + x3/z2(xi, x2, X3)),

hence x\gxx £ (xxx2, xxx->,, x2X3). Using the same argument we get that x\g22

and xfg33 belong to (xjx2, X1X3, x2X3).   D

Theorem 4 [P]. Let f £ m(«)°° . Then there exists g £ m(n)°° and h £ m(«)°°

with g(x) > 0 for x ^ 0 such that

f = gh.   a

Corollary 5. // / is an ideal of R[x] then în m(«)°° = Im(n)°° .

Proof. One contention is obvious. For the other let / e m(«)°° n I; then

fi = gh as in the previous lemma. Since fi\s = 0 we get h\s = 0 and hence

f£m(n)°°î, where S = z(I).    D

Theorem 6 (Artin-Rees). Let A = R[[x]], x = (xx, ... , xn), be the formal

power series ring, with M its maximal ideal and I an ideal of A . Then there

exists k such that for m > k

/nrviw = Mm-k(inMk).  d

We denote the minimal k with such property by sé (I).

Examples. (1) If I = (xx, ... , xs), then s/(I) = I .

(2) If / = (xIX/)î<j<J-y-'', s + t<n, then s/(I) = 2.

(3) If / = (x2 - x3), then s/(I) = 2.

Consider n : <??(«) —> R[[x]], the canonical Taylor series map, and let / be an

ideal in R[[x]] generated by polynomials. From Theorem 6 we get for m> k,

I n mm = mm-k(I n m*) + m°° n /,

where m is the maximal ideal of &(n) and / is now viewed as an ideal in

%(n).

Corollary 7. ( 1) For I = (xx , ... , xs) we get I n m/+1 = mlI + m°° n / V/.

(2) For I = (XiXj)"^'^-"   we get I n m/+2 = m'l + m°° n / V/, where

s + t <n.

(3) For I = (x2 - x3) we get I n m/+2 = m'l + m°° n / V/.    D

Lemma 8. In each of the above cases 1 = 1 and hence m°° n / = m00/ c m'l.

Then we get the following equalities:
(1) /nm/+1 =/m' V/.

(2) / n m'+2 = Im' V/.

(3) /nmw = /m'V/.

Proof. The first two cases are easy consequences of Hadamard's lemma. For

the third case (n = 2) let <p(x, y) = (x, x2 - y3). Then by the Malgrange

Preparation Theorem for fi £m(2) we get

f(x, y) = ho(x, x2 - y3) + yhx(x, x2 - y3) + y2h2(x, x2 - y3).
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If S = {(x,y)|x2-y3 = 0} and f\s = 0 we get O = h0(x, 0) +yhx(x, 0) +
y2/z2(x ,0) if x2 - y3 = 0, hence 0 = h0(x3, 0) + x2hx (x3, 0) + x4/z2(x3, 0)

and n(h0(x, 0)) = n(hx(x, 0)) = jt(A2(jc , 0)) = 0. Then

/ = (h0(x, x2 - y3) - h0(x, 0)) + (hx (x, x2 - y3) - hx (x, 0))y

+ (h2(x, x2 - y3) - h2(x, 0))y2 + n(x)

= (x2-y3)g(x,y) + n(x),        r/em(l)°°.

Finally, since f\s = 0 => n(x) = 0 for x2 - y3 = 0, it follows that n = 0

and J c J . The other contention is obvious.   D

Proposition 9. Let I be an ideal of R[x] and consider I as an ideal of %7(n).

Hence 1 = 1 if and only if n(I) = n(I) and I is finitely generated in (?(n).

Proof.  (=>) Obvious.

(<=) Our equality is equivalent to / + m(n)°° = / + m(«)°° ; if we intersect

with 7 we get / + m(«)°° n I = I. Since m(«)°° n 7 = m(«)0°f and 7 is a

finitely generated W (n)-mod\xle, by Nakayama's lemma we get 1 = 1.   D

Observation. By Theorem 2 of [K], / is a finitely generated ideal if and only if

z(I) is a coherent algebraic set.

Lemma 10. Let I = (fi , ... , fi) be polynomials in R[[x]], let S = z(I) be

their common zeros, and suppose I is radical. Consider I = (fi , ... , fi, t) in

R[[x, t]], where fi(xx,... ,x„, t) = fi(xx, ... , x„). Then 1 = 1 and sé (I) =

sé (I).

Proof. It is clear that z(ï) = S x {0} . Let

<j>:{g£g(n + l)\g\Sx{0} = 0} - {/ e &(n)\f\s = 0} x (t)g'(n + 1)

be given by <p(g) = (g(xx, ... ,x„,0), g - g(xx, ... , xn, 0)). This map is

clearly an isomorphism and hence

/ ~ 7x (t)g(n + l) = Ix (t)g(n + 1).

Similarly, I = (fi , ... , fi, t) ~ / x {t)g(n + 1). Then_ / = 7 and us-

ing Theorem 6 with m(w + 1)  instead of m(n)  we have / n m(n + l)m =

m(n+l)m-k(ïnm(n+l)k).   D

Theorem 11. Let I be a radical ideal. If m(n)m n / c I(df) and I n m(n)k is

finitely generated, where sé (I) = k, then f is m-determined relative to Gs,

where S = z(I).

Proof. Let t0 £ R be fixed, g a germ with g\s = fi\s , and jmf(0) = jmg(0).
Consider the map F: (R" x R, (0, t0)) -> R given by F(x, t) = F,(x) =

(l-t)fi(x) + tg(x).
We will show that F, is G^-equivalent to Flo if t ~ t0 .
By Theorem 2 it is enough to find h : (Rn x R, 0 x t0) —> R" such that

(I) T,li§Z;(x,t)hi(x,t) + %(x,t) = 0,
(II) hi(x ,0 = 0 for t ~ to , x ~ 0 in S.
Let N = {co £ &{n + l)\co\Sx{lo] = 0 and ^"'^(O) = 0, t ~ to} and

K = {Y:UwM>t)hi(x,t)\hi as in II}.
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By Lemma 10, N is a finitely generated module.

If we can show that N c K, we have dF/dt = g - f £ K and we obtain
conditions (I) and (II).

Letting h £ N, we can write h(x, t) = h(x, t) - h(x, to) + h(x, to) ■ It

is clear that h(x, t) - h(x, t0) £ m(n + l)N. On the other hand, h(x, t0) £
m(n)m n / c I(dfi) ; then

n        r,   r

h(x,to) = Y,~ïar(x)ni(x),       f7,e/V/.
í=i 0Xi

By hypothesis,

g- fi £ m(n)m+x n / = m(n)m+x-k(m(n)k n /),

hence (dg/dx¡ - df/dx,)(x)r¡i(x) £ N and

^^o) = ¿^(x,0^)-rt(|^-g)(x),;W

is an element of K + m(n + l)iV. Thus, N c K + m(n + l)N, which by
Nakayama's lemma implies N c K .   D

Notation. Let z £ Jfi(n, 1) be the space of q-]ets which send Ö to 0, and /

a representative of z . Let

J*(f, S, n) = {j«g(0)\g - f £ J),

and let ñq: f+J^ J09(f, S, n) and ñq: J -+ J^(0, S, n) := J¡(n) be the
restrictions of the canonical map nq: e?(n) —» Jq(n).

Finally, let G| = {jqh(0)\h £ Gs} and zG% be the orbit of z .

Proposition 12. Let I be the ideal of R[x]. IfÖ£S = z(I) then Gs is a Lie
group.

Proof. We shall show that

G% = {j«(Id + (hx,..., hn))\hi £ 7)} n G",

where G" = GQ- .

Let a = jq<p £ Gqs , where 0 = (<j>x, ... , <j>„) ; then cf>\s = Id. If we write

4> = Id + (4> - Id), we clearly have that h, = cp¡ - x, 6 7. The other contention

is obvious.

Hence Gqs is a closed subgroup of the Lie group Gq .   D

Observation.   TxdGs = jq(î x ■■ ■ x 7).

Lemma 13. ñ~x(TzzGqs) = î{df) + 7n m(n)q+x .

Proof. Let ß £ TXdGqs be a tangent vector, ß = jqß'. For t £ R we define

S, = Id + tß'. If we consider nq°ôt: (-£, e) -> G|, then y? = §¡(nq ° ¿/)li=o •
On the other hand,

^(* • (^ ° *))|,-0 = §¡Mfi o í())l<-0 = *q í¿ ^Jff,'j  ,

where ß\ £ T.
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Then TzzG% = nq((df)î) and hence ñ~x(TzzGqs) = (dfi)î+m(n)q+x n/.   D

Lemma 14. Let q > 0 and z £ J0g(n, 1) such that z = jqfi, and let I < q. If
z is l-determined, then

în m(n)'+x c î(dfi) + m(n)q+x n 7.

Proof. Let A = {z' £ J^(n)\nqj(z') = nqJ(z)) where nqJ: Jjj(n) -» 70'(«)
is the canonical projection. Since ^4 is an affine space, it follows that TZA =

ñq(I n m(«)/+1). By hypothesis we have A c zG's , hence TZA c TzzG's and

7f9(7nm(n)/+1) ç ñq((df)T). As before we get 7nm(«)/+1 ç î(df)+mq+x(n) n

7.   G

Theorem 15. Le/ / èe a« m-determined germ relative to Gs, where S = z(I),

I radical, and k = sé (I). Then

lnm(n)m+x cl(df)    fiorm>k.

Proof. Since / is m-determined relative to Gs, ñm+xf is m-determined rel-

ative to G™+1 and, using Lemma 14 with k = m and q = m + 1, we obtain

7n m(n)m+x c I(df) + m(n)m+2 n 7;

but m(«)m+2 n I = m(n)(m(«)w+1 n 7) and by Nakayama's lemma we obtain

înm(n)m+x çî(dfi).    D

Joining Theorems 11 and 15 we obtain

Theorem 16. Let f £ m(n), I = (fix , ... , fi) be a radical ideal in R[x], and

S be the set of common zeros. Suppose sé (I) = k and îr\m(n)k is finitely

generated. Then f is finitely determined relative to Gs if and only if there exists

I such that m(n)' n / c I(df).    D

Observation. Let / be the ideal of f(n) and suppose %(If\m(n)k) is generated

by {hx, ... , hs} . We let fi £ W(n) be such that n(fi) = h¡ for 1 < / < 5 and
we write fi = g¡ + £,, where g¡ £ I C\ m(n)k and & £ m(«)°° . Then we have

(*) lnm(n)k = {gi, ... , gs) + m(nrnl.

Theorem 17. If I = I, the following three assertions are equivalent:

( 1 ) / n m(n)k is a finitely generated ideal of lf(«),

(2) lnm(n)k = (gx,...,gs),

(3) (gi,...,gs)Dlnm(n)°°.

Proof. (1) =>• (2). Since Im(n)°° = (I n m(«)00)m(«)0° , we have / n m(n)k =

(gi,...,gs) + m{n)°°I D (gi ,...,&) + m(n)°°(I n m(«)fc) D (g, ,...,&) +

m(«)°°(/ n m(n)°°) = (g,, ... , &> + m(n)°°7.

Then lr\m(n)k = (gx, ... , gs)+m(n)oc(Ir\m(n)k) and by Nakayama's lemma

we get / n m(n)k = (gx, ... , gs).

(2) => (3). Obvious.

(3)^(1). From (*) we get I Hm(n)k = (gi, ... , gs).   D

Lemma 18. Let {p¡ = x{J •••x„J}J=1 be monomials with 0 < i\ < 1, ... ,

0 < ik < 1 and ££=i »* = a > ° ■ Then
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(1) / = /,
(2) m(n)mnl = m(n)m-aI  Vm>a,

where I is the ideal generated by the polynomials p¡.    D

Theorem 19. Let f be a germ finitely determined on the right, {Pj}sj=x mono-

mials as in the previous lemma, and S = z(I). Then fi is finitely determined

relative to Gs ■

Proof. We know there exists an / such that m(n)' c (dfi), hence m(n)'l c

I(df). If we set / = m - a, we will have m(n)m n I C I(df). Applying
Theorem 11 we finish.   D

Theorem 20. Let I = (Pj)sj=x, Pj monomials of degree a as in Lemma 19.

Suppose that fi is finitely determined relative to G s, where S = z(I), and that

Wt =
( k \      k

f) z(Pj)z(I) - z(pi)    D f| z(Pj) =  z(I)    V,.
i j=x /      J=x

Then fi is finitely determined on the right.

Proof. We know there exists an m such that m(n)m n 7 c I(df).

Let x £ m(«)2(m_a) and put x = yy' with y, y' in m(n)m~a . Then

ypi £ m(n)m~aI = m(n)m n 7 c I(df),

hence

S        o   r

y Pi = Yj g—.hj    (where hj £ I = {px,..., ps))
i=i   Xj

7=1 fc=l J ;=1 ^      7=1 fc^í ;

If we denote <p = y - Yfj=\ hjdf/dxj, we get

7=1 7^ X      7/

Hence  0 vanishes in   W¡, and by hypothesis  <p £ I.    If we denote  7 =

£j-i hj(df/dXj) we obtain /?,-y = /?,((/> + y), so y = <p + y and

* = yy' = <Py' + yy' ■

Since 0 6 7, #' e 7m(«)m-a = m(n)m n 7 c 7(úf/), and yy' e (rf/>, it

follows that x £ (df). We have shown that m(«)2(m_a) c (df), therefore / is

finitely determined on the right.   □

Example.  / = (xix2, X3X4).

Definition 21. Let /: R" , 0 —> R be an analytic germ which is finitely deter-

mined on the right. Then

1(f) = min{k\(df) D Mk and M(dfi) ¿>Mk}.
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Proposition 22. Consider I = (df) in R[[x]] and suppose sé(I) = s. Then we

have 1(f) = s.

Proof. From the definition of / = /(/) it is clear that M/+r = (df)C\Ml+r Vr > 0
and ((df) n M/)Mr = Ml+r Vr > 0, hence

(df) n M'+r = ((df) n M^M'   Vr > 0.

Thus, / > s. If / > s we have ((df) n M*)Mr = (rf/) n Ms+r Vr > 0.

In particular for r = 1 we get ((df) nM')M = (df) n Mi+1 and M' C
(df) n Mi+1 = ((¿/) n M^M c (dfi)M, but this contention contradicts the

choice of / = /(/).
Ideals of Lojasiewicz. Let C°°(Çl, R) be the algebra of smooth functions

from an open set Q in R" to R. We let X be a closed subset of R" .

Definition 23. (1) We say that a function / satisfies a Lojasiewicz inequality

for X if for every compact subset K of Q there exist constants C > 0, a > 0

such that
\f(x)\>Cd(x,X)a   Vxe/C

(2) An ideal 7 of C°°(r2, R) is a Lojasiewicz ideal if there exists a map in

7 with the Lojasiewicz property for X = z(I), the set of common zeros of 7.

(3) Jk(I) is the ideal generated by 7 and all the kxk minors of the matrix

(dfi/dXj), 1 < j < k , 1 < j < n , where fi , ... , fik belong to 7.

Proposition 24 (Tougeron). If I = (cpx, ... , <pp) and JP(I) is a Lojasiewicz

ideal, then
1. I itself is a Lojasiewicz ideal.

2. If fi is flat on z(Jp(I)) and f\Z(i) = 0, then fi belongs to I.    D

Example. 7 = (x2 +y2), JX(I) = (x,y). Hence z(/,(7)) = {0} and m(«)°° c

7. That means that for / e m(w)°° there exists gx such that /= (x2 +y2)^i .

Corollary 25. If we consider our local case,

I = (<px, ... ,cpp)   and   z(Jp(tpx , ... , <pp)) = {0},

where cp¡ are analytic, then

(1) m(n)°° n 7= m(«)°°7= m(«)°°7 = m(«)°° n 7,

(2) 7 is finitely generated.

Proof. The first part is a direct consequence of the last proposition.

For the second part let I = (cpx, ... , cpp). Now n(I) is finitely generated,

hence we have n(î) = (hx, ... , hs), h¡ £ R[[x]], 1 < / < 5. Let g¡■ £ 7

with n(gi) = hi, I < i < s. Therefore 7 = (gx, ... , gs) + Tn m(«)°° . We

can suppose that {cpx, ... , cpp) C {gx, ... , gs}. Since 7 n m(«)°° c / we get

7 = (g\, ... , gs)-

Theorem 26. Suppose I = (fi , ... , fip) is an ideal of analytic maps and that

(1) JP(I) is a Lojasiewicz ideal.

(2) z(/,(/)) = {Ü}.
(3) IC\m(n)k, where k=sé(n(I)) is finitely generated.

If m(n)m Die I(df), then fi is m-determined relative to Gs, where S =

z(I).

Proof. (1) 3k with n(î) nM(«)m = M(n)m-k(n(î) n Mk(n)).
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(2) n~x(n(î) n M(n)m) = înmm(n) + m(«)°° .

Let / e n-x(n(î)nM(n)m) ; then n(f) £ n(î)nM(n)m . Hence there exists

g £ 7 with n(g) = n(f) and n(g) £ M(n)m . Hence g £ în m(n)m and

fi £ 7n m(n)m + m(n)°° .

Conversely let g £ în m(n)m + m(n)°° . Then n(g) £ n(î) n n(m(n)m) =

n(î)nM(n)m .

(3) n-x(M(n)m-k(n(î)nM(n)m)) = m(n)m-k(înm(n)k) + m(n)°° . This is

done in a similar way to (2).

From ( 1 ) we get

în m(n)m + m(n)°° = m(n)m-k(în m(n)k) + m(n)°° ,

and if we intersect each member of the equality with 7, we get

în m(n)m = m(n)m-k(în m(n)k) + în m(n)°°

= m(n)m-k(în m(n)k) + îm(n)°°

= m(n)m-k(înm(n)k)   Vm>k.

Since 7 n m(n)k is finitely generated, so is 7 n m(n)m Vm > k . We now

proceed as in Theorem 11.

Corollary 27. Let fi £ m(n)2 be a finitely determined analytic map and let I

be the ideal generated by fi. Ifînm(n)k is finitely generated, where k isas

in (3) of the last theorem, then fi is finitely determined relative to Gs, where
S = fi~x(0).

Proof. Conditions (1) and (2) of the last theorem are obviously satisfied since

there exists / e N such that (x2 H-h x2)' £ Jx (f). Condition (3) is given by

hypothesis. Now, since there exists / with m(n)' c (df), we get

în m(n)m = m(n)m-k(în mk(n)) C î(df)

for m> k + I.
We now use the last theorem to complete the proof.   D
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