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A RESTRICTION THEOREM FOR MODULES
HAVING A SPHERICAL SUBMODULE

NICOLAS ANDRUSKIEWITSCH AND JUAN A. TIRAO

Abstract. We introduce the following notion: a finite dimensional represen-

tation V of a complex reductive algebraic group G is called spherical of rank

one if the generic stabilizer M is reductive, the pair (G, M) is spherical and

dim VM = 1 . Let U be another finite dimensional representation of G ;

we denote by S'(U) (S'(U)G) the ring of polynomial functions on U (the

ring of G-invariant polynomial functions on U). We characterize the image of

S'{U®V)G under the restriction map into S'(U®VM) as the W = NG{M)/M

invariants in the Rees ring associated to an ascending filtration of S'{U)M .

Furthermore, under some additional hypothesis, we give an isomorphism be-

tween the graded ring associated to that filtration and S'(U)P , where P is the

stabilizer of an unstable point whose (7-orbit has maximal dimension.

I. Introduction

Let g« = Ír © Pr be a Cartan decomposition of a real semisimple Lie algebra

Ar and let g = 6 © p be the corresponding complexification. Let 6 be the

associated Cartan involution. Also let or be a maximal abelian subspace of pR

and let a be its complexification. Now let K be the analytic subgroup of the

adjoint group of g with Lie algebra adB(É). Also let M be the centralizer of a

in K and let W be the Weyl group associated to (g, a), i.e., W = Nk(M)/M ,

where NL(S) is the notation for the normalizer in L of S.

If V is any finite-dimensional complex vector space, let S'(V) be the ring of

all polynomial functions on V. The well-known Chevalley Restriction Theo-

rem states that the restriction homomorphism S'(p) —> S'(a) maps S'(p)K iso-

morphically onto S'(a)w . (Here VL denotes the submodule of an L-module

V consisting of all L-invariants.) This theorem was generalized by Luna and

Richardson [LR]:
Let G be a reductive complex algebraic group acting linearly (and morphi-

cally) on a finite-dimensional vector space U and assume that (U, G) has

generically closed orbits; i.e., the union of all closed orbits contains a nonempty

Zariski open subset of U. Pick any x G U such that the orbit Gx is closed

and Gx is conjugated to Gy for all y in an open neighborhood of x. The

conjugacy class of the isotropy subgroup M = Gx is called a principal isotropy

class. The generalization of the Chevalley Restriction Theorem given in [LR]

states that the restriction map S'(U) —> S'(UM) maps S'(U)G isomorphically
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onto S'(UM)W, where W = NG(M)/M. (A word of caution: this is not a

generalization strictu senso because a / pM in general. The Chevalley Restric-

tion Theorem mentioned in [LR] is the version " g« of type II", in Cartan's

terminology).
However, although the Chevalley Restriction Theorem and its generalization

are quite powerful tools, they have a restricted field of applications: indeed,

almost every representation of a semisimple group has trivial principal isotropy

class (see [AP]).

Now let G act linearly on another finite-dimensional vector space A. Then

the restriction map S'(N®U) -> S'(N®UM) induces a monomorphism S'(N®

U)G -> S'(N®Um)NgW> whose image seems to be very difficult to characterize.

A first step in this direction was given by Tirao in [T] for the following case:

G — K, U = p, N = t and dim a = 1. The proof given there is geometric and

uses a one-parameter subgroup suitably chosen. Another proof can be found

in [Al] and one of the aims of this article is to present a generalization of this

fact, inspired by this second proof.

We make the following additional hypothesis on (U,G): (a) The pair (G,M)

is a spherical pair (sometimes called a Gelfand pair); (b) dim UM = 1. Then

we say that (U, G) is a spherical representation of rank one.

In this case, the image of the restriction map for any A is characterized, as

in Tirao's case, by

(© \®S'(N)y®S'n(UM)
\ne®o \y€r„

Here S'n is the subspace of all homogeneous polynomials of degree n and

Yn = {yeGA:yM¿0,m(y)<n},

where m(y) is the degree of homogeneity of y* in the harmonic polynomials

in U.
A further generalization is found if (U, G) is a "product" of spherical rep-

resentations of rank one (see also [A2]). Moreover,

C„ =        0        S'(A)f,
■y€GA :   m(y)<n

defines a filtration of C = S'(N)M .
The second purpose of this article is to characterize the graded ring associated

to this filtration as the ring of P-invariants in 5"(A) for a suitable subgroup

P of G. In the case: G = K, U - p, A = 6, dim o = 1 and P is the
isotropy subgroup of a principal nilpotent element in p , this was obtained by

Tirao (unpublished) using ideas in the spirit of the proof given in [T]. The proof

depends on the existence of a suitable zet. Our proof, however, avoids this

and it is available for the general case under some additional conditions. We also

remark that one can not expect in general that P contains a maximal unipotent

subgroup of G; for example, this is false when g« = sp(n, 1), although it is

true when g« = so(n, 1) or gR = su(«, 1).

This theorem in some sense reduces the study of S'(U © A)G to the study of

S'(N)P . For example, S'(U © A)G is a polynomial ring if and only if S'(N)P

is a polynomial ring.



MODULES HAVING A SPHERICAL SUBMODULE 707

Finally, we give some applications; for example, we compute explicitly a

presentation of the ring S'(q)k when gK = sp(2, 1).

II. Preliminaries

As usual, LA denotes the set of equivalence classes of finite dimensional

irreducible representations of an algebraic reductive complex linear group L.

We will identify x e LA with the space on which L acts. We will exploit the

following well-known version of the

Schur Lemma. For x, k G LA , dim(i <g> k)L = 1 if x = k*, 0 otherwise.

If E is any L-module, and x G LA , we denote by Ex the isotypic component

of type x.

Let us recall briefly the notion of a spherical pair. Let G be a reductive

connected algebraic group and H a closed subgroup, over an algebraically closed

field of characteristic zero. (G, H) is a spherical pair if it satisfies one of the

following equivalent conditions:

(i) H has an open orbit in the flag variety of G.

(ii) H has a finite number of orbits in the flag variety of G.

(iii) Let Z be an algebraic (/-variety and let z g Zh ; then G has a finite

number of orbits in the closure of Gz.

(iv) Let x be a one-dimensional representation of H and let X be the

representation of G induced by x (i.e., the space of global sections of the

associated line bundle over G/H). Then for every y G GA , dim Homo(y, X) <

1.
(See [BLV] for the history of this result.) It follows from Frobenius reci-

procity that (iv) can be also stated as follows: for every y G GA ,

dimHomtfOc, y) < 1,

viewing y as an //-module. In particular, taking x trivial, dim yH < 1 for all

y G C7A . On the other hand this implies the above conditions, whenever H is

reductive (see [VK]).
Let G now be a reductive complex linear algebraic group, U a finite-

dimensional G-module. Recall that (U, G) is cofree if S'(U) is a S'(U)G-

free module. In such a case, S'(U)G is a polynomial ring (i.e., (U, G) is

coregular) and

S'(U) = S'(U)G®H

where <g> is given by multiplication and H is a homogeneous G-submodule of

S'(U).
Let M be a principal isotropy group of (U, G) (i.e., the stabilizer of a

point in a closed orbit whose conjugacy class is minimal) and let A = UM.

Put W = NG(M)/M. We know from [LR] that S'(U)G ~ S'(A)W, via the
restriction homomorphism.

Lemma 1 (See also [Po]). Assume that (U, G) has generically closed orbits and

that dim A — \. Then (U, G) is cofree and W is a finite cyclic group.

Proof. Clearly, dimA/W cannot be zero. (The unique closed orbit would be

open.) Thus dimA/W — 1 . By [LR] (see the proof of Theorem 4.2) (A, W)
has generically closed orbits. So we have

dimA/W = 1 = dim.4 - dim W.
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Hence W is finite. It is "contained" in GL(1, C) ; so it is cyclic and (U, G)

is coregular. Now codim7r~'(Ç) < 1 for every Ç g U/G; it cannot be 0, so

(U, G) is cofree. (See for example, [Sch, §4.3].)   D

Definition. We say that (U, G) is a spherical representation of rank one if it

has generically closed orbits, dim A = 1, and for all p e GA, dim pM < 1,

where M is a principal isotropy group of (U, G). In particular, (U, G) is

irreducible.

Remark 1. There exists a pair (V, L), where L is a simple connected algebraic

group, having generically closed orbits and such that:

(i) If M is in the principal isotropy class, VM is a line but
(ii) (L, M) is not a spherical pair.

Indeed, take L = A(,, V the irreducible representation of highest weight <p$.

From [E, Table 1 ] we know that the generic stabilizer is of type G2 and hence

(see for example [Po2] or [LV]) (V, L) has generically closed orbits. Moreover,

dim VM = 1 [E, Table 1]. One the other hand, (A(¡, G2) is not a spherical pair,
as follows from Kramer's table [VK]. In fact, the intersection of Elashvili's and

Kramer's tables gives us all the spherical representations of rank one of simple

groups.

Remark 2. From Lemma 1, ( U, G) is cofree. Let H be as above; then the

multiplicity of p in H is < 1 . (See [Sch, §4.3].)

Definition. We will say that (U, G) is a spherical representation (of rank s) if

U = Ux © • • • © Us, G = Gx x ■■ ■ x Gs, each U¡ is a (/¿-spherical module of

rank one and G acts on U via

(kx, ... , ks)(vx, ... ,vs) = (kxvx, ... , ksvs).

Note that it has generically closed orbits.

III. THE RESTRICTION THEOREM

Now assume that (U, G) is a spherical representation of rank one, S'(U) =

S'(U)G <B> H and let r = {p G GA : pM ¿ 0}. Then H = ®peTHp . Moreover,

Hp is irreducible and homogeneous. Clearly, p g Y => p* g Y. So we put

m(y) = degree of homogeneity of Hr ,        y g Y.

Now let (U, G) = (Ux, Gx) © • • • © (Us, Gs) be a spherical representation,

where (U¡, G¡) are spherical representations of rank one. We introduce the

following notation:

a = A\®---®as,     r = r1x---xri,

H = Hx ® ■■ ■ ® Hs,        M = Mx x ■■■ x Ms,

where M¡ ,Y,, A,, //, correspond to (U,, G¡).
Recall now that GA identifies with GA x ■ ■ ■ x GA . Thus y g Y if and

only if 7 appears in H ; and in such a case, it does with multiplicity one.

Moreover, let us consider the Ng-grading in S'(U) given by the decomposition

U = CA © •-• © Us. Therefore, H is an N¿-graded (7-submodule of S'(U)

and for y = yx <g> •• • ® ys G Y, y* appears only in Hm(y), where m(y) —

(m(yx), ... , m(ys)) G N¿ and m(y¡) corresponds to ((/,, G¡), y¡.
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Clearly, M is a principal isotropy group of (U, G) and A = UM . Let W =

NG(M)/M. We consider the order in N¿ given by (a\,..., as) < (b\,..., bs)

iff a¡ < b¡ for all i = I, ... , s and we set

Yr = {y gT: m(y)<r},

for every r eW0.

Theorem 1. Keep the notations and the hypothesis as above. Let A be a finite-

dimensional G-module; then the restriction from N © U to N © A induces an

isomorphism a of S'(N © U)G onto

i \ w

@[®S'(N)f®S'r(A)
^6Nj \yer,

Proof. The injectivity follows from [LR], Lemma 3.5.

If Ex , E2 are finite dimensional L-modules, the latter trivial, then

(Ex ® E2)L = ElL®E2. Thus

S'(N © U)G = (S'(N) ® S'(U))G

= (S'(N)®S'(U)G®H)G

= S'(U)G®(S'(N)®H)G

= S'(U)G®(@(S'(N)X®HX.)G)

uer

■^S'(A)w®[^a(S'(N)x®HJ »°

Let us look more closely at  (S'(N)X ® HX.)G.    In general, if S'(N)X =

©,r;,  Ti~k, then (S'(N)X ® HX.)G = ©,.(7/ ® //A.)G •  But ct is 1-1 and

dim(7/ 0 //¿.)G = dim(Ti)M = 1.

So

r7(5'(A)A®//A.)G = 5'(A)f ®S'm{x)(

Hence

a(S'(A © (7)G) = S'(A)W ® Í 0 S'(A)f ® S*M(Jl)(¿) J

Therefore, we have

a(S'(N® Uf) = I 0 S'n(A) ® (® ^W ® W^) )

»■

\«6NS0 \xer„
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Remark 3. The theorem remains true if we replace A by any affine variety on

which G acts.

IV. THE ASCENDING FILTRATION

Now let ( U, G) be a spherical representation of rank one, X an irreducible

(7-variety and M a principal isotropy group of ( U, G). Let C = C[X]M and

set
Ce=     ®     C[Z]f,        Q = 0C.

Xer,m{X)=e e<d

Theorem 2.   Q Ç Ci Ç • • • Ç C, Ç ■ ■ ■   is a filtration of C.

Proof. It suffices to show: if k, y G GA , f G Ud ç C[X], Ud~k, m(k) = d ,

g G Ub C C[X], Ub~y, m(y) = b, f,g€ C[X]M , then f • g G Cb+d .
We have an epimorphism of (7-modules y ® k —> Ub • U¿ . Let

y®k = ôx ©•••©ó,,       S, g (7a.

Let us decompose f®g = hx-\-\-hs, s < t, h¡ eo¡-0, reordering the index

set if necessary. We only need to check that m(o¡) < b + d, for all i < s. We

have the following well-known isomorphism of G-modules:

C[G/M]~ 0 yM ®y*.

From the inclusions given by / and g  k* <-> kM ® k* and y* <-* yM ® y* we

have a morphism of (7-modules

A* ® y* -» (kM ® k*)(yM ® y*) ç   0   ôf®ô*.
i*=i, ...,t

Now we claim that (kM ® k*)(yM ® y*) 2 ©,=,,....s^ ® S*. Indeed, if

c, G ö*, there exist a, G k*, /?, G y* such that ¿ ci = S aj ® Äv in A* ® 7*.
Thus for every x G G :

= (£xaj,f)-(£xßj,g).

That is, EA/®C/ = (E/®"j)-(Ei®ft).
Now, for any v e U such that (7t> is closed and Gv — M, we have the

following diagram of (7-modules

k*®y*     —>   Hx.-Hr    «-»    5"(Í7)

\^ ^/ Restriction

C[G/M] —► C[Gu]

which is clearly commutative. Hence the homogeneous module, of degree b+d,

//^. • Hy. contains an irreducible G-module of type 6* for each i = I, ... , s;

as S'(U)S. = S'(U)G • Hs. , we conclude that m(5,) <b + d .   □

To generalize the preceding, we need the concept of a A-filtration; it is surely

well known, but as we do not know a good reference, we shall introduce it, along

with some formal generalities.
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Let (A, +, <) be a monoid equipped with a partial order < , compatible with

+, a p.o.m. for short. For example, let A be a noetherian commutative k-

algebra, k afield; Si'(A) = {WCA: W isa fc-vectorspace} then (S?(A), -, C)
is a p.o.m.

In such case, a A-ascending filtration (resp., descending filtration) in A is a

morphism of p.o.m. sets A -> S?(A) (resp., A0 -> 5^(^), where A0 is A with

the order reversed) such that F(a)F(b) ç F(a + b) for all a, b G A (resp.,

F(a)F(b) D F (a + b)) and if 0 is the identity of A, then k ç F(0). Here we
shall only consider the case of ascending nitrations.

So let A be as above, equipped with a A-filtration, and put Ad = F(d),

d G A. Clearly, A0 is a /:-subalgebra of A, and each Ad is an /lo-module.
Now put

A(d) = Adl \YlAe)      and    ASr(A) = ® A(d)-
\e<d       I dEA

The bilinear forms A^ x A^ —> A^d+b-¡ are well defined and extend to A-gr(^4),

giving it a A-graded k-algebra structure.

Examples, (i) Let A = N0, C = S'(N)M be as in Theorem 1. For reW0 put

Cr = ©j,Grr S'(W)!¡? . In fact, this gives a N0-filtration in C, as follows easily

from Theorem 2.

Moreover, we have

Lemma 2. Let D = ®ren>0(@yer,m{y)<rS'(N)? ®S'ÁA)) and let J be the ideal

of D generated by A*. Then

D/J ~ A-gr(C).

Proof. Left to the reader.    D

(ii) As in the classical case, if A — ©d6A A(d) is a A-graded k-algebra, then

Ad = YLe<d A(e) induces a filtration in A ; its A-graded algebra is again A .

(iii) Let A = N0 , tx, ... , ín G A ; we construct a A-grading in the polynomial
ring B = k[Xx, ... , X^] putting for d G A

%) = ({*,"■ ■■*£":£*'■'•■

Now let ^ be a noetherian commutative /r-algebra equipped with a NQ-filtra-

tion. The following result will be useful later.

Lemma 3. Let x¡ G At¡   (i = 1, ... , A), & to image in A(t¡).
(A) //"i/ze ¿I,  are k-algebraically independent in A-gr(A), then the x,  are

algebraically independent in A.

(B) If the it generate A-gr(^4) as a k-algebra and A = \Jd€W Ad, then the

jc, generate A.

Proof (As in [Bo, p.  39]). Consider B t A, X¡ ■-» x¡. Clearly, <j>{Bd) ç Ad

and hence we have B -^ A-gr(A).

(A) y/ is 1-1; thus yi: Bd/Y,e<dBe -+ Ad/\Ze<dAe is 1-1 . Hence 0-'(O) ç
Bq . But ^: 5(0) —» ̂4(0) is </>: ßo —» ̂o thus </> is 1-1 .

(B) Left to the reader.    D
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Proposition 1. Let (U, G) be a spherical representation, N a finite-dimensional

G-module, M a principal isotropy subgroup of (U, G), A = UM, W =

NG(M)/M, C = S'(N)M with the filtration introduced above. Let

d=®[    0   s'(a)>s;m))
«€N£  \y€r,d(y)<n J

Consider the following statements:
(a) S'(U © A)G = Dw is a polynomial ring;

(b) D is a polynomial ring;
(c) gr C ¿s a polynomial ring;

(d) S'(N)M is a polynomial ring;

Then (a) <s> (b) <s> (c) =* (d)

Proof, (b) •*=> (c) : Let Hx, ... , Hs be elements of a basis of A*. As they form

a regular sequence in C ® S'(A), they do in D . On the other hand, D (and

hence, grC) inherits the usual graded structure of S'(N)®S'(A). With respect

to it, let D+ (resp., (grC)+) be the maximal homogeneous ideal of D (resp.,

of gr C). Thanks to Lemma 2 we have the following exact sequence

0- {Hx,..., Hs) - D+/(D+)2 - (grC)+/((grC)+)2 -> 0.

Moreover, Z) is regular iff Krull dim/) = dimcZ)+/(/)+)2 (idem for grC). Let

J be the ideal of D generated by A* ; as it is generated by a regular sequence,

ht(J) = s ; since D is an integral C-algebra of finite type

Krull dim(gr C) + ht(J) = Krull dim/).

But

Krulldim(gr C) + ht(J) < dimc(grC)+/((grC)+)2 +s

= dimc D+/(D+)2 > Krull dim/),

and the announced equivalence follows easily.

(a) <=> (b) From the proof of (b) o (c) it follows that there exist 7(1), ... ,

j(s) G N0 , fie E(N, M, 7(0) for each i, such that

D = C[fiHm,Jx,...,Hs],

where if j G N0, W = Y[k Hkk) ■ But the ftHm are ^-invariants (see the
proof of Theorem 1 ); hence

Dw = C[fiHM,H?lK...,Hïw],

for some integers v(i).

(c) => (d) follows from Lemma 3.   G

Remark 4. The implication (a) =>■ (d) is a particular case of the Luna Slice Etale

Theorem application to Invariant Theory, see [KPV]. (b) «• (c) is a standard

fact in commutative algebra; however it provides the interesting implication

(c) => (a). A word of caution: it does not follow from the proof of (a) <=> (b)

that D is a polynomial ring over C[fHj(l)] ; see [A2].

V. THE CHARACTERIZATION OF THE ASSOCIATED GRADED RING

Now let  (U, G) be a spherical representation,  A = N0,  A-grS'(N)M =

A-grC as in example (i). We shall make the following hypothesis:
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(T) There exist a closed subgroup P of G and for each y G Y, a "natural"

isomorphism of vector spaces

yM±yp,        cj, = <f>{y),

satisfying: for each finite-dimensional G-module A, the bijective isomorphism

A-grC^S'(N)p,

given by the <p(y) is actually an isomorphism of k-algebras.

Now let (Ux, Gx),..., (Uj, Gj) be spherical representations and let (U, G)

= (Ux, Gx )©•••©([//, Gj), A/" = Mx x • • • x Mj, P = Pxx-xPj, etc. Let us
assume that (U¡, G¡) satisfies (T) for i = I,..., j. If y G Y, y = 71 ® • • • ®y¡,
we define

yMí>yp, <p = (f)(y) = (f)(yx)®...®<f)(yJ).
Then we have

Lemma 4.   (C/, G), P, {(p(y): ye Y} satisfies (T).

/'roo/. It suffices to treat the case j = 2. If s, is the rank of (U¡, G¡), s = sx +s2

is the rank of (U, G). Thus if t G N0, we shall denote t = (tx, ¿2) m the

obvious way. Let A be a finite dimensional G-module. We introduce the

following notation:

E(N,M,t)=      0     S'(A)f.
y£T,m(y)=t

If t = (tx, t2) observe that E(N, M, t) ç E(N, M¡, t¡) when we consider

A as G,-module via the inclusion in the /-factor. Moreover y^' ® y2* -*

YP> ® 722 is given by the composition (Id®4>(y2)) ° (4>(y\) ® Id). Let us denote

<t>\ = (<^(7i) ® Id), and similarly <p2.
Now let / G E(N, M, t), g e E(N, M, r), f.g = h0 + --- + ht+r with

h¡ £E(N, MJ). Certainly, if h, #0, I <t + r. That is /, < i, + r,, 1 = 1, 2.
Hence (f>x(f)(j)\(g) = £y. J¡=t¡+r¡ 4>\(hj), looking at A as Grmodule.

Then cf>x(f)eE(N,M2,t2), Mg) e ^(A, M2, r2), and

<P2(Mf))'MMg)) = 4>2(Mht+r)),

i.e., 0(/) • (/.(g) = 0(ft,+r).   D

Now let ( U, G) be a spherical representation and let G' —» G be a finite

covering. Then we may also consider the spherical representation (U, G').

Furthermore, if there exists a subgroup P of G satisfying the hypothesis (T),

then the inverse image P' of P in G' satisfies (T) for (U, G'). (Alterna-

tively, replace A by the G-variety N/Kerf; it corresponds to 5'(A)Ker^ =

©y€GA ^ (■'*))' •)

We shall give a characterization, for 7 G GA , of m(y). We begin showing

that every spherical representation of rank one is visible, i.e., the unstable cone

has only a finite number of orbits, if G is connected.

Theorem 3 [Se, 6.2]. If G is a connected reductive linear group and Y is an

irreducible affine G-variety such that C[Y] contains each y G GA at most once,

then G has only a finite number of orbits in Y.

Lemma 5. Let (U, L) be an irreducible representation of a connected algebraic

reductive group L such that S'(U)L is a polynomial ring generated by a single
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invariant, say J. Let n: U —> U/L be the application associated to the inclu-

sion, let VI = yi(U, L) = n~](7t(0)) be the unstable cone. Then 91 is irreducible

and the ideal associated to 91 is S'(U)J.

Proof. Note that 91 is the zero set of J . If L is semisimple, a standard argu-

ment shows that J is irreducible in S'(U) : let / = px ■ ■ -ps be the factorization

of J in primes; then for each i there exists a character Xi of L such that for

every k e L, k • p¡ = Xi(k)p¡, but L has no nontrivial characters. But in our

case, as (U, L) is irreducible, the "nonsemisimple" part of L acts on U by a

single character x ', hence Xi = xde&Pl ■ It follows that the image of x is finite,

but L is connected.   D

Proposition 2. Let (U, G) be a spherical representation of rank one, G con-

nected. Then 9t((7, G) contains only a finite number of orbits. Moreover, for
each x G 91, (G, Gx) is a spherical pair.

Proof. We want to apply the above-quoted theorem of Servedio to Y = 91. We

only need to observe that the restriction S'(U) —> C[91] induces an epimorphism

H -+ C[91]. (Recall the decomposition S'(U) = S'(U)G ® H.) The second
assertion follows from [VK, Corollary 3].   D

Remark 5. The last result reduces drastically the list of candidates of possible

spherical representations; see [Kc]. We now generalize an argument of Kostant:

Let (U, L) be a cofree representation of an algebraic reductive group L,

n as in Lemma 5. Let H be a homogeneous subspace of S'(U) such that

S'(U) = S'(U)L ® H. We set F(y) = Hom¿(7, H), for 7 G LA and we fix 7
such that F(y*) ^ 0. Let dx, ... , dm be the degrees of homogeneity of 7* in

H; m = dimF(y*). We shall assume that the ideal S'(U)^. ■ S'(U) is prime
and that there exists an x e 9t(c/, L) such that the closure of the orbit L • x

is 91. Now let P = Lx, P' =normalizer of Cx in L ; P' acts in Cx via a

character x • Finally, for any y e U, o G F (y*), a G 7*, let ßy : F (y*) —> y0"
be given by

(ßy(a),a) = a(a)(y).

Proposition 3. ßx is one-to-one; moreover, P' acts in Im ßx decomposing it in

P'-submodules of dimension one and the associated characters are precisely of

the form xd< , ■■■ , Xdm ■ Finally, the d, 's are determined by this fact.

Proof. The injectivity of ßx and the following identity, from which the second

assertion is deduced, can be found for example in [K]:

for all a G G:        a • ßx(o) - ßa-x(a).

Now L • x is open in 91 and Cx ç 91 ; thus P' • x — L • x n Cx is a nonempty

open subset of Cx and hence the image of x cannot be finite.   G

If (U, G) is a spherical representation of rank one and x G 91(Í7, G) is

such that Lx is dense in 91, ßx is an isomorphism of vector spaces for all

7 G T, because (G, P) is a spherical pair. Clearly {7 g Y: yp / 0} D Y; so let

us assume that the equality holds. This is true if for example, the codimension

in 91 of (91 - Gx) is > 2 (see [K]: 91 is normal since it is an irreducible

hypersurface). For those spherical representations of simple groups, one can

check that the condition is fulfilled in view of [Po3]. On the other hand, ßv is
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also an isomorphism for every y G UM - 0. Fix such a y . We define </> = cj>(y)

by making commutative the following diagram:

yM A^ yP

ßy\ / ßx ■

F(y*)

Remark 6. Let us assume that the codimension in 91 of (91 - Gx) is > 2.

Then the equality {p e GA: pM ¿ 0} = {p e GA: pp ¿ 0} can be viewed as

a generalization of the well-known Cartan-Helgason Theorem. Indeed, when

Qr = so(n, 1) the claimed equality is a consequence of Cartan-Helgason.

Theorem 4. The isomorphisms {</>(y): y G Y} give rise to an isomorphism of

algebras between gr(C[X]M) and C[X]P, for every G-variety X.

Proof. We shall denote by h} the image of h G xM by 0. Let f e yM,
g G kM . We have

y®k = Sx®---®S,,       8¡eGA.

Let us decompose f®g = hx + --- + hr-\-+ hs, r < s < t, h,G o¡■ - 0.

Reordering the index set if necessary, we may assume m(o¡) — m(y) + m(k) if

i < r and m(6¡) < m(y) + m(k) if r < i < s. We only need to check that

P®gl = h\+--- + hir.LeXJ/ eF(y*), 3§ eF(k*), %eF(ô*) corresponding
to f, g, h¡. This means, for example, that if m G 7*

(f,u)=sf(u)(y),        (p,u)=s/(u)(x).

So let u G 7*, v G A* ; with the above identification, there exist w, G ô* such

that

u ®v = wx + ■ ■ ■ + wt.

Hence

(f® g, U <g> V) = (hi , Wi) + • • • + (hr, wr) + ■ ■ • + {hs, ws),

i.e.,

s/(u)(y)^(v)(y) = Wx(wx)(y) + ■■■ + %(wr)(y) + ■■■ + Ws(ws)(y).

Let us denote by J a homogeneous generator of S'(U)G. As %(w¡) e H

for all i, there exist integers dr+x, ... , ds such that Jd,%(Wi) is homogeneous

of degree m(y) +m(k). Put ;', = (Jd'(y))~l . Hence sf(u)&(v) and

Wx(wx) + --- + %(wr) + jr+xJd^%+x(wr+x)- ■ ■ + jsJd°Ws(ws)

are homogeneous polynomials which agree on y, hence on k • y for all k G G ;

if they agree on z , they do on tz for all t G Cx . It follows that they agree on

the whole of U . In particular, as x g 91 = {z G U: J(z) = 0}, we have

stf(u)(x)38(v)(x) = % (wx)(x) + ■■■ + %(wr)(x),

i.e.,

(P®gK u®v) = (h\, wx) + --- + {h¡,wr).   D

Thanks to Lemma 4, Theorem 4 generalizes to spherical representations of

arbitrary rank, provided that the hypothesis discussed above is fulfilled for each

factor of G. Theorem 4 combined with Proposition 1 gives:
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Theorem 5. Let (U, G) be a spherical representation, N a finite-dimensional

G-module, x G 9l(C/, G) such that the closure of the orbit G • x is 91 and the
codimension in 91 of (91 - Gx) is > 2. Now let P = Gx . Then S'(U® N)G is
a polynomial ring if and only if S'(N)P is a polynomial ring.   D

VI. Some examples

Let us retain the notation of the introduction. As a first application, we have:

Theorem 6.  S'(q)k is a polynomial ring if gR = so(n, 1) or su(n, 1).

Proof. We observe that Theorems 1, 2, 4, and 5 apply if (U, G) is (p, K) and
A is a one-dimensional Cartan subspace, even if A ^ pM with the following

slight modification:

gr(C[*]") * C[X]P = ®yerC[X]P.

Now if gR = so(«, 1) then we may assume that K = SO(n, C) ; it is known

that p is the natural representation. Let E e p be a highest weight vector, with

respect to a fixed Borel subalgebra b = rj © n of t. We claim that E g 9l(p, K)

and that KE has maximal dimension. The first is clear: 0 = lim^o.íec* A(t)E,

where y/ is the highest weight of p and A is the one parameter subgroup dual

to y/ . It is known that dim 9l(p, K) = dim p - dim p/K = dim p - 1 so for the
second it suffices to prove that dim KE = dim p - 1, that is

dim K - dim KE = dim p - 1,

which is equivalent in our case to

dimKE = (n2-n)/2-n + 1,

or even to dim6£ = (n2 — n)/2 — n + 1 , which is very easy to verify. So let

us put P — KE . Clearly P D N where A is the maximal unipotent subgroup

corresponding to n. Let us denote by V(x) the irreducible 6-module of highest

weight x G (j*. We claim that

Y={yeKA:y=V(jy,),jeN0},

and that if y G Y then yp = yN. This second statement is clearly true. Let

*F be the character of Ad h corresponding to y/ , i.e., *F = exp y/ . Clearly

P D Ker¥; if / e S'(p)£ then fi G S'(p)^v and hence YD {y e KA:y =

V{JV) > / e ^o} . But if 7 G T has highest weight £ and H = exp¿;, then yN
is stabilized by Ker E • Ker *F and the other inclusion follows. Thus

s'df = ©sW = Qs'wf, = ©s'w^,
yer ;>0 j>0

because we know from [K] that an irreducible representation arises in the coor-

dinate ring of the adjoint representation if and only if its highest weight lives in

the root lattice. Now a theorem of Levstein (see Theorem 7 below) guarantees

that S'(t)p is a polynomial ring; we conclude from Theorem 5 that ^'(g)* is

a polynomial ring too.

On the other hand, if gR = su(n, 1) then É = sl(n, C) © C and it is well
known that p = p_ © p+ where sl(n, C) (resp., C) acts in p+ via the natural
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representation (respectively, via a nontrivial character) and p_ is the dual of

p+ . In fact, one can choose a realization as follows: g = sl(n + 1, C),

f={(o   I) ■A^QKn,C),tvA + a = o\ ,

P = {(°   q):«gC"x1,VgC1x"}.

Let b = h © n be the Borel subalgebra of t of upper triangular matrices in t,

where 1) are the diagonal matrices in 6, and let E+ e p+ (resp., £_ G p_) be

given by u = ex, v = 0 (resp., u = 0, v = e„). We claim that E = E+ + E- G

91(p, K) and that KE has maximal dimension. The first statement is easy and

the second will follow from

dim/c:£ = «2-2«-r- 1,

or even from

dimê£ = n2 -2n + 1.

But

tE = {Z EV.ZE+ + ZE- =0}

= {Z = Zx + Z2 G I: ZXE+ + Z2E+ = ZXE_- Z2E. = 0}

w    0\

"    J     et: AGQl(n-2,C), zgC

0    z/

which has the necessary dimension. Thus

S'(t)p = S'([t,t])p,®S'(c),

where c is the one-dimensional center and Y' = {y e PSL(«, C)A : y ® id G Y}.

Let y/ (resp., y/*) be the dominant weight of the natural representation (resp.,
of its dual). We claim that

r' = {V(j(ys + y,*)),J€N0},

and that if y G Y' then yp = yN. In fact, the second assertion is easy and

we can show that V(j(y/ + y/*)) G Y' by induction on j . The other inclusion

follows as above; again, Levstein's result and Theorem 5 guarantee that S'(q)k

is a polynomial ring.   D

Theorem 7. Let I be a classical simple complex Lie algebra, b a Borel subalgebra

and let y/ (resp., y/*) be the highest weight (with respect to b) of the natural

representation of ( (resp., of its dual). Let u = [b, b] © Ker(^ + y/*). Then

S'(l)u is a polynomial ring.

Proof. See [L].    D

Remark 7. It was shown in [A3] that these are the only cases for which S'(q)k is

regular. Moreover, Theorem 6 was proved in [C] by geometric considerations;

and the coregularity of (g, K) when gR = so(n, 1) (resp., su(n, 1)) is also

proved in [AG, B, Sch] (resp., [J]).
In order to get a second application let us recall the following:
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Theorem 8.  S'(p)p is a polynomial ring if gR is classical of rank one.

Proof. See [BT, Theorem 3.14].   D

Theorem 5 says that this is equivalent to

Theorem 9.  S'(p®p)K is a polynomial ring if gR is classical of rank one.

Remark 8. Theorem 9 follows from classical invariant theory if gR = so(n , 1)

or su(n, 1) ; so in this case Theorem 8 can be deduced from Theorem 5. On

the other hand, Theorem 9 seems to be new if gK = sp(n, 1). More explicitly,

let Vn be the natural representation of sp(n , C) ; then

S'((V„ ® Vx)® (Vn ® j/¡))SP(«,c)xSP(i,c)

is regular.

We conclude this section by giving an explicit presentation of the ring S'(q)k

when gR = sp(2, 1). The case sp(l, 1) ~ so(4, 1) is covered by Theorem 6;

it turns out (at least as far as we know) that sp(2, 1) is the first nonregular

(g, K) of rank one computed in the literature. The strategy is as follows: first

we compute S'(t)p , where P is the isotropy subgroup of a nilpotent element

in p whose orbit has maximal dimension. It turns out that it is a hypersurface;

from Theorem 4 we can conclude that S'(t)M is also a hypersurface. Then we

compute the generators and the relation of S'(t)M . Using this information and

Theorem 1, we give the generators and relation of the image by the restriction

morphism of ^(g)* . The details of these last two computations were presented

in [A2].
Let us fix some notation. We have

3 = sp(3,C)

= { ( Z     Z2 ) = Z : Z' ' G C3X3 ' Zl = ~'Z4 ' Z2 ' Z3 symmetricj '

ê = {ZGg:Z, = (¿°), Z2 = [B0°ß), Z} = (C*), A, B, C eC2*2, a, ß, y €

C} ~ tx x t2 where tx = sp(2, C), t2 = sl(2, C). We denote the entries of

A, B, C as ax, ... , bx, b2, bi, cx , etc. where

A=(a>    a2),        B=(b¿    bA, C=(Cl    C2

V«3    a4J \b2   h) \c2   c3

We will think of the a¡, b¡, etc. as elements of (tx)*. We have

K'{{{1  y)'{'v yz))-T,Q,v,zeC^;,y,v,:ec

s.t. tTV-'ZQ = I,tTZ-tZT = 0 = tQV-tVQ, tz-yv = l|.

Asa Éi xt2-module, p is then isomorphic to kx (t\)®kx (t2), where kx means

in each case the natural representation on C4 or C2. (This is in general true

for sp(n, 1), where tx = sp(n, C), etc.). We shall denote p = {("£,)} = C4x2,

where the action is given by

(&,ß)-P = #P-Pß      (œetx,jtet2, Pep).
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Furthermore, if X G p is given by u = w = ex, r = x = 0, then we can

choose a = C • X and hence M is the connected subgroup of K corresponding
to

'a    0     ß       0

°y   I    °a    o   I.C    *„)\e*:a,ß,y,a,b,ceC>,

.0    c     0     -a

m= <

m = mi x rri2, where m¡ ~ sl(2, C), i = 1, 2, in an evident way.

As an M-module, ti is isomorphic to Adnti + Adrri2 + p~ , where

p~ = {X G Éi : ax = fl4 = b\ = 63 = Ci = c3 = 0}.

Remark 9. (tx, M) = (q, K) for sp(l, 1) ~ so(4, 1) ; as we noted above,

S'(q)k is a polynomial ring in 4 variables.

We shall also fix a Cartan subalgebra t = ti x t2 Ç I, t, ç t¡ are the diagonal

matrices.

Finally, let Y G p be given by u = ex , x — e2, w — r = 0. Let

»=((o   z°->)'(o °i))eK>

with T = ti, t G C. Then 7, • Y is given by u — tex , x — te2, u; = r — 0 and

this shows that Y is nilpotent.

The isotropy subgroup of Y in K is

F = f A     t  \ , tg - ve = zf - yh, tz - yv = \\.

As dim A^ y = dim K - dim /" is maximal, we conclude that  Y is principal

nilpotent. It is easy to see that P - RH, where

R=i\\Z l\Al A\:t=(1 y

and

0    K 7 ' V i>    z I I ' \v   z

v-{:y -7).«-~-i}.

In other words, H is the (abelian, three-dimensional) unipotent radical of

P and R (a copy of SL(2, C)) is a Levi factor.
Our first step is to compute S'(t)H ~ S'(tx)H ® S'(t2). The action of H in

Éi is of course given by

//    Q\(A      B\(I    -Q\_(A + QC       B-Q'A-AQ-QCQ\
\0   l)\C  -'a)\o    I )~\c -cq-'aj-
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Thus (¿-Ö) acts as follows in 5"(É,) (if Q = (}{)):

ax i-> ax + ecx + fc2,

a2^ a2 + ec2 + fc3,

ai i-> a3 + fcx + hc2,

a4 t-> a4 + fc2 + hc3,

CiiH a, i = 1, 2, 3,

bx i-» bx - 2(eax + fa2) - (e2cx + 2efc2 + f2c3),

b2^b2- (fax + ha2 + ea} + fa4) - (efcx + (f2 + eh)c2 + fhc3),

h^h- 2(fa3 + ha4) - (f2cx + 2fhc2 + h2c3).

Let us introduce the following polynomials in Éi :

A = c2-Cic3,

#i = a4c2 + a2cx -axc2- a3c3,

t)2 = bxA - a2c3 + 2axa2c2 - a\cx,

i53 = A(b2c2 + a2a)) - (a2cx - axc2)(a4c2 - ¿z3c3),

t)4 = A(è3c2 - a3c3 -I- 2a3a4C2)

+ cx[(a2cx -aic2)2-r-2(a2ci - axc2)(a4c2 - a3c3)],

#5 = A(b2cxC} - axa4c2 + a2a4cx + axaici)

- c2(a2cx - axc2)(a4c2 - a3<:3),

û6 = A(b3c3 + a2) + (a2cx - axc2)2

+ 2(a2cx - axc2)(a4c2 - a3c3),

û7 = Ab2 + a2a2(c2 - c3) + axa4(c2 - cx),

ûs = A¿>3 - (a^Ci - 2a3a4c2 + ajcx ),

#9 = det = A(b2 - bxbi) + 6i(a3c3 - 2a3a4c2 + a4cx)

+ 2b2(axa4c2 + a2a^c2 - a2a4cx - öiö3c3)

+ bi(a\c\ + a\c3 - 2axa2c2) + (axa4 - a2ay)2,

#io = bxcx + 2b2c2 + è3c3 + a2 + 2a2a3 + a4.

Proposition 4. S'(t\ )H is generated by the polynomials cx, c2, c3, ûx, ß2, (37,

o», #9 , 0,o •

Proof. A fastidious computation shows that the û, 's are invariants. (In the

course of the proof, we will give some indications of how to get them.) Now for

(ai, bj, ck) in a suitable open subset of tx , the orbit H(a¡, b¡, ck) intersects

the subspace given by «1=0, a2 = 0, a3 = 0 at the point

(0, 0, 0, c2% , c,, c2, c3, A-'#2, (c2A)-lû3, (c22A)-lû4).

Similarly, for (a¿,bj,ck) in another open subset of Éi , the orbit

H(a¡, bj, ck) intersects the subspace given by ax = 0, a2 = 0, a4 — 0 at

the point

(0, 0, -c7%, 0, c, , c2,Ci,A-xû2, (Clc3A)-lû5, (c3A)-'d6).
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Thus if / G S'(tx)H , there exists nonnegative integers /,/,/,/, m such

that

d)bff G C[Ci ,C2,C3,ÛX,Û2,Û3, û4],

ciciAmf G C[Ci ,c2,c3,ûx,û2,û5, û6],

and hence

A¿+/+/í+/+mf 6 C[Ci ; C2 ; C3 ̂  öl ; Ö2 ; Ö3 ̂  Ö4 5 Ö5, Ö6].

But, as ?33 = c2i37, &t = c,d6 + Aö8, ûs = cxc3&7, û6 + cxû2 + 2c2û-, = Aûx0 ,

we have that for some nonnegative integer n, :

A-feC[cx,c2,a,ûx,i)2,û1,û»,v)Xo].

Let us also remark that

(*) I?2 - <32Ö8 = AÖ9 , 732 + Ci(32 + 2C2¡37+C3#8=A<9,o.

Now consider the obvious application

C[Ci, C2, C3, Y\, Y2, Y-], y8, Yg, Yxo]

* C[c,, c2, c3, d,, û2, «37, <38, #9, 0,o],

(where the C, 's, Fj 's, are algebraically independent) and let us also introduce

a : C[a,, b¡, ck] -» C[0, <y, a,, £,]

Ci h-> 02, c21-» dco, c31-> w2, a¡ >-> a,, bj >-> ¿y.

It is not so difficult to see that Ker a is the principal ideal expanded by A. We

claim that

Ker(a o <D) = (C22 -CXC3, Y2 + c,72 + 2c2Y7 + c3Fg, Y2 - Y2F8).

D is clear. For ç , let us introduce the auxiliary variables

Tx=a48-a3co,        T2 = -a26 + axco.

Let us observe that 0 , co, Tx, T2 are linearly independent. Thus a o O applies:

C, .-> O2        Yx h-» -8T2 + toTx        Y7 .-> Tx T2

C2^8co       Y2^-T\       Ys^-T?

C3 ^ co2       Y9 i-> bx Tx + 2b2Tx T2 + b}T2 + (axa4 - a2a3)2

Yx0 ̂  bx82 + 2b28co + b2co2 + a2 + 2a2a3 + a4.

Let / G Ker(a o <p). As the images of Y9, Yx0 are linearly independent, we

can assume that / e£[Cx, C2, C3, Yx, Y2, Y7, y8] and even that

/ = P,(C,,C2,C3, Y2,Y7,Y%)

+ P2(CX,C2,Q,Y2,Y7, YS)YX.

But the image of the first summand (resp., the second) is a sum of monomials

of total degree in 8 , co even (resp., odd) and hence

P,(C,,C2,C3, Y2,Y7, Yt)

= p2(cx,c2,c3,y2, y7,y8) = o,

and the claim follows.
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Now we are ready to prove the proposition (i.e., that O is surjective). Let

/ G S'(t\)H, n a nonnegative integer such that A" f = O(g) for some g G

C[G , C2, C3, Yx, y2, y7, y8, y9, y,0]. If » = O we are done. If not, g G

Ker(a o (p) and hence (using (*)) :

®(g) G ImOA + ImO(<372 - r}2#8) + ImO(i32 + Ci<32 + 2c2<37 + c3#8),

i.e.,

O(g) G ImOA.

Thus A"-1/G Im$ and the proposition follows.    D

Let us observe now that ûx , #9 , $io are /^-invariants. Thus

s,(i)J,~(S'(ei)JÏ®s'(i2))*

~ C[i3,, i59, dio] ® (C[c, ,c2,c3,û2,û7, dg] 0S'(É2))*.

It is not so difficult to see that (û2, t}7, #8) is /î-stable. Let us retain the

notation of the above proposition. Considering

c[C,,C2,c3,y2,y7,y8]®5'(e2)

-^C[cx,c2,c3,û2,û7,û$]®S'(ï2),

and the following theorem by Formanek (see [F]):

Theorem 10. If Ad denotes the irreducible SL(2, Cfmodule of dimension 3,
then S'(Ad © Ad © Ad)SL(2 ■C) is a hypersurface generated by the seven elements

tT(XiXj), tr(XxX2X3)  (Xi in the i-copy).

We can conclude

Theorem 11. S'(t)p is a hypersurface generated by 8 homogeneous polynomials
Pi, ... , Ps with degrees 2, 2, 2, 2, 2, 4, 4, 5 respectively, satisfying the
relation:

Pi + P1P1 - Pi(p] - PaP\ + PJ)2 + PxPcPl

+ 4p2p2p6 + (pj - PaPx + P2)PsPi = 0.

Proof. This follows from the explicit description of the generators in For-

manek's theorem. Let us remark that a naive application of the quoted theorem

will give 10 generators, but it is easy to reduce the number to 8.   D

Proposition 5.  S'(q)k and S'(t)M are hyper sur faces.

Proof. This follows from Theorem 11 (see [A2]).   D

Now we give a system of homogeneous generators for S'(t)M . First of all,

S'(t)K = S'(tx)K ® S'(t2)K is a polynomial ring generated by

f =detf2 =a2 + ßy,

h = dett| = #9,

f3 = a2 + al + 2a2a3 + bxcx + 2b2c2 + è3c3.

We know from Remark 9 that S'(tx )M is a polynomial ring of Krull dim 4 ;

indeed, it is generated by f2, f3, f4, f , where

f4 = a\ + b3c3,        fi=a2x+bxcx.
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Obviously, S'(t2)M = S'(t2)K . So far, we need to find f6, f7, f%, homoge-
neous of degree 2, 4, 5 in S'(i)M . This was done in [A2]. We get

f6 = (ßcx+2aax + ybi)/2,

fj = ß(2a3a4c2 + b3c\ - a\c3)

-I- 2a(a2a3a4 - a4b2c2 + a2b3c2 + a3b2c3)

+ y(2a2a4b2 + b\c3 - a\b3),

h - ß(a2a3a4ci + a2b3cic2 + aia3c3 + a3b2cic3

— 2axa3a4c2 — a4b2cxc2 — aib3c2)

+ a(-2a2a4b2ci + a\b3ci - a\bxc3

- b\cxc3 + 2a3a4bxc2 + bxb3c2)

+ y(2axa2a4b2 - aia\b3 - a3bxb2c3 + axb\c3

+ a4bxb2c2 - a2a3a4bx - a2bxb3c2).

As their images in S'(t)+ /(S'{t)+)2 are linearly independent, f , ... , /8

form a system of generators for S'(t)M . The relation was found in [A2]:

Theorem 12. S'(t)M is generated by f\,..., f%; the generating relation is

h - f\(h - Uh - -4(h - A - h) )

- 2(/2 - Ah - i(/3 -Á- A)2)Afi

+ A(f3-A-fs)2Áfs-fsfT2

-(f3-Á-f5)2Áf¿ = 0.

Furthermore, in order to get a system of generators of S'(q)k we need gener-

ators of S'(í)Mcpx, ... , n such that cp¡ g ©,,. m(y)=d¡ 5"(É)f for some d¡. In

fact, we can deduce the cp¡ 's from the f 's, decomposing the É-module gener-

ated by fi in irreducible components. We need too the d¡ 's; all this information

is given below (see [A2] for the proofs):

<P\=fl,     y>2=f2,     <P3 = Tôf3,

of course with d,= 0  (/' = 1, 2, 3),

y>4 = 2C/4-/5);     d4 = 2,

<Ps = \{A + fs-\hY,    d5 = 4,
96 = A ',    d6 = 2,

n = A ;   d$ = 4,

p7 = /7 + i/6(/3-4/4),      d7 = 2.

Therefore, a system of generators for S'(q)k is y/¡ = cp¡ • Hd¡, i = 1, ... , 8,

and y/g = H2, where H is a generator of a*.

Finally, we want to give the relation between the y/j 's. From Theorem 12

we obtain (after some cumbersome calculations; see [A2]):

Theorem 13. //gR = sp(2, 1) S'(q)k is a hypersurface given by yi\ - Ay/iy/2y/\

- lOOy/i^Vf - ¥\¥4 + 20¥\¥Ws¥l + 2vw4>7 - *¥i¥s¥l ~ 1^¥3¥s¥¡ ~
\Ü¥3¥4¥¡ - \Q¥W6¥i¥i   +¥9(^¥2¥4¥Í ~ 25yi3y/4y/l + \0¥3¥è¥4¥7 - ¥a¥2)
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+ y/${-2y/\ ¥i¥24 ~ 1^¥\ ¥3¥i + 7®¥\ ¥3¥4 + 2&¥\ ¥i¥i¥5 - t>¥i¥7 ~ 2¥2¥k¥i

- \Ayj2y/3yj2 - lO^Ve^ + 200^3V2) +íy94(-^i ¥2 ~ 1225^1 ¥3 + 1^¥\ ¥i¥2)
= 0.
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