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APPROXIMATION OF JENSEN MEASURES BY IMAGE MEASURES
UNDER HOLOMORPHIC FUNCTIONS AND APPLICATIONS

SHANGQUAN BU AND WALTER SCHACHERMAYER

Abstract. We show that Jensen measures defined on C" or more generally

on a complex Banach space X can be approximated by the image of Lebesgue

measure on the torus under X-valued polynomials defined on C . We give sim-

ilar characterizations for Jensen measures in terms of analytic martingales and

Hardy martingales. The results are applied to approximate plurisubharmonic

martingales by Hardy martingales, which enables us to give a characterization of

the analytic Radon-Nikodym property of Banach spaces in terms of convergence

of plurisubharmonic martingales, thus solving a problem of G. A. Edgar.

0. Introduction

Let X be a Banach space and p a Radon probability measure on X with

first moment (i.e., Jx \\x\\ dp(x) < oo). It is well known that there is a unique

xo G X, called the barycenter of p verifying

fi(xo)< f fi(x)dp(x),
Jx

for every real-valued convex Lipschitz function on X. We then call p a Cho-

quet measure for xo .
Recall the following easy folklore result (compare [E3] for further results in

this context; unexplained notation will be defined below):

Theorem (0). Let p be a Radon probability measure with first moment on a

Banach space X and Xn £ X. The following are equivalent:

(i) p is a Choquet measure with barycenter Xo.

(ii) There is a Bochner integrable function f : [0, 1] —► X with expectation

E(/) = J"0 f(x) dX(x) = xo and such that the image measure f(X) equals p.

(iii) p can be approximated in the narrow topology with respect to the class

of Lipschitz functions on X by the final distribution Dn(f) of a finite dyadic

martingale (D¡)"=0 defined on a probability space (fi, Z, P) and starting at

Xo, i.e., Do = Xo ■
(iv) p equals the final distribution M„(f) of a finite martingale (M¡)n=0

defined on a probability space (fi, Z, P) and starting at Xo, i.e., M0 = xo-
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We have stated the rather easy Theorem (0) as it is the "real" analogue of the

"complex" Theorem (A) below, where the term Choquet measure is replaced by

Jensen measure, integrable function by holomorphic function, dyadic martin-

gale by analytic martingale and the term martingale in (iv) by Hardy martingale

(unexplained notions will be defined in the subsequent section):

Theorem (A). Let p be a Radon probability measure with first moment on a

complex Banach space X and xq £ X. Equip J?X(X) with the weak topology

induced by Lip(X). The following are equivalent:

(i) p is a Jensen measure on X with barycenter xo ■

(ii) p is in the closure of the subset

P = {g(k) : g : C -> X is a polynomial with g(0) = xo}

ofiJ7x(X).
(iii) p is in the closure of the subset

A = {Fn(kn) : (F¡)"=0 is an analytic martingale with FQ = xo}

ofiJ7x(X).
(iv) p is in the closure of the subset

H = {F„(k") : (Fj)"=0 is a Hardy martingale with F0 = Xo}

ofiJ7x(X).

Remark. The implication (ii) => (i), (iii) =>■ (i) and (iv) => (i) are easily seen

to be true. The equivalence of (ii) and (iii) has essentially been proved by

G. A. Edgar [E2] while the equivalence of (ii) and (iv) follows from a theorem

of N. Ghoussoub and B. Maurey [G-M, Theorem 4.1].

The decisive new information given by Theorem (A) is how to approximate

an abstract Jensen measure by analytic objects as in (ii), (iii) or (iv). Note
that the only analytic concept appearing in the definition of Jensen measures is

that of plurisubharmonic functions, against which p is tested via inequality ( 1 )

below.
We are afraid that the reader interested in several complex variables might

be turned off by the infinite-dimensional setting and the concepts of analytic

and Hardy martingales. We therefore formulate another version of Theorem

(A), which is more in the spirit of several complex variables and we give a

proof which does not rely on the concepts of analytic and Hardy martingales.

However, the basic idea of the proof is the same as in Theorem (A).

Theorem (B). Let U be a domain in C" and p a probability measure with

compact support in U. Then p is a Jensen measure on U with barycenter

xo G U if and only if p can be approximated by image measure g(k), where g

is polynomials g : C —► C" , g (3) ç U, g(0) = x0 in the following sense: For

every finite set {fi , fi2, ... , fm} of continuous functions on U and e > 0 there

is g as above such that for I < i < m,

f fi(x)dp(x)- [ fiog(e2»'e)d6
Ju Jo

\(fi,p)-(fi,g(k))\ = < E.

Let us come back again to the context of Banach spaces: it was proved by

G. A. Edgar [E2] that convergence of X-valued Lx-bounded analytic martin-

gales characterizes the analytic Radon-Nikodym property of X introduced by
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A. Bukhvalov and A. Danilevich [Bu-Da] and the corresponding theorem for

Hardy martingales has been observed by D. J. H. Garling [Gar, Theorem 3].

Note that the definition of analytic martingales as well as Hardy martingales

refers to a special representation of these martingales, namely that they are

defined on the probability space (TN , AN). This is somehow unsatisfactory from

a probabilistic point of view. G. A. Edgar has introduced the representation free

concept of plurisubharmonic martingales (Definition 1.8. below).

One easily verifies that a Hardy martingale (and therefore an analytic martin-

gale) is a plurisubharmonic martingale [Gar, Theorem 1]. Theorem (C), which

is the second main result of this paper, gives a kind of converse.

Theorem (C). Let X be a complex Banach space, (Mn)%L0 an X-valuedpluri-

subharmonic martingale and (En)na=x positive numbers. Then there is a repre-

sentation (F„)%L0 of (M„)%L0 defined on (TN, kN) suchthat Fn depends only

on the first n coordinates of TN (and may therefore be identified with a function

on T") and a Hardy martingale (Gn)%L0 such that, for every n £ N,

\\(Fn - F„_i) - (G„ - C„_i)||¿i(T„iA-) < £„ .

The solution to the problem of G. A. Edgar [E2] now follows immediately

from Theorem (C). This result has also been proved by N. Ghoussoub and B.

Maurey [G-M] by different methods.

Corollary (D). A Banach space X has the analytic Radon-Nikodym property if

and only if Lx-bounded X-valuedplurisubharmonic martingales converge almost

surely.

We now describe the organization of this paper.

In §1 we gather the necessary definitions and notations. In §2 we prove

Theorem (A). The proof turns out to be surprisingly simple and uses the Hahn-

Banach theorem in a crucial way.

In §3 we prove Theorem (B), which is formulated in the local setting (i.e.,

for domains in C) and we therefore also prove some technical results.

In §4 we prepare the tools needed for Theorem (C): A more precise and
parametrised version of Theorem (A) is proved (Proposition IV.2) and we have

to use some techniques from measure theory (disintegration of measures, mea-

surable selections).

In §5 we then prove Theorem (C) and Corollary (D). We also note an appli-

cation of Theorem (C) to Analytic Martingale Transform spaces introduced by

D. J. H. Garling [Gar], extending a result of Xu [X].

For unexplained notation we refer to [L-T] for the Banach space concepts

and to [Ra] or [K] for the concepts of several complex variables.

Acknowledgement. We thank B. Maurey for substantial help in establishing a

proof of Corollary (D) and we also thank N. Ghoussoub, P. Müller and E.

Perkins for their advice in the preparation of this paper.

I. Definitions and notations

Throughout this paper, T will denote the torus {e2n'e : 0 < 9 < 1} which we

shall freely identify with a subset of C or with [0, 1 [. The open (resp. closed)

disc of C will be denoted by 3 (resp. 3). Normalized Lebesgue measure on

T as well as on [0, 1 ] will always be denoted by k.
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X will denote a complex Banach space; we shall consider Radon probability

measures on X (see e.g., [Schw2]). As every Radon probability measure p

is supported by a separable subspace of X we shall assume throughout the

paper without loss of generality that X is separable, hence the set of Radon

probability measures on X coincides with the set of all probability measures

defined on the Borel cr-field generated by the metric topology of X [Schw2]. If

p is a measure with first moment on X (i.e, J \\x\\ dp(x) < oo) and <p : X —► E

is a Lipschitz function, then we may form

(<p,p)= j <f>(x)dp(x).
Jx

If U is a domain in C" , p is a Radon measure on U and 4> : U —> E is

a measurable function, we shall also denote the scalar product as above if the

right term makes sense.

If U is a domain in C, a function g : U —> X is called analytic (or holo-

morphic) if, for every x* £ X*, x* o g is analytic. A function g : C —> X

of the form g(z) = Y,n=ox"z" w*tn x" e x an(* N G N will be called an

X-valued polynomial on C. Note that, if U contains D and g : U —> X is

analytic then we can approximate g by X-valued polynomials uniformly on D

(see e.g., [Ch]).

We shall denote for 1 < p < oo by LP(T, X) the space of Bochner integrable

functions / : T —> X equipped with the norm

\\f\\p=(j\\f(e2nW)\\pde

for 1 < p < oo and for p = oo

11/11«, = ess sup ||/(01|,
i€T

and by 77^ (T, X) the subspace of LP(T, X) formed by the elements g veri-

fying, for every k > 0,

/ e2kniefi(e2nie)de = Q.
Jo

We shall identify elements fi £ H^(T, X) with functions on 3, i.e., the analytic

extension of / to 3 obtained via the Poisson kernel.

Denote by J£X(X) the space of finite measures on X with first moment,

i.e., Jx ||x||<7|/z|(x) < oo, and by Lip(A") the space of Lipschitz functions on

X . The scalar product ( , ) defined above places these spaces in duality and

we shall equip J7X(X) with the weak topology induced by Lip(X).
If (fi, Z, P) is a probability space, (fi', Z') a measure space and F : fi —>

fi' a measurable map, we denote by F(f) the image measure of P under F

which is defined, for A g Z', by

F(f)(A) = f(F~x(A)).

Definition 1.1. If (pa)açi is a net of probability measures on a polish space

(E, d), we shall say that (pa)ae¡ converges narrowly or in the narrow topology

■ //'
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to a probability measure p if, for every bounded continuous function / : E —*

R,

lim(f, pa) = (fi,p).
a

Definition 1.2 [El]. Let U be a domain in X. A function 4> : U —> R U {-00}

is called plurisubharmonic on U if (p1 is upper semicontinuous and if for every

x,y £ X such that {x + 3y} ç U

(p(x)< [ <p(x + e2ni6y)dd.
Jo

Definition 1.3 (compare [El]). Let X be a complex Banach space and p a prob-

ability measure on X with first moment. We say that p is a Jensen measure on

X with barycenter xo G X if, for every Lipschitz plurisubharmonic function,

q> on X

(1) 4>(xo)< I <p(y)dp(y).
Jx

Remark 1.4. First note that there are more plurisubharmonic functions than

convex Lipschitz functions on X and therefore fewer Jensen measures than

Choquet measures on X. For a general account on Jensen measures we refer

to [Gam].

Classically Jensen measures are supposed to have compact support. In view

of the application to Lx-bounded martingales (Theorem (C) below) we place

ourselves into the more general context of measures with first moment; hence we

have to restrict ourselves to require inequality ( 1 ) only for Lipschitz plurisub-

harmonic functions and not arbitrary plurisubharmonic functions to avoid in-

tegrability problems. However in the context of measures with compact support

on a domain U of C" it will be more natural to adopt the subsequent concept:

Definition 1.5. Let U be a domain in C" and p a probability measure with

compact support K in U. We say that p is a Jensen measure on U with

barycenter Xq £ U if, for every plurisubharmonic function cp : U —> Eu {-co}

we have

<P(xo) < /   (p(x)dp(x).
Ju

Remark 1.6. Note that by the upper semicontinuity of <p the integral on the

right-hand side is well defined (with values in E U {-00}). The definition is

more in the classical spirit of Jensen measures and does not refer to Lipschitz

functions as Definition 1.3 above. We shall show in Proposition III.4 below that

these two definitions are consistent.

Definition 1.7. For a Banach space X, a sequence of functions (Fn)^L0 , Fq =

xo, F„ £ LX(T", k" , X) (where T° is a one point space) is called an X-valued

(a) analytic martingale ([Bo-Da], see also [D-G-T] and [El]) if, for n £ N

and (Ö,,Ö2,...,e„_i)eT"-1

F„(0,, 02, ... , 6„) - F„_,(Ö,, 02) ... , eH-i) = f„(9x, 02, ... , 9n-x)e2"'e" ;
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(b) Hardy martingale ([Gar], see also [G-M]) if, for every n £ N and (0X, 92,

... , 0„_i) G T""1, the function

o« -» dn(9x ,92, ... , 0„_i, 0„),

defined by

^«(0! , 02, ••• , 0/1-1 , 0«)

= F„(9X, 92, ... , 0„_i, 0„) - F„_i(0i, 62, ... , 0„_i),

is in 77o1 (T, X).
If C is a domain in X we call (Fn)^=l a C-valued analytic (resp. Hardy)

martingale if in addition to the above requirements, for every n £ N and

(01,02,...,0„_i)GT"-1,

F„_i(0i, 02, ... , 9n-x) + fn(9x, 02, ... , 9n-x)re2*w» £ U,

(resp. F„_,(0,, 02, ... , 0„_i) + ^(0,, 02, ... , 9n-X, re27ild") £ U),

for every 0 < r < 1 and 0„ G T.

Obviously analytic martingales are Hardy martingales. The term martingale

is justified as one may identify (F„)^0 in an obvious way with a stochastic

process on (TN,AN) equipped with its natural filtration (Z„)~0 which is readily

verified to be a martingale (see [Gar]).

Definition 1.8 (compare [El]). An X-valued martingale (M„)^L0, defined on

a probability space (fi, Z, P) and such that M0 = x0 is called a plurisubhar-

monic martingale if, for every Lipschitz plurisubharmonic function </> on X,

the stochastic process (</> o Mn)™=0 is a submartingale.

One can easily observe that Hardy martingales (whence, in particular, analytic
martingales) are plurisubharmonic martingales.

To end this section let us point out the easy implications among the above

concepts: Let g £ H¿ (T, X) and identify g with a function g on D which is

analytic in D. Then the image measure g(k) is a Jensen measure on X with

barycenter 0. Indeed, if cp : X —► E is a Lipschitz plurisubharmonic function

then <f> o g is subharmonic on 3 and the radial limits exist almost surely;

therefore

0(O) = 0og(O)< / <t>0g(e2*ie)de= [ cp(x)d(g(k))(x).
Jo Jx

Similarly one verifies that for a finite Hardy martingale on X (whence, in

particular, for a finite analytic martingale) (F,)^=0, with F0 = x0, the image

measure Fn(k") is a Jensen measure on X with barycenter xo (compare [Gar,

Theorem 1]).
This remark takes care of the easy implications of Theorem (A) above. In

the next section we shall prove that the reverse implications also hold true.

II. The proof of Theorem (A)

Recall the characterization of the plurisubharmonic hull of a function which

has been proved by G. A. Edgar [El, Lemma 2.1]. We give a version formulated

for domains (compare also Proposition III.4 below) and use a slightly weaker

hypothesis than in [El]:
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Proposition II.1. Let U ç X be a domain and fi : t/->iu {-00} an upper

semicontinuous function. Define fio = fi and for n > 1

fn(x) = inf{ /   fn_x(x + e™y)de

there the inf is taken over all y £ X such that {x + 3y} ç U. Then (fin)rT=o

decreases pointwise to the largest plurisubharmonic function fi on U dominated

by fi.

Proof. It is obvious that (f„)^L0 decreases. We verify inductively that /„ is

upper semicontinuous: fio = fi is upper semicontinuous. Suppose f„_x is

upper semicontinuous and let Ox*:)£i0 in U be such that limfc_0OXi: = Xn. If

yo G X is such that {xo + Dyo} ç U then there is ko such that {xk+3yo} ç U

for k > ko . The upper semicontinuous function fn-X is bounded above on the

relatively compact set \J£=k ixk + Dyn} and, for every z £ 3,

fn-x(x0 + zyo) > limsup/^iix/t + zy0).
k—*oo

Hence we obtain from Fatou's lemma that, for every y0 £ X verifying {xo +

Dyo} Ç U,

[ fn-X(xo + e2«'8yo)d9>limsvLp f fn.x(xk + e2n,eyo)d9
Jo k->oc    Jo

and therefore

> lim sup fn(xk),
k—*oo

fn(xo) >limsup/„(xA;).
k—>oo

This shows that each /„ and therefore / is upper semicontinuous.

For every plurisubharmonic function <p on U , 4> < fi, we have <p < fn for

every n £ N. Indeed, clearly 4> < fio and suppose that 4> < fn-\ ■ Then for

every Xo G U and yo £ X such that {xn + Dyn} ç U

[ /„_i(x0 + e2^yo) d9> [ 0(xo + e2«iey0) > <p(x0),
Jo Jo

whence /n(xo) > <p(xo), which gives the inductive step.   Hence we conclude

that / > (p for every plurisubharmonic function <p on U dominated by /.

Finally we have to show the mean value inequality for / which follows from

the Beppo Levi's monotone convergence theorem: for Xn G U, yo £ X, with

{x0 + Dvo}çC

/(xo)=  limfn(xQ)< lim  f /„_,(x0 + e2n,eyo)d9

=   ( f(xo + e2*'Byo)d6.

The proof is complete.   D
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Remark II.2. As noted by G. A. Edgar [El] one also may write the definition of

fn in the following way:

fin(x) = inf{E(/(F„)) : (F;)?=0 is a C-valued analytic

martingale with Fo = x}.

Proof of Theorem (A).
(i) =*■ (iii) We first show that the set

A = {Fn(kn) : (Fi)1=0 is an X-valued

analytic martingale with F0 = Xq} ,

is a convex subset of J7X(X) : let (F/)"=0 and (F/')™0 be two analytic mar-
tingales as above. We may assume n = m . Define now an analytic martingale

(F,)1+x by letting F0 = FX= x0 and for I <i<n,

F    (ß    ß ß    )     \F¡'(e2,...,9l+x)   ifO<0,<i,"i+ H " 1 , V2 , • • • , "i+1 J = <

\F¡(92,...,9i+l)    ifi<0, <1.

Clearly
Fn+x(kn+x) = {FÍ(k") + FX(kn)}/2,

thus showing the convexity of A.

If the conclusion of (iii) were false then, by the Hahn-Banach theorem we

could find a Lipschitz function fi on X and reals a < ß such that

(fi, P) = / fdp<a,
Jx

(fi,v)=   i fdv>ß,
Jx

ist line can be re

f°Fndk">ß,

while

ix

for every v £ A . Note that the last line can be rewritten as

/Jiii"

for every X-valued analytic martingale starting at Xo , hence by the preceding

remark

f(xo)>ß-

This gives the desired contradiction as we obtain the absurd inequality

a>(fi,p)>(f,p)>fi(x0)>ß.

Note that / is Lipschitz by a remark of N. Ghoussoub and B. Maurey (see

[G-M]), so no integrability problems arise.

(iii) => (iv) Obvious.

(iv) =ï (ii) Let (F,)"=0 be an X-valued Hardy martingale, F0 = xq . By

[G-M, Theorem 6.1] we may find for e > 0, a function g£ : V£ —» X, which is

analytic in a neighbourhood Ve of D, g£(0) = xo and a continuous surjection

n : T -> T" such that n(k) = kn and

• i
,2nW\\       „ztnlnihI  \\Fn(n(e¿"w))-gc(e¿*w)\\dd<z/2.

Jo
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Find an X-valued polynomial pe such that, for \z\ < 1 ,

||r/(z)-g£(z)||<£/2.

If / : X —► E is a Lipschitz function with Lipschitz constant M, then
• i

\(f,Fn(k"))-(f,pe(k))\ í (fio Fn(n(e2*w)) - f op\e2"l6))d9
Jo

•i
< M [ \\Fn(n(e2ni6)) -pe(e2nie)\\d9 < Me,

Jo

which readily shows that Fn(kn) is in the closure of the subset P in (ii).

(ii) => (i) This implication follows from the argument in the first section

and the observation that, for a net (pa)a€i  of Jensen measures on X with

barycenter xq converging in Jfx(X), the limit p again is a Jensen measure on

X with barycenter Xn .   G

III. The proof of Theorem (B)

We now turn to the setting of Theorem (B) for which we shall give a self-

contained proof. We start with an easy but crucial example.

Example III.l. Consider X = C and denote by k the Lebesgue measure on the

torus T ç C and by S0 the Dirac measure at 0. The measure p = (k + So)/2

clearly is a Jensen measure on C with barycenter 0.

However there is no polynomial p : C -» C such that p(k) = p . Indeed such

a polynomial would have to equal zero on a subset of T of measure 1/2 and

therefore have to be identically zero, a contradiction. In fact, it is well known

that any not identically zero function fi in 77°°(T) equals zero at most on a

subset of T of measure 0 (compare the proof of Lemma III.2 below), hence p

is not the image measure f(k) of any / in H°°(T) either.

This shows that the set P appearing in Theorem (A) fails to be convex (con-

trary to the set A). Note however that it follows from Theorem (A) that the

closure of P equals the set of Jensen measures on X and therefore is convex.

We shall need the following result related to outer functions:

Lemma III.2. Let A C T be compact with measure k(A) = a, G be an open

neighbourhood of A in 3, and e > 0. There is a sequence (pn)rT=\ of C-valued

polynomials on C, mapping 3 into 3 such that

(i) pn(0) = 0 for every n £ N.

(ii)  \pn(z)\ < e for z £ 3\G and n £ N.
(iii)  (Pn(k]A))rT=i converges narrowly to ak.

(iv)  (p„(k ]T\A))rf=x converges narrowly to (I - a)ô0.

In particular (Pn(k))„*ix converges narrowly to ak + ( 1 - a)ôo ■

Proof. We may suppose 0 < a < 1 . Fix n £ N and define hn on T by

h„(e2*'ä)
0      if e2n,e G A ,

-n   if e2n,e £ T\A,

and extend h„ via the Poisson kernel to a function on 3 which is harmonic

on D. Let hn be its harmonic conjugate normalized by hn(0) = 0 and let

g„ = exp(/z„ + ih„),
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which is a function in 7/°° (T). We have

gn(0) = exp(hn(0)) = e-an,

and

(1) <?"" < \g„(z)\ < 1    forzGD,

(2) \gn(z)\ = l    forz£A,

(3) |g„(z)| = e-B    forzGlV.

The last two lines imply that any cluster point of the image measures

(gn(k))%Lx in the narrow topology is necessarily of the form au + (1 - a)ô0

where v is a measure supported by the torus T. We shall show that v necessar-

ily equals Lebesgue measure. We thank B. Maurey for providing the following

proof which is simpler than the original one.

As g„ is analytic on 3 for n > 1 , for every harmonic function fi defined

on C, f ° g„ is harmonic on D. Thus for every k > 1,

a [ e2nk,edu(9)=  lim  / gk(e2nie)d9
Jo "^°° /(J

=  lim e~akn = 0,
n—>oo

the last line using the harmonicity of the function z —> zk . As v is a positive

measure and for all k > 1

/ e2nkiddv(8) = 0,
Jo

we conclude that v is Lebesgue measure. Hence

lim gn(k\T\A) = (1 -a)8o, lim gn(k\A) = ak,
n—*oo n—»oo

with respect to the narrow topology.

We still have to approximate the holomorphic function gn by appropriate

polynomials p„ . First note that it follows by the same argument as above that

for every k £ N, the sequence (gk)^Lx is a sequence in the unit ball of 77°°(T)

suchthat (gk(k]T\A))^=x converges narrowly to (I - a)ô0 and (gk(k_]A))™=x

converges narrowly to ak. Let Ci be a neighbourhood of A in D which

is relatively compact in G. As (Ig^z)!)^!, converges to zero uniformly in

z G D\Ci and n £ N as k —> oo , we can find k £ N such that

\gk(z)\<e/2   for«GN,  z G D\C,.

Next note that limr^i,r<i gn(rz) = Sn(z) f°r almost all z G T. It follows

quickly that we may find a sequence (r„)~ . in ]0, 1[ tending sufficiently fast

to 1 such that the functions q„(z) = gk(rnz) verify

(ii) \qn(z)\<e/2 for z G D\G, .
(iii) (qn(k]A))ri0=x converges narrowly to ak.

(iv) (qn(k]j\A))r^Ll converges narrowly to (I - a)ô0 .

Finally find appropriate polynomials (pn)rT=i approximating (qn)r?=x uni-

formly on 3 such that the conclusion of the lemma holds true.   D

We now give an analogue of Proposition II. 1 in terms of holomorphic func-

tions instead of analytic martingales.  Apparently this result is well known in
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the theory of several complex variables but as we could not find an explicit ref-

erence in the literature we include a proof for the sake of completeness, which

we formulate in the more general setting of Banach spaces.

Proposition III.3. Let U be a domain in a Banach space X and f : U —> R be

bounded and uniformly continuous. Define for x £ U,

y/(x) = inf f fog(e2*ie)d9,
Jo

where the inf is taken over all X-valued polynomials g such that g(0) = x

and g(3) ç U. Then y/ equals the largest plurisubharmonic function fi on U

dominated by fi.

Proof, y/ is upper semicontinuous: indeed, let (xic)k*Lx in U converge to Xo G

U and choose, for e > 0, a polynomial g : C -> X, g(0) = x0, g(3) Q U
such that

V(xo)> [ fiog(e2«'e)d8-E.
Jo

There is ko £ N, such that for k > ko, {g(3) - x0 + x¿.} ç U and by
Lebesgue's theorem on dominated convergence

limsup y/(xk) <   limsup    /   f(g(e2n'e) - xq +xk)d9
k—>oo k>oc ,k—>fco Jo

<  i fi(g(e2«i6))d8<>p(xo) + E,
Jo

which shows that \p is upper semicontinuous.

For every plurisubharmonic function 0 on C with (f) < f we have <p < y/

as for every polynomial g : C —> X with g(3) ç U , g(0) = Xo we have

<p(x0)<  i  cj>og(e2*'e)d6<  f fog(e27üe)d8,
Jo Jo

whence </>(xo) < ^(-^o) •

We still have to show the mean value inequality for y/. Let xo G U and

yo £ X, y0 / 0, such that {xo + 3y0} C U. We may assume xo = 0. Fix
£ > 0 and M > 0 such that |/| is bounded by M and such that, for x,

y £ U, \\x - y\\ < e/M implies |/(x) - fi(y)\ < e .
Let 3 be a countable subset of the space Polo(C, X) of X-valued poly-

nomials g, g(0) = 0, which is dense with respect to the topology of uniform

convergence on D.

For 0 G T we may find ge £ 3 such that

{ge(3) + e2nieyo}QU,

and

V(e27l,eyo)> j f(gg(e2nit)A-e2*'eyo)dt-E.
Jo

Choose finitely many (0j)"L, in [0, 1 [, compact subsets (AJ)'"=l of T and

open subsets (Gj)f=l of D such that
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(i) e2nWi G Aj ç Gj, (Gj)™=l are pairwise disjoint and

diam(C7;) < e/2Af||y0||    for I < j < m;

(Ü) Z"=xk(Aj)>l-E/M;
(iii) \y/(e2nWyo) - y/(yoe2ni6')\ < e for I <j <m and e2nie £ Aj ;

(iv) {g0J(3) + zy0} ç U for 1 < / < m and z G Gj ;

which is easily seen to be possible. Define gj = gg   for I < j < m .

Let L > 1 be a Lipschitz constant for the functions (gj)™=x on D and find

0 < S < e/2M such that, for K denoting the compact set

K = {3yo}u\\J \J{gj(3) + zyo}\ ,
J=l zeGj

the set

Ks = {x £X : dist|| || (x, K)<S},

is contained in  U.  Apply Lemma III.3 to find, for  I < j < m, sequences

(Pj,n)rf=x of C-valued polynomials mapping D into D, such that for 1 < / <

m,

(i) Pj,„(0) = 0,for n£N;

(ii) \Pj,n(z)\ < 5/mL for z G B\Gj and n G N ;
(iii) (Pj,n(k\Aj))r\°=x converges narrowly to k(Aj)k.

Define, for neN, the polynomial hn : C —» X by

h„(z) = zy0 + ^2gjopj^(z).

7=1

Let us check that hn (D) ç Kô ç U. Indeed, if z £

for I < j < m , \pjt„(z)\ < S/mL, whence

z i U;"l, Gj , then,

^,gj°Pj,n(z)

T=i

< mL(ô/mL) = ô,

and therefore /i„(z) g Kg .

If z G Gj0, for some I < jo < m , then

A„(z) = zy0 + gj0(Pj0,„(z)) + ^2 gj°Pj.n(z),

y¥>o

whence

IIMz)-(ftbG»fc.«(*))-z)'b)

and therefore again h„(z) £ Ks .

^2gj°Pj,n(z]
jé jo

<s,
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Finally we may estimate, for n £ N,
.1

fiohn(e2nW)d9
jJo

U'{< £/  fi\e2nieyo + gj°PJ,n(e2nW) + YJgk°Pk,n(e2nie)\d9 + E

kij

m      .

< £/   f{{gj°Pj,n(e2Kie) + yoe2nW'} + kJ(9)}d9 + E,
j=\ Ja>

where

kj(8) = Y^gk °Pk,n(e2n,e) + (e2^-e2^)y0,

so that, for 0 G Aj, \\kj(0)\\ < e/2M + S < e/M .
By the equicontinuity assumption on / we therefore can estimate

.1 m      .

/   fohn(e2«'e)d9<Y      f(gjopj,n(e2*>e)+yoe2">e<)d9 + 2e,
Jo J=l Ja,

passing to n —> oo we obtain

m      »

^(0) <  lim V /   f(gj oPj>n(e2*'e)+yoe2«wJ)d9 + 2e

m »i

= Tk(Aj) /   f(gj(e2nW) + yoe2nie')de + 2e

m

< YJWj)v(y*e2n,e') + ^

7 = 1

m      .

Y, /   y/(e2niey0)d9 + 4E
,_, JA,

7 = 1

m

<

/=!

• 1

<   /  y/(e27ü0yo) d9 + 5e,
./o

the last line using the fact that y/ > -M. As e>0 is arbitrary we obtain the

mean value inequality for y/ and finish the proof of III.4.    D

Proof of Theorem (B). Fix p, K, U and xo as in Theorem (B). We may assume

Xo = 0. We shall first prove Theorem (B) with respect to the class of bounded

uniformly continuous functions on U. Set

P = {g(k) : g : C ^ C" a polynomial, g(0) = 0, g(3) ç U},

which we consider as a subset of Jfc(\J) the space of Radon measures with

compact support in U. This space is in duality with the space Cucb(C) of

bounded uniformly continuous functions on U and we equip J(C(U) with the

weak topology induced by Cucb(U).

We now show that the closure of P is convex. Let (gj)Jlx be C"-valued

polynomials, gj(0) = 0, gj(3) ç U for 1 < / < m and (Cj)f=x positive

scalars, Y!j=\ Cj = I .
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Fix e > 0 and find disjoint compact sets (Aj)J={ of T of measure k(Aj) =

(I - e)cj and disjoint neighbourhoods ((t/)/=i of (Aj)™=x in D. Fix a norm

|| || on C" , find ô > 0 such that mini<,<mdist|| \\(gj(3), C\U) > ô and let

L be a Lipschitz constant for (gj)f=x on D.

Now apply Lemma III.2 to find sequences (Pj,k)k*Lx of C-valued polynomials

such that, for 1 < / < m,
(i) pj k(0) = 0 for k£N;

(ii) \Pj,k(z)\ < ô/Lm for z G 3\Gj and k £ N;
(iii) (pjtk(k \Aj))f=x converges narrowly to (1 - z)c¡k ;

(iv) (P;,fc(^lT\^))^i converges narrowly to (1 - (1 - e)Cj)ô0 . Then

m

hk = ^2gj°Pj,k
7=1

is a C^-valued polynomial, hk(0) = 0 and hk(3) is contained in U . For every
/G Cucb(C) we have

Urn </, Afc(A)) = (1 - £) //, JTcjgj(k)\ ,

which readily shows that J^JLi cjgj(k) is in the closure of P.

Hence similarly as in the proof of Theorem (A) we now are in a position to

apply the Hahn-Banach theorem: If p were not in the closure of P, then we

could find / G Cucb(C) and a < ß such that

(f,p)= [ fidp<a,        (fi,v)= \ fdv>ß,
Ju Ju

for every v £ A . The last line can be rewritten as

[ fogdk>ß
Jl

for every polynomial g : C —> C" , g(0) = 0, g(3) ç U whence Proposition

III.3 implies that /(0) > ß and we arrive at the desired contradiction:

<*>(f,p)>(f,p)>f(0)>ß.
Now for £ > 0, fi, fi2, ... , fm continuous functions on U bounded by

M > 0, there is ô > 0 such that K + B(0, ô) Ç U, there are gx, g2, ... , gm
uniformly continuous functions on U bounded by TV7 such that, for 1 < t <

m, fi, and g¡ coincide on K + B(0, S). Note that there is a uniformly con-

tinuous function h on U with 0 < h < 1 , and such that h equals 1 on

U\{K + B(0, S)} and equals 0 on K. Applying the conclusion of Theorem

(B) for e > 0, g\, g2, ... , gm and h , we can find a polynomial p : C -> C ,

p(0) = 0, p(3) ç U , such that

\(h,p)-(h,p(k))\<£,

\{gi, P) - (gi, PW)\ < e   for 1 < i < m.

Note that p is supported by K and h vanishes on K, so \(h,p(k))\ < e.

Note also that 0 < h < 1 and h equals 1 on U\{K + B(0, S)}, we have then
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p(k){U\{K + 73(0, ¿)}} < £ , whence

\{fi, p) - (fi, p(k))\ < \(g,, p) - (gl, p(k))\ + 2Mp(k){U\{K + 5(0, Ô)}}

< £ + 2TV7£   for 1 < i < m.

This shows that the conclusion of Theorem (B) holds true for fix, f2, ... , fim .

D

To end this section we show the compatibility of Definition 1.3 and Definition

1.5 above.

Proposition III.4. Let p be a probability measure on C with compact support.

If the inequality

(1) <p(0)< f <p(x)dp(x)
Je

holds true for all Lipschitz plurisubharmonic functions tp on Cn, then (1) holds

true for all plurisubharmonic functions tp on C".

We shall say that a function fi : C" —> E is locally Lipschitz if, for every

bounded open subset U of C" , fi\u is a Lipschitz function on U. The proof

of Proposition III.4 will rely on the following result:

Proposition III.5. Let tp be a locally Lipschitz plurisubharmonic function on C" .

Then y> can be approximated by Lipschitz plurisubharmonic functions uniformly

on compact subsets of C".

Admitting Proposition III.5 it is fairly standard to deduce Proposition III.4:

Proof of Proposition III.4. Fix a plurisubharmonic function <p on C . It follows

from the argument in [Ra, Theorem II.4.12] that there is a decreasing sequence

(Vj)jli of plurisubharmonic C°°-functions on C" decreasing pointwise to <p .

In particular each (p¡ is locally Lipschitz, hence we may find by Proposition

III.5 a sequence (y/¡)JÍ{ of Lipschitz plurisubharmonic functions on C such

that \tpj - y/j\ < l/j on supp(^) U {0}.
Assuming the validity of inequality ( 1 ) for every y/¡ we obtain

fl»/(0) < /   <Pj(x)dp(x) + 2/j,
JC"

whence by the Beppo-Levi theorem

<P(0) < /   (p(x)dp(x).   D
Je«

Proof of Proposition III. 5. Fix a norm || || on X = C" and a locally Lipschitz

plurisubharmonic function ip on X. We shall approximate <p uniformly on

Bx = {x : \\x\\ < 1} by Lipschitz plurisubharmonic functions f/ on I. We

may assume that y>\ßx > 0 and we may find ko £ N such that (p\ßi obeys a

Lipschitz constant less than ko .

For k > ko, let tpk be the largest function on C" satisfying a Lipschitz

constant k and coinciding with tp on Bx , and denote by 0k the plurisubhar-

monic envelope of <pk . The sequence (<pk)kxLk is an increasing sequence of

Lipschitz plurisubharmonic functions on C" [G-M, Lemma II. 1] such that, for

every k > ko ,

<Pk\B{ < (P\b, ■
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By Dini's theorem it will suffice to prove that (0k)kLko tends pointwise to <p

on Bx.
Let us assume to the contrary that there is Xo G Bx and a < ß such that

<Pk(xo) < öl for all k > ko while (p(xo) = ß and let us work towards a contradic-

tion. For k > ko we can find, by Proposition III.3, a polynomial pk : C —> X,

pk(0) = xo and such that

(2) ®(<Pk°Pk)= [ <Pk(Pk(e2,ne))d9<a.
Jo

Hence for every £ > 0

(3) lim E||p*1{||Ä||>l+e} || = 0.
k—>oo

Indeed, for every M £ N there is kx > ko such that for k > kx and x G X,

||x|| > 1 + £ , <pk(x) > M\\x\\, hence

lim E\\pk 1{fe||>i+£} II < lim M~xE(<pk opk) < M~xa,
k—*oo k—>oo

which proves (3). In particular the sequence {ll/Jfcll}^^ is uniformly integrable

in Lx(T,k).

Denote by (Wt)t<T Brownian motion on C modelled on some probability

space (fi, Z, P), with Wq = Q and stopped at the first time t when |PFT| = 1 .

For k > k0 denote by xk the stopping time

xk(co) = x(co) A inf{t : \\pk o Wt(m)\\ > 2},

and let Ak = {to £ fi : xk(co) < x(oS)}. We claim that

(4) limP(4fc) = 0.
k—»oo

Indeed, the process {(\\pk ° Wt\\ - 3/2)+},<T is a submartingale whence

F(Ak)/2 = E((\\pkoWTk\\-3/2)+]Ak)

<E((\\pkoW,\\-3/2)+]Ak)

< m\\Pk o rVT\\ - 3/2)+)

<E(ll^1{||a||>3/2}ll),

whence (4) follows from (3). Now let Rk (resp. Sk) be the X-valued random

variable pkoWx (resp. pk°WXk) defined on (fi,Z,P). The sequence (Ric)^^

has the same law as the sequence (p^fL^ of random variables on (T, k), so

the sequence (Rk)^ is uniformly integrable in Lx(f,X). Clearly ||5fc(tü)||

is bounded by 2 for k > ko and weil. We may estimate

lim E(\\Rk - Sk\\) < lim (E(\\Rk \Ak ||) + E(||5fc \Ak ||)) = 0,
k—>oo k—»oo

whence for every Lipschitz function / on C"

(5) limsupE(/oi?^) = lim sup E(/o St).
k—*oo k—»oo

The function <p is plurisubharmonic whence for k > ko the process

(tp o pk o Wt),<T is a submartingale and therefore

ß = <p(xo) < E(<p oPkoWTk) = E(<p o Sk).
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On the other hand let m>ko be big enough such that c»m|ß2 > (p\ß2 ■ Then

we may apply (5) and (1) to obtain

lims\xx)E((p o Sk) < limsupE^m ° Sk)
k—*oo k—*oo

< limsupE(ç>m o Rk)
k—>oc

< limsupE^ o Rk)
k—>oo

= lim sup E^ opk) < a,
k—>oo

a contradiction finishing the proof of Proposition III.5.   D

IV. A VARIATION OF THEOREM (A)

In order to prove Theorem (C) we shall need a refinement of Theorem (A).

The proof involves standard but cumbersome measure theoretical arguments

and will be given in this section.

Proposition IV. 1. Let p be a Jensen measure on a complex Banach space X

with barycenter xo and £ > 0. Then there is a polynomial g : C —► X and a

measurable function f£Lx(T,X) suchthat

(i) fW = P,
(ii) g(0) = x0,

(in) \\f-gh=Jol\\fi(t)-g(e2^)\\dk(t)<E.

Before proving Proposition IV. 1 we deduce a parametrized version, which

will be precisely what we need:

Proposition IV.2. Let (E, d) be a polish space equipped with its Borel o-algebra

Z and let p be a probability measure on Z. Let (pz)Z£E be a family of Jensen

measures on X with barycenter (xz)zeE depending measurably on z in the
sense that, for every cf> g Lip(x"),

z -> (0, Pz) = / <f>(x)dpz(x),
Jx

is Borel measurable. Then, for £ > 0, there is a p-measurable function

(F, G): X-*V(T, X) xLx(T,X),

z^(fiz, gx)

such that, for every z £ X, gz is the restriction to T of a polynomial on C and

(Í)   fiz(k)=pz,
(ii) gz(0) = xz,

(iii) ||/,-fo||<e.

Proof. Define M to be the subset of X xLx(T,X)x Ll(T, X)

M = {(z, /, g) : g is the restriction to T of a polynomial

onC, fi(k) = pz,  g(0) = E(f), and H/-*||<e}.
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The set M is Borel in X x L'(T, X) x Ll(T, X). Indeed, let ((/>„)£U be a

sequence of Lipschitz functions on X separating the points of Jtx(X) and let

Mi = {(z, /, g) : g is the restriction to T of a polynomial on C},

M2 = {(z,f,g):\\f-g\\<e},

M3 = {(z,fi,g):g(0) = E(f)},

Mn = {(z ,f,g): (</>„, f(k)) = (4>n , pz)}   for n > 4.

One can easily check that the above sets are Borel in XxL1 (T, X)xLx(T, X),

hence M = f|~ , M„ is so too.
By Proposition IV. 1 the natural projection from M to X is onto hence by a

measurable selection theorem (see, e.g., [Co, Theorem 8.5.3] or [H-J, Theorem

9.5]) we can find a ^-measurable selection

(F, G) : X -* LX(T, X) x L>(T, X),

such that, for every z £ X, (z, (F, G)(z)) is in M. This means that the

function (F, G) satisfies our requirements.    D

Let us now start to prove Proposition IV. 1. Recall first the elementary fact

that, if p is a positive measure on a polish space (E, d) of mass ||yu|| =

p(E) = a and A is a subset of [0, 1] of measure k(A) = a then there is a

Borel measurable function /' : A —> E such that f(k ]A) = p . The next lemma

builds on this observation.

Lemma IV.3. Let p be a Radon probability measure on a polish space (E, d),

g : [0, l]-»£ Lebesgue measurable and e , 5 > 0. Suppose further that there

are disjoint sets (A¡)"=1 of[0, 1] and disjoint open sets (B¡)"=1 in E suchthat,

letting a¿ = k(A¡) and fi¡ = p(B¡) for I < i < n

(i) EwJ»i>i-¿/2;
(ii) a¿ > ßi - S/2n for 1 < i < n ;
(iii) diam(/3;) = sup{d(x, y) : x, y £ B¡} < e for 1 < i < n ;
(iv) g(t) £ B¡ for t £ A¡ and l < i <n.

Then there is a Borel measurable function / : [0, 1] —> £ with f(k) = p and a

measurable subset C ç [0, 1] of measure k(C) > l-ô suchthat \\f(t)-g(t)\\ <
e on C.

Proof. For 1 < i < n, let y, = min(a,, /?,■), find Borel measurable subsets C,

of At of measure k(C¡) = y¡ and let p¡ = (yi/ßj)p \b¡ , so that the mass of the

measures p¡ equals \\p¡\\ = y¡. Note that Ym=\ Vi > I - ô ■ Let C = |J"=i C»,

C0 = [0, 1]\C, and p0 = p - £"=i p¡.
For i = 0, I, ... , n apply the preceding remark to find measurable functions

/o : C0 -> E,    fi:Cj -> B,   for 1 < i < n,

such that

fi(k]c¡) = p¡    for0</<«.

The function / = Yj1=o f 1 c, satisfies the requirements.   D

Proof of Proposition IV. 1. As p has a first moment we may find S > 0 such

that, for BCX, p(B) < ô we have

(1) [ \\x\\dp(x)<E.
Jb
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Next find disjoint compact sets (K¡)"=]  in X of diameter less than £ such

that
n

(2) $>(*«) >l-¿/2,
(=i

and open disjoint neighbourhoods CB,-)"=, of (K¿)"=1 of diameter less than £

such that p(B¡\K¡) < ô/An . Now choose Lipschitz functions (<f>i)"=x from X

to [0, 1] such that (j>¡ equals 1 on K¡ and vanishes outerside of B,.

By Theorem (A) we may find a polynomial g : C —> X with g(0) = xo =

bary(/0 such that

(3) \(<j>i, p) - (0/, g(k))\ < S/4n   for 1 < i < n,

{ \\x\\dp(x)- [ \\x\\d(g(k))(x]
Jx Jx

< E.

For Aj = g~x(Bj) let us check that the requirements of Lemma IV.3 are

satisfied. The only condition which is not obvious is (ii) which for I < i < n

follows from

k(Ai)>(<Pi,g(k))>(<l>i,p)-ô/4n

>p(Kx)-ô/4n>p(Bi)-â/2n.

Hence we may find / and C as in Lemma IV.3.

Note that it follows from (1) and the relation p = fi(k) that for any subset

A ç T of measure k(A) < ô we have

[\\f(t)\\dk(t)<e.
Ja

In order to estimate ||/- g\\x the crucial point is to control the L'-mass of

g on Co = T\C :

/ ||^(0||^(0= /11^(011^(0- f \\g(t)\\dk(t)
JcQ Jt Jc

< f 11/(011 dk(t) - [ 11/(011 dk(t) + [ 11/(0 - s(0ll dk(t) + e
Ji Jc Jc

< f  ||/(0lldk(t)+ 2e<3e,
JC0

where in the second line we have used (3).

We therefore can estimate

II/-SIIK   f \\fi(t)-g(t)\\dk(t)+ Í  \\f(t)\\dk(t)+ f  \\g(t)\\dX(t)
J C J Cq J Co

< £ + £ + 3fi = 5fi ,

thus finishing the proof of Proposition IV. 1.   G

V. The proof of Theorem (C)

Let (Mn)™=i bean X-valued stochastic process defined on a probability space

(fi, Z, P). Note that there is a standard representation of this process obtained

in the following way. Let

M:fi-X\     co -* (Mn(co))Z,,
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denote by p the image measure M(f), by n„ : XN -» X the projection onto the

nth coordinate and by n„ : XN —► X" the projection onto the n first coordi-

nates. Equipping XN with the Borel rr-algebra Z and letting Z„ the cr-algebra

generated by n„ , the process (7in)fZ\ on me probability space (XN, Z, p) is

adapted to (Z„)?f, and has the same law as (Mn)°^x.

From now on we suppose that (Af„)"=1 is a martingale and we fix its standard

representation, i.e., the measure p on XN. For n £ N we denote by Xn the

nth coordinate of XN, by pn the image measure pn = n„(X) on X„ , and by

pn the image measure pn = Un(X) on X" . Xo will be identified with the

one point set {0} and po with the unique probability measure on Xo. The

elements (xx, x2, ... , xn) £ X" will occasionally be denoted by y„ .

By a well-known disintegration theorem (see, e.g., [Schw, Theorem 5.44]) we

can, for n £ N, disintegrate p„ with respect to its marginal pn-X , i.e., we can

find a measurable map

F„:Xn-l^Jtl(X),    y„_,^/vy„_,,

such that

(1) Pn=   \        Pn,y„.tdpn-X(yn-X).
Jx»-'

Measurability here means that, for every / g Lip(A") the map

(f,Fn()):X"-x^R,    yn-x^(fi,pn, „„_,),

is Borel measurable and formula ( 1 ) is a symbolic way of writing that, for every

/ G Lip(X") we have

(f,Pn)= /   f(yn-i,x„)dpn,y„_](x„)dpn-x(yn-x).
Jx"-< Jx„

Proposition V.l. Let (Mn)^=i be a martingale with values in a complex Ba-

nach space X and let the probability measure p on Xn be its standard repre-

sentation. Letting Mo = E(MX) then using the above notation, (Af„)~, is a

plurisubharmonic martingale if and only if px and, for n>2 and pn-X almost
all y„-X £ Xn~x, Pn,y„-t are Jensen measures on X.

Proof. First note that, for n > 2 and for pn-X almost all yn-X = (xx, x2, ... ,

x„_i) the barycenter of pn,y„_, written symbolically as

bary(/i„,Vn_,)= /   x„<//!„,>>„_,(■*«),
Jxn

equals x„_i . Indeed let (x*)~, be a sequence in X* separating points of X ;

we have to show that, for i £ N and for p„^x almost all yn-\ = (xx, ... , x„_i)

(1) (x„-i,x¡)=      (xn,x*)dpn,Vn^(xn).
Jx„

As by assumption (x* o7r„)~ j is a martingale on (Xn, p) with respect to the

filtration (Z„)^, we have for every Borel subset A ç X"~x and every i g N

(xn-x,x*)dpn-x(yn-x)=      /  (xn,x*)dpn,Vn_¡(xn)dpn-X(y„-X),
Ja Ja Jx„

which readily gives (1).



APPROXIMATION OF JENSEN MEASURES 605

If now px and, for n > 2 and pn-X almost all y„_i G Xn~x the measure

Pn,yn-, is Jensen on X, then it is straightforward to check that (M„)^L0 is a

plurisubharmonic martingale.

Conversely, if (Mn)^Ll is a plurisubharmonic martingale then it follows im-

mediately that px is a Jensen measure on X. Fix n > 2; we have to show

that, for p„_i almost all y„-X = (xx, x2, ... , x„_i) G X"~x we have that for

all Lipschitz plurisubharmonic functions ^ on I

<t>(xn-\)< I   (f)(xn)dpntyn_t(xn).
Jx„

Let (<pn)rT=x be a sequence in the set PSHi(Z) of Lipschitz plurisubharmonic

functions on X with Lipschitz constant less than 1 that vanish at the origin such

that (<t>n)nKLx is dense with respect to the topology of pointwise convergence on

X. We have to show that the function <P on Xn~x defined by

®(yn-\) = M    ™f       \   I    0(x„)o?/2„;y„_,(Xn)-(/)(X„_i)i
4>ePSH|(X) \\Jx„ )

is not strictly negative on a set of p„-X-positive measure.   By applying the

subsequent Lemma V.2 to the measure pn,y„_\ - <5{x„_,} we conclude that

0(y„_i) = inn /   <$>i(xn)dpn,yn_Xxn)-</)i(xn-\)\ ,

and it will therefore suffice to show that, for every / G N,

<S>i(yn-\)=   /    (p^X^dpn^y^^Xn) - <pi(xn-x)
Jx„

is greater than or equal to zero pn-\-almost surely. If this were not the case,

we could find a Borel set A ç Xn~x such that

/
<J>i(yn-l)dpn-l(yn-X) <0,

IA

which is contradictory to the assumption that (4>¡ o nn)^=x is a submartingale

on (XN, p) in view of

/   /   <j>i(xn)dpn¡yn_l(xn)dp„-X(yn-X) <     (p'i(xn-X)dpn-X(yn-X).   ü
Ja Jx„ Ja

We have used the subsequent lemma whose proof is left to the reader:

Lemma V.2. Let p be a finite signed measure on X such that the absolute value

\p\ has a first moment. Let C be a set of functions with Lipschitz constant

bounded by 1 and C its closure in the topology of pointwise convergence on X.

Then

sup((f>, p) = sup{<7>, p).
<¿ec ^ec

Proof of Theorem (C). Let (A7„)~0 be an X-valued plurisubharmonic mar-

tingale, TV7o = xo. Let p be its standard representation on XN and, using

the above notation, (pn)rT=\ and (Pn)r¡lo tne marginals of p on X„ and X"

respectively. We proceed by induction on n £ N .

Let F0 = Go = x0.  For n = 1  we infer from Proposition V.l that px  is

a Jensen measure on X with barycenter xq . We may apply Proposition IV. 1
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to find Fi G LX(T, X) and an X-valued polynomial Gi such that Ci(0) =

xo, FX(X) = px and

||(F,-F0)-(Gi-Go)||i<£i.

Suppose that we have defined (F,)"~0'  and (G¡)1~q , such that (G¡)"~0X is a

Hardy martingale,

\\(Fi - F,_,) - {G, - G,_i)||, < £,    for 1 < i < n - 1,

and such that denoting by

F„_, :T"-' -+XH~X,

Fn-\(9X, 02, ... , 0„_i) = (F\(9\), F2(9X, 02),..., F„_i(0i ,92, ... , 0„_i)),

we have

(1) F„_i(r-') = />„_,,

which means that (F,)"^1 is a representation of (Mi)"~0x .

Consider the disintegration of p„ discussed above,

(2) Pn= Pn,yn^dpn-X(yn-X).
JX"~1

We may suppose by Proposition V.l that, for every y„_i G Xn~x , pn,y„_] is a

Jensen measure on X with barycenter x„_ i, where y„_i = (xi, X2, ..., x„_i ).

We now can apply Proposition IV.2 for (E, p) = (Tn~x, X"~x) to find Xn~x-

measurable functions

(F,G):T"-X -^Lx(T,X)xLx(T,X),

(0i, 02, ... , 0„-i) -* {/0,,e2,...,e„_,(0«)> ge¡,e2,...,e„_,(0n)}

such that, for every (0i, 02, ... , 0„_i) £ T"~x, gei,e2,...,en-i(') is the restric-

tion to T of an X-valued polynomial defined on C verifying

#ei,02,...,0„-,(O) = Fn-\(Q\, 02, ••■ , 0«-i)

such that

(3) A. 02,.-, e-.W = *"„,f„_,(0,,02,. ..,».-,)

and

II/0, ,02,...,0„_, - £0,,02,...,0„_,l|i < £«•

Now let

F„(0i , 02, ... , 0«) = /0,,02,...,0„_,(0«)
and

G„(6X, 02, ... , 9„) = Gn-X(9x, 62, ... , 0„_i)

+ (ge,,62,...,e„-,(fín) - Tn-X(9x, 92, ... , 9n-X)),

then (1) holds true with (n - 1) replaced by « in view of (2) and (3). Clearly

(C7,)"=0 is a Hardy martingale and we can estimate

\\(Fn-Fn-X)-(Gn-Gn-i)\\x

=    / ll/0,,02,...,0„_l  -g0|,02,...,0„_,l|l dX"~X(9X , 02, ••■ , 0«-l)
Jjn-I

< En-

This proves Theorem (C).   D
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With Theorem (C) at our disposition we now can harvest Corollary (D) with-

out any further effort:

ProofofCorollary (D). Let (M„)%LQ bean Lx -bounded plurisubharmonic mar-

tingale (i.e., sup„ ||A7n||i < oo). Apply Theorem (C) to find a representation

(F„)~0 of (M„)%L0 on TN such that Fn depends only on the first n coordi-

nates and a Hardy martingale (G„)%L0 such that, for n £ N,

||(F„-F„_,)-(G„-C„_i)||i<2-".

Clearly the process (F„ - G„)%L0 converges almost surely by the Borel-Cantelli

lemma and (G„)%L0 is L'-bounded.
If X has the analytic Radon-Nikodym property then (G„)%L0 converges al-

most surely [Gar] and therefore (F„)~0 does so too.

Conversely if L'-bounded plurisubharmonic martingales converge almost

surely then in particular L'-bounded analytic martingales do so, whence by

Edgar's theorem [E2] X has the analytic Radon-Nikodym property.   G

To end this section we give an application of Theorem (C). We say that a

complex Banach space X is an AMT (resp. HMT resp. PSH-MT) space if for

some 0 < p < oo there is a constant Cp such that for every X-valued analytic

(resp. Hardy, resp. plurisubharmonic) martingale (Mn)%=0 and for every pre-

dictable process (V„)%=1 bounded in absolute value by 1 we have the following

estimate on the martingale transform:

:d YJyn(Mn-Mn.
71 = 1

< Cp\\Mn\

We refer to [Gar] for a discussion of these concepts. For example D. J. H.

Garling proved that L'([0, 1]) is an HMP space [Gar, Theorem 10] while G.

Pisier [P] has shown that the space of trace class operators on I2 fails to be an
AMT space. Let us also note that a martingale transform of an analytic (resp.

Hardy, resp. plurisubharmonic) martingale is an analytic (resp. Hardy, resp.

plurisubharmonic) martingale.

It has been shown by Xu [X] that the concepts of AMT and HMT spaces

coincide. Xu's result combined with Theorem (C) gives the following result:

Theorem V.3. The concepts of AMT, HMT and PSH-MT spaces coincide.

References

[Bo-Da] J. Bourgain and W. J. Davis, Martingale transforms and complex uniform convexity, Trans.

Amer. Math. Soc. 294 (1986), 501-515.

[Bu-Da] A. V. Bukhvalov and A. A. Danilevich, Boundary properties of analytic and harmonic

functions with values in Banach space, Mat. Zametki 31 (1982), no. 2, 203-214; English

transi, in Math. Notes 31 (1982), 104-110.

[Ch]      S. B. Chae, Holomorphy and calculus in normed spaces, Pure Appl. Math., Dekker, New

York, 1985.

[Co]      D. Cohn, Measure theory, Birkhäuser, Stuttgart, 1980.

[D-G-T] W. J. Davis, D. H. J. Garling, and N. Tomczak-Jaegermann, The complex convexity of

complex quasi-normed linear spaces, J. Funct. Anal. 55 (1984), 110-150.



608 SHANGQUAN BU AND WALTER SCHACHERMAYER

[Dow]   P. N. Dowling, Representation operators and the analytic Radon-Nikodym property in Ba-

nach spaces, Proc. Roy. Irish. Acad. 85A (1985), 143-150.

[Du]     R. Durret, Brownian motion and martingales in analysis, Wadsworth, Belmont, Calif., 1984.

[El]      G. A. Edgar, Complex martingale convergence, Lecture Notes in Math., vol. 1116, Springer-

Verlag, Berlin and New York, 1985, pp. 38-59.

[E2]      _, Analytic martingale convergence, J. Funct. Anal. 69 (1986), 268-280.

[E3]      _, Extremal integral representations, J. Funct. Anal. 23 (1976), 145-161.

[Gam]   T. W. Gamelin, Uniform algebras and Jensen measures, Lecture Notes Series, vol. 32,

Cambridge Univ. Press, Cambridge, 1978.

[Gar]    D. J. H. Garling, On martingales with values in a complex Banach space, Proc. Cambridge

Philos. Soc. 104 (1988), 399-406.

[G-M]   N. Ghoussoub and B. Maurey, Plurisubharmonic martingales and barriers in complex quasi-

Banach spaces, Preprint, 1988.

[H-J]     J. Hoffmann-Jorgensen, The theory of analytic spaces, Lecture Notes Ser. in Math., Aarhus

Univ., Aarhus, 1970.

[K]        S. G. Krantz, Function theory of several complex variables, Pure and Appl. Math. Ser.,

Wiley, New York, 1982.

[L-T]     J. Lindenstrauss and L. Trafriri, Classical Banach spaces. I, Ergebnisse der Math. 92,

Springer, 1977.

[P]        G. Pisier, Personal communication.

[Ra]      M. Range, Holomorphic functions and integrable representations in several complex vari-

ables, Springer-Verlag, New York, 1986.

[Schwl] L. Schwartz, Disintegration of measures, Tata Inst. Fund. Res. Stud. Math., Bombay, 1976.

[Schw2] _, Radon measures on arbitrary topological spaces and cylindrical measures, Tata Inst.

Fund. Res., Oxford Univ. Press, Oxford, 1973.

[X]        Q. H. Xu, Personal communication.

Department of Mathematics, University of Paris VII, Paris, France

Department of Mathematics, University of Wuhan, Wuhan, China

Institut für Mathematik, Johannes Kepler Universität, A-4040 Linz, Austria


