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GALOIS GROUPS AND THE MULTIPLICATIVE STRUCTURE
OF FIELD EXTENSIONS

ROBERT GURALNICK AND ROGER WIEGAND

Abstract. Let K/k be a finite Galois field extension, and assume k is not

an algebraic extension of a finite field. Let K* be the multiplicative group of

K , and let &{K/k) be the product of the multiplicative groups of the proper

intermediate fields. The condition that the quotient group T = K*/Q(K/k) be

torsion is shown to depend only on the Galois group G . For algebraic number

fields and function fields, we give a complete classification of those G for which

T is nontrivial.

Let K/E be a proper extension of infinite fields. Brandis [B] proved in

1965 that K*/E*, the quotient of the multiplicative groups, is never finitely

generated; and in 1984 Davis and Maroscia [DM] showed that the quotient

group always has infinite torsion-free rank except in the following two situations

where K*/E* is obviously torsion: (a) K is an algebraic extension of a finite

field, or (b) K is purely inseparable over E. Suppose, now, that K/k is a finite

algebraic extension and Ex, ... , E, are proper intermediate fields. For t = 2

it was shown in [W] that K*/E\E\ always has infinite rank unless (a) or (b)

holds for one of the E¡. The fact that this result did not appear to generalize

to more than two intermediate fields was the starting point for this paper.

Assuming now that K/k is a finite Galois extension and that k is not an

algebraic extension of a finite field, we examine in detail the structure of the

groups K*/E¡ ■ ■■ E*. We determine in (1.4) exactly when this quotient group

is torsion; and we show that if k is a "reasonable" field, e.g., an algebraic
number field or a function field, then K*/E* ■ ■ ■ E* either is torsion or has a

free summand of infinite rank. (See (1.5) and (1.8).) The main results in this

paper concern the quotient K*/0(K/k), where Q(K/k) is the compositum

of the multiplicative groups of all proper intermediate fields. We will see, for

example, that K* = Q(K/k) whenever the Galois group contains S4 . We also

construct examples, one in characteristic 0 and one in characteristic 2, where

the Galois group is C(2) x C(2) and K* = &(K/k). Thus it is possible for K*
to be the product of the multiplicative groups of three intermediate fields.

We show in §2 that K*/Q(K/k) is torsion if and only if the Galois group

of K/k  is not a Frobenius complement.   In §3 we show that if the group
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K*/&(K/k) is a nontrivial torsion group, then it is bounded, with prime power

exponent p or p2. Moreover, the prime p depends only on the Galois group.

Section 4 addresses the delicate question of when K* = B(K/k). (This can

never happen when k is an algebraic extension of a finite field. See (1.12).)

In the final section, §5, we relax the requirement that K/k be a finite Galois

extension. We show that if Ex and 7s 2 are subfields of K with K algebraic

over ExnE2, then K*/E\E\ has infinite rank unless K is either algebraic

over a finite field or purely inseparable over one of the E¡. On the other hand,

every field K of infinite transcendence degree over its prime subfield satisfies

K* = E¡Ej for suitable proper subfields E¡.
Some of the topics of this paper were discussed by Wiegand, William Haboush

and other participants of the Mountain West Geometry Workshop held in Lin-

coln, Nebraska, in September, 1988. Subsequently, Wiegand and Haboush ob-

tained some results in a series of letters. Haboush has since discovered some

interesting connections with Galois cohomology, [H].

The authors are grateful to the referee, whose careful reading of the original

version of this paper led to several improvements.

1. The ideal 1(G)

Let G be a finite group, and let ZG denote the integral group ring. Given

a subgroup 77 of G, let £ 77 be the sum, in ZG, of the members of 77. If
7%f is a set of subgroups of G, let L(7%?) be the left ideal of ZG generated

by {£7/|77 e ^j Finally, put 1(G) = L{S"), where S" is the set of all
nontrivial subgroups. Since Hx < H2=> L({HX}) D L({H2}), it follows that we

could just as well take 7? to be the set of subgroups of prime order. Note that

1(G) is a two-sided ideal of ZG, since (£ H)g = g(Y.(g~lHg)).
We will be primarily interested in the ideal 1(G) nZ of Z ; and we will make

repeated use of the following easy observation: If Gi is a subgroup of G2, then

I(Gj) is contained in I(G2). Thus, for example, if it is known that 1 £ 1(H)

for a certain group 77, it follows that 1 £ 1(G) for every group G containing

an isomorphic copy of 77.

Now let K/k be a finite Galois extension with Galois group G. Let G act

on the right, so that K* is a right ZG-module. If a £ K* and r £ ZG, we write

of instead of ar. (Thus ar has its usual meaning if r £ Z .) For any set 7%? of

subgroups of G, let Q(ßf) be the product (compositum) of the multiplicative

groups of the fixed fields of the groups in 7%f, and let Q(K/k) = 6(J?"), where
777 consists of all nontrivial subgroups. Thus Q(K/k) is the product of the

multiplicative groups of the maximal intermediate fields.

If a £ K* and r £ L(ß?) for some set ^ of subgroups, we see that ar £

e(&) ; more succinctly: (K*)L^ < 8(JF). On the other hand, if ß e E*,

where E is the fixed field of some r/e/,we have ß\"\ = ß^H £ (K*)L^ .

We summarize these observations.

1.1. Proposition. Let ^ be a set of subgroups of G. Then (K*)L(^ < S(JT),

and the quotient Q(ßf) / (K*)1^"1 is a bounded group with exponent dividing

the least common multiple of the orders of the groups in 7%*. In particular,

Q(K/k)/(K*)l{G) is bounded with exponent dividing the largest square-free factor

of\G\.
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We remark that e(K/k)/(K*)W> can be nontrivial. See (1.11).

1.2. Example. Let k = Q (the rationals) and let K be the splitting field of
xA - 4. Then G = C(2) x C(2), and it is easy to check that ZG/I(G) has
order 2. (If a and t are generators of G, we have 2 = (1 + o) - a(l + r) +

(1 + ax) £ 1(G).) Therefore a2 £ Q(K/k) for all a £ K*. Using the fact that
the K/k-norm of everything in Q(K/k) is a square, one can show directly that

K*/Q(K/k) is infinite. Thus K*/Q(K/k) is an infinite elementary abelian

2-group. (If G is any noncyclic elementary abelian 2-group, it follows that
2 £ 1(G). Therefore 1(G) is the kernel of the augmentation map modulo 2;

hence ZG/I(G) has order 2.)

1.3. Example. Let k = Q and let K be the splitting field of x3 - 2. Then
G = Si, and ZG/I(G) has order 3; therefore K*/Q(K/k) is an elementary

abelian 3-group. This time there seems to be no direct way of showing even

that K* ¿ S(K/k). It follows from (1.5) below, however, that K*/B(K/k) is
infinite.

It follows from (1.1) and the proofs of ( 1.2) and (1.3) that @(K/k) is equal to
K* if the Galois group contains S4 or A$. We will show in §4 that Q(K/k) =
K* whenever the Galois group contains a nonabelian simple group. On the

other hand, if K/k has Galois group SL2(5), then K*/Q(K/k) always has
elements of infinite order, even though SL2(5) is not solvable. (See §2.)

1.4. Proposition. Assume k is not an algebraic extension of a finite field, and

let ß? be any set of subgroups of G. These conditions are equivalent:

(a) K*/Q(^) is a bounded group.
(b) K*/@(ßT) is a torsion group.

(c) K*/@(ß^) has finite torsion-free rank.

(d) L(¿F) nZ/0.

Proof, (a) => (b) => (c) trivially, and (d) =>• (a) by (1.1). Suppose (c) holds,
and let r be the rank of K*/Q(ß?). There are infinitely many rank-one (but

not necessarily discrete) valuations v¡ of k that split completely in K. (See

[NNT], in particular, the footnote on the first page.) For each positive integer

i, let V, be one of the valuations of K lying over v¡. Define Vl8(ag) = V¡(a)

for g £ G and a £ K*. Then the V? , g £ G, are exactly the valuations of K

lying over v¡. Let R be the reals and define O, : K* —> KG by

(1.4.1) <P,(a) = £( If (<*))#.
geG

It is easily checked that O, is a ZG-module homomorphism. Moreover, we

claim that <P, carries Q(7%f) into EL(^). To prove this, it is enough to show

that if H £ ¿F and E is the fixed field of 77, then <P,(a) £ RL(X) for every
a £ E*. Let T be a complete set of left coset representative for 77 in G.

For g £ T and h £ H we have Vfh(a) = Vg(ah~[) = V*{a). Therefore

*«(") = ZgeT¿ZheH(Vigh(<*))gh = (£?er(lf (a))g)(£77) e RL(^).
Now choose, by the approximation theorem, ax, ... , ar+x such that t¡ :=

Vi(aj) > 0, but V¡g(aj) = 0 if / ^ ; or g ± 1. If K*l&(ßT) has rank r, there

are integers n¡, with, say, nx > 0, such that ß := a"' ■■ ■ a"r¿¡ £ Q(ß?). Then
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RL(¿F) contains <P\(ß) = nxtx , a positive real number. Therefore HLL(<%*) =

RG, and it follows that QL(^) = QG, that is, L(Sir) nZ/0. =

Actually, one can work with the rational group ring QG from the start,

rather than with RG. The reason is that the valuations v¡ can be chosen to

have subgroups of the additive group of rationals as their value groups. (See

[Ji].)
In order to get more precise information about K*¡Q(%?), we need some

discrete valuations. If k is an algebraic number field or a function field (see

(1.8) below), there are always infinitely many inequivalent discrete rank-one

valuations that split completely in K . Recall that a set 'V of valuations of K

has finite character if for every a £ K* there are only finitely many v £ 'V for

which v(a) ^ 0. For 0 < r < co, let A(r) denote the direct sum of r copies of

A.

1.5. Theorem. Assume k has infinitely many pairwise inequivalent discrete

rank-one valuations v¡, 1 < / < oo, that split completely in K. Let ^ be

a set of subgroups of G, and let L(ßf) nZ=(«), n > 0.

(a) If n = l then Q(ßT) = K*.
(b) For each finite r, K*/@(ßT) has adirect summand isomorphic to (Z/(«))(r).

(c) If n = p, a prime, then K*/&(£?) is an infinite elementary abelian p-

group.

(d) If n > 0 or {v¡} has finite character, then K*/@(ß?) has a direct sum-

mand isomorphic to (Z/(«))(cü).

Proof, (a) follows from (1.1). Choose, for each i, a valuation V¡ of K lying

over v,, and define the valuations Vf , for g £ G, as in the proof of (1.4). We

may assume each v¡ has value group Z. The same is then true for each Vf ,

since there can be no ramification. Define <!>, : K* —» ZG by formula (1.4.1).

Then, for each r < co, the map <P : K* -> (ZG)(r) induced by <Pi, ... , Or
is surjective, by the approximation theorem. As in the proof of (1.4) we see

that 0>, carries &(<%*) into L(%f). Thus we have a surjection K*/&(<%*) -»

(ZG/L(X))C>. But TLG/L(^) is a faithful, finitely generated Z/(n)-module,
so it has Z/(«) as a homomorphic image. Therefore we have a surjection

K*/Q(ßr) -» (Z/(«))C>. Since K*/S(^) isa Z/(n)-module, (b) and (c) follow.
To prove (d) when n > 0, we note that K*/Q(£?), being a Z/(«)-module, is

a direct sum of cyclic groups. By (b), K*/Q(^) has infinitely many elements of

order n , and (d) follows. Finally, assume n = 0 and {v,} has finite character.

Then the whole family {Vf} has finite character (see [Ji], for example), and

the <P, define a map ¥ : K*/Q(^) -» (1G/L(^))^. But each 1G/L(ß^)
maps onto Z, and when we compose these maps with *F we get a map E :

K*l®(7??) -> Z(a,). Moreover, the image of H has a nonzero projection on each

coordinate of Z(w), so the image of H is isomorphic to Z(ö)). Then H splits,

and the proof is complete.

We now know the precise structure of K*/Q(K/k) for the two examples

above: Q(i, V2)*/Q(K/Q) is an infinite elementary abelian 2-group, and if

K is the splitting field of x3 - 2 over Q, then K*/Q(K/Q) is an infinite
elementary abelian 3-group. The following result puts these examples into a

general framework.
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1.6. Proposition. Let p and q be primes with p > q, and let G be a noncyclic

group of order p2 or pq. Then 1(G) n Z = (p).

Proof. Suppose G = C(p) x C(p) = (x) x (y). Then, for each i, 0 < i <

p, 1(G) contains h¡ := Y^(xy') = 1 + xy*+ x2y2i + ••• + x^y^-U*. Then

££70' h¡ =p + E!!lil xl £(y), and it follows that p £ 1(G). If G is a nonabelian
group of order pq , then G = (x, y\xq = 1, yp = 1, yx = xya), where aq = 1

(mod/?). Let h, = £(xy'), for 0 < i < q, and proceed almost exactly as

above, to deduce that p £ 1(G). All that remains is to show that 1(G) / Z(G).

In either case G has a normal subgroup of order p, which we kill, getting a

map onto ZC(7t), where n is either p or q. Now let Ç be a primitive 7cth

root of unity, and map ZC(n) onto Z[£] by sending a generator of C(n) to

C. One checks easily that the composition of these two surjections carries 1(G)

into pZ[Ç], so 1(G) is indeed a proper ideal of ZG.

Although we will prove a much more general result in the next section, we

will push the cyclotomic idea a little further here.

1.7. Corollary. Let G be abelian. Then I(G)nZ = 0 if and only if G is cyclic.

Proof. If G is not cyclic then G contains a noncyclic group of order p2, and

we can apply (1.6). If G is cyclic of order n , let £ be a primitive «th root of

unity, and check that 1(G) dies under the natural map ZG —> Z[£].

Now we will exhibit lots of fields to which we can apply the full strength

of (1.5). It is well known that for any algebraic number field K there are

infinitely many rational primes that split completely. (This is a weak form

of the Tchebotarev Density Theorem. See [Ja].) Now let k be an algebraic

number field and let K/k be Galois. If /> is a prime of k lying over a

rational prime that splits completely in K, then of course /? itself must split

in K. Therefore there are infinitely many such /i, and the corresponding set

of discrete valuations of K has finite character.

Next, let k be a function field, that is, a finite extension of F(X), where F is
a field and X is an indeterminate. Jia Bao-Ping has shown [Ji] that for any finite

separable extension K/k, there is an infinite set of finite character, consisting

of inequivalent discrete valuations of k that split completely in K . (If F is

infinite and k/F(X) is separable, this follows from [G].) We summarize these

results in the following:

1.8. Proposition. Let K/k be a finite Galois extension. Assume k is either

an algebraic number field or a function field (as defined above). Then there is

an infinite set, of finite character, consisting of inequivalent discrete rank-one

valuations of k, each of which splits completely in K. In particular K* =

e(K/k) if and only if 1(G) D Z.

If, for some prime p, the field k is closed under extraction of pth roots

(e.g., if k is a perfect field of characteristic p), then clearly k has no discrete

valuations. The last assertion of (1.8) can also fail, as we will see in (1.10).

Suppose G is an arbitrary subgroup of Sn and p is a prime number. Let

E be any field of characteristic p , let L = E(XX, ... , Xn), and let G act on

L by permuting the X¡. Let F be the fixed field of G, let k be the purely

inseparable closure of F (in an algebraic closure of L) and let K = kL. Since
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k n L = F, the Galois group of K/k maps isomorphically onto that of L/F .

We record the result of this construction:

1.9. Proposition. Let G be any finite group, and let p be a prime. Then there

exist a perfect field k of characteristic p and a Galois extension K/k with

Galois group G.

1.10. Corollary. If 1(G) n Z = (pe), p prime, there exist a perfect field of

characteristic p and a Galois extension K/k with Galois group G such that

K* = S(K/k).

Proof. Let K/k be as in (1.9). Then K is perfect, and each element of K* is

a (pe)th power. Now apply (1.1).

The conclusion of ( 1.10) is still valid under the formally weaker condition

that 1(G) ^ 0, since, for every finite group G, 1(G) HZ is either (0), (1), or a

prime power. (This is the main theorem of §3.)

Even in characteristic 0 there are examples with 1(G) ^ G but with ©(K/k) =

K*.

1.11. Example. For any field F , let F((t)) denote the field of Laurent power

series over F, that is, the quotient field of F[[t]]. Let p be a prime, and let

K = C((0), k = R((tp)). The Galois group G of K/k is C(2) x C(2) if p = 2
and is the dihedral group of order 2p if p >,2. By (1.6), 1(G) n Z = (p).
Given f £ K*, write / = Vg, where g = a + bt + ct2 + ■ ■ • , and a ^ 0.

Then g is a pth power (Hensel's lemma), so g £ @(K/k) by (1.1). Of course

V £ Q(K/k), and it follows that Q(K/k) = K*.

If E is the fixed field of a subgroup H of the Galois group G of K/k,
then ar = N§(a) for a £ K and r = £77. Thus 1(G) = ZG implies that K*

is actually generated by K/E-norms, for the various proper intermediate fields

E . The example above shows that this need not hold when K* = Q(K/k), as

t is not a product of norms.

It would be interesting to know whether there is a general source of examples

like (1.11) in characteristic 0. More precisely, given a group G with 1(G) ^ 0,

is there a Galois extension K/k in characteristic 0, with K* = Q(K/k) ?
So far we have avoided finite fields and their algebraic extensions. Since these

fields have no nontrivial valuations, our main tool is not applicable. Fortunately

there is another way to show that K* ^ &(K/k).

1.12. Proposition. Let K/k be a finite extension, where k is an algebraic ex-

tension of a finite field. If K±k then K* ¿ @(K/k).

Proof. Note that K = kL (the field compositum) for a suitable finite extension

L/GF(p). Putting F = L n K, we see that K/k and L/F have isomorphic
lattices of intermediate fields. Let a generate L*, and let \L*\ = pe - 1. If

e = 2, clearly Q(K/k) = k* ^ K*. If e = 6 there are at most 2 maximal
subfields, and we see (by counting if k is finite, and by appealing to [W, 1.3]

if k is infinite) that /?* / @(K/k). If e is not equal to 2 or 6, we appeal

to Zsigmondy's Theorem, [Z] or [F2], in the form stated below, to produce a

prime q such that p has order e modulo q.

Suppose, now, that a = ßx ■ ■ ■ ßt, where each /?, belongs to a proper inter-

mediate field E¡, and let m¡ be the multiplicative order of ß,. Then q divides
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the least common multiple of the m,■, so q\m¡ for some i. Therefore q di-

vides \F(ßi)*\ := pd - 1, so e, the order of p modulo q, divides d. Since

K has a unique subfield of order pe - 1, it follows that F(ßi) 2 L, whence

K = k(ßi). But then E¡ = K, a contradiction. (When e = 6, one can modify

this argument slightly by taking q = 9, thereby avoiding the reference to [W].)

1.13 Theorem (Zsigmondy). Let p be a prime and e a positive integer. Then

there is a prime q such that p has order e modulo q, unless either (i) p is a

Mersenneprime and e = 2, or (ii) p = 2 and e = 6.

The following theorem summarizes the main results of this section.

1.14. Theorem. Let K/k be a finite Galois extension with Galois group G,

and let 1(G) n Z = (n), n > 0.
(a) If n = 0, and k is not algebraic over a finite field, then K*/Q(K/k) has

elements of infinite order.

(b)Ifn = l, then K* = e(K/k).
(c) If n t¿ 0, 1 and k is an algebraic number field or a function field, then

K*/S(K/k) is a nonfinitely generated torsion group.

(d) If n ^ 0, there are examples showing that K* can equal ®(K/k).

(e) If K ^ k and k is an algebraic extension of a finite field, then K* /Q(K, k)

is a nontrivial torsion group.

Of course, the proof of (d) depends on the fact, to be proved in §3, that n

is either 0 or a prime power.

2. FrOBENIUS COMPLEMENTS

As in § 1, we suppose K/k is a finite Galois extension. We will always assume

that k is not an algebraic extension of a finite field. Then K*/Q(K/k) is a

torsion group if and only if 1(G) n Z ^ 0. We will show in (2.3) that this
holds if and only if G is not a Frobenius complement. We refer the reader to

Passman's book [P] for a thorough discussion and classification of Frobenius

complements, but we will summarize the properties we will need.
Let G be a finite group acting transitively on a set Q with at least two

points. Assume that Ga / 1 for a £ Q, but Gab = l for a ^ b. (Only
the identity fixes two points.) Any group isomorphic to a group Ga arising

in this way is called a Frobenius complement. For our purposes, a different

description will be more useful. Recall that an action of a group H on a set

S is semiregular provided G¿, = 1 for every b £ S. (Thus, in the definition

of Frobenius complements, the condition Ga ¿ = 1 for a ^ b says that Ga

acts semiregularly on Q- {a} .) In the following proposition, most of which is

proved in [P], Q denotes the algebraic closure of the field of rational numbers.

2.1.   Proposition. Let H be a finite group. The following are equivalent:

(a) 77 is a Frobenius complement.

(b) 77 has a ^-representation o such that for all h £ H - {1} the matrix

a(h) has no eigenvalue equal to 1.

(c) There exist a prime p and a finite, elementary abelian p-group E such

that 77 acts semiregularly on E - {0} (via automorphisms of E).

(d) For any prime p not dividing \H\, there exists such an E.

Proof,   (a) => (b) by Theorem 18.1 of [P], and (d) => (c) trivially.  We will
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show that (b) => (d) and (c) => (a). Assuming (b) holds, let K be an algebraic

number field containing a primitive \H\th root of unity as well as all entries

of all the matrices a(h), h £ H. Then 77 acts semiregularly on V - {0},

where F is a vector space over K. Let D be the ring of integers of K, fix

a nonzero vector v £ V and let L = DHv, a projective D-module of finite

rank. For any prime p not dividing |77|, let /i be a prime ideal of D lying

over (p), and let q = pe = \D//?\. Put E = L//¿L, and let o be the induced

GF((7)-representation of 77 as automorphisms of E . The eigenvalues of o(h)

are the images of those of o(h) under the canonical map n : D —> D//i. Since

n is a bijection on \H\th roots of unity, ~ä(h) cannot have 1 as an eigenvalue

unless h = 1 . Therefore H acts semiregularly on E - {0}.

If (c) holds, let G be the semidirect product of E and 77. Let Cl be the set
of left cosets of 77 in G, with the usual G-action. Then H is the stabilizer of

the coset H ; and 77 acts semiregularly on Q-{H} , since 77 acts on Q- {77}

exactly as it does on E - {0} . Therefore 77 is a Frobenius complement.

2.2. Theorem. Let G be a finite group. Then 1(G) nZ = 0 if and only if G is
a Frobenius complement.

Proof. Let I = 1(G). If I n Z = 0, then QG/IQG is a nonzero Q-algebra,
so there is a nontrivial Q-algebra homomorphism p : QG —► M„(Q) such that

fj(I) = 0. If g £ G has order m > 1, then I + g + ■■■ + gm~x £ I. Therefore,

if v £ Q "   and gv = v , we have mv = o(l + g -\-h gm~x)v = 0, whence

v = 0. This shows that G satisfies (2.1, b).
Conversely, suppose G is a Frobenius complement. If I n Z contains a

nonzero integer n, choose any prime p\n\G\, and let E be an elementary

abelian />group such that G acts semiregularly on E - {0}. Suppose g £ G

is an element of prime order q.   View £ as a ZG-module, and note that

multiplication by I - g is an automorphism of E . It follows that 1 + g H-h

£•(<?-!) kills e . Since I is generated by elements of the form l+g-\-r-^(i_1),

IE = 0. In particular, nE = 0, contradiction.

2.3. Corollary. Let K/k be a Galois extension with Galois group G. Then

K* /&(K/k) is a torsion group if and only if either k is an algebraic extension

of a finite field or G is not a Frobenius complement.

The rest of this section is pure group theory and concerns the relationship be-

tween Frobenius complements and groups G satisfying the following condition

(encountered in (1.6)):

If p and q are primes, every subgroup

of G of order p2 or pq is cyclic.

Notice that if L is a group of even order satisfying (2.4), then L has a unique

element of order 2 (so in particular Z(L) / (1)). For, if x and y are distinct

elements of order 2 and xy has order n , then (x, y) is a dihedral group of

order 2n , and it has a subgroup violating (2.4).

By [P, 18.1], every Frobenius complement satisfies (2.4). (Of course, this

follows also from (2.2) and (1.6).) The converse is false, SL2(17) being the

smallest counterexample. (See [P] or (2.10).) Every solvable group satisfying

(2.4) is a Frobenius complement, as is pointed out at the end of §18 of [P].
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We will give a proof of this fact here, as a special case of our classification of

groups satisfying (2.4). Our classification (2.10), which will be needed in §3, is

an extension of the classification of Frobenius complements found in [P], and

we will use several steps of Passman's argument here.

2.5. Lemma. Let G be a finite p-group in which every subgroup of order p2 is

cyclic. Then either G is cyclic, or else p = 2 and G is a generalized quaternion

group.

Proof. This follows easily from [P, 9.4 and 9.5].

2.6. Lemma. Let  Gx   and G2   be groups of relatively prime orders.    Then

i(Gi x G2) n z = (l(Gi) n z) + (l(G2) n z).

Proof. Every minimal subgroup of Gi x G2 is contained in either Gi x (1) or

(l)xG2.

Let Q(G) be the subgroup of G generated by the elements of prime order.

Since the minimal subgroups of G are contained in Q(G), and since ZG is a

free Z(r¿(G))-module, we have

(2.7) I(G)nz = i(Q(G))nz.

In particular, a finite group G is a Frobenius complement if and only if

Q(G) is a Frobenius complement. Also, it is clear that G satisfies (2.4) if and

only if fi(G) satisfies (2.4). Therefore, in our classification theorem, we may

harmlessly assume that G = Cl(G).

2.8. Lemma. Let G be a finite group satisfying (2.4), and suppose G = Q.(G).

Then G = N x C, where N has no nontrivial normal subgroups of odd prime

power order, and C is a cyclic group of square-free order prime to \N\. If

further, G has cyclic Sylow 2-subgroups, then G itself is cyclic.

Proof. Let q be any prime divisor of \G\ for which the Sylow ^-subgroups of

G are cyclic. (All odd primes qualify, by (2.5).) Let Q be a minimal normal

<7-subgroup of G. Then Q is cyclic, and its unique subgroup (x) of order q

is also normal in G. By minimality, Q = (x). Condition (2.4) implies that x

commutes with every element of prime order p / q . Also, since Q is contained

in every Sylow g-subgroup of G, Q is the only subgroup of order q in G.

Thus x commutes with every element of prime order, whence x £ Z(G). Let

R D Q be any Sylow g-subgroup of G. Since R is cyclic, any automorphism

of R fixing Q has order a power of q ; hence Ng(R)/Cg(R) is a g-group,

that is, NG(R) = Cg(R) ■ By Burnside's theorem [As2, 39.1] G has a normal

^-complement N ; then G = NR and N n R = 1. But N x Q contains every

element of prime order, whence NxQ = G. All hypotheses on G are inherited

by N, so we repeat the process on N, continuing until every qualifying prime

has been used. This proves the first statement.

If the Sylow 2-subgroups of G are cyclic, then N has no normal p-subgroups

for any prime p . On the other hand, the fact that all the Sylow subgroups of N

are cyclic implies, by [P, 12.8 and 12.9], that the commutator subgroup [N, N]

is cyclic. Then the p-component of [N, N] is normal in G, hence trivial, for

each prime p . Therefore [N, N] = 1 , and hence N = 1 .

2.9. Proposition. The following conditions are equivalent, for a finite solvable

group G = Q(G) :
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(i) G is a Frobenius complement.

(ii) G satisfies condition (2.4).
(iii) G is either cyclic (necessarily of square-free order) or isomorphic to

SL2(3) x C, where C is a cyclic group of (necessarily square-free) order prime

to 6.

Proof. The parenthetical remarks in (iii) come from the observation that Q(C)

always has square-free order, for a cyclic group C. We already know that

(i) => (ii). One checks directly that SL2(3) is a Frobenius complement, so

(iii) =>■ (i) by (1.7), (2.2), and (2.6). Assuming (ii), write G = N x C as in
(2.8). If G has cyclic Sylow 2-subgroups, then G is cyclic, and (iii) holds.
If G has generalized quaternion Sylow 2-subgroups, the center of N is a 2-

group, and we appeal to [P, 18.4]. (Although /V is supposed to be a Frobenius

complement in order to apply [P, 18.4], the proof of [P, 18.4] depends only on

the weaker hypothesis (2.4).) Of the four possible conclusions in [P, 18.4], one

quickly rules out I, II, and IV; hence N = SL2(3).

2.10. Theorem. Let G be a finite group with G = íl(G). Then G satisfies
(2.4) if and only if either G is cyclic or G = SL2(p) x C, for some Fermât prime

p and a cyclic group C of (square-free) order prime to p(p + 1). Also, G is a

Frobenius complement if and only if G is as above and p = 3 or 5.

Proof. The last statement follows from (2.9) and the structure theory of non-

solvable Frobenius complements in [P]. To prove the "if statement, let G =

SL2(p), where p is a Fermât prime. It will suffice to prove that G satisfies

(2.4). Now \G\ = (p - l)p(p + I), and p - 1 is a power of 2. We refer the
reader to [DA, 38.1] for other relevant properties of G. In particular, G has

an element b of order p + 1, so the odd Sylow subgroups are cyclic. The Sylow

2-subgroups of G are generalized quaternion groups, [P, 13.5], so the subgroups
of order 4 are cyclic. Since G has a unique involution, subgroups of order 2q

are cyclic for each odd prime. There are no nonabelian groups of order pq

if Q\(P + l)/2, so we are reduced to consideration of subgroups of order qr,

where q < r are odd primes dividing p + 1 . We may assume the generator y

of order r is a power of b. If x is an element of order q normalizing (y)

then yx is either y or y~x (Step 1 of the proof of [DA, 38.1]), and y~x is

ruled out because (-l)r is not congruent to 1 modulo q. Thus yx = y, that

is, (x, y) is cyclic.
For the converse we may assume by (2.9) that G is not solvable, and by (2.8)

that Oq(G) = 1 for every odd prime q. (Oq = largest normal ^-subgroup.)

Therefore F(G), the Fitting subgroup, is a 2-group, so by (2.5) it is either cyclic

or generalized quaternion. Suppose first that F(G) = F*(G), the generalized

Fitting subgroup, [Su, Chapter 6, 6.10]. (Recall that F*(G) is generated by
F(G) and the components of G 7) Then Cq(F(G)) = Z(F(G)), since this
equality always holds for F*(G), [As2, (31.13)]. If F(G) is cyclic or of order
> 16, then Aut(F(G)) is a 2-group, [P, 9.10], and it follows that G itself is a
2-group, contradiction. Therefore F(G) is the quaternion group of order 8, so

Z(F(G)) has order 2 and Aut(F(G)) s S4 , [P, 9.9]. But then \G\ divides 48,
contradiction.

Therefore F(G) < F*(G), and G has a component L (a subnormal sub-

group such that L/Z(L) is a nonabelian simple group). Now [L, F(G)] = (1)
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by [As2, 31.6], and [L, M] = (I) if M is any component distinct from L,
by [As2, 31.5]. Therefore Z(L) < Z(F*(G)), and the latter, being a nilpotent
normal subgroup, is a 2-group. Let S be a Sylow 2-subgroup of F*(G) con-

taining Z(F*(G)). Since F*(G) is not solvable, S cannot be cyclic, [P, 12.8],

and by (2.5) S is a generalized quaternion group. But then Z := Z(S) has

order 2, and since Z(L) ^ (1) (by the comment immediately following (2.4))

we see that Z(L) = Z(F*(G)) = Z . Therefore all the components of G have

the same center Z , generated by the unique involution of F*(G).

Now we will show that L = F*(G). If M were another component of G,

then [L, M] = (1) so LnM = Z . But L and M have generalized quaternion

Sylow 2-subgroups, so LM > C(2) x C(2), violating (2.4). Similarly, since

F(G) is either cyclic or generalized quaternion and since [L, F(G)] = (I), it

follows that F(G) < L. Thus L is the only component, and it contains F(G),

whence L = F*(G).
Next, we claim that 0(L) = (I), that is, L has no nontrivial normal sub-

groups of odd order. For, if ./V is a minimal offender then N is abelian by

the Feit-Thompson Theorem, and Oq(N) ^ (I) for some odd prime q . Then

Oq(L) ^ (1), and since L = F*(G) is normal in G, we have Oq(G) ̂  (I),
contradiction. Now I isa quasisimple group with 2-rank m(L) = 1, and

with O(L) = 1 . By a theorem of Gorenstein and Walter, [Su, Chapter 6, 8.17],

either L = SL2(r) for an odd prime power r = pe > 3, or else L/Z = A1.

The latter is impossible since A-¡ > C(3) x C(3). Therefore L = SL2(p), since

the Sylow /j-subgroups of SL2(pe) are not cyclic if e > 1. To see that p is a

Fermât prime, let a £ GF(p)* have odd prime order q . Then Diag(a, a~x)

and the elementary matrix 1 + e"i2 generate a nonabelian group of order pq ,

contradicting (2.4).
It remains to be shown that L = G. Since L = F*(G), we have Z =

Z(L) = CG(L), [Su, Chapter 6, 6.11]. Therefore G/Z < Aut(L) = PGL2(p).
Then \G\ < 2| PGL2(p)\ = 2\L\, so [G : L] < 2. Therefore L contains every
element of odd order in G. Since G has generalized quaternion Sylow 2-

subgroups, any order-2 subgroup of G is a conjugate of Z and hence is in L.

Since G = Q(G), L = G.

3.   1(G) n Z   IS A PRIME POWER

Let K/k be a finite Galois extension, and assume k is not algebraic over a

finite field. We know, by (2.3), that K*/&(K/k) is a torsion group if and only

if the Galois group is not a Frobenius complement. Moreover, ( 1.4) tells us

that in this case K*/Q(K/k) is a bounded group. In this section we will show

that if the group K*/@(K, k) is nontrivial and bounded, then its exponent is

either p or p2, for some prime p . The argument is purely group-theoretical:

We will show, given any finite group G, that 1(G) n Z is either 0 or (pe) for a

prime p and an integer e < 2 . We do not know whether it every happens that

1(G) n Z = (p2). The only groups that would have to be checked are the groups

SL2(p) for Fermât primes p > 5 .

3.1. Theorem. Let G be a finite group such that 1(G) n Z is neither (0) nor

( 1 ). Then 1(G) n Z = (p) or (p2) for some prime p .

Proof. By (1.6) we may assume that G satisfies condition (2.4). Then, using
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(2.2), (2.6), (2.7), and (2.10) we reduce to the case G = SL2(p) where p is a

Fermât prime greater than 5. Put I = 1(G). We will show first that

(3.1.1) IZpG^ZpG, but lZqG = ZqG for every prime q¿ p.

3.2. Lemma. Let G be any finite group, and let p be a prime. Then YLPG =

ZPG if and only if for every irreducible (equivalently, every absolutely irreducible)

representation (p : G —> GL(F) in characteristic p, there is an element x £ G

of prime order, say q, such that either

(i) p ^ q and (p'(x) fixes a nonzero vector in V, or

(ii) p = q and 4>(x) has a Jordan block of size p.

Proof. Suppose IZPG = ZPG, and let V be any nonzero G-module in charac-

teristic p . Since I is generated by elements of the form 1 + x -\-h xq~x , for

elements x of prime order q , there must be such an x such that T := <f>(x)

does not satisfy l + T-\-h Tq~ ' = 0. If p / q , then T has 1 as an eigenvalue
since 1 - Tq = 0. If p = q then 1 + 7' + ... + Tq~x = (1 - T)p~x , and T must

have a Jordan block of size p .

If IZpG / ZPG, choose a maximal left ideal m containing I. Then p £ m.;

hence V := ZpG/m is an irreducible G-module in characteristic p , and IV =

0. We may assume V is absolutely irreducible, by passing to a splitting field

and choosing one of the composition factors of the extension of V. If x £ G

has prime order q , then T := cp(x) satisfies 1 + T H-+ Tq~~x = 0, making

(i) and (ii) impossible.

We will also need the following result on transition from characteristic zero

to characteristic p.

3.3. Lemma. Let G be a finite group, and let R be a discrete valuation ring of

characteristic zero with quotient field F and residue field k. If every irreducible

F G-module is of dimension at most m, the same bound holds for the irreducible

kG-modules.

Proof. We may assume R is complete. Since 7" G is semisimple, one can find

an ÄG-lattice L = Lx © • • • © Lt such that F ® L is free of rank one over F G

and each F®L¡ is irreducible. If M is the free R G-module of rank one, then

F <g> M = F (8> L, and by Brauer's Theorem [DB, 48.7], k ® M and k ® L have
the same composition factors. Since every irreducible k G-module occurs as a

composition factor of k® M, hence of some k® L¡, the result follows.

Now let G = SL2(/?), p a Fermât prime greater than 5, and return to the

proof of (3.1). Using (3.2) and the natural representation G —► GL2(p), we

see that IZPG ^ ZPG. Let q be a prime distinct from p, and let V be

an absolutely irreducible G-module in characteristic q . We will show that G

contains an element x as in (3.2), thereby proving (3.1.1).

Let x = 1 + ex2, an elementary matrix of order p. If x fixes a nonzero

vector of V we are done, so assume it does not. Since x is conjugate to xm

for 1 < m < (p - l)/2, it follows that the number of distinct eigenvalues of

x is a multiple of (p - l)/2. Further, by considering the dimensions of the

eigenspaces, we see that dim V is a multiple of (p - l)/2. However, (3.3)

implies that dim V < p + 1, since this holds in characteristic zero, [DA, 38.1].
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Therefore

(3.1.2) dimK = (p-l)/2orp-l.

Let b £ G be the element of order p + 1 considered in the proof of (2.10),

and let y = bm be an element of order 3. (Note 3|/?+l as p is a Fermât prime.)

If x is an irreducible character of G in characteristic zero, then x(y) > -2.

(See [DA, 38.1].) Since p > 5 it follows that y must have 1 as an eigenvalue

in characteristic zero. The same then holds in characteristic q if q\\G\, by [P,

15.11].
Consider the case q = 2 (actually, this argument will work as long as q ^

3). Let K be a splitting field for G containing all p(p + l)st roots of unity,

and let R be its ring of algebraic integers. Let /^ be a maximal ideal of R

containing q . By (the proof of) Lemma 3.3, we see that F is a composition

factor of L/mL for some RG-lattice L with W := K® L irreducible. Every

nontrivial G-module has dimension at least (p-l)/2, since an element of order

p must have at least that many nontrivial eigenvalues. It follows that L/mL

has composition factors consisting of at most two trivial factors and V, unless

dim W = (p - I)/2 and the rank of L is at least p - 1. So exclude that case

for the moment. If y has no fixed points on V, then (since both eigenvalues

of order 3 occur with the same multiplicity) x(y) < 2 - ( 1/2)(dim V), where x
is the character of W . Since p > 17, this contradicts the fact that x(y) > -2.

In the excluded case, let a be the automorphism of K that generates the

automorphism group on pth roots of unity and fixes (p + l)st roots of unity.

Then a acts on R,K, and R/m,, and so for any G-module M over one

of those rings we can define Ma in the obvious way. Then W and Wa are

isomorphic, since the character is invariant under o for any character of degree

at least p - 1. However V and Va are not isomorphic, since the eigenvalues of

the element of order p will be different. Thus by Brauer's theorem, V and Va

are both composition factors of L/mL. In particular, y has no fixed points

on either V or Va , so 1 has multiplicity at most 2 as an eigenvalue for y on

W. We now obtain a contradiction as above.
Finally, suppose q is an odd prime dividing p + 1 , and let bs generate a

Sylow ^-subgroup S of G . Since the centralizer of every nontrivial subgroup

of S is (b) (by Step 1 of the proof of [DA, 38.1]), it follows that SnT = (l)
for every Sylow ^-subgroup T distinct from S. Letting TV = NG(S), we have,

by the Green Correspondence [Al, p. 71, Theorem 1],

(3.1.3) VN = U®W,

where U is an indecomposable TV-module and W is a projective TV-module.

If W ^ 0 then W is a nonzero projective 5-module. But then any element of

order q in S acts on W with Jordan blocks of size q . Therefore we assume

W = 0, that is, V is indecomposable as an TV-module. Recall from Step 1 of

the proof of [DA, 38.1] that (b) has index 2 in TV, and if g £ TV -(b) we have
b8 = b~x. It follows that g2 e Z(G). Therefore, any absolutely irreducible

representation of TV is at most two-dimensional. (If v is an eigenvector for

b, then (v, gv) is an TV-invariant subspace.) It follows that F is a direct

sum of at most 2 indecomposable S-modules, whence dim V < 2\S\. (See

the discussion on pp. 34, 35, 42, 43 of [Al]. The main point is that V is
uniserial as an TV module.) Since 2|5| divides p + 1, it follows from (3.1.2)
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that dim V = (p - l)/2 and |5| = (p + l)/2. But 3\p + 1, so q = 3 . It follows
from (1.13) or directly that the only solution to 2-y = p + 1 (p Fermât) is

e = 2, p = 17 ; and so dim V = 8 . Then \N/S\ = 4, and it follows that V is
indecomposable as an S-module. Therefore, an element of order 3 in S acting

on V has two Jordan blocks of size 3.

We have now verified (3.1.1), and it follows that inZ = (pe) for some e > 1.

Let D be the ring of p-adic integers, let K D D be a splitting field for G, and
let R be the integral closure of D in K. To prove that p2 £ I, it will suffice

to show that p2 £ 1(RG).
Note that R is local (as D is complete); let (n) be its maximal ideal. Let

T D RG be a maximal order in KG. Then T = ®( Y¡, where Y¡ = End^L,)

and each L, is an TiG-lattice with KL¡ irreducible. We have already seen,
using the character table of G, that the element y of order 3 has 1 as an

eigenvalue for each irreducible representation (in characteristic zero). Since y

has a nonzero fixed point on L,, it also has a nonzero fixed point on Li/nL,.

Therefore 1 + y + y2 acts nontrivially on L¿/nLi (since p ^ 3). Then nL¡ ^

( 1 + y + y2)Li, and it follows that TIT = Y. Since RG D \G\T = pY, we have
1(RG) = (RG)l(RG) D (pY)l(pY) = p2YlY = p2Y.

If we do not require 37 to contain all the minimal subgroups of G, there

are easy examples to show that L(W) n Z need not be a prime power.

3.4. Example. Let n be any positive integer, and let G = C(n) x C(n) =

(x) x (y). Let A, = (xy1), 0 < i < n , and for each prime divisor p of n , let

Bp = (y"lP). If X = {A-} U {Bp}, a slight modification of the proof of (1.6)
shows that n £ L(%f). To see that L(ß?) nZ = (n), let Ç be a primitive «th

root of unity, and map ZG onto Z[£] by x h-> 1, y >-* Ç. Then £ vt0 >-> n ,

while the other £^, and all the £ßp map to 0 in Z[Ç].

4. The groups with 1(G) ^ ZG

We begin by classifying the groups that are "almost" Frobenius complements.

For a prime p , we let Clp<(G) be the subgroup of G generated by elements of

prime order / p . Recall that Op(G) is the largest normal subgroup of G, and

0(G) is the largest normal subgroup of odd order.

H. Blau has informed us that W. Stewart in unpublished work [St] has ob-

tained a result similar to Proposition 4.1.

4.1. Proposition. Let G be a finite group and p aprime. Assume Op(G) = 1,

and put H = Q.p:(G). These are equivalent:

(a) There is a representation o : G —» GL(F) in characteristic p such that if

x£G has prime order ^p then a(x) has no nonzero fixed points in V.

(b) There is a representation a : 77 —> GL(F) in characteristic p such that if

x e 77 has prime order ^ p then a(x) has no nonzero fixed points in V .

(c) H = A x B where B is cyclic of square-free order prime to p\A\, and one

of the following holds:

(i) A = (l).
(ii) £7 = 2;  and either A^Sz(22k+x), k > 1, or A^SL2(2m), m>2,or

A 3i Sz(22k+X) x SL2(2m), where k>l, m > 1, and |5z(22A+1)| and

| SL2(2m)| have no common odd prime factor.

(iii) p = 3 ;  and A a SL2(q) with q = 5,7, 11 or 3k , k>2.
(iv) p > 3 ;  and A = SL2(#) with q = 3, 5 or pk , k > 1.
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Proof. By considering the restriction of a to H, we see that (a) implies (b).

Similarly, if (b) holds, the induced representation aG shows that (a) holds.

To show that (c) implies (b), we shall exhibit the representation. It suffices

to do so for A and B separately, since the tensor product of the individual

representations will satisfy (b) for the direct product (since the orders of A and

B are relatively prime). For the cyclic group B, we just take a faithful one-

dimensional representation (over a splitting field). If A = SL2(q) and p divides

q , take the natural two-dimensional representation. If A = SL2(5) and p is not

2 or 5, take the two-dimensional representation (which occurs in characteristic

0 and hence in every characteristic). If p > 3 and A = SL2(3), again take the

two-dimensional representation. If p = 3 and A = SL2(7) or SL2(17), we can

take a faithful representation of dimension 6 or 16, respectively. Finally, assume

p = 2. If A is a Suzuki group, take the natural 4-dimensional representation.

(Recall A is a subgroup of the 4-dimensional symplectic group.) If A is a direct

product of a special linear group and a Suzuki group, take the tensor product of

the natural 2-dimensional representation and the 4-dimensional representation.

Now assume (b) holds. The following observations are crucial:

( 1 ) If q > r are primes distinct from p , then every subgroup of 77 of order

qr is cyclic.
(2) If q is a prime distinct from p, then either the Sylow ^-subgroup of 77

is cyclic, or q = 2 and the Sylow g-subgroup of 77 is generalized quaternion.

To prove (1), suppose D is a noncyclic subgroup of 77 of order qr. Then,

if h £ D has order r, we know that o(l) + o(h) -I-\-a(hr~x) = 0, since any

nonzero vector in its image would be an eigenvector for a(h). In particular, this

holds for the elements h¡ considered in the proof of (1.6). The computations

in the proof of (1.6) (done explicitly in the case q = r and left to the reader in

the case q > r) now show that qo(l) = 0, a contradiction, since q is different

from the characteristic. This proves (1); and (2) follows, by (2.5).

Since 0>(77) = (1), it follows, exactly as in the proof of (2.8), that H =
TV x C, where C is cyclic of square-free order relatively prime to p\N\ and

O(N) = (I). (As in the proof of (2.10), the Feit-Thompson Theorem is used

to deduce that O(TV) = (1) from the fact that Oq(N) = (I) for every odd q 7)
Thus we may assume that 77 = TV.

Suppose first that p = 2. Since 0(77) = (1) and 02(77) = (1), it follows
from [As2, 31.7] that F*(H) = E(H) is a direct product Lxx-xL, of simple
groups. By (2) and [Asl, Lemma 3], Lx  is isomorphic to one of the following:

Ju

Sz(22k+X),        k>l,  or

PSL2(r), r = 2k ,  k>2, or 5 < r prime.

We rule out the Janko group Jx because it has a noncyclic subgroup of order

21. If Li = PSL2(r) with 5 < r prime, we see by (1) that r is a Fermât

prime. Then the argument in the proof of Proposition (3.1), specifically, the

case q = 2, shows that o cannot exist.

Thus Lx =Sz(qx) or SY2(qx) with qx a power of 2. We argue similarly for

each L,. Since every odd Sylow subgroup of 77 is cyclic, gcd(|L,j ,\L¡\) is a

power of 2 for i ^ j. But \Sz(q¡)\ and |SL2(<7,)| are multiples of 5 and 3,
respectively, so t < 2 and we have (ii) of (c).
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Now assume p > 2. Arguing exactly as in the proof of (2.8), we see that

if the Sylow 2-subgroups of TV are cyclic, then TV is cyclic. Similarly, if TV
is solvable, the argument given in the proof of (2.9) shows that TV = SL2(3).

(This does not happen if p = 3, since |£¿3<(SL2(3))| = 2 7) So we can assume

TV has generalized quaternion subgroups and is not solvable. It follows as in

(2.10) that either TV £ SL2(<?) with q an odd prime power or TV/Z =■ A-,,
where \Z\ = 2 . Suppose first that TV/Z = A-¡. If p > 3 this cannot occur since

A-, has noncyclic Sylow 3-subgroups. If p = 3, inspection of the 3-modular

irreducible characters of TV = 77 shows that no such representation as in (b)

can exist.

Therefore TV = SL2(q) with 3 < q an odd prime power, and we claim that

either q = 5, or p\q, or p = 3 and q £ {7, 17}. Assume this is not the
case. Then q = re > 5 , with r an odd prime distinct from p . Since the Sylow

r-subgroup is cyclic, q is prime. As in the proof of (3.1), we can assume that

dim V = q — 1 or (q - l)/2. We can also assume that G acts faithfully on V.

If p does not divide q + 1, then V is a projective G-module (see [FI,

Theorem 2.10, p. 276]), and so V = L/mL for some ÄG-lattice L, where R
and m are as in (3.1) (but now p £ m). By [DA, 38.1], it follows that any

element of order 3 has fixed points on L and so on V. If p > 3, this is a

contradiction. If p = 3, then, as q £ {7,17}, there is a prime d > 6 with

d\q2 - 1. By [DA, 38.1], an element of order d has fixed points on L and so

on V . So p\q + 1.
If q is not a Fermât prime, let c be an odd prime divisor of q - 1 . Then

there is a noncyclic subgroup of order qc, contradicting ( 1 ) above. Also, if

p > 3, then, arguing exactly as in (3.1) for the case of characteristic 2, we see

that every element of order 3 has a fixed point on V . So assume p = 3 and

q is a Fermât prime. Then F is a composition factor of L/mL for some
ÄG-lattice L with W := K ® L irreducible. The dimensions of the faithful

irreducible 7<G-modules are (q - l)/2, q - 1, and q + 1 . (See [DA, 38.1],
noting that q = 1 (mod 4).) If dim W = q + 1, then L/mL is projective and

irreducible for any TîG-lattice L in W (see [Se, Proposition 46, p. 136]). If

dim W = (q - l)/2, then L/mL is irreducible, since SL2((?) has no smaller

nontrivial representations in any characteristic different from q . If 3 < b is a

prime divisor of q + 1 , we see by the character table that an element of order

b has fixed points on L and so on L/mL. Finally, suppose dim W = q - 1 .

Since the elements of order p have no fixed points on W, either L/mL is

irreducible or L/mL has two composition factors of dimension (q - l)/2.

Moreover, these two composition factors are conjugate under the Galois group.

(See the argument in the proof of (3.1).) Again, from the character table, we

see that an element of order b has fixed points on W, hence on L, and so on

all composition factors of L/mL. This completes the proof.

We can now classify the groups G for which 1(G) ^ G. If G is not a

Frobenius complement, then there is a unique prime p for which 1(G)ZPG ^

ZPG, by (3.1). Therefore (2.2), (2.10) and the theorem below give the complete

classification. Note that condition (1) in (4.2) is identical to (c) of (4.1) except

when p = 3 : This time we cannot rule out the possibility that A = SL2(3).

4.2.   Theorem. Let  G  be a finite group and let p  be a prime.    Set H =

Cl(G) / Op(Çl(G)). Then 1(G)ZPG / ZPG if and only if the following conditions
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(1) and (2) are both satisfied:
(1) H = A x B, where B is cyclic of square-free order prime to p\A\, and

one of the following holds:

(i) A = (l).
(ii) p = 2;  and either A^Sz(22k+l), k > 1, or A^SL2(2m), m>2,or

A =■ Sz(22k+X) x SL2(2m), where k>l, m > 1, and \Sz(22k+x)\ and

| SL2(2m)| have no common odd prime factor.

(iii) p = 3 ;  and A=- SL2(q) with q = 3, 5,7, 17 or 3k , k > 2.
(iv) p > 3 ;  and A =■ SL2(q) with <? = 3, 5 or pk, k>l.

(2) If p = 2, or if p = 3 and A = SL2(i?) with q = 1 or 17, then every
element of order p in G is in Op(G).

Proof. If (1) and (2) are satisfied, one uses the representations described in the

proof of (4.1) to conclude that I(G)ZPG / ZPG. For the converse, we may

assume as usual that G = Q(G). By (3.2), there is an irreducible representation

a : G —> GL(F) in characteristic p , such that

(3.2, i) if x £ G has prime order q ^ p, then o(x) does not have 1 as an

eigenvalue, and

(3.2, ii) if x e G has prime order p, then T := o(x) satisfies 1 + T -\-h

TP~X =0.

It follows from (3.2, i) that ker a < Op(G). Since a is irreducible, Op(G) <
kerrr by [Al, Chapter 1, §3, Corollary 3 and Theorem 4]. Thus Op(G) = kercr,
and we can view o as a faithful representation of 77. By (3.2, i), 77 satisfies

(b), and hence (a) of (4.1), so write K := Çlp>(H) = AxB as in (4.1), (c). Note
that A and B are both normal in H. We want to show that H = K except

in one special case.

Let A be the image in H of the set of elements of order p in G. Since G =

Q(G), 77 = (K, A). If p = 2, then A = (1) by (ii), so 77 = K, and conditions
(1) and (2) are satisfied. We assume from now on that p > 2. Suppose y £ A,

respectively, y £ H has prime order r ^ p. Then y cannot normalize any

abelian p'-subgroup D of H unless y commutes with D. (Otherwise, as D

is cyclic and every eigenspace of D is faithful, y must permute the eigenspaces

of D in orbits of size p, respectively, r. Then F is a free (y)-module. This

contradicts (3.2, i) if y has order r and (3.2, ii) if y £ A.) Thus, exactly as in

the proof of (2.8), it follows that if R is a nontrivial normal r-subgroup, 2 ^ r

prime, then H = Ho x R where r\\Ho\, and \R\ = r. Since Op(H) = (I), we

have 77 = TV x C, where C is cyclic of the square-free order prime to 2p, and

TV has no nontrivial normal subgroups of odd order. Then (A, A) < TV, and

since 77 = (K, A) it follows that TV = (A, A).

If y £ A, we claim y induces an inner automorphism on A . For otherwise

p divides |Out(^4)| ; and since p > 2 it follows that A = SL2(pe) where p\e,

and y induces a field automorphism on A . Therefore y normalizes but does

not centralize some subgroup of prime order dividing pe - 1, and we have

already seen that this is impossible.

Thus, for each y £ A, there is an element b £ A such that yay~x = bab~x

for all a £ A. Then y = b(b~xy) £ ACN(A), so A ç ACN(A) = N. If
A = (I), then K is cyclic and N/K is a /j-group. Thus TV = (A) is solvable.
Argue as in (2.10) to conclude that either TV = (I) or TV = SL2(3) (and so
p = 3). Since 77 = TV x C, we have the special case q = 3 of (iii). If A / (1),
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then (since p > 2) \Z(A)\ = 2. Let C = CN(A) and Z = Z(A). Since
TV = CA, it follows that N/Z = C/Z x A/Z . Since the Sylow 2-subgroup of
TV is a generalized quaternion group, it follows that C/Z has odd order. Thus

C = ZO(C). However, since O(N) = (I), this implies 0(C) = (I). Thus
C = Z is contained in K, whence A is as well. Therefore H = K, and ( 1 ) is

proved.

To prove (2), suppose p = 3 and 77 = SL2(q) x B with q = 1 or 17. If

y £ H has order 3, we see by inspection that 1 + o(y) + o(y2) ^ 0. Thus, if

x G G has order 3, x must be trivial in H, whence x £ Os(G).

Summary. At this point the reader should return to (1.14) to recall the field-

theoretic implications of the integer n , where 1(G) nZ = (n). We learned in §3

that either n = 0,n = l,n=p,or n = p2, where p is prime. Assume, now,

that K/k is Galois with Galois group G, and that k has an infinite set, of

finite character, consisting of discrete rank-one valuations that split completely

in K. (By (1.8) such valuations exist for algebraic number fields and function

fields; in particular they exist if k is finitely generated but not algebraic over

an arbitrary field.) Combining the field-theoretic results with our classification

theorems (2.10) and (4.2), we have the following possibilities:

n = 0 «• K*/@(K/k) has elements of infinite order.

<=> G is a Frobenius complement.

«■ Q(G) = A x B, where B is a cyclic group of (square-free)

order relatively prime to \A\,  and A is either trivial or

SL2(3)or SL2(5).

n = p or p2 ■& K*/@(K/k) is an infinite bounded group of

exponent p or p2.

<=> G is not a Frobenius complement and G satisfies

(1) and (2) of (4.2).

The only other possibility is n = 1, in which case K* = Q(K/k).

Remarks. 1. Let H be a finite group with Op(H) = (I) for a fixed prime p.

We can find a finite (Z//?Z)77-module M and an element a £ H2(H, M) such

that a restricted to every cyclic subgroup of H is nonzero. Let G be the

extension of 77 by M corresponding to a. Then it follows that M = Op(G)

contains all elements of order p in G (from the fact that the restriction of

a is nonzero on every subgroup of order p). Moreover, if H = Çlp<(H), it

follows that G = Q(G). Since SL2(3) is generated by its elements of order 3,

it thus follows that given any 77, p as in (4.2) there exists a G = Q(G) with

G/Op(G) = H.
2. Notice that (4.2) implies that 1(G) = ZG for every nonabelian simple

group G. There is, however, a direct proof of this fact: By Glauberman's Z*

Theorem, it follows that G contains an elementary abelian group of order 4.

(See the comments after [DA, 19.8].) Therefore 2 £ 1(G). By the Baer-Suzuki

Theorem, [As2, 39.6], G also contains an odd dihedral group; therefore 1(G)

contains an odd prime.
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5. The case of a non-Galois extension

Let Ex and E2 be subfields of K . Assume K is not an algebraic extension

of a finite field, and neither extension K/E¡ is purely inseparable. If K has

finite degree over ExnE2, then K*/E\E\ is known to have infinite rank, [W].

In this section we will prove this result under the weaker assumption that K

is algebraic over Ex n E2. (See (5.5).) On the other hand, we show, in (5.6),

that every field K of infinite transcendence degree over its prime subfield has

proper subfields Ex and E2 such that K* = E\E\ .
We will reprove the result from [W], but in a stronger form (5.3) that explains

in a quantitative way why two intermediate fields should behave differently from

three. Our proof is much easier than the one in [W] and makes use of the

rational group algebra QG. It also uses a result (5.2) similar to (1.4), in which

the top field K is really an intermediate field for a Galois extension. This

allows us to study the multiplicative structure of finite-dimensional separable

extensions that are not necessarily Galois.

5.1. Lemma. Let M/k be a finite Galois extension with Galois group G, and

assume that k is not an algebraic extension of a finite field. Then the QG-module

Q ® M* has a free QG-module of infinite rank as a direct summand.

Proof. We follow the proof of (1.4), with M in place of k . Let ¥,• : R®Af* -+
RG be the homomorphisms induced by the maps <P, of (1.4.1). For each

d > 1, (*Fi, . •. , ^d) maPs R ® M* onto (RG)(d), by the approximation

theorem. Since RG and QG are semisimple the desired result follows easily.

In fact, Jia Bao-Ping [Ji] has shown that Q ® M * is a free QG-module. He

has also obtained the next result independently:

5.2. Proposition. Let M, k, and G be as in (5.1), and let K, Ex, ... , Et be
intermediate fields with K D E¡ for all i. Let A, Bx, ... , Bt be the corre-
sponding subgroups of G, and put D = E* ••• E* (= @({BX, ... , Bt}) in the
notation o/§l). Then the following are equivalent:

(a) K*/D is bounded.
(b) K*/D is torsion.

(c) K* ¡D has finite rank.
(d) L({A})/L({BX, ... , Bt}) is torsion (hencefinite).

Proof. Clearly (a) => (b) => (c). Assuming (d), put r = [M : K] and n =

\L({A})/L({BX, ... , B,})\. If a £ K*, we have ar = a^A , and nC£A) £
L({BX, ... ,B,}). By (1.1), a"reD;thus (d) =*• (a). To show that (c) =► (d),
note that (Q <g> M*)L«A» = Q ® K* and (Q <8> m*)l«b"-<b<» = Q ® D, by

(1.1). If (d) fails, the quotient QL({A})/QL({BX, ... , B,}) is nontrivial, and
by (5.1), (Q®M*)LttAV/(Q®M*)L{{Bi>-<B'}) has a direct summand isomorphic

to a direct sum of infinitely many copies of this quotient. Thus Q ® K* /Q ® D

is infinite-dimensional, and (c) fails.

5.3. Theorem. Let K/k be a finite algebraic extension, and assume k is not

an algebraic extension of a finite field. Let Ex, ... , Et, t > 2, be intermediate

fields such that K* /E* ■ ■ • E* has finite rank (equivalently, is bounded). Let

d¡ = [K : Ej]s (the separable degree), and let d = [K : k]s. Then

— — >       l~ l

dx dt ~ d
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Proof. Let L, respectively F¡, be the subfield of elements of K , respectively

Ej, separable over k . Then L* /Fx* ■■■ F* has finite rank and hence is bounded,

by (5.2). The parenthetical remark that K*/E* ■■ ■ E* is bounded follows from

the fact that K*/L* is bounded. Since [L : F¡] = d¡ (by multiplicativity of the
separable degree function) and [L : k] = d , we may as well change notation and

simply assume that K/k is separable. Let M/k be the normal closure of K/k ,

and let G, A, B¡ be as in (5.2). Then QL({A}) = QL({BX }) + ••• + QL({B,})
in the group algebra QG. But, for any subgroup 77 of G, QL({77}) has
dimension [G : 77]. Since the subspaces QL({B¡}) all have the one-dimensional

subspace QL({G}) in their intersection, we have

¿s¿+-+!-(.-i).

If / = 2, we see that either dx = 1 or d2 = 1, that is, K is purely inseparable

over Ex or E2. If t = 3, the only possibilities with dt > 1 are 2, 2, m , with

m < d/2 (of course!); or 2, 3, m , with m < 6/(1 + 12/d).
The next result will be used to handle algebraic extensions that are not finite-

dimensional.

5.4. Lemma. Let L/k be an algebraic field extension, and let Ex, ... , Et be

intermediate fields. If N/k is a finite Galois extension, then

((E¡---Eí)nN)/((E¡nN)---(EínN))

is torsion.

Proof. By replacing each E¡ by its subfield of elements separable over k,

we may assume that each E¡/k is separable. Let x = yx---y¡ £ TV, with
y i e E* . Let M be the normal closure over k of TV(yi , ... ,yt). Set G =

Gal(M/k),f = £Gal(M/TV), and fi = £Gal(Ai"/(A7 n E,)). (These are
sums in ZG as in §1.) Since N/k is normal, / is central in ZG. Let

n = [M : TV], let m¡ = [M : M n E¡], and let m be the least common mul-

tiple of the m,. Now yy = yf' , so yf = zf for some z, £ M n E¡. Then

yff = zfif = z{fl £ M n Ej, and of course yff £ TV. Thus yff £ E* n N,
whence xmn = xmf £ (E\ n TV) • • • (E* n N).

5.5. Theorem. Let Ex and E2 be subfields ofK suchthat K is algebraic over

k := ExnE2. Assume K is not an algebraic extension of a finite field and neither

extension K/E¡ is purely inseparable. Then K*/E\El has infinite torsion-free

rank.

Proof. As in the proof of (5.3), we may assume K/k is separable. Choose

x £ K - (E\ U E2), and let TV be the normal closure of k(x) over k . Using

(5.4), we may replace the E¡ and K by their intersections with TV, and assume

that K/k is a finite extension. Now apply the case t = 2 of (5.3).

Next we show that the previous result can fail if K is not assumed to be

algebraic over k.

5.6. Theorem. Let K be a field of infinite transcendence degree over its prime

subfield k, and let E be any subfield such that K/E is algebraic.  Then there
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exists a subfield F of K such that K has infinite transcendence degree over F

and K* = E*F*.

Proof. By hypothesis, the transcendence degree of K/k is equal to \K\. Choose

a transcendence basis X for E/k , and write X as the disjoint union of sets

X¡, i = 1,2,3, ... , each of cardinality \K\. Let E¡, respectively, K¡ be the
algebraic closure of k(Xx, ... , X¿) in E, respectively, in K. Then E is the

ascending union of the E¡, and K is the ascending union of the K¡. Let r,

be a surjection from X¡ to K¡-X for each / > 0. Set Fx = k , and define Fi+X

inductively by Fi+X = F¡({x • r,(x) : x £ X¡}). It follows that

(i) Fi+X is a subfield of K¡, and
(ii) {x • r,(x) : x £ X¡} is algebraically independent over 7v;_i .

Since Fi is a subfield of K¡-i, F¡+x is purely transcendental over F,, whence

(iii) S := {x • r¡(x) : x £ X,■, i > 0} is algebraically independent over k .

Now let F = k({x • r,(x) : x G X,■, i > 1}. By (iii), the transcendence degree

of K over F is |Xi|. Also, for each i > 1 and each x G X,-, we have

(iv) r¡(x) = x~x-(x • r,(x)) G E*F*.

Therefore E*F* D 7i;_, for every i > 1, and it follows that E*F* = K*.

One can of course enlarge F to obtain examples in which K/E and K/F

are both proper algebraic extensions, yet K* = E*F*. At the other extreme,

one can modify the construction to get examples in which both extensions K/E

and K/F have infinite transcendence degree. We do not know whether or not

there are examples with K* = E*F*, where E and F are proper subfields of

K, and K has finite transcendence degree over E n F . When K/E and K/F

are purely inseparable, it is even conceivable that K/(EnF) could be algebraic.

References

[Asl]     M. Aschbacher, Thin finite simple groups, J. Algebra 54 (1978), 50-152.

[As2]    _, Finite group theory, Cambridge Univ. Press, Cambridge, 1986.

[Al]       J. L. Alperin, Local representation theory, Cambridge Univ. Press, Cambridge, 1986.

[B]        A. Brandis, Über die multiplikative Struktur von Körpererweiterungen, Math. Z. 87 (1965),

71-73.

[DA] L. DornhofT, Group representation theory. Part A, Dekker, New York, 1971.

[DB]     _, Group representation theory, Part B, Dekker, New York, 1972.

[DM]    E. D. Davis and P. Maroscia, Affine curves on which every point is a set-theoretic complete

intersection, J. Algebra 87 (1984), 113-135.

[FI]       W. Feit, The representation theory of finite groups, North-Holland, Amsterdam, 1982.

[F2]      _, On large Zsigmondy primes, Proc. Amer. Math. Soc. 102 (1988), 29-36.

[G]       R. Guralnick, A question of Stafford about affine PI algebras, Comm. Algebra 18 (1990),
3055-3057.

[H]       W. J. Haboush, Multiplicative groups of Galois extensions (preprint).

[Ja]       G. Janusz, Algebraic number fields, Academic Press, New York, 1973.

[Ji]        Jia Bao-Ping, Splitting of rank-one valuations, Comm. Algebra 19 (1991), 777-794.

[NNT]  M. Nagata, T. Nakayama, and T. Tuzuku, On an existence lemma in valuation theory,

Nagoya Math. J. 6(1953), 59-61.

[P] D. Passman, Permutation groups, Benjamin, New York, 1968.

[Se]       J.-P. Serre, Linear representations of finite groups, Springer-Verlag, New York, 1977.

[St]        W. B. Stewart, Largely fixed point free groups, (unpublished).



584 ROBERT GURALNICK AND ROGER WIEGAND

[Su]      M. Suzuki, Group theory II, Springer-Verlag, New York, 1986.

[W]       R. Wiegand, Picard groups of singular affine curves over a perfect field, Math. Z. 200 ( 1989),

301-311.

[Z]        K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. 3 (1892), 265-284.

Department of Mathematics, University of Southern California, Los Angeles, Cali-
fornia 90089-1113

Department of Mathematics, University of Nebraska, Lincoln, Nebraska 68588-0323


