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PRODUCTS OF COMMUTATIVE RINGS
AND ZERO-DIMENSIONALITY

ROBERT GILMER AND WILLIAM HEINZER

Abstract. If R is a Noetherian ring and « is a positive integer, then there

are only finitely many ideals I of R such that the residue class ring R/I has

cardinality < n . If R has Noetherian spectrum, then the preceding statement

holds for prime ideals of R . Motivated by this, we consider the dimension of an

infinite product of zero-dimensional commutative rings. Such a product must

be either zero-dimensional or infinite-dimensional. We consider the structure

of rings for which each subring is zero-dimensional and properties of rings that

are directed union of Artinian subrings. Necessary and sufficient conditions are

given in order that an infinite product of zero-dimensional rings be a directed

union of Artinian subrings.

1. Introduction

All rings we consider are commutative and have a unity element. If i? is a

subring of S we assume the unity of S is contained in R, and hence is the

unity of R. We use dimi? to denote the (Krull) dimension of a ring R, and

\S\ to denote the cardinality of a set S.

Un is a positive integer, if {/„} is the set of ideals /„ of a ring R such

that \R/Ia\ < n, and if I = f]aIa, then we prove (in Theorem 2.2) that: (a)

either R/I = (0) or dim R/I = 0, (b) if R is Noetherian, then the set {/„}
is finite, (c) if R has Noetherian spectrum, then the set {/„} contains only

finitely many prime ideals. The proof of Theorem 2.2 led us into consideration

of the main themes of this paper: the dimension of a direct product Y[a Ra of

commutative rings and of its subrings, particularly in the case where each Ra

is zero-dimensional.

We use N(R) and J(R), respectively, to denote the nilradical and Jacobson

radical of the ring R. If x G N(R) we define n{x) = k if xk = 0 but

xk~l ^ 0, and we define the index of nilpotency of the ring R, denoted n(R),

to be sup{?7(x) : x G N(R)}. In Theorem 3.4 we show that if {Ra}aeA is a

family of zero-dimensional rings and R = Y[n Rn , then the following conditions
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are equivalent: (1) dimR = 0, (2) J{R) = N{R), (3) N{R) = Y[aN(Ra), (4)
there exists a positive integer k such that {a e A : n(Ra) > k} is finite, (5)

dim R t¿ oo .

In §4 we consider conditions under which each subring of a ring S is

zero-dimensional. A ring 5 with this property is said to be hereditarily zero-

dimensional. We also consider this zero-dimensionality condition in a relative

context: if R is a subring of S, we say that (R, S), is a zero-dimensional pair

if each subring of S containing R is zero-dimensional. Corollary 4.3 states

that a ring R is hereditarily zero-dimensional if and only if for each prime

ideal P of R, the ring R/P is an absolutely algebraic field of nonzero charac-

teristic. In Theorem 4.9 it is shown that if {Ra}aeA is a family of rings, then

R = Y[aRa is hereditarily zero-dimensional if and only if each Ra is heredi-

tarily zero-dimensional and there exists a positive integer n such that the set

B — {a G A : n{Ra) > n or there exists P G Spec(Ra) with \Ra/P\ > n} is a

finite set. In Theorem 4.10 we classify the hereditarily zero-dimensional rings

that are hereditarily Noetherian as rings R of the form R = Ri®---®Rn®S,

where each JR, is an absolutely algebraic field of nonzero characteristic and 5"

is a finite ring, or alternatively as rings R for which N(R) is finite and R/N(R)

is a finite direct sum of absolutely algebraic fields of nonzero characteristic.

In §5 we consider the structure of rings that are the directed union of Artinian

subrings. Corollary 5.5 implies that if (S, M) is a zero-dimensional quasilocal

ring, then there exists an Artinian subring JR of S such that R Ç S is a zero-

dimensional pair. In particular, 5 is a directed union of Artinian subrings.

We present, in Example 5.6, an example of a ring R that is the directed union

of Artinian subrings but is such that R is not integral over any subring with

Noetherian spectrum.
§6 deals with the question of conditions under which a direct product of

rings is expressible as a directed union of Artinian subrings, or more generally,

of subrings with finite spectra. Theorem 6.7 states that if {Ra}aeA is a family

of rings and T = Y[a Ra , then T is a directed union of Artinian subrings if and

only if each Ra is so expressible and there exists a positive integer n such that

the set {a G A : n{Ra) > n or Ra has a residue field Ka with \Ka\ > n} is a

finite set. There is an analogous result concerning rings that are a directed union

of subrings with finite spectra. We conclude the paper with several questions

concerning directed unions of subrings.

We use Z to denote the ring of integers, Z+ to denote the positive integers,

and Q to denote the field of rational numbers.

2. Ideals of finite norm in a Noetherian ring

If / is an ideal of a ring R, we denote by n{I) the cardinality of the residue
class ring R/I («(/) = oo if R/I is infinite); «(/) is called the norm of

/ [BW, Gi, G4, p. 466]. Ideals of finite norm and rings R such that n(I)
is finite for each nonzero ideal I of R have historically commanded strong

interest. (Chew and Lawn [CL] and Levitz and Mott [LM] have considered

the class of such rings. We follow the terminology of [CL] and call such rings

residually finite.) The reason for this historical interest stems from algebraic

number theory. For example, any subring of a finite algebraic number field (or,

more generally, of a global field) is residually finite, and in fact, since residually
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finite rings are Noetherian, it follows from results of [G2] that global fields are

characterized by the property that each of their subrings is residually finite.

More recently, ideals of finite norm have been shown to play an important role

in the study of rings of integer-valued polynomials of an integral domain D,

particularly in the case where D is Noetherian. (See, for example, [CC, C,

Mc, and SSY].) In this section we consider the following question: If R is a

Noetherian ring and A: is a fixed positive integer, is the set of ideals I of R

such that n(R) = k finite? We provide an affirmative answer to this question

in Theorem 2.2.

Proposition 2.1. Let 3f — {Ra} be a family of finite rings such that the elements

of 3? lie in a finite number of isomorphism classes. Let R = Y[Ra and denote

by n the prime subring of R. There exists a monic polynomial h(X) G 7L[X]

that vanishes identically on R. Hence R is integral over n, and each subring

of R containing n is zero-dimensional.

Proof. We prove the assertion concerning h(X) first for a finite ring S =

is'Yi=i ■ Thus, if í g 5, the powers s, s2, ... are not all distinct, so there

exists a monic polynomial hs(X) = Xm* - X"s G ZLY] with 5 as a root. Hence

h{X) = nLi hs'i-X) e %[X] is monic and vanishes on S.

In the problem at hand, partition 3î according to its isomorphism classes—

& = U!=i^(!)—and choose JRa, G 32^ for each i. By the preceding para-

graph, there exists a monic polynomial h,(x) G Z[X] that vanishes identically

on Ra¡, and hence on each element of 32^ . Consequently, the monic polyno-

mial h{X) = n'=i hj(X) g 1[X] vanishes identically on R. It follows that R
is integral over n . Because the set {\Ra\} is bounded, R has nonzero charac-

teristic. Hence n is finite and dim S = 0 for each subring S of R containing

n.

We remark that if M = {Ra} is a family of finite rings, then there are only

finitely many isomorphism classes of elements of 32 if and only if {|iîa|} is

bounded; this is true since rings of different cardinalities are not isomorphic and

since, for a fixed positive integer n , there are only finitely many isomorphism

classes of rings of cardinality n .
We observe that under the hypothesis of Proposition 2.1, each subring of R,

even one without an identity element, has dimension < 0. To see this, we

note that if T is a ring with identity element e and if ( 1 ) each subring of T

containing e has dimension < m, then (2) each subring of T has dimension

< m, by the following argument: If S is an arbitrary subring of T and if

S* = S + Ze , then dim S < dim S* [AG, Corollary 3.4], and hence dim S < m .

Theorem 2.2. Let R be a ring, let m G Z+, let J^m = {Ia} be the set of ideals

Ia of R such that \R/Ia\ < m, and let I = f|a Ia . Then

(a) Either R/I = (0), or else R/I is zero-dimensional.

(b) If R is Noetherian, Jm is finite.
(c) If R has Noetherian spectrum, then J^  contains only finitely many

prime ideals.

Proof. The proof of Theorem 2.2 is trivial if J^, = {R}, so we assume through-

out the proof that Sm contains a proper ideal.

(a) The diagonal imbedding cp of R into na(-^/^«) has kernel / and cp{R)
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contains the prime subring of Y[a(R/Ia) • Hence Proposition 2.1 implies that

dim(R/I) = dim<p(R) = 0.
(b) If R is Noetherian, then R/I is zero-dimensional Noetherian, and hence

is the direct sum of a finite family {(R¡, M¡)}"=1 of Noetherian primary rings

[ZS, Chapter IV, §3]. We have f]a{I„/I) = (0), so given ;', there exists la¡ e J'm

such that Rj <£ Iaj/I. We write Iaj/I - B\@- ■ -®Bn , where B¡ is an ideal of R¡

and Bj < Rj. Then (R/I)/{Iaj/I) ~ R/Ia. ~ {Rx/B\)®---®{RnIBn) is a finite
ring, so in particular, Rj/Bj is finite. Because Bj < Rj, it follows that Rj/Mj

is finite, and since Rj is Noetherian and primary, an inductive argument on the

order of nilpotence of M¡ easily shows that Rj is finite. Hence R/I is finite

and has only finitely many ideals. Because the map Ia —> Ia/I is an injection

of J*m into the family of ideals of R/I, we conclude that J^¡ is finite.

(c) Suppose R has Noetherian spectrum. Then any prime ideal P G Jm

is a minimal prime of / since dim(R/I) = 0. Because / has only finitely

many minimal primes, it follows that j\„ n Spec(jR) is finite, as asserted. This

completes the proof of Theorem 2.2.

We remark that the conclusion of (b) fails badly if R is assumed merely to

have Noetherian spectrum. For example, if F is a finite field with q elements

and if W is an infinite-dimensional vector space over F , then the idealization

R = F(+)W of F and W is a zero-dimensional quasilocal ring with infinitely

many ideals of norm q" for each n > 1 . In this example, the intersection of

the family of ideals of R of norm q" is (0) for each n > 1 . We note that if

D is the polynomial ring F[{XQ}], where \{Xa}\ = dim W, then R ~ D/M2,

where M = {Xa}D.

3. The Krull dimension of Y[ Rn

Proposition 2.1 shows that if {Rn} is a family of finite rings and if the set

{|/?n|} is bounded, then dim Y[ Ra = 0 . In this section we consider the problem

of determining dim S, where S = Y[ Sa is the product of an arbitrary family

{Sa}a€A of rings. Theorem 3.5 gives a complete answer to this problem. In

connection with the problem, it is clear that dim S > sup{dim5„}, so equality

holds if the set {dim Sa} is unbounded; of course, it is well known that dim 5 =

sup{dim5a}Q€^i if the set A is finite. An important case to consider in the

determination of dim Y[ Sa is that in which each Sa is zero-dimensional, and

there is a known result, due to Maroscia [M, Proposition 2.6], in this case.

We record this result below as Proposition 3.1; recall that N(-) denotes the

nilradical.

Proposition 3.1 (Maroscia [M]). If S = Y[Sa is a product of zero-dimensional

rings Sa, then S is zero-dimensional if and only if N{S) - Y[ N(Sa) or, equiv-

alently, if and only if N{S) 2 Y[ N(Sa).

A special case of Proposition 3.1 is the basic result that an arbitrary product

of zero-dimensional reduced rings (that is, von Neumann regular rings) is von

Neumann regular, and hence is zero-dimensional. In Theorem 3.4 we show that

dimfT'S'a G {0, oo} if each S„ is zero-dimensional.

Proposition 3.2. Suppose {Ra},ïeA is a family of rings, each of dimension > k ,

where k > 1 and A is infinite. If R = Y[ R„ , then dim R > k + 1.
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Proof. For a G A, let Da be a domain of dimension > k that is a homo-

morphic image of Ra . Since Y[a Da is a homomorphic image of R, we may

assume that Ra = Da for each a.

The conclusion holds if dim Da> k for some a, so we assume without loss

of generality that dim Da = k for each a. Also, we may assume that A =

Z+ , for if J? is a countably infinite subset of A, then dim R > dim Y[a€B Da

since X[aeBDa is a homomorphic image of R. Hence, for R = YV*ÍX D¡ and

dim D¡ — k for each i, we prove the result by induction on k .

If k = 1, choose for each i a nonzero nonunit, rf, G D¡ and let r = {d¡ff G

R. Then r is a regular element of R, and hence dimR > dim(R/(r)) + 1.

Now R/(r) ~ Yff(Dj/(d¡)), where A/(rf,') is zero-dimensional. The element

{rf¿+(rf/)}£, belongs, however, to Iff N(Dj/(d¡)) but not to N([ff{Di/{d}))),
and hence dim(R/(r)) > 0 by Proposition 3.1. Consequently, dimR > 1 and

the desired conclusion holds for k = 1. At the inductive step, we assume that

dim Dj — k for each i, where k > 1, and we assume that the result is true

for domains of dimension k - 1 . For each i, choose a prime ideal P, of D¡

such that dim(D,/P,) = k - 1 and choose a nonzero element x¡ G P¡. Again

■* = {xi)T is a reBular element of R, and hence dim R > dim(R/(x)) + 1. But

R/(x) ~ Yff(Di/(Xi)) has as a homomorphic image the ring Yff(Di/P¡), which
has dimension > k by the induction hypothesis. Therefore dim R > k + 1,

and Proposition 3.2 follows.

Theorem 3.3. Suppose {Ra}a<EA is a family of rings and R = Y[aRa. If infinitely

many of the rings Ra have positive dimension, then R is infinite-dimensional.1

Proof. As in the proof of Proposition 3.2, there is no loss of generality in as-

suming that A - Z+ and that each R¡ — D¡ is an integral domain of pos-

itive dimension. To prove Theorem 3.3, we first establish by induction the

following assertion: For each positive integer k , R has a homomorphic image

E<<kî = rj/^i E\ ', where each E) ' is a domain of dimension > k . For k — 1 ,

we can take i?(1) = R . We assume that the assertion is valid for a fixed integer

t > 1 . Partition Z+ into an infinite number of infinite subsets: Z+ = U°f, W¡.

Then R = Yff: R¡, where R¡ = Y[j€fV Dj . Applying the induction hypothe-

sis to Rj, we conclude that Ä, admits a homomorphic image that is the direct

product of a countably infinite family of domains of dimension > t, and hence,

by Proposition 3.2, dimR, > t+l . Let £')'+1) be a domain of dimension > /+1

that is a homomorphic image of R¡. Then £'(i+1' = Yff El'+l) is a homomor-

phic image of R = Yff , R¡, and hence the assertion follows by induction. It

is clear that the assertion implies that dim R is infinite.

For the statement of Theorem 3.4, we use the following notation. If S is a

ring and x G N(S), we denote by n{x) the index of nilpotency of x—that is,

n(x) = k if xk = 0 but xk~x ¿ 0. We define n{S) to be sup{?/(x) : x G N(S)} ;

if the set {n(x): x g N(S)} is unbounded, then we write n(S) = oo. Theorem

3.4 is an extension of Proposition 3.1; recall that /(•) denotes the Jacobson

radical.

1 In 1963, J. Keisler showed the first author a proof that Va , the countably infinite product of Z

with itself, is infinite-dimensional. To our knowledge, this proof has not appeared in the literature.

Keisler's proof, which used ultrafilters, seems to have been disjoint from the proof given here.
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Theorem 3.4. Suppose {Ra}aeA is a family of zero-dimensional rings and let

R = Y\Ra- The following conditions are equivalent.2

(1) dimtf = 0.

(2) J(R) = N(R).
(3) N(R) = UN(Ra).
(4) There exists k G Z+ such that {a G A: n(Ra) > k} is finite.
(5) dimÄ^oo.

Proof. The equivalence of ( 1 ) and (3) is the content of Proposition 3.1, and the

implications (1) => (2) and (1) => (5) are patent. That (2) implies (3) follows

from the fact that J(R) = Y\J{Ra) 2 FI W(/?Q) • To complete the proof, we
show that (3) and (4) are equivalent and that (5) fails if (4) fails.

(3) => (4). If (4) fails, then there exist an infinite subset {a,-}f of A and

elements xa¡ G N(Ra¡) such that jc¿. ^0. Let x = {xa} e Y[N(Ra), where

xa = 0 if a G A\{a¡ff . Clearly x' = {x¿} ^ 0 for each i, and hence

x i N{R) and (3) also fails.
(4) =► (3). We need to show that (4) implies that Y[ N(Ra) Ç N(R). Thus,

let x = {xa} G n^(-^a) and let {a;}™, be the finite subset of A consisting

of elements a such that n(Ra) > k. If t = sup{k, n(xai, ... , n(xam)}, it is

clear that x' = {x'a} = 0, that x G N(R), and hence that Y[a N(Ra) Ç N(R).
(5) => (4). If (4) fails, we partition the set A into a countably infinite

family of subsets A\, A2, ... such that, for all i, k e Z+ , the set {a e A¡ :
n(Ra) > k} is infinite; this is easy to do via a traditional diagonal process. If

Si = Y[a^A. Ra , then since ( 1 ) and (4) are equivalent, it follows that dim S¡ > 0.

Hence a homomorphic image D¡ of S¡ is an integral domain of dimension > 1,

and Yff D¡ is a homomorphic image of Yff 5, = R. Theorem 3.3 shows that
dim Y[Dj = oo, and hence dim R — oo as well. This completes the proof of

Theorem 3.4.

It follows from Corollary 8 of [GH4] that the conditions of Theorem 3.4 are

also equivalent to the condition that R is imbeddable in a zero-dimensional

ring. We record in Theorem 3.5 the complete answer to the problem of deter-

mining dim(]l Ra) in the general case; Theorem 3.5 follows immediately from

(3.3) and (3.4).

Theorem 3.5. Let {Ra}aeA be a family of finite-dimensional rings, let B = {a G

A : dimRa > 0}, let C = A\B, and let R = Y[Ra .

(1) R is finite-dimensional if and only if B is finite and there exists keZ+

such that {y G C: n(Ry) > k) is finite.
(2) If dimR is finite, then dimR = sup{dimi?a: a e A} .

We remark that an alternate way of expressing the equivalent conditions

in (1) of Theorem 3.5 is to state that there exists k e Z+ such that the set

{aeA: dimRa > 0} U {a G A: n(Ra) > k} is finite.

To conclude this section we record a corollary that follows from Theorem

3.5 and the proofs of Theorems 3.3 and 3.4.

2In a conversation with the second author in November 1983, M. Höchster and R. Wiegand

outlined a proof that Ti^Li^/P"^) > P a prime, is infinite-dimensional. The results presented

here as Proposition 3.2, Theorem 3.3, and Theorem 3.5 were known to Höchster and Wiegand, but

to our knowledge they have not appeared in print.
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Corollary 3.6. If {Ra}a&A is a family of finite-dimensional rings, ifk G Z+, and

if R = Yla€A R-a /s infinite-dimensional, then R admits a homomorphic image

n^i A. where each D, is an integral domain of dimension > k.

4. HEREDITARILY ZERO-DIMENSIONAL RINGS

Motivated by its usefulness in the proof of Theorem 2.2, we consider in this

section conditions under which each subring of a ring is zero-dimensional. We

refer to a ring with this property as being hereditarily zero-dimensional. We

also consider this zero-dimensionality condition in a relative context: if R is

a subring of S, we say that (R, S) is a zero-dimensional pair if each subring

of S containing R is zero-dimensional. Thus a ring R is hereditarily zero-

dimensional if and only if (n, R) is a zero-dimensional pair, where n is the

prime subring of R .
If dim R = 0 and if S is an integral extension of R, then it is clear that

(R, S) is a zero-dimensional pair. To establish the converse, we use the follow-

ing result.

Proposition 4.1. If R is a subring of S, then S is integral over R if and only

if for each prime ideal Q of S, S/Q is integral over R/{Q n R).

Proof (cf. [GH2, p. 227]). If S/R is integral, the given condition clearly holds.
Thus, we establish the converse.

For a fixed j e 5, let G = {f{s): f(X) e R[X] is a monic polynomial}.
Then G is a multiplicative system in -S and s is integral over R if and only if

0 G G. If 0 £ G, then there exists a prime ideal Q of S such that QnG - 0.
It follows that the image of 5 in S/Q is not integral over R/{Q n R).

Corollary 4.2. If R is a zero-dimensional subring ofthe ring S, then (R,S) is

a zero-dimensional pair if and only if S is integral over R. In particular, a ring

T is hereditarily zero-dimensional if and only if char T ^ 0 and T is integral

over its prime subring.

Proof. Clearly (R, S) is a zero-dimensional pair if S/R is integral. Con-

versely, if (R, S) is a zero-dimensional pair, then for each prime ideal Q

of S, (R/(Q n R), S/Q) is a zero-dimensional pair of integral domains. And

for integral domains D ç E, it is clear that {D, E) is a zero-dimensional pair

if and only if D and E are fields and E/D is algebraic. Therefore S/Q is
integral over R/(QnR) for each prime ideal Q of S, and by Proposition 4.1,

S is integral over R .

Corollary 4.3. A ring R is hereditarily zero-dimensional o- for each prime ideal

P of R, the ring R/P is an absolutely algebraic field of nonzero characteristic.

Proof.   (=>). This implication follows from Corollary 4.2 and Proposition 4.1.

(«=). The hypothesis implies that R is zero-dimensional. Moreover, (4.1)

shows that  R  is integral over its prime subring n.   Therefore  n  is zero-

dimensional and char R ^ 0 . Thus, by (4.2), R is hereditarily zero-dimensional.

Remark 4.4. (i) If R is a ring and Spec(iî) = {Pa}a€A , then char./? ^ 0 <=>

char(R/Pn) / 0 for each a and {char(R/Pn)}neA is a finite set.

(ii) Suppose R is a zero-dimensional ring with family {Kn}nEA of residue

fields. If the set
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W(R) = {charKa:aeA}

is infinite, then 0 G %(R).

If {Ka}a€A is a family of fields, it would be interesting to have necessary and

sufficient conditions in order that, up to isomorphism, {Ka}aeA is the family of

residue fields of a zero-dimensional ring R (i.e., such that Spec(i?) = {Pa}a£A ,

where R/Pa — Ka for each a) ; part (ii) of (4.4) indicates that some restrictions

on the family {Ka} are required. We have been able to show that if {Ka}aeA

is a family of subfields of a field and if the set {Ka} contains a finite subset

{•rv,}"=1 such that each Ka contains some K¡, then there exists such a zero-

dimensional ring R, but the full story here remains to be explored.

Concerning the structure of zero-dimensional pairs, we observe the following.

Proposition 4.5. Assume that R and S are zero-dimensional rings, R is a sub-

ring of S, and that S is a finitely generated R-algebra. Then (R, S) is a

zero-dimensional pair.

Proof. We need to show that S is integral over R, and to do so, it suffices, by

(4.1), to show that S/Q is integral over R/(QnR) for each Q G Spec(S). Since

R and S are zero-dimensional, S/Q is a field that is a finitely generated algebra

over the field R/QnR). By the field-theoretic form of Hubert's Nullstellensatz

[K, p. 16], S/Q is algebraic, and hence integral, over R/(Q n R).

If K is a transcendental field extension of a field F and if A is a subset of

K such that Ä^ = F[A], then it is known (see, for example, [G3, Theorem 2.5])

that \A\ - \K\. Replacing the reference to Hubert's Nullstellensatz in the proof

of Proposition 4.5 by this result, we easily obtain the following related result.

Proposition 4.6. Assume that R and S are zero-dimensional rings, that R is a

subring of S, and that S is generated as an R-algebra by a set of cardinality

ß, where ß < \R/M\ for each maximal ideal M of R. Then (R, S) is a
zero-dimensional pair.

Remark 4.7. If R is a zero-dimensional ring and S is an extension ring of

R, then we have seen that the following conditions (i)-(iv) are equivalent: (i)

(R, S) is a zero-dimensional pair; (ii) S is integral over R ; (iii) for each

Q G Spec(S), S/Q is integral over R/(Q n R) ; (iv) (R/(Q n R), S/Q) is a
zero-dimensional pair for each Q G Spec(S). Therefore the problem of de-

termining whether (R, S) is a zero-dimensional pair reduces in some sense to

consideration of the case where R = K is a field. Up to isomorphism we have,

of course, that

S = K[{Xa}aeA]/I,

where {Xa}n£A is a set of indeterminates over K and / is an ideal in the

polynomial ring K[{Xa}a(zA]. In this situation we have that (K, S) is a zero-

dimensional pair if and only if / n K[X] / (0) for each X e {Xa}.

We next turn to the problem of determining conditions under which the

product of a family {Ra}aEA of hereditarily zero-dimensional rings is again

hereditarily zero-dimensional. Such need not be the case; for example, the ring

R = Yffl GF(pi), where {p,}^ is an infinite set of primes, has characteristic

0, and therefore admits a one-dimensional subring. The next result records two

basic properties that are related to the problem just mentioned.
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Lemma 4.8. Let {R} U {Ri}"=l be a finite collection of rings.

(i) If R is hereditarily zero-dimensional, then so is each homomorphic im-

age of R.
(ii) 0"=1 Rj is hereditarily zero-dimensional if and only if each R¡ has this

property.

Proof. Apply Corollary 4.3.

Theorem 4.9. Let {Ra}a£A be a family of rings. The ring R = Y[aeA Ra is hered-

itarily zero-dimensional if and only if each Ra is hereditarily zero-dimensional

and there exists a positive integer n such that the set B = {a g A : n(Ra) > n

or there exists P e SpecRa such that \Ra/P\ > n} is a finite set.

Proof. (=>). Clearly each Ra is hereditarily zero-dimensional. Suppose there

does not exist a positive integer n such that the corresponding set B is fi-

nite. Since R is zero-dimensional, Theorem 3.4 then implies that there exists

a countably infinite subset {a,}^ of A such that, for each i, there exists

Pa¡ G Spec(ÄQ,) such that \RaJPa¡\ > i. Set K¡ = RaJPa¡. Then K¡ is
an absolutely algebraic field of nonzero characteristic, and since S = FJ^i Ra,

is a homomorphic image of R, the ring S is hereditarily zero-dimensional.

Part (ii) of Remark 4.4 shows that the set {charK¡}°tx is finite; hence by pas-

sage to an appropriate homomorphic image of S, we may assume without loss

of generality that each Ki has characteristic p and that \K¡\ > pl for each

i. Choose, for each i, a, G K¡, such that the degree of a¡ over GF(p) is

greater than i. Then a = {a\, a2, ... ) G S is transcendental over the prime

subring n ~ GF(p) of S, contrary to the assumption that S is hereditarily

zero-dimensional. Thus, the set B is finite.

(-<=). Corollary 4.3 implies that R is hereditarily zero-dimensional if and

only if R/N(R) is hereditarily zero-dimensional. By Theorem 3.4, N(R) —

Ua€A N(Rc) > and hence R/N(R) ~ Y[aeA(Ra/N(Ra)). Thus in proving that R
is hereditarily zero-dimensional, we may assume that each Ra is reduced. Let

C = {c*i, ... , am} . Then R = Ra¡ © ■ ■ ■ © Ram © T, where T = Ua&A\c R« >

and to show that R is hereditarily zero-dimensional, it suffices, by Lemma

4.7, to show that T is hereditarily zero-dimensional. Thus we assume without

loss of generality that each Ra is reduced and that each of its residue fields

has cardinality at most n . The reduced ring jRq is canonically imbedded in

Y[{Ra/P : P G Spec/?a} = S„, and hence there exists a canonical injection of

R into the ring Y[aeA Sa . Proposition 2.1 shows that Y[aEA Sa is hereditarily

zero-dimensional, so R has the same property, as we wished to show.

A ring R is said to be hereditarily Noetherian if each subring of R is Noethe-

rian. In Theorem 4.10 we determine those hereditarily zero-dimensional rings

that are hereditarily Noetherian.

Theorem 4.10. Let R be a hereditarily zero-dimensional ring. The following

conditions are equivalent.

( 1 ) R is hereditarily Noetherian.
(2) The nilradical N(R) of R is finite and R/N(R) is a finite direct sum

of absolutely algebraic fields of nonzero characteristic.

(3) /? = /?!©•••© Rm © S, where each R¡ is an absolutely algebraic field

of nonzero characteristic and S is a finite ring.
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Proof. (1) => (2). Set N = N{R) and choose / G Z+ such that N' = (0). To
see that N is finite, it suffices to see that N'/Ni+l is finite for 1 < i < t - 1 ;

finiteness of Nl/N'+i follows because A is a finitely generated 7r[A]-module,

where n is the prime subring of R, and n[N]/N ~ n/'(n n N) is a finite ring.

The ring R/N is reduced, Noetherian and zero-dimensional, and hence is the

direct sum of a finite family {F¡}k=l of fields; because F¡ is a residue field

of R/N for 1 < / < k, it is absolutely algebraic of nonzero characteristic by

Corollary 4.3.
(2) => (3). If (2) holds, then R has a composition series as an .R-module,

so R is obviously Noetherian. Write R as the direct sum of a finite family

{{Ri, ?,)}?=] of primary rings. Then N(R) = N(R{) © • • • © N(Rn) = Px ©

•••©/>„. Since R/N{R) * (Ri/Pi)®- ■ -®{RH/P„), each Ri/P¡ is an absolutely
algebraic field of nonzero characteristic. Since N(R) is finite, each P¡ is finite,

and to complete the proof, it suffices to show that P¡ ^ (0) implies that Ri/P¡ is

finite, and hence R¡ is finite. Thus, let k > 2 be an integer such that Pk = (0),

but Pk~x ± (0). Choose a nonzero element c G P¡~x . Then R¡c is a one-

dimensional vector space over R¡/P¡. Since R¡c C P¡, R¡c is finite, and hence

Ri/Pi is also finite.
(3) => (1). If (3) is satisfied, then 5 and each R, is hereditarily Noetherian,

so Corollary 2.2 of [GH3] implies that R is hereditarily Noetherian.

Remark 4.11. Since, by Corollary 4.2, a hereditarily zero-dimensional ring is

integral over its prime subring, conditions (1), (2), and (3) of Theorem 4.10 are

also equivalent to each of the following.

(2)'   R = Ri ® ■ • • (B Rm ® S, where each R¡ is a field and S is a finite ring.
(3)'   The nilradical N(R) of R is finite and Spec(R) is finite.

If R is a subring of a ring S, then (R, S) is said to be a Noetherian pair if
each subring of 5 containing R is Noetherian. In Theorem 4.12 we determine

those zero-dimensional pairs that are Noetherian pairs.

Theorem 4.12. Let (R,S) be a zero-dimensional pair. The following conditions

are equivalent.

( 1 )  (R, S) is a Noetherian pair.

(2) R is Noetherian and S = S\ © • • • © Sn is a finite direct sum of local

Artinian rings such that each S, that is not afield is a finitely generated

R-module.
(3) R is Noetherian, Spec(S) is finite, and the nilradical N of S is a finitely

generated R-module.

Proof. Corollary 4.2 implies that S is integral over R. The equivalence of

(1) and (2) follows from Proposition 1.2 and Theorem 1.6 of [GH3]. The
equivalence of (1) and (3) follows from Theorem 1.5 of [GH3], and the fact
that if the nilradical N of S is a finitely generated ideal in S and if S/N is
Noetherian, then S is Noetherian.

5. Directed unions of Artinian subrings

If R is a commutative ring with prime subring n , then R is the directed

union of its family of subrings that are finitely generated over n . Each of these

subrings is Noetherian, so R is a directed union of Noetherian subrings.   If
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R is hereditarily zero-dimensional, it follows that R is a directed union of

Artinian subrings. We present in Propositions 5.1 and 5.2 examples of rings

that are the directed union of Artinian subrings, but are not hereditarily zero-

dimensional. We then consider the condition on a ring R that it is expressible

as a directed union of Artinian subrings; in §6 we narrow our focus to the case

where R is a direct product of zero-dimensional rings. Initially we note that

if R is the directed union of a family {Ra} of subrings, each of dimension at

most n, then dim R < n; this follows since any chain Po < P\ < •■• < Pk of

prime ideals of R contracts to a chain of distinct primes on some Ra . Thus,

a ring that is a directed union of Artinian subrings is zero-dimensional, and

hereditarily zero-dimensional rings satisfy the given condition. We emphasize

that in considering R as the directed union of a family {Ra} of subrings in

this section, we assume that each Ra contains the identity element of R.

Proposition 5.1. Let F be afield, let R = Fw° be the countable direct product

of F with itself, and let S be the subring of R consisting of all sequences {<3;}q°
that are eventually constant. Then S is a (von Neumann) regular ring that is

the union of an ascending sequence of Artinian regular subrings containing n,

the prime subring of S. The ring S is hereditarily zero-dimensional if and only

if F is an absolutely algebraic field of characteristic p ^ 0.

Proof. For j > 0, let Sj be the subring of S consisting of all sequences

{fl,}o° G S such that a¡ = a,j+\ = • • • . Each Sj contains n (in fact, So is the

diagonal imbedding of F in fi), and to within isomorphism, Sj = Fj+l, an

Artinian regular ring. Moreover, So Ç S\ Ç ... , S = \JJL0 Sj, and S is regular.

According to Corollary 4.2, S is hereditarily zero-dimensional if and only if

char S = char F = p ^ 0 and S/n is integral. Clearly S/n is integral if and

only if each Sj ~ FJ is integral over n ~ GF(p) if and only if F is algebraic

over GF(p)—that is, if and only if F is absolutely algebraic of characteristic

Proposition 5.2. Let F be afield, let a be an infinite cardinal, and let R be the

direct product of a copies of F with itself. Let S be the subring of R consisting

of all elements {aß} that have only finitely many distinct coordinates. Then S is

a regular ring expressible as the directed union of Artinian regular subrings, and

S is hereditarily zero-dimensional if and only if F is an absolutely algebraic

field of nonzero characteristic.

Proof. Let A be a set of cardinality a . We consider R as the set of functions

f : A -* F under pointwise addition and multiplication and S as {f G R: f(A)

is finite}. Let 3s : A = A\ U • • • U At be any finite partition of the set A . Then

Se? = {/ g R : f is constant on each A¡) is a subring of S containing n,

and S> ~ Fs, where 5 is the number of indices i such that A¡ is nonempty.

The family {S>} is directed, for if 3° = {A,}'¡=1 and @ = {B¡}vi=l are finite

partitions of A , then 3° n @ = {A,■ n Bs■■ : 1 < /' < t, 1 < j < v} is a finite

partition of A and S&> U S@ ç S&rw ■ If / G 5, we can define a finite partition

3° on A by considering the equivalence classes of the equivalence relation ~

defined by a ~ b if f(a) - f(b). Clearly / g S&>, so 5 is the directed union of
the family of all such subrings S$>. Each S> is Artinian and regular, and hence

S is regular. According to Corollary 4.2, S is hereditarily zero-dimensional if

and only if char S = char F = p / 0 and S/n is integral.   Clearly S/n is
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integral if and only if each S> ~ FJ is integral over n ~ GF(p) if and only if

F is algebraic over GF(p)—that is, if and only if F is absolutely algebraic of

characteristic p / 0.

We omit the straightforward proof of the following basic result.

Proposition 5.3. Suppose R is a ring.

(1) If R is a directed union of Artinian subrings, then each homomorphic

image of R has the same property.

(2) If R = i?! © • • • © Rn , then R is a directed union of Artinian subrings if

and only if each R¡ has this property.

Theorem 5.4. Let (S, M) be a zero-dimensional quasilocal ring, and let A be

an Artinian subring of S. Then there exists an Artinian subring R of S such

that R contains A, and RçS is a zero-dimensional pair.

Proof. Let P = M n A . Since A is a subring of S, and since the only idem-

potent elements in S are 0 and 1, A is local with maximal ideal P. Let

{xx} be a subset of S such that {xx + M) is a transcendence basis for S/M

over A/P. Let {Yx} be a set of indeterminates over A and consider the

natural map cp : A[{YX}] —> A[{xx}]- If / G ^4[{T¿}] has unit content, then

cp(f) £ M, and hence <p(f) is a unit of S. Let U be the multiplicative sys-

tem in ^4[{Ta}] consisting of all polynomials of unit content. Then <p(U) isa

multiplicative system in ^[{x^}], and cp extends to a surjection of ^[{FA}](7

onto R = ^[{xa}]^) Ç S. Since A is Artinian, the ring ^[{Y}}]^ = A({YX})
is known to be zero-dimensional and Noetherian [N, p. 17, GHJ, hence Ar-

tinian, so R is also Artinian. To see that S is integral over R, we need only

see that S/M is integral over R/(M(~)R) ; this follows since, by choice of {xx},

S/M is integral over A[{xx}]/{M n ^[{xA}]) and A[{xx}] Q R .

Corollary 5.5. If S is a zero-dimensional ring with finite spectrum, then there

exists an Artinian subring R of S such that (R, S) is a zero-dimensional pair.

In particular, S is a directed union of Artinian subrings.

Proof. S is the direct sum of a finite family {(S¡-, A/,-)}{.=1 of zero-dimensional

quasilocal rings. If A¡ is an Artinian subring of S¡ such that (A¡, S¡) is a zero-

dimensional pair, then A = A\ © • • • © At is Artinian, and since S is integral

over A , (A, S) is a zero-dimensional pair. Thus, it suffices to prove Corollary

5.5 in the case where (S, M) is quasilocal, and in light of Theorem 5.4, this

case follows if we show that 5" admits an Artinian subring. If char(S/M) = 0,

then S contains Z, and since Z n M — (0), Q is an Artinian subring of S. If

char(S/M) = p ^ 0, then p is nilpotent so the prime subring of S is a finite,

hence Artinian, subring of S. In any event, S contains an Artinian subring,

and this completes the proof of Corollary 5.5.

The proof of Corollary 5.5 uses the fact that if a zero-dimensional ring S is

integral over a Noetherian subring, then S is the directed union of a family of

Artinian subrings. The last result of this section, Example 5.6, shows that the

converse of the preceding statement fails.  The construction used in Example

5.6 is a modification ofthat of Proposition 5.1.

Example 5.6. Let F be a field that has finite transcendence degree over its

prime subfield 7r, let {Xi}°^l be a set of indeterminates over F , and for each
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positive integer n , let F„ = F(X\, X2, ..., Xn). Let R be the subring of

Yffx Fi consisting of all sequences {öi}£2i that are eventually constant. We

show that R is a von Neumann regular ring expressible as the union of an

ascending sequence of Artinian rings, but that R is not integral over any subring

with Noetherian spectrum. The first assertions of the preceding sentence follow

as in the proof of Proposition 5.1. To wit, if R„ is the set of sequences {a,}°f,

in R such that a„ = an+\ = ... , then R„ ~ F\ ©F2©• ■ ■ ©Fn , R\ ç R2C ... ,

and R = IJ/^i R¡. Suppose A is a subring of R such that R/A is integral. To

show that A does not have Noetherian spectrum, we analyze Spec(fi). Thus,

for z G Z+, we let et = {A;}^ G R, where <5,7 is the Kronecker delta. If

P G Spec(i?), then either ( 1 ) e¡ £ P for some i, or (2) e¡ G P for all i.

If (1) holds, then 1 - e,G P, and since 1 - e, generates a maximal ideal of

R with i?/(l —e¡) ~ F¡, it follows that P = (1 - e¡) in this case.
If (2) holds, then P D Pœ , the ideal of i? consisting of all sequences that are

eventually 0. P^ is the kernel of the surjective homomorphism cp : R —> (J~i F

defined by taking ^({«,}) to be the eventual value of the sequence {a¡}. Hence

Poo is a maximal ideal of R, P = P^ , and R/P^ — F{{Xiff) ■ Clearly P^ is
not finitely generated. We observe that P^ is the only prime ideal of R whose

associated residue field has infinite transcendence degree over its prime subfield

n.

Now R/Poo is integral over A/(P0O n A), so A/(P00 n /I) has infinite tran-

scendence degree over 7r . Consequently, Pœ is the only prime of R lying over

Poo n A in ^4 . Therefore Px = ^/(P^T)~A~)R, and because R is von Neumann

regular, ^J{P^ñ~ÂjR = (P^ n ^)fi. Thus P^ = (P«, n /i)fi, so P^ n ^ is
not finitely generated since P^ is not finitely generated. Because R/A is inte-

gral, the ring A is zero-dimensional and reduced, hence von Neumann regular.

Therefore A does not have Noetherian spectrum since A is not Noetherian.

This completes the presentation of Example 5.6.

6.  Y[Ra as a directed union of Artinian subrings

In this section we consider the problem of determining conditions under

which a direct product Y[ Ra is expressible as a directed union of Artinian

subrings. Obvious necessary conditions on Y[Ra are that it should be zero-

dimensional and that each Ra is so expressible. Hence each Ra is zero-

dimensional and Theorem 3.4 shows that the set {a G A : n(Ra) > k} is

finite for some k G Z+ . To obtain a third necessary condition on Y[ Ra, we

observe that if S is any ring expressible as a union of subrings with finite spec-

tra (hence if S is expressible as the union of Artinian subrings), then the set

^(S) = {char(SyP) : P G Spec(S')} is finite. To verify this assertion, we note

that if char(SyP) ^ 0, then char(SyP) = char(R/{R n P)) for each subring R
of S containing the prime subring of S ; hence W(S) is finite because there

exists such an R that has finite spectrum. In particular, if Y[Ra is a union of

subrings with finite spectrum, then the set \JaeA ̂ {Ra) is finite.

Theorem 6.7 provides a definitive answer to the main question addressed in

this section. Theorem 6.7 is preceded by three special cases thereof. These

special cases are covered in Theorems 6.3-6.5; these three theorems treat a

direct product Y[ Da of integral domains: they state that, under appropriate

hypotheses,  Y[ D„  is not a directed union of Artinian subrings.   In fact, the
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conclusions of Theorems 6.3-6.5 are the stronger statement that Y[Da is not a

directed union of subrings with finite spectra. Lemma 6.1 is a key result in the

proofs of Theorems 6.3-6.5.

Lemma 6.1. Assume that R is a subring of the ring T and that {Nx} is a family

of prime ideals of T, each of which lies over the prime ideal P of R, where

R/P is a normal domain. For b G T, let bx denote the image of b in T/Nx,

and if bx is integral over R/P, denote by fx{X) the minimal polynomial for

bx over the quotient field of R/P. Since R/P is normal, fx(X) G (R/P)[X].
If there exists b G T such that the corresponding set {fx{X)} ç (R/P)[X] is

infinite, then for any subring S of T containing R[b], the set {Nx n S} is

infinite. In particular, T is not the union of a family {Sa} of subrings, where

each Sa contains R and has finite spectrum.

Proof. Choose a sequence {fiiX)}^ of distinct elements of {fx(X)} andas-

sume that N¡ G {Nx} is such that the image b¡ of b in T/N¡ has minimal

polynomial f{X) e (R/P)[X]. Suppose S is a subring of T containing R[b]

and let Q¡ = N¡nS. Then R/P ç S/Q, ç T/N, and b¡ G S/Q¡. If Q¡ and ßy
were equal for some i ^ j, it would follow that f(X) = f(X) in (R/P)[X],

contrary to the choice of the sequence {fi}. We conclude that Q¡ ^ Q¡ for

i ^ j , and this establishes the desired assertion.

We note that the proof of Lemma 6.1 shows that, in fact, \{N¿ n S}\ >

\{fx(X)}\. The next result is an analogue of Proposition 5.2; again we omit the

straightforward proof.

Proposition 6.2. Suppose R is a ring.

(1) If R is a (directed) union of (zero-dimensional) subrings with finite spec-

tra, then each homomorphic image of R has the same property.
(2) // R = R\ ffi ■ ■ • © R„ , then R is a (directed) union of (zero-dimensional)

subrings with finite spectra if and only if each R¡ is a (directed) union of (zero-

dimensional) subrings with finite spectra.

Theorem 6.3. Suppose Da is an integral domain of characteristic zero for each

a G A, an infinite set. Then T = Y[neA Dn is not the union of a family of

subrings, each with finite spectrum.

Proof. Since the set A is infinite, and since it suffices, by (6.2), to show that

a direct summand of T is not such a union, we may assume that A — Z+

and T = YfflDi. Denote by R ~ Z the prime subring of T. We apply
Lemma 6.1 to the element b = {n}™=[ G T and to the prime ideals Pn of

T, where P„ consists of those elements of T = Yffl A with «th coordinate

0. The image of b in T/P„ is n, and the minimal polynomial for n over

R/(P„ n R) = R/(0) ~ Z is X - n . We conclude from (6.1) that T is not the
union of any family of subrings, each with finite spectrum.

Theorem 6.4. Let {D„}neA be a family of integral domains, all of the same

characteristic p > 0. If Dn is not algebraic over its prime subfield Zp for

infinitely many elements a e A, then Y[ D,t is not the directed union of a family

of subrings, each with finite spectrum.

Proof. As in the proof of Theorem 6.3, it suffices to consider the case where

A = Z+ and A contains an element b¡ transcendental over Zp for each

i G A.  Consider the elements b = {6/}^,  and c = {ty}£,  in 1= Iff D¡ •
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Let R = n[c], where n ~ Zp is the prime subring of T. Assume that T

is the directed union of a family {Rß} of subrings of T. Then there exists

S G {Rß} such that both b and c belong to S. Moreover, R = n[c] ç S since

n ç S. Let Ni be the prime ideal of T consisting of those sequences with

z'th coordinate 0. Then N¡ r\R = (0) and the image of R in T/N¡ ~ A is
Zp[b\], a simple transcendental extension of the field Zp , and hence a normal

domain. Let N, n S = Q¡. The image of b G 5" in S/Q¡ C T/N¡ = D¡ is b¡.
The minimal polynomial for b¡ over Zp[b¡] is X' - b\ G 7r[¿>,'][^]. Lemma

6.1 implies that there are infinitely many distinct Q¡ (in fact, the ideals Q¡

are distinct), and hence that Spec S is infinite. We conclude that T is not the

directed union of subrings Ra , where Spec Ra is finite.

Theorem 6.5. Let {Da}aeA be a family of integral domains, all of the same

characteristic p > 0, and let Fa denote the algebraic closure of Zp in Da . If

for each n G Z+ the set {a g A : \Fa\ > pn} is infinite, then T = Y[Da is not a

union of subrings with finite spectra.

Proof. Again we assume without loss of generality that A = Z+ and that \Fn\ >

p" for each n. Choose bn G Fn ç Dn of degree at least n over Zp for each

n G Z+ , let b = {bj}°Z{, and let R ~ Zp be the prime subring of T. Applying
Lemma 6.1 to R, T, b , and to the family {A,}g, of ideals of T, with N¡ as
defined in the proof of (6.4), we obtain the desired conclusion, as in the proof

of Theorems 6.3 and 6.4.

We now direct our attention to the general direct product Y[ Ra ; Theorem

6.6 considers the case where each Ra is quasilocal.

Theorem 6.6. Let {(Ra, Ma}a€A be a family of zero-dimensional quasilocal

rings, let Ka = Ra/Ma, and let T — Y[ Ra . The following conditions are equiv-

alent.

(1) T is a directed union of Artinian subrings.

(2) T is a directed union of zero-dimensional subrings with finite spectra.

(3) T is a directed union of subrings with finite spectra.
(4) There exists n G Z+ such that the set {a € A: n(Ra) > n or \Ka\ > n}

is a finite set.

Proof. The implications (1) => (2) and (2) => (3) are clear.

(3) =» (4). If (3) holds, then the introductory paragraph of this section

shows that the set H — {charKa}a€A is finite. If 0 G H, then Theorem 6.3

implies that {a G A : charATa = 0} is finite, and if p G H, p > 0, Theorems

6.4 and 6.5 imply that for some n G Z+ the set {a e A : charATa = p and

\Ka\ > p"} is also finite. Consequently, if (4) is not satisfied, then there exists

a sequence {/?/}~i Ç {Ra} such that n(R¡) > i for each i. But then Theorem

3.4 and Corollary 3.6 show that T has a homomorphic image that is an infinite

product n^i A of integral domains A of positive dimension. Since Yff ¡ A
is a union of subrings with finite spectra, then as we observed at the beginning

of this section, the set U~, ^(A) is a finite set. Hence infinitely many of

the domains A have the same characteristic. But then Theorems (6.3)—(6.5)

yield the contradiction that Yfft A , and hence T, is not the directed union

of subrings with finite spectra.

(4) => (1). Let L = {a G A: tj(Ra) > n or \Ka\ > n} = {ot\, ... , at} and

let B = A\L. Then T = (FLefi #„)©/?„,©•••© Ra, ■ Each Ra is hereditarily
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zero-dimensional by Corollary 4.3, so Theorem 4.9 implies that Yla€BRa is

hereditarily zero-dimensional. Thus Y[aeB Ra and, by Theorem 5.4, each Ra¡

is a directed union of Artinian subrings; by Proposition 5.3, T shares the same

property, and this completes the proof of Theorem 6.6.

Theorem 6.7. Let {Ra}aEA be a family of rings and let T = Y[Ra. Then T is
a directed union of Artinian subrings (respectively, of zero-dimensional subrings

with finite spectra) if and only if each Ra is so expressible and there exists

n G Z+ such that the set {a e A : n(Ra) > n or Ra has a residue field Ka with

\Ka\ > n} is finite.

Proof. We give the proof in the case of directed unions of Artinian subrings;

the proof in the case of zero-dimensional subrings with finite spectra is quite

similar.

(=>). The assertion concerning Ra follows from (5.3). Suppose the condi-

tion concerning existence of n G Z+ fails. Then either

(i) there exists a sequence {.R,}°f j Q {Ra} such that R¡ has a residue field

K¡ with \K¡\ > i, or else
(ii) there exists a sequence {Ri}°l{ ç {Ra} such that n(R¡) > i for each

i.

If (i) holds, then Theorem 6.6 shows that the homomorphic image Yff y K¡

of T = f] Ra is not expressible as a directed union of Artinian subrings, and

hence neither is T. If (ii) holds, then as in the proof of (6.6), T is infinite-

dimensional, and hence not a directed union of Artinian subrings.

(^). Let B = {a £ A: n(Ra) < n and each residue field of Ra has cardi-

nality < n}. By hypothesis, A\B is a finite set. Since each Ra is a directed

union of Artinian subrings and since T is the direct product of Y[aeB Ra

and the finite family {Ra}aeA\B , it suffices to show that Y[a€B Ra is a di-

rected union of Artinian subrings. For each R G {Ra}aeB, R is imbedded

in ni^A/: M is a maximal ideal of R}, and hence Y[a€BRa is imbedded in

HaeB(n.MeMSpec(Ra)(R<*)M) • Corollary 4.3 and Theorem 4.9 show that the latter

of these two rings is hereditarily zero-dimensional, and hence Y[a€B Ra is also

hereditarily zero-dimensional. Thus Y[neB Ra is a directed union of Artinian

subrings, as we wished to show.

Theorem 6.7 admits a parallel statement for rings expressible as a directed

union of subrings with finite spectra. We omit the proof of this result because

of its similarity to the proof of Theorem 6.7.

Theorem 6.8. Let {Ra}nçA be a family of rings and let T = Y[a€A Ra . Then

T is a directed union of subrings with finite spectra if and only if each Rn is so

expressible and there exists n e Z+ such that the set {a G A : dim(Ra) > 0 or

n(Ra) > n or R„ has a residue field K„ with \K„\ > n} is finite.

Remark 6.9. If a ring R is expressible as the directed union of a family {Ra}a&A

of zero-dimensional subrings with finite spectra, it would be interesting to know

whether R is then necessarily the directed union of a family of Artinian sub-

rings. In this connection we note that Corollary 5.5 shows that each Ra is a

directed union of Artinian subrings, so R is at least a set-theoretic union of

Artinian subrings. A factor that comes into play here is that although Ra is
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known by Corollary 5.5 to be a directed union of Artinian subrings, it is unclear

as to whether the family of all Artinian subrings of Ra is directed. It would be

interesting to know necessary and sufficient conditions on a zero-dimensional

quasilocal ring S in order that the family of all Artinian subrings of S forms

a directed family.

Remark 6.10. In relation to directed unions, a question we have considered but

not resolved is the following. If T is a zero-dimensional ring with nilradical

N and if T/N is a directed union of Artinian subrings, does T have the same

property? Corollary 5.5 yields an affirmative answer in the case where T has

finite spectrum.

Added in Proof. In connection with (6.10) we can show that T is a set-theoretic

union of a family {S¡} of Artinian subrings. We can obtain such a family {S¡}

with the property that each finite subset of T is contained in some S¡, but do

not know whether there exists a directed family.
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