3-MANIFOLD GROUPS WITH THE FINITELY GENERATED INTERSECTION PROPERTY

TERUHIKO SOMA

Abstract

In this paper, first we consider whether the fundamental groups of certain geometric 3-manifolds have FGIP or not. Next we give the sufficient conditions that FGIP for 3-manifold groups is preserved under torus sums or annulus sums and connect this result with a conjecture by Hempel [4].

A group G is said to have the finitely generated intersection property (for short FGIP) if, for each pair of finitely generated subgroups $H, K \subset G, H \cap K$ is finitely generated. Greenberg [2] proved that the fundamental groups of surfaces have FGIP. For given 3-manifolds M, we would like to know if their fundamental groups $\pi_{1}(M)$ have FGIP or not. In the case where $\pi_{1}(M)$ does not have FGIP, certain structures on $H \cap K$ for finitely generated subgroups H, K of $\pi_{1}(M)$ are studied by Kakimizu [6]. In [5, Chapter V], Jaco proved that, for every surface bundle M over S^{1} with fiber F of negative Euler number, $\pi_{1}(M)$ does not have FGIP, hence in particular, the group $(\mathbf{Z} * \mathbf{Z}) \times \mathbf{Z}$ does not have FGIP. This result implies that, if the following Conjecture 1 proposed by Thurston [12] is true, then Conjecture 2 is also true (see Hempel [4]).

Conjecture 1. Every hyperbolic 3-manifold of finite volume is finitely covered by a surface bundle over the circle.

Conjecture 2. The fundamental group of every hyperbolic 3-manifold of finite volume does not have FGIP.

In [4], Hempel proved that every geometrically finite Kleinian group Γ of the second kind has FGIP. Here Γ of the second kind means that the limit set of Γ is not equal to the sphere S_{∞}^{2} at infinity. By using this result, it is not hard to prove that the fundamental group of every hyperbolic 3-manifold of infinite volume has FGIP, see Proposition 1 in $\S 1$. We also consider the fundamental groups of 3 -manifolds with the geometric structures other than the hyperbolic structure. For every 3-manifold M with $\mathbf{S}^{3}, \mathbf{S}^{2} \times \mathbf{E}^{1}, \mathbf{E}^{3}$, Nil or Sol structure, $\pi_{1}(M)$ has FGIP (Proposition 2), and for every 3-manifold M with $\mathbf{H}^{2} \times \mathbf{E}^{1}$ or $\widetilde{\mathrm{SL}_{2}(\mathbf{R})}$ structure of finite volume, $\pi_{1}(M)$ does not have FGIP (Proposition 3).

According to Baumslag [1], the free product $A * B$ of two groups A and B with FGIP has also FGIP. This result implies that, if two 3-manifolds have

[^0]fundamental groups with FGIP, then that of their connected sum also has FGIP. The following question is the torus sum version of this result.
Question. Let M be a 3-manifold and let T be an embedded, twc-sided incompressible torus in M. If, for each component N of $M-T, \pi_{1}(N)$ has FGIP, does $\pi_{1}(M)$ have FGIP?

Let $N_{i}(i=1,2, \ldots, n)$ be 3-manifolds whose boundaries ∂N_{i} contain incompressible torus components and such that all $\pi_{1}\left(N_{i}\right)$ have FGIP, and let M be a 3-manifold obtained from $\left\{N_{i}\right\}$, for some pairs (T, T^{\prime}) of torus boundary components, by identifying T with T^{\prime}. The following theorem gives a sufficient condition for $\pi_{1}(M)$ to have FGIP.
Theorem 1. With the notation as above, we suppose that, for each i, int N_{i} is homeomorphic to \mathbf{H}^{3} / Γ, where Γ is a geometrically finite Kleinian group of the second kind. Then $\pi_{1}(M)$ has FGIP.

To prove Theorem 1, in $\S 2$, we will define a geometric model M_{g} for M and piecewise geodesic loops in M_{g}.

This theorem asserts that, under torus sums for certain 3-manifolds, FGIP (for the fundamental groups) is preserved. The following corollary implies that, if Conjecture 2 is true, then FGIP is preserved under torus sums for 3-manifolds.
Corollary. Let T be a union of mutually disjoint, two-sided incompressible tori in a connected 3-manifold M (possibly noncompact, nonorientable or reducible). If Conjecture 2 is true and $\pi_{1}(N)$ has FGIP for every component N of $M-T$, then $\pi_{1}(M)$ has FGIP.

Under annulus sums for 3-manifolds, FGIP is not preserved. In §3, we will give a simple counterexample.

Let $N=N_{1} \cup \cdots \cup N_{n}$ be a disjoint union of n connected 3-manifolds, and let $A=A_{1}^{+} \cup A_{1}^{-} \cup \cdots \cup A_{m}^{+} \cup A_{m}^{-}$be a disjoint union of $2 m$ annuli in ∂N which are incompressible in N.

Suppose M is the 3-manifold obtained from N by identifying A_{s}^{+}and A_{s}^{-} for all $s=1, \ldots, m$ by some homeomorphisms $A_{s}^{+} \rightarrow A_{s}^{-}$. For each pair i, j (possibly $i=j$), let $A_{i j}$ be the union of components of A such that $A_{i j} \supset A_{s}^{+}$ (resp. A_{s}^{-}) if and only if $A \cap \partial N_{i} \supset A_{s}^{+}$(resp. A_{s}^{-}) and $A \cap \partial N_{j} \supset A_{s}^{-}$(resp. $\left.A_{s}^{+}\right)$. We note that $A_{i j} \subset A \cap \partial N_{i}$. When $i \neq j$, this $A_{i j}$ nonempty means that N_{i} is adjacent to N_{j} in M.
Theorem 2. With the notation as above, if the following two conditions are satisfied, then $\pi_{1}(M)$ has FGIP.
(i) For each $N_{j}, \pi_{1}\left(N_{j}\right)$ has FGIP.
(ii) For each pair N_{i}, N_{j} (possibly $i=j$) with $A_{i j} \neq \varnothing$, at least one of $\left(N_{i}, A \cap N_{i}\right)$ and $\left(N_{j}, A \cap N_{j}\right)$ contains no properly embedded essential annuli or Möbius bands.

The proof of Theorem 2 is similar to that of the Corollary, but in this case, we do not need the assumption that Conjecture 2 is true.

1. Proofs of Propositions

We refer to Hempel [3] and Jaco [5] for the notation on the 3-dimensional topology and to Scott [10] and Thurston [13] for the notation on hyperbolic 3 -manifolds and other 3-dimensional geometric structures.

The following lemma is an elementary exercise.
Lemma 1. Let A, B, C be subgroups of a group G such that A and B are finitely generated and C is of finite index in G. Then $A \cap B$ is finitely generated if and only if $A \cap B \cap C$ is finitely generated. In particular, G has FGIP if and only if C has FGIP.

We say that a 3-manifold M is atoroidal if, for every incompressible torus T in M, at least one of the components of $M-T$ is homotopic to the torus. According to Thurston [13, Proposition 5.4.4], every complete hyperbolic 3manifold is atoroidal.

Proposition 1. The fundamental group of every hyperbolic 3-manifold M of infinite volume has FGIP.
Proof. We may assume that M is orientable and $\pi_{1}(M)$ is nonabelian and finitely generated. Furthermore, by Baumslag [1], we may also assume that $\pi_{1}(M)$ is indecomposable. Note that even after these reductions, we may assume that M still has infinite volume since any covering space of M also has infinite volume. By Scott [8], M contains a compact submanifold N such that the inclusion $N \subset M$ is homotopy equivalent and ∂N is incompressible in M. Since M is irreducible and atoroidal and since ∂N is incompressible in M, N is also atoroidal and irreducible. Since the volume of M is infinite, $\partial N \neq \varnothing$. If the euler number $\chi(\partial N)=0$, then ∂N would consist of a finite number of tori. Since M is atoroidal, $M-\operatorname{int} N$ would consist of parabolic cusps of M. This contradicts that M has infinite volume. Therefore the Euler number $\chi(\partial N)$ is negative and hence by Hempel [4, Theorem 1.3], $\pi_{1}(M)$ $\left(\cong \pi_{1}(N)\right)$ has FGIP.

Lemma 2. Let M be an orientable torus bundle over S^{1}. Every subgroup A of $\pi_{1}(M)$ is either of finite index in $\pi_{1}(M)$ or A contains a free abelian subgroup with rank at most 2 of finite index. Hence, in particular, A is finitely generated.
Proof. Let $p: \widetilde{M} \rightarrow M$ be the covering associated to A. The covering space \widetilde{M} has the surface bundle structure \mathscr{S} induced from the torus bundle structure on M. A fiber F in \mathscr{S} is either a torus or an open annulus or an open disk, and the base space is either S^{1} or \mathbf{R}. If the base space is \mathbf{R}, then $\pi_{1}(F) \cong \pi_{1}(\widetilde{M}) \cong A$ is free abelian with rank at most 2 . So we may assume that the base space is S^{1}. If F is a torus, then \widetilde{M} is a closed 3-manifold and hence $\pi_{1}(\widetilde{M})$ is of finite index in $\pi_{1}(M)$. If F is an open disk (resp. an open annulus), then $\pi_{1}(\widetilde{M})$ is isomorphic to Z (resp. to the fundamental group of either a torus or a Klein bottle).

Proposition 2. For every 3-manifold M with $\mathbf{S}^{3}, \mathbf{S}^{2} \times \mathbf{E}^{1}, \mathbf{E}^{3}$, Nil or Sol structure, $\pi_{1}(M)$ has FGIP.
Proof. If M has $\mathbf{S}^{3}, \mathbf{S}^{2} \times \mathbf{E}^{1}$ or \mathbf{E}^{3} structure, then $\pi_{1}(M)$ has an abelian group of finite index. Hence $\pi_{1}(M)$ has FGIP. If M has Nil or Sol structure, then M is finitely covered by a torus bundle over S^{1}. Hence, by Lemmas 1 and $2, \pi_{1}(M)$ has FGIP.

Proposition 3. For every 3-manifold M with $\mathbf{H}^{2} \times \mathbf{E}^{1}$ or $\overparen{\mathrm{SL}_{2}(\mathbf{R})}$ structure of finite volume, $\pi_{1}(M)$ does not have FGIP.

Proof. There exists an S^{1}-bundle \widetilde{M} over a surface F with $\chi(F)<0$ which finitely covers M. Let $p: \widetilde{M} \rightarrow F$ be the fibration. The base surface F contains mutually disjoint, noncontractible, simple loops l_{1}, l_{2} which are nonparallel in F. Let α be a simple arc in F connecting l_{1} and l_{2} and with int $\alpha \cap\left(l_{1} \cup l_{2}\right)=$ \varnothing. We set $C=p^{-1}\left(l_{1} \cup \alpha \cup l_{2}\right)$. Since $\pi_{1}(C)$ is isomorphic to $(\mathbf{Z} * \mathbf{Z}) \times \mathbf{Z}$ and since the homomorphism $\pi_{1}(C) \rightarrow \pi_{1}(\widetilde{M})$ induced by the inclusion is injective, $\pi_{1}(\widetilde{M})$ and hence $\pi_{1}(M)$ do not have FGIP.

2. Proof of Theorem 1

Let N_{i} be compact, orientable 3-manifolds whose interiors admit complete hyperbolic structures, and let M be a 3-manifold obtained from $\left\{N_{i}\right\}$, for some pairs $\left(T, T^{\prime}\right)$ of torus boundary components, by identifying T with T^{\prime} by some diffeomorphisms.

Let A be a finitely generated subgroup of $\pi_{1}(M)$ and let $g \in \pi_{1}(M)$. By Bass-Serre Theory, $\pi_{1}(M)$ is the fundamental group of a graph of groups (see [$11, \S 5]$), and hence so is A. Since A is finitely generated and the edge-groups are finitely generated (subgroups of $\mathbf{Z} \times \mathbf{Z}$), it is an exercise to show that the vertex groups $B=A \cap g \pi_{1}\left(N_{i}\right) g^{-1}$ are finitely generated. Thus we have the following:
Lemma 3. For every finitely generated subgroup A of $\pi_{1}(M)$ and $g \in \pi_{1}(M)$, $A \cap g \pi_{1}\left(N_{i}\right) g^{-1}$ is finitely generated.

We will define the geometric model M_{g} for the 3-manifold M given as above and the piecewise geodesic loops in M_{g}. From now on, we identify $\operatorname{int} N_{i}$ with $\mathbf{H}^{3} / \Gamma_{i}$ for some finitely generated Kleinian group Γ_{i}. Let $H_{i}^{(k)}$ be mutually disjoint neighborhoods of the parabolic cusps of N_{i}, which are covered by horoballs in \mathbf{H}^{3}. We set $\bar{N}_{i}=N_{i}-\bigcup_{k}$ int $H_{i}^{(k)}$. We can construct a 3-manifold M_{g} from $\left\{\bar{N}_{i}\right\}$, for some pairs $\left\{T, T^{\prime}\right\}$ of boundary components, by identifying T and T^{\prime} so that int M_{g} is homeomorphic to int M. The set $C=M_{g}-\bigcup_{i}$ int \bar{N}_{i} consists of incompressible tori and open annuli in M_{g}. We will equip each component C_{j} of C with a complete euclidean structure. Even in the case where $C_{j} \subset \partial \bar{N}_{i}$, the structure on C_{j} may not be that induced from \bar{N}_{i}. This is because, in general, the structures on C_{j} induced from the 3-manifolds on the right and left sides of C_{j} are distinct. The 3-manifold M_{g} with the hyperbolic structures on $\left\{\bar{N}_{i}\right\}$ and with the euclidean structures on $\left\{C_{j}\right\}$ is called a geometric model for M.

Let $* \in M_{g}-C$ be the base point of M and let l be a noncontractible loop in M_{g} containing $*$. We will define the piecewise geodesic loop in M_{g} homotopic to l fixing $*$. Modifying l by a homotopy fixing $*$, we may assume that l meets C transversely and the number of the points of $l \cap C$ is least among all loops in M_{g} homotopic to l fixing $*$. Let $\alpha_{1}, \ldots, \alpha_{n}$ be the closures of the components of $l-(l \cap C) \cup\{*\}$ such that $\alpha_{1} \cap \alpha_{n}=\{*\}$ and, for each i, α_{i} and α_{i+1} are adjacent in l. We suppose that α_{j} is contained in \bar{N}_{i}. If $1<j<n$, then α_{j} connects two neighborhoods $H_{i}^{(p)}$ and $H_{i}^{(q)}$ (possibly $p=q)$. Then ($\alpha_{j}, \partial \alpha_{j}$) is homotopic to a unique geodesic arc $\left(\beta_{j}, \partial \beta_{j}\right)$ in $\left(N_{i}, \partial H_{i}^{(p)} \cup \partial H_{i}^{(q)}\right)$ such that β_{j} meets $\partial H_{i}^{(p)} \cup \partial H_{i}^{(q)}$ orthogonally. Note that, in general, β_{j} is not contained in \bar{N}_{i}. Let γ_{j} be the arc in \bar{N}_{i} homotopic fixing
$\partial \gamma_{j}$ to β_{j} in N_{i} and hence to α_{j} such that $\gamma_{j} \cap \operatorname{int} \bar{N}_{i}=\beta_{j} \cap \operatorname{int} \bar{N}_{i}$ and, for each arc component $\beta_{j}^{(s)}$ of $\beta_{j}-\beta_{j} \cap\left(\operatorname{int} \bar{N}_{i}\right), \gamma_{j}$ has the geodesic arc $\gamma_{j}^{(s)}$ in $\partial \bar{N}_{i}$ connecting the two points of $\partial \beta_{j}^{(s)}$ and homotopic to $\beta_{j}^{(s)}$ fixing $\partial \gamma_{j}^{(s)}$ in N_{i}. When $j=1$ or n, the arc γ_{j} in \bar{N}_{i} connecting $*$ with $\partial H_{i}^{(p)}$ can be defined similarly. When $\alpha_{j} \subset \bar{N}_{i}$ and $\alpha_{j+1} \subset \bar{N}_{i}$, (possibly $i=i^{\prime}$), let C_{j} be the component of $\partial \bar{N}_{i} \cap \partial \bar{N}_{i^{\prime}}$ containing the point $p=\partial \alpha_{j} \cap \partial \alpha_{j+1}$. A proper homotopy from α_{j} to γ_{j} traces an arc s_{j} in C_{j} connecting p with $\partial \gamma_{j} \cap C_{j}$. Similarly an arc s_{j}^{\prime} in C_{j} connecting p with $\partial \gamma_{j+1} \cap C_{j}$ is defined. Let t_{j} be the geodesic arc in C_{j} homotopic to $s_{j} \cup s_{j}^{\prime}$ fixing ∂t_{j}. We say that $l_{g}=\gamma_{1} \cup t_{1} \cup \cdots \cup \gamma_{n-1} \cup t_{n-1} \cup \gamma_{n}$ is a piecewise geodesic loop (for short p.g. loop) in M_{g} homotopic to l fixing *.

The following lemma is straightforward from the definition of p.g. loops.
Lemma 4. If l_{g} and l_{g}^{\prime} are p.g. loops homotopic fixing $*$ to the same loop, then $l_{g}=l_{g}^{\prime}$.

The proof of Theorem 1 is based on the argument in Hempel [4].
Proof of Theorem 1. With the notation as above, we suppose furthermore that each Γ_{i} with $\mathbf{H}^{3} / \Gamma_{i}=\operatorname{int} N_{i}$ is geometrically finite and of the second kind. Let A_{1} and A_{2} be two finitely generated subgroups of $\pi_{1}(M)=\pi_{1}\left(M_{g}\right)$ and, for $j=1,2$, let $p_{j}: \widetilde{M}_{j} \rightarrow M_{g}$ be the covering associated to A_{j}. Let G_{j} be a finite 1-graph in \widetilde{M}_{j} with the base point of \widetilde{M}_{j} as a unique vertex and such that $i_{*}\left(\pi_{1}\left(G_{j}\right)\right)=\pi_{1}\left(\widetilde{M}_{j}\right)$, where $i: G_{j} \rightarrow M_{j}$ is the inclusion. Let R_{j} be the finite union of the closures $S_{j}^{(k)}$ of those components of $\widetilde{M}_{j}-p_{j}^{-1}(C)$ that meet G_{j} nontrivially. We will construct a certain compact core of R_{j}. Here a core of R_{j} is a connected subset of R_{j} such that the inclusion is homotopy equivalent. By Lemma 3, the Kleinian group $\Gamma_{j}^{(k)}$ associated to $S_{j}^{(k)}$ is finitely generated, hence it is geometrically finite, see [7, Proposition 7.1]. Hence $C_{j}^{(k)} \cap S_{j}^{(k)}$ is compact, where $C_{j}^{(k)}$ is the smallest closed convex core of $\mathbf{H}^{3} / \Gamma_{j}^{(k)}$. If $S_{j}^{(k)}$ is the closure of the component containing the base point $\tilde{*}$, we may assume that $C_{j}^{(k)} \ni \tilde{\tilde{*}}$. let $\Lambda_{j}^{(k)} \subset S_{\infty}^{2}$ be the limit set of $\Gamma_{j}^{(k)}$ and let $\Omega_{j}^{(k)}=S_{\infty}^{2}-\Lambda_{j}^{(k)}$. Here, we define that, if $\Gamma_{j}^{(k)}=\{1\}$, then $\Lambda_{j}^{(k)}=\varnothing$, and if $\Gamma_{j}^{(k)}$ is abelian, then $\Lambda_{j}^{(k)}$ is the set of the fixed points for $\Gamma_{j}^{(k)}$. The Kleinian manifold $O_{j}^{(k)}$ is defined by $\left(\mathbf{H}^{3} \cup \Omega_{j}^{(k)}\right) / \Gamma_{j}^{(k)}$, see [13, Definition 8.3.5]. Let $q: \mathbf{H}^{3} \rightarrow \mathbf{H}^{3} / \Gamma_{j}^{(k)}$ be the universal covering, and let $\left\{B_{s}\right\}$ be the set of horoballs in \mathbf{H}^{3} such that $q^{-1}\left(S_{j}^{(k)}\right)=\mathbf{H}^{3}-\bigcup_{s}$ int B_{s}. We say that the fixed point in S_{∞}^{2} of any parabolic transformation fixing a horoball B is the base point of B. Let x_{1}, \ldots, x_{r} be the finite points in $\partial O_{j}^{(k)}$ corresponding to the base points of horoballs B_{s} connected to another B_{t} by an arc in $q^{-1}\left(G_{j} \cap S_{j}^{(k)}\right)$. Let $C H_{j}^{(k)}$ be the convex hull of $\Lambda_{j}^{(k)} \cup q^{-1}\left(\left\{x_{1}, \ldots, x_{r}\right\}\right)$ and let $\widehat{C}_{j}^{(k)}=C H_{j}^{(k)} / \Gamma_{j}^{(k)}$. Let H_{1}, \ldots, H_{n} be those components of $\mathbf{H}^{3} / \Gamma_{j}^{(k)}-\operatorname{int} S_{j}^{(k)}$ corresponding to parabolic cusps of $\mathbf{H}^{3} / \Gamma_{j}^{(k)}$ and let $P_{j}^{(k)}=O_{j}^{(k)}-\bigcup_{i}$ int H_{i}. Since each component of $P_{j}^{(k)}-$ int $C_{j}^{(k)} \cap P_{j}^{(k)} \quad$ is homeomorphic to (a compact surface) $\times[0,1], P_{j}^{(k)}$ is

Figure 1
compact. We set $T_{j}^{(k)}=\widehat{C}_{j}^{(k)} \cap S_{j}^{(k)}$ and $U_{j}^{(k)}=P_{j}^{(k)} \cap \widehat{C}_{j}^{(k)}-\bigcup_{s} \operatorname{int} q\left(B_{s}\right)$, see Figure 1. Since $U_{j}^{(k)}$ is compact and since $T_{j}^{(k)}$ is the complement of the set $\left\{x_{1}, \ldots, x_{r}\right\}$ of isolated points in $U_{j}^{(k)}, T_{j}^{(k)}$ is also compact and hence the number of the components of $\partial S_{j}^{(k)}$ meeting $T_{j}^{(k)}$ nontrivially is finite. Let \widetilde{C}_{u} be any component of $p_{j}^{-1}(C)$ meeting some $T_{j}^{(k)}$ nontrivially. If $\pi_{1}\left(\widetilde{C}_{u}\right)=\{1\}$ (resp. $\cong \mathbf{Z}$), there exists a closed convex disk (resp. closed annulus with geodesic boundary) D_{u} in \widetilde{C}_{u} such that $\widetilde{C}_{u} \cap T_{j}^{(k)} \subset \operatorname{int} D_{u}$. In the case where \widetilde{C}_{u} meets two $T_{j}^{(k)}$ and $T_{j}^{(l)}$, we choose D_{u} so that $\widetilde{C}_{u} \cap\left(T_{j}^{(k)} \cup T_{j}^{(l)}\right) \subset$ int D_{u}. Then $K_{j}=\left(\bigcup_{k} T_{j}^{(k)}\right) \cup\left(\bigcup_{u} D_{u}\right)$ is the compact set in R_{j} such that $\left(e_{j}\right)_{*}\left(\pi_{1}\left(K_{j}\right)\right)=$ $\pi_{1}\left(R_{j}\right) \cong A_{j}$, where $e_{j}: K_{j} \subset R_{j}$, see Figure 2.

Let $f:(K, *) \rightarrow\left(M_{g}, *\right)$ be the pull-back of the two maps $p_{j} \circ e_{j}:\left(K_{j}, *\right) \rightarrow$ $\left(M_{g}, *\right)$, where $j=1,2$. Since K_{1} and K_{2} are compact, K is also compact, hence in particular, $\pi_{1}(K)$ is finitely generated. By Lemma 4, every element of $A_{1} \cap A_{2}$ is represented by the unique p.g. loop l_{g} in M_{g}. Let l_{j} be the p.g. loop in \widetilde{M}_{j} passing through the base point and covering l_{g}.

Now we show that l_{j} is contained in K_{j}. For $i=2, \ldots, n-1$, let $\gamma_{i} \subset S_{j}^{(k)}$ be the part of l_{j} obtained from the geodesic arc β_{i} in $\mathbf{H}^{3} / \Gamma_{j}^{(k)}$ meeting $\partial S_{j}^{(k)}$ orthogonally at $\partial \beta_{i}$ by replacing each component of $\beta_{i}-\beta_{i} \cap S_{j}^{(k)}$ by a certain geodesic arc in $p_{j}^{-1}(C)$. Let $\tilde{\beta}_{i} \subset \mathbf{H}^{3}$ be a lift of β_{i}. Let B_{s}, B_{t} be the horoballs connected each other by $\tilde{\beta}_{i}$ and let x_{s}, x_{t} be the base points of B_{s}, B_{t}. Since $\tilde{\beta}_{i}$ meets $\partial B_{s} \cup \partial B_{t}$ orthogonally, $\tilde{\beta}_{i}$ can be extended to the geodesic line $\hat{\beta}_{i}$ in \mathbf{H}^{3} connecting x_{s} with x_{t}. Since $\hat{\beta}_{i}$ is contained in the convex hull $C H_{j}^{(k)}, \beta_{i}$ is contained in $\widehat{C}_{j}^{(k)}$. Since every D_{u} is convex in

Figure 2
$p_{j}^{-1}(C), \gamma_{i}$ is contained in $T_{j}^{(k)} \cup\left(\bigcup_{u} D_{u}\right) \subset K_{j}$. Similarly the both parts γ_{1}, γ_{n} of l_{j} containing $\tilde{*}$ are contained in K_{j}. Again by using the convexity of D_{u}, it is proved easily that each component t_{i} of $l_{j}-\bigcup_{i} \gamma_{i}$ is contained in $\bigcup_{u} D_{u}$. Therefore we have $l_{j} \subset K_{j}$.

Thus $f_{*}\left(\pi_{1}(K)\right)=A_{1} \cap A_{2}$ and hence $A_{1} \cap A_{2}$ is finitely generated.

3. Proofs of Corollary and Theorem 2

Proof of Corollary. Let M be a connected 3-manifold and let T be a union of two-sided incompressible tori in M satisfying the assumptions of Corollary. By a combination of Scott's Theorem [9], Baumslag's Theorem [1] and Lemma 1, we may assume that M is compact, orientable and irreducible. We separate M into the simple pieces S_{1}, \ldots, S_{n} (that is, every incompressible torus in S_{j} is parallel to a torus component of ∂S_{j}) by the union T_{*} of incompressible tori in int M with $T_{*} \supset T$. By Thurston's Uniformization Theorem (see [7]), for each j, either S_{j} is Seifert fibered or int S_{j} is homeomorphic to $\mathbf{H}^{3} / \Gamma_{j}$, where Γ_{j} is a geometrically finite Kleinian group. Since $\pi_{1}\left(S_{j}\right)$ is isomorphic to a subgroup of $\pi_{1}(N)$ for some component N of $M-T$, it has FGIP. If S_{j} is Seifert-fibered, then, by Proposition 3, it is homeomorphic to either $T^{2} \times[0,1]$ or the twisted I-bundle over a Klein bottle. If necessary, replacing M by its certain double covering, we may assume that M contains no π_{1-} injectively embedded Klein bottles, in particular that every Seifert piece S_{j} is homeomorphic to $T^{2} \times[0,1]$. If int S_{j} is hyperbolic and if Conjecture 2 is true, then Γ_{j} is of the second kind. Therefore, by Theorem $1, \pi_{1}(M)$ has FGIP.

The following simple example implies that FGIP for 3-manifold groups is not closed under annulus sums for 3-manifolds.

Example. Let M_{1}, M_{2} be 3-manifolds homeomorphic to $T^{2} \times[0,1]$. For $i=1,2$, let A_{i} be a noncontractible annulus in ∂M_{i}. Let M be the 3manifold obtained from M_{1} and M_{2} by identifying A_{1} and A_{2} by some homeomorphism $A_{1} \rightarrow A_{2}$. Then $\pi_{1}\left(M_{i}\right)$ is isomorphic to $\mathbf{Z} \times \mathbf{Z}$, hence in particular, it has FGIP. On the other hand, since $\pi_{1}(M) \cong(\mathbf{Z} * \mathbf{Z}) \times \mathbf{Z}$, it does not have FGIP.

Let $f:(A, \partial A) \rightarrow(M, B)$ be a proper embedding (resp. 2-fold covering of a Möbius band embedded in M) from an annulus to a 3-manifold, where B is a subsurface in ∂M. We say that the annulus (resp. Möbius band) $f(A)$ is essential in (M, B) if $f_{*}: \pi_{1}(A) \rightarrow \pi_{1}(M)$ is injective and if a simple arc α in $f(A)$ connecting the two components of ∂A is not homotopic fixing $\partial \alpha$ to an arc in B.

Note that, in the above example, a component of $\partial M_{i}-\operatorname{int} A_{i}$ is an essential annulus in (M_{i}, A_{i}).
Proof of Theorem 2. Let $q: N_{1} \cup \cdots \cup N_{n} \rightarrow M$ be the natural quotient map. We set $q(A)=A^{\prime}$ and $q\left(A_{i j}\right)=q\left(A_{j i}\right)=A_{i j}^{\prime}$. As in the proof of Corollary, we may assume that M is compact, orientable and irreducible and that M contains no π_{1}-injectively embedded Klein bottles. For any N_{j}, if $\partial N_{j}-$ $\operatorname{int}\left(A \cap N_{j}\right)$ contains an annulus component which is inessential in $\left(N_{j}, A \cap N_{j}\right)$, then $\pi_{1}(M)$ is isomorphic to $\pi_{1}\left(M-q\left(N_{j}\right)\right)$. So we may assume that
(3.1) each annulus component of $\partial N_{j}-\operatorname{int}\left(A \cap N_{j}\right)$ is essential in $\left(N_{j}, A \cap\right.$ N_{j}).

We will separate N_{j} into simple factors $S_{1}^{j}, \ldots, S_{n_{j}}^{j}$. Let $S_{k}^{j} \subset N_{j}$ and $S_{l}^{u} \subset N_{u}$ (possibly $j=u$ or $k=l$) be simple pieces such that $A_{j u}^{\prime} \cap q\left(S_{k}^{j}\right) \cap q\left(S_{l}^{u}\right)$ is nonempty. Now we show the following (3.2).
(3.2) At least one of ($S_{k}^{j}, A \cap S_{k}^{j}$) and ($S_{l}^{u}, A \cap S_{l}^{u}$) contains no essential annuli.

If both $\left(S_{k}^{j}, A \cap S_{k}^{j}\right),\left(S_{l}^{u}, A \cap S_{l}^{u}\right)$ contained essential annuli, then for the original M before the reductions and for the original N_{s} 's and $A_{s t}$'s, we would have N_{s} and N_{t} such that $A_{s t} \neq \varnothing$ and both $\left(N_{i}, A \cap N_{i}\right)(i=s, t)$ contain nondegenerate, immersed annuli. If N_{i} is orientable, then by the Annulus Theorem (see [5, VIII.13]) ($N_{i}, A \cap N_{i}$) contains an essential annulus. When N_{i} is nonorientable, let $p: \widetilde{N}_{i} \rightarrow N_{i}$ be the orientable double covering. Again by the Annulus Theorem, $\left(\tilde{N}_{i}, p^{-1}\left(A \cap N_{i}\right)\right)$ contains an essential annulus \tilde{A}. By the elementary cut and paste argument, we may assume that \tilde{A} is equivariant under the covering transformation. Then $p(\widetilde{A})$ is either an essential annulus or an essential Möbius band in ($N_{i}, A \cap N_{i}$). This contradicts the assumption (ii) and hence (3.2) holds.

Now we return to the reduced case. For the union T_{0} of the tori used for the torus decompositions of all N_{j}, we set $T_{0}^{\prime}=q\left(T_{0}\right) \subset M$. By (3.2), for any component U of $M-T_{0}^{\prime}$, any essential torus in int U is ambient isotopic to a torus disjoint from $A^{\prime} \cap U$. So we have the disjoint union T_{U} of essential tori in int U defining a torus decomposition of U with $A^{\prime} \cap T_{U}=\varnothing$. The union T_{*} of T_{0}^{\prime} and T_{U} 's for all components U of $M-T_{0}^{\prime}$ separates M into simple pieces U_{1}, \ldots, U_{m}. If $A^{\prime} \cap U_{r}=\varnothing$, then $\pi_{1}\left(U_{r}\right)$ has FGIP, and hence either U_{r} is homeomorphic to $T^{2} \times[0,1]$ or int U_{r} is complete hyperbolic. We may assume that all these U_{r} are in the latter case. If $A^{\prime} \cap U_{r} \neq \varnothing$, then by
(3.1) and (3.2) $\chi\left(\partial U_{r}\right)<0$. By Thurston's Uniformization Theorem, int U_{r} is homeomorphic to $\mathbf{H}^{3} / \Gamma_{r}$, where Γ_{r} is a geometrically finite Kleinian group of the second kind. Therefore the geometric model M_{g} for M is defined. Let B_{1} and B_{2} be finitely generated subgroups of $\pi_{1}\left(M_{g}\right)$ and let $f_{j}: \widetilde{M}_{j} \rightarrow M_{g}$ be the covering associated to B_{j}. As in the proof of Theorem 1 , there exists a finite union R_{j} if the closures V_{j}^{k} of components of $\widetilde{M}_{j}-f_{j}^{-1}\left(T_{*}\right)$ such that $i_{*}\left(\pi_{1}\left(R_{j}\right)\right)=\pi_{1}\left(\widetilde{M}_{j}\right)$. Let K_{j} be the submanifold of R_{j} obtained by replacing all the V_{j}^{k} such that $f_{j}\left(V_{j}^{k}\right) \cap A^{\prime} \neq \varnothing$ by compact convex cores T_{j}^{k} defined as in Theorem 1. Let X_{j} be the union of these T_{j}^{k} and let Y_{j} be the closure of $K_{j}-X_{j}$. We set $g_{j}=f_{j} \mid K_{j}$ and denote by $g:(K, *) \rightarrow\left(M_{g}, *\right)$ the pull back of g_{1} and g_{2}. Note that K is a closed set contained in $K_{1} \times K_{2}=$ $\left(X_{1} \times X_{2}\right) \cup\left(X_{1} \times Y_{2}\right) \cup\left(Y_{1} \times X_{2}\right) \cup\left(Y_{1} \times Y_{2}\right)$. Since $K \cap\left(X_{1} \times Y_{2}\right)$ and $K \cap\left(Y_{1} \times X_{2}\right)$ are contained in $\left(Y_{1} \times Y_{2}\right), K=\left(K \cap\left(X_{1} \times X_{2}\right)\right) \cup\left(K \cap\left(Y_{1} \times Y_{2}\right)\right)$. Since $g_{1}\left(Y_{1}\right)$ and $g_{2}\left(Y_{2}\right)$ are contained in $M_{g}-A$, by the assumption (i), for each component N of $K \cap\left(Y_{1} \times Y_{2}\right), \pi_{1}(N)$ is finitely generated. Since $K \cap\left(X_{1} \times X_{2}\right)$ is compact, $\pi_{1}(K)$ is finitely generated. As in Theorem $1, \pi_{1}(K)$ is isomorphic to $B_{1} \cap B_{2}$. This completes the proof.

References

1. B. Baumslag, Intersections of finitely generated subgroups in free products, J. London Math. Soc. 41 (1966), 673-679.
2. L. Greenberg, Discrete groups of motions, Canad. J. Math. 12 (1960), 415-426.
3. J. Hempel, 3-manifolds, Ann. of Math. Studies, no. 86, Princeton Univ. Press, Princeton, N.J., 1976.
4. __, The finitely generated intersection property for Kleinian groups, Knot Theory and Manifolds (D. Rolfsen, ed.), Lecture Notes in Math., vol. 1144, Springer, Berlin, 1985, pp. 18-24.
5. W. Jaco, Lectures on three-manifold topology, CBMS Regional Conf. Ser. in Math., no. 43, Amer. Math. Soc., Providence, R.I., 1980.
6. O. Kakimizu, Intersections of finitely generated subgroups in a 3-manifold group, Preprint, Hiroshima Univ., 1988.
7. J. Morgan, On Thurston's uniformization theorem for three-dimensional manifolds, The Smith Conjecture (J. Morgan and H. Bass, eds.), Academic Press, New York, 1984, pp. 37-125.
8. G. P. Scott, Finitely generated 3-manifold groups are finitely presented, J. London Math. Soc. 6 (1973), 437-440.
9. __, Compact submanifolds of 3-manifolds, J. London Math. Soc. 7 (1973), 246-250.
10. __, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487.
11. J.-P. Serre, Trees, Springer, Berlin, 1980.
12. W. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381.
13. __, The geometry and topology of 3-manifolds, Mimeographed Notes, Princeton Univ., Princeton, N.J., 1978.

Department of Mathematics, Kyushu Institute of Technology, Tobata, Kita-Kyushu 804, Japan

[^0]: Received by the editors November 23, 1988 and, in revised form, March 10, 1990.
 1980 Mathematics Subject Classification (1985 Revision). Primary 57M05, 30F40.

