3-MANIFOLD GROUPS WITH THE FINITELY GENERATED INTERSECTION PROPERTY #### TERUHIKO SOMA ABSTRACT. In this paper, first we consider whether the fundamental groups of certain geometric 3-manifolds have FGIP or not. Next we give the sufficient conditions that FGIP for 3-manifold groups is preserved under torus sums or annulus sums and connect this result with a conjecture by Hempel [4]. A group G is said to have the *finitely generated intersection property* (for short FGIP) if, for each pair of finitely generated subgroups H, $K \subset G$, $H \cap K$ is finitely generated. Greenberg [2] proved that the fundamental groups of surfaces have FGIP. For given 3-manifolds M, we would like to know if their fundamental groups $\pi_1(M)$ have FGIP or not. In the case where $\pi_1(M)$ does not have FGIP, certain structures on $H \cap K$ for finitely generated subgroups H, K of $\pi_1(M)$ are studied by Kakimizu [6]. In [5, Chapter V], Jaco proved that, for every surface bundle M over S^1 with fiber F of negative Euler number, $\pi_1(M)$ does not have FGIP, hence in particular, the group $(\mathbf{Z} * \mathbf{Z}) \times \mathbf{Z}$ does not have FGIP. This result implies that, if the following Conjecture 1 proposed by Thurston [12] is true, then Conjecture 2 is also true (see Hempel [4]). **Conjecture 1.** Every hyperbolic 3-manifold of finite volume is finitely covered by a surface bundle over the circle. **Conjecture 2.** The fundamental group of every hyperbolic 3-manifold of finite volume does not have FGIP. In [4], Hempel proved that every geometrically finite Kleinian group Γ of the second kind has FGIP. Here Γ of the second kind means that the limit set of Γ is not equal to the sphere S^2_{∞} at infinity. By using this result, it is not hard to prove that the fundamental group of every hyperbolic 3-manifold of infinite volume has FGIP, see Proposition 1 in §1. We also consider the fundamental groups of 3-manifolds with the geometric structures other than the hyperbolic structure. For every 3-manifold M with S^3 , $S^2 \times E^1$, E^3 , Nil or Sol structure, $\pi_1(M)$ has FGIP (Proposition 2), and for every 3-manifold M with $H^2 \times E^1$ or $SL_2(\mathbb{R})$ structure of finite volume, $\pi_1(M)$ does not have FGIP (Proposition 3). According to Baumslag [1], the free product A * B of two groups A and B with FGIP has also FGIP. This result implies that, if two 3-manifolds have Received by the editors November 23, 1988 and, in revised form, March 10, 1990. 1980 Mathematics Subject Classification (1985 Revision). Primary 57M05, 30F40. fundamental groups with FGIP, then that of their connected sum also has FGIP. The following question is the torus sum version of this result. **Question.** Let M be a 3-manifold and let T be an embedded, two-sided incompressible torus in M. If, for each component N of M-T, $\pi_1(N)$ has FGIP, does $\pi_1(M)$ have FGIP? Let N_i $(i=1,2,\ldots,n)$ be 3-manifolds whose boundaries ∂N_i contain incompressible torus components and such that all $\pi_1(N_i)$ have FGIP, and let M be a 3-manifold obtained from $\{N_i\}$, for some pairs (T,T') of torus boundary components, by identifying T with T'. The following theorem gives a sufficient condition for $\pi_1(M)$ to have FGIP. **Theorem 1.** With the notation as above, we suppose that, for each i, int N_i is homeomorphic to \mathbf{H}^3/Γ , where Γ is a geometrically finite Kleinian group of the second kind. Then $\pi_1(M)$ has FGIP. To prove Theorem 1, in $\S 2$, we will define a geometric model M_g for M and piecewise geodesic loops in M_g . This theorem asserts that, under torus sums for certain 3-manifolds, FGIP (for the fundamental groups) is preserved. The following corollary implies that, if Conjecture 2 is true, then FGIP is preserved under torus sums for 3-manifolds. **Corollary.** Let T be a union of mutually disjoint, two-sided incompressible tori in a connected 3-manifold M (possibly noncompact, nonorientable or reducible). If Conjecture 2 is true and $\pi_1(N)$ has FGIP for every component N of M-T, then $\pi_1(M)$ has FGIP. Under annulus sums for 3-manifolds, FGIP is not preserved. In §3, we will give a simple counterexample. Let $N = N_1 \cup \cdots \cup N_n$ be a disjoint union of n connected 3-manifolds, and let $A = A_1^+ \cup A_1^- \cup \cdots \cup A_m^+ \cup A_m^-$ be a disjoint union of 2m annuli in ∂N which are incompressible in N. Suppose M is the 3-manifold obtained from N by identifying A_s^+ and A_s^- for all $s=1,\ldots,m$ by some homeomorphisms $A_s^+ \to A_s^-$. For each pair i,j (possibly i=j), let A_{ij} be the union of components of A such that $A_{ij} \supset A_s^+$ (resp. A_s^-) if and only if $A \cap \partial N_i \supset A_s^+$ (resp. A_s^-) and $A \cap \partial N_j \supset A_s^-$ (resp. A_s^+). We note that $A_{ij} \subset A \cap \partial N_i$. When $i \neq j$, this A_{ij} nonempty means that N_i is adjacent to N_j in M. **Theorem 2.** With the notation as above, if the following two conditions are satisfied, then $\pi_1(M)$ has FGIP. - (i) For each N_j , $\pi_1(N_j)$ has FGIP. - (ii) For each pair N_i , N_j (possibly i = j) with $A_{ij} \neq \emptyset$, at least one of $(N_i, A \cap N_i)$ and $(N_j, A \cap N_j)$ contains no properly embedded essential annuli or Möbius bands. The proof of Theorem 2 is similar to that of the Corollary, but in this case, we do not need the assumption that Conjecture 2 is true. ## 1. Proofs of Propositions We refer to Hempel [3] and Jaco [5] for the notation on the 3-dimensional topology and to Scott [10] and Thurston [13] for the notation on hyperbolic 3-manifolds and other 3-dimensional geometric structures. The following lemma is an elementary exercise. **Lemma 1.** Let A, B, C be subgroups of a group G such that A and B are finitely generated and C is of finite index in G. Then $A \cap B$ is finitely generated if and only if $A \cap B \cap C$ is finitely generated. In particular, G has FGIP if and only if C has FGIP. \Box We say that a 3-manifold M is *atoroidal* if, for every incompressible torus T in M, at least one of the components of M-T is homotopic to the torus. According to Thurston [13, Proposition 5.4.4], every complete hyperbolic 3-manifold is atoroidal. **Proposition 1.** The fundamental group of every hyperbolic 3-manifold M of infinite volume has FGIP. *Proof.* We may assume that M is orientable and $\pi_1(M)$ is nonabelian and finitely generated. Furthermore, by Baumslag [1], we may also assume that $\pi_1(M)$ is indecomposable. Note that even after these reductions, we may assume that M still has infinite volume since any covering space of M also has infinite volume. By Scott [8], M contains a compact submanifold N such that the inclusion $N \subset M$ is homotopy equivalent and ∂N is incompressible in M. Since M is irreducible and atoroidal and since ∂N is incompressible in M, N is also atoroidal and irreducible. Since the volume of M is infinite, $\partial N \neq \emptyset$. If the euler number $\chi(\partial N) = 0$, then ∂N would consist of a finite number of tori. Since M is atoroidal, M in int N would consist of parabolic cusps of M. This contradicts that M has infinite volume. Therefore the Euler number $\chi(\partial N)$ is negative and hence by Hempel [4, Theorem 1.3], $\pi_1(M)$ ($\cong \pi_1(N)$) has FGIP. \square **Lemma 2.** Let M be an orientable torus bundle over S^1 . Every subgroup A of $\pi_1(M)$ is either of finite index in $\pi_1(M)$ or A contains a free abelian subgroup with rank at most 2 of finite index. Hence, in particular, A is finitely generated. *Proof.* Let $p: \widetilde{M} \to M$ be the covering associated to A. The covering space \widetilde{M} has the surface bundle structure $\mathscr S$ induced from the torus bundle structure on M. A fiber F in $\mathscr S$ is either a torus or an open annulus or an open disk, and the base space is either S^1 or $\mathbf R$. If the base space is $\mathbf R$, then $\pi_1(F) \cong \pi_1(\widetilde{M}) \cong A$ is free abelian with rank at most 2. So we may assume that the base space is S^1 . If F is a torus, then \widetilde{M} is a closed 3-manifold and hence $\pi_1(\widetilde{M})$ is of finite index in $\pi_1(M)$. If F is an open disk (resp. an open annulus), then $\pi_1(\widetilde{M})$ is isomorphic to Z (resp. to the fundamental group of either a torus or a Klein bottle). \square **Proposition 2.** For every 3-manifold M with S^3 , $S^2 \times E^1$, E^3 , Nil or Sol structure, $\pi_1(M)$ has FGIP. *Proof.* If M has S^3 , $S^2 \times E^1$ or E^3 structure, then $\pi_1(M)$ has an abelian group of finite index. Hence $\pi_1(M)$ has FGIP. If M has Nil or Sol structure, then M is finitely covered by a torus bundle over S^1 . Hence, by Lemmas 1 and 2, $\pi_1(M)$ has FGIP. \square **Proposition 3.** For every 3-manifold M with $\mathbf{H}^2 \times \mathbf{E}^1$ or $\widetilde{SL_2(\mathbf{R})}$ structure of finite volume, $\pi_1(M)$ does not have FGIP. *Proof.* There exists an S^1 -bundle \widetilde{M} over a surface F with $\chi(F) < 0$ which finitely covers M. Let $p:\widetilde{M} \to F$ be the fibration. The base surface F contains mutually disjoint, noncontractible, simple loops l_1 , l_2 which are nonparallel in F. Let α be a simple arc in F connecting l_1 and l_2 and with int $\alpha \cap (l_1 \cup l_2) = \emptyset$. We set $C = p^{-1}(l_1 \cup \alpha \cup l_2)$. Since $\pi_1(C)$ is isomorphic to $(\mathbf{Z} * \mathbf{Z}) \times \mathbf{Z}$ and since the homomorphism $\pi_1(C) \to \pi_1(\widetilde{M})$ induced by the inclusion is injective, $\pi_1(\widetilde{M})$ and hence $\pi_1(M)$ do not have FGIP. \square #### 2. Proof of Theorem 1 Let N_i be compact, orientable 3-manifolds whose interiors admit complete hyperbolic structures, and let M be a 3-manifold obtained from $\{N_i\}$, for some pairs (T, T') of torus boundary components, by identifying T with T' by some diffeomorphisms. Let A be a finitely generated subgroup of $\pi_1(M)$ and let $g \in \pi_1(M)$. By Bass-Serre Theory, $\pi_1(M)$ is the fundamental group of a graph of groups (see [11, §5]), and hence so is A. Since A is finitely generated and the edge-groups are finitely generated (subgroups of $\mathbf{Z} \times \mathbf{Z}$), it is an exercise to show that the vertex groups $B = A \cap g\pi_1(N_i)g^{-1}$ are finitely generated. Thus we have the following: **Lemma 3.** For every finitely generated subgroup A of $\pi_1(M)$ and $g \in \pi_1(M)$, $A \cap g\pi_1(N_i)g^{-1}$ is finitely generated. \square We will define the geometric model M_g for the 3-manifold M given as above and the piecewise geodesic loops in M_g . From now on, we identify int N_i with \mathbf{H}^3/Γ_i for some finitely generated Kleinian group Γ_i . Let $H_i^{(k)}$ be mutually disjoint neighborhoods of the parabolic cusps of N_i , which are covered by horoballs in \mathbf{H}^3 . We set $\overline{N}_i = N_i - \bigcup_k \operatorname{int} H_i^{(k)}$. We can construct a 3-manifold M_g from $\{\overline{N}_i\}$, for some pairs $\{T, T'\}$ of boundary components, by identifying T and T' so that int M_g is homeomorphic to $\operatorname{int} M$. The set $C = M_g - \bigcup_i \operatorname{int} \overline{N}_i$ consists of incompressible tori and open annuli in M_g . We will equip each component C_j of C with a complete euclidean structure. Even in the case where $C_j \subset \partial \overline{N}_i$, the structure on C_j may not be that induced from \overline{N}_i . This is because, in general, the structures on C_j induced from the 3-manifolds on the right and left sides of C_j are distinct. The 3-manifold M_g with the hyperbolic structures on $\{\overline{N}_i\}$ and with the euclidean structures on $\{C_i\}$ is called a geometric model for M. Let $*\in M_g-C$ be the base point of M and let l be a noncontractible loop in M_g containing *. We will define the piecewise geodesic loop in M_g homotopic to l fixing *. Modifying l by a homotopy fixing *, we may assume that l meets C transversely and the number of the points of $l\cap C$ is least among all loops in M_g homotopic to l fixing *. Let α_1,\ldots,α_n be the closures of the components of $l-(l\cap C)\cup \{*\}$ such that $\alpha_1\cap\alpha_n=\{*\}$ and, for each i, α_i and α_{i+1} are adjacent in l. We suppose that α_j is contained in \overline{N}_i . If 1< j< n, then α_j connects two neighborhoods $H_i^{(p)}$ and $H_i^{(q)}$ (possibly p=q). Then $(\alpha_j,\partial\alpha_j)$ is homotopic to a unique geodesic arc $(\beta_j,\partial\beta_j)$ in $(N_i,\partial H_i^{(p)}\cup\partial H_i^{(q)})$ such that β_j meets $\partial H_i^{(p)}\cup\partial H_i^{(q)}$ orthogonally. Note that, in general, β_j is not contained in \overline{N}_i . Let γ_j be the arc in \overline{N}_i homotopic fixing $\partial \gamma_j$ to β_j in N_i and hence to α_j such that $\gamma_j \cap \operatorname{int} \overline{N}_i = \beta_j \cap \operatorname{int} \overline{N}_i$ and, for each arc component $\beta_j^{(s)}$ of $\beta_j - \beta_j \cap (\operatorname{int} \overline{N}_i)$, γ_j has the geodesic arc $\gamma_j^{(s)}$ in $\partial \overline{N}_i$ connecting the two points of $\partial \beta_j^{(s)}$ and homotopic to $\beta_j^{(s)}$ fixing $\partial \gamma_j^{(s)}$ in N_i . When j=1 or n, the arc γ_j in \overline{N}_i connecting * with $\partial H_i^{(p)}$ can be defined similarly. When $\alpha_j \subset \overline{N}_i$ and $\alpha_{j+1} \subset \overline{N}_i$, (possibly i=i'), let C_j be the component of $\partial \overline{N}_i \cap \partial \overline{N}_{i'}$ containing the point $p=\partial \alpha_j \cap \partial \alpha_{j+1}$. A proper homotopy from α_j to γ_j traces an arc s_j in C_j connecting p with $\partial \gamma_j \cap C_j$. Similarly an arc s_j' in C_j connecting p with $\partial \gamma_{j+1} \cap C_j$ is defined. Let t_j be the geodesic arc in C_j homotopic to $s_j \cup s_j'$ fixing ∂t_j . We say that $l_g = \gamma_1 \cup t_1 \cup \cdots \cup \gamma_{n-1} \cup t_{n-1} \cup \gamma_n$ is a piecewise geodesic loop (for short p.g. loop) in M_g homotopic to l fixing *. The following lemma is straightforward from the definition of p.g. loops. **Lemma 4.** If l_g and l'_g are p.g. loops homotopic fixing * to the same loop, then $l_g = l'_g$. \square The proof of Theorem 1 is based on the argument in Hempel [4]. Proof of Theorem 1. With the notation as above, we suppose furthermore that each Γ_i with $\mathbf{H}^3/\Gamma_i = \text{int } N_i$ is geometrically finite and of the second kind. Let A_1 and A_2 be two finitely generated subgroups of $\pi_1(M) = \pi_1(M_g)$ and, for j = 1, 2, let $p_j: \widetilde{M}_j \to M_g$ be the covering associated to A_j . Let G_j be a finite 1-graph in \widetilde{M}_i with the base point of \widetilde{M}_i as a unique vertex and such that $i_*(\pi_1(G_i)) = \pi_1(\widetilde{M}_i)$, where $i: G_i \to M_i$ is the inclusion. Let R_i be the finite union of the closures $S_i^{(k)}$ of those components of $\widetilde{M}_j - p_i^{-1}(C)$ that meet G_j nontrivially. We will construct a certain compact core of R_i . Here a core of R_i is a connected subset of R_i such that the inclusion is homotopy equivalent. By Lemma 3, the Kleinian group $\Gamma_i^{(k)}$ associated to $S_i^{(k)}$ is finitely generated, hence it is geometrically finite, see [7, Proposition 7.1]. Hence $C_i^{(k)} \cap S_i^{(k)}$ is compact, where $C_j^{(k)}$ is the smallest closed convex core of $\mathbf{H}^3/\Gamma_i^{(k)}$. If $S_i^{(k)}$ is the closure of the component containing the base point $\tilde{*}$, we may assume that $C_j^{(k)} \ni \tilde{*}$. let $\Lambda_j^{(k)} \subset S_\infty^2$ be the limit set of $\Gamma_j^{(k)}$ and let $\Omega_j^{(k)} = S_\infty^2 - \Lambda_j^{(k)}$. Here, we define that, if $\Gamma_j^{(k)} = \{1\}$, then $\Lambda_j^{(k)} = \emptyset$, and if $\Gamma_j^{(k)}$ is abelian, then $\Lambda_j^{(k)}$ is the set of the fixed points for $\Gamma_j^{(k)}$. The Kleinian manifold $O_j^{(k)}$ is defined by $(\mathbf{H}^3 \cup \Omega_i^{(k)})/\Gamma_i^{(k)}$, see [13, Definition 8.3.5]. Let $q: \mathbf{H}^3 \to \mathbf{H}^3/\Gamma_i^{(k)}$ be the universal covering, and let $\{B_s\}$ be the set of horoballs in \mathbf{H}^3 such that $q^{-1}(S_i^{(k)}) = \mathbf{H}^3 - \bigcup_s \text{ int } B_s$. We say that the fixed point in S_∞^2 of any parabolic transformation fixing a horoball B is the base point of B. Let x_1, \ldots, x_r be the finite points in $\partial O_j^{(k)}$ corresponding to the base points of horoballs B_s connected to another B_t by an arc in $q^{-1}(G_j \cap S_j^{(k)})$. Let $CH_j^{(k)}$ be the convex hull of $\Lambda_j^{(k)} \cup q^{-1}(\{x_1, \ldots, x_r\})$ and let $\widehat{C}_j^{(k)} = CH_j^{(k)}/\Gamma_j^{(k)}$. Let H_1, \ldots, H_n be those components of $\mathbf{H}^3/\Gamma_j^{(k)}$ – int $S_j^{(k)}$ corresponding to parabolic cusps of $\mathbf{H}^3/\Gamma_j^{(k)}$ and let $P_j^{(k)} = O_j^{(k)} - \bigcup_i \operatorname{int} H_i$. Since each component of $P_j^{(k)} - \operatorname{int} C_j^{(k)} \cap P_j^{(k)}$ is homeomorphic to (a compact surface) $\times [0, 1], P_j^{(k)}$ is FIGURE 1 compact. We set $T_j^{(k)} = \widehat{C}_j^{(k)} \cap S_j^{(k)}$ and $U_j^{(k)} = P_j^{(k)} \cap \widehat{C}_j^{(k)} - \bigcup_s \operatorname{int} q(B_s)$, see Figure 1. Since $U_j^{(k)}$ is compact and since $T_j^{(k)}$ is the complement of the set $\{x_1,\ldots,x_r\}$ of isolated points in $U_j^{(k)}$, $T_j^{(k)}$ is also compact and hence the number of the components of $\partial S_j^{(k)}$ meeting $T_j^{(k)}$ nontrivially is finite. Let \widetilde{C}_u be any component of $p_j^{-1}(C)$ meeting some $T_j^{(k)}$ nontrivially. If $\pi_1(\widetilde{C}_u) = \{1\}$ (resp. $\cong \mathbb{Z}$), there exists a closed convex disk (resp. closed annulus with geodesic boundary) D_u in \widetilde{C}_u such that $\widetilde{C}_u \cap T_j^{(k)} \subset \operatorname{int} D_u$. In the case where \widetilde{C}_u meets two $T_j^{(k)}$ and $T_j^{(l)}$, we choose D_u so that $\widetilde{C}_u \cap (T_j^{(k)} \cup T_j^{(l)}) \subset \operatorname{int} D_u$. Then $K_j = (\bigcup_k T_j^{(k)}) \cup (\bigcup_u D_u)$ is the compact set in R_j such that $(e_j)_*(\pi_1(K_j)) = \pi_1(R_j) \cong A_j$, where $e_j \colon K_j \subset R_j$, see Figure 2. Let $f:(K,*) \to (M_g,*)$ be the pull-back of the two maps $p_j \circ e_j:(K_j,*) \to (M_g,*)$, where j=1,2. Since K_1 and K_2 are compact, K is also compact, hence in particular, $\pi_1(K)$ is finitely generated. By Lemma 4, every element of $A_1 \cap A_2$ is represented by the unique p.g. loop l_g in M_g . Let l_j be the p.g. loop in \widetilde{M}_j passing through the base point and covering l_g . Now we show that l_j is contained in K_j . For $i=2,\ldots,n-1$, let $\gamma_i\subset S_j^{(k)}$ be the part of l_j obtained from the geodesic arc β_i in $\mathbf{H}^3/\Gamma_j^{(k)}$ meeting $\partial S_j^{(k)}$ orthogonally at $\partial \beta_i$ by replacing each component of $\beta_i-\beta_i\cap S_j^{(k)}$ by a certain geodesic arc in $p_j^{-1}(C)$. Let $\tilde{\beta}_i\subset \mathbf{H}^3$ be a lift of β_i . Let B_s , B_t be the horoballs connected each other by $\tilde{\beta}_i$ and let x_s , x_t be the base points of B_s , B_t . Since $\tilde{\beta}_i$ meets $\partial B_s\cup\partial B_t$ orthogonally, $\tilde{\beta}_i$ can be extended to the geodesic line $\hat{\beta}_i$ in \mathbf{H}^3 connecting x_s with x_t . Since $\hat{\beta}_i$ is contained in the convex hull $CH_i^{(k)}$, β_i is contained in $\hat{C}_i^{(k)}$. Since every D_u is convex in FIGURE 2 $p_j^{-1}(C)$, γ_i is contained in $T_j^{(k)} \cup (\bigcup_u D_u) \subset K_j$. Similarly the both parts γ_1 , γ_n of l_j containing $\tilde{*}$ are contained in K_j . Again by using the convexity of D_u , it is proved easily that each component t_i of $l_j - \bigcup_i \gamma_i$ is contained in $\bigcup_u D_u$. Therefore we have $l_j \subset K_j$. Thus $f_*(\pi_1(K)) = A_1 \cap A_2$ and hence $A_1 \cap A_2$ is finitely generated. \square # 3. Proofs of Corollary and Theorem 2 *Proof of Corollary.* Let M be a connected 3-manifold and let T be a union of two-sided incompressible tori in M satisfying the assumptions of Corollary. By a combination of Scott's Theorem [9], Baumslag's Theorem [1] and Lemma 1, we may assume that M is compact, orientable and irreducible. We separate M into the simple pieces S_1, \ldots, S_n (that is, every incompressible torus in S_i is parallel to a torus component of ∂S_i) by the union T_* of incompressible tori in int M with $T_* \supset T$. By Thurston's Uniformization Theorem (see [7]), for each j, either S_j is Seifert fibered or int S_j is homeomorphic to \mathbf{H}^3/Γ_j , where Γ_i is a geometrically finite Kleinian group. Since $\pi_1(S_i)$ is isomorphic to a subgroup of $\pi_1(N)$ for some component N of M-T, it has FGIP. If S_i is Seifert-fibered, then, by Proposition 3, it is homeomorphic to either $T^2 \times [0, 1]$ or the twisted I-bundle over a Klein bottle. If necessary, replacing M by its certain double covering, we may assume that M contains no π_1 injectively embedded Klein bottles, in particular that every Seifert piece S_j is homeomorphic to $T^2 \times [0, 1]$. If int S_j is hyperbolic and if Conjecture 2 is true, then Γ_i is of the second kind. Therefore, by Theorem 1, $\pi_1(M)$ has FGIP. □ The following simple example implies that FGIP for 3-manifold groups is not closed under annulus sums for 3-manifolds. **Example.** Let M_1 , M_2 be 3-manifolds homeomorphic to $T^2 \times [0, 1]$. For i = 1, 2, let A_i be a noncontractible annulus in ∂M_i . Let M be the 3-manifold obtained from M_1 and M_2 by identifying A_1 and A_2 by some homeomorphism $A_1 \to A_2$. Then $\pi_1(M_i)$ is isomorphic to $\mathbb{Z} \times \mathbb{Z}$, hence in particular, it has FGIP. On the other hand, since $\pi_1(M) \cong (\mathbb{Z} * \mathbb{Z}) \times \mathbb{Z}$, it does not have FGIP. Let $f:(A,\partial A)\to (M,B)$ be a proper embedding (resp. 2-fold covering of a Möbius band embedded in M) from an annulus to a 3-manifold, where B is a subsurface in ∂M . We say that the annulus (resp. Möbius band) f(A) is essential in (M,B) if $f_*:\pi_1(A)\to\pi_1(M)$ is injective and if a simple arc α in f(A) connecting the two components of ∂A is not homotopic fixing $\partial \alpha$ to an arc in B. Note that, in the above example, a component of ∂M_i – int A_i is an essential annulus in (M_i, A_i) . Proof of Theorem 2. Let $q: N_1 \cup \cdots \cup N_n \to M$ be the natural quotient map. We set q(A) = A' and $q(A_{ij}) = q(A_{ji}) = A'_{ij}$. As in the proof of Corollary, we may assume that M is compact, orientable and irreducible and that M contains no π_1 -injectively embedded Klein bottles. For any N_j , if $\partial N_j - \operatorname{int}(A \cap N_j)$ contains an annulus component which is inessential in $(N_j, A \cap N_j)$, then $\pi_1(M)$ is isomorphic to $\pi_1(M - q(N_j))$. So we may assume that (3.1) each annulus component of $\partial N_j - \operatorname{int}(A \cap N_j)$ is essential in $(N_j, A \cap N_j)$. We will separate N_j into simple factors $S_1^j, \ldots, S_{n_j}^j$. Let $S_k^j \subset N_j$ and $S_l^u \subset N_u$ (possibly j = u or k = l) be simple pieces such that $A'_{ju} \cap q(S_k^j) \cap q(S_l^u)$ is nonempty. Now we show the following (3.2). (3.2) At least one of $(S_k^j, A \cap S_k^j)$ and $(S_l^u, A \cap S_l^u)$ contains no essential annuli. If both $(S_k^j, A \cap S_k^j)$, $(S_l^u, A \cap S_l^u)$ contained essential annuli, then for the original M before the reductions and for the original N_s 's and A_{st} 's, we would have N_s and N_t such that $A_{st} \neq \emptyset$ and both $(N_i, A \cap N_i)$ (i = s, t) contain nondegenerate, immersed annuli. If N_i is orientable, then by the Annulus Theorem (see [5, VIII.13]) $(N_i, A \cap N_i)$ contains an essential annulus. When N_i is nonorientable, let $p: \widetilde{N}_i \to N_i$ be the orientable double covering. Again by the Annulus Theorem, $(\widetilde{N}_i, p^{-1}(A \cap N_i))$ contains an essential annulus \widetilde{A} . By the elementary cut and paste argument, we may assume that \widetilde{A} is equivariant under the covering transformation. Then $p(\widetilde{A})$ is either an essential annulus or an essential Möbius band in $(N_i, A \cap N_i)$. This contradicts the assumption (ii) and hence (3.2) holds. Now we return to the reduced case. For the union T_0 of the tori used for the torus decompositions of all N_j , we set $T_0' = q(T_0) \subset M$. By (3.2), for any component U of $M - T_0'$, any essential torus in int U is ambient isotopic to a torus disjoint from $A' \cap U$. So we have the disjoint union T_U of essential tori in int U defining a torus decomposition of U with $A' \cap T_U = \varnothing$. The union T_* of T_0' and T_U 's for all components U of $M - T_0'$ separates M into simple pieces U_1, \ldots, U_m . If $A' \cap U_r = \varnothing$, then $\pi_1(U_r)$ has FGIP, and hence either U_r is homeomorphic to $T^2 \times [0, 1]$ or int U_r is complete hyperbolic. We may assume that all these U_r are in the latter case. If $A' \cap U_r \neq \varnothing$, then by (3.1) and (3.2) $\chi(\partial U_r) < 0$. By Thurston's Uniformization Theorem, int U_r is homeomorphic to H^3/Γ_r , where Γ_r is a geometrically finite Kleinian group of the second kind. Therefore the geometric model M_g for M is defined. Let B_1 and B_2 be finitely generated subgroups of $\pi_1(M_g)$ and let $f_j: M_j \to M_g$ be the covering associated to B_j . As in the proof of Theorem 1, there exists a finite union R_j if the closures V_j^k of components of $\widetilde{M}_j - f_j^{-1}(T_*)$ such that $i_*(\pi_1(R_j)) = \pi_1(\widetilde{M}_j)$. Let K_j be the submanifold of R_j obtained by replacing all the V_i^k such that $f_i(V_i^k) \cap A' \neq \emptyset$ by compact convex cores T_i^k defined as in Theorem 1. Let X_i be the union of these T_i^k and let Y_i be the closure of $K_j - X_j$. We set $g_j = f_j | K_j$ and denote by $g: (K, *) \to (M_g, *)$ the pull back of g_1 and g_2 . Note that K is a closed set contained in $K_1 \times K_2 =$ $(X_1 \times X_2) \cup (X_1 \times Y_2) \cup (Y_1 \times X_2) \cup (Y_1 \times Y_2)$. Since $K \cap (X_1 \times Y_2)$ and $K \cap (Y_1 \times X_2)$ are contained in $(Y_1 \times Y_2)$, $K = (K \cap (X_1 \times X_2)) \cup (K \cap (Y_1 \times Y_2))$. Since $g_1(Y_1)$ and $g_2(Y_2)$ are contained in $M_g - A$, by the assumption (i), for each component N of $K \cap (Y_1 \times Y_2)$, $\pi_1(N)$ is finitely generated. Since $K \cap (X_1 \times X_2)$ is compact, $\pi_1(K)$ is finitely generated. As in Theorem 1, $\pi_1(K)$ is isomorphic to $B_1 \cap B_2$. This completes the proof. \Box ### REFERENCES - 1. B. Baumslag, *Intersections of finitely generated subgroups in free products*, J. London Math. Soc. 41 (1966), 673–679. - 2. L. Greenberg, Discrete groups of motions, Canad. J. Math. 12 (1960), 415-426. - 3. J. Hempel, 3-manifolds, Ann. of Math. Studies, no. 86, Princeton Univ. Press, Princeton, N. I. 1976 - 4. ____, The finitely generated intersection property for Kleinian groups, Knot Theory and Manifolds (D. Rolfsen, ed.), Lecture Notes in Math., vol. 1144, Springer, Berlin, 1985, pp. 18-24 - W. Jaco, Lectures on three-manifold topology, CBMS Regional Conf. Ser. in Math., no. 43, Amer. Math. Soc., Providence, R.I., 1980. - 6. O. Kakimizu, Intersections of finitely generated subgroups in a 3-manifold group, Preprint, Hiroshima Univ., 1988. - 7. J. Morgan, On Thurston's uniformization theorem for three-dimensional manifolds, The Smith Conjecture (J. Morgan and H. Bass, eds.), Academic Press, New York, 1984, pp. 37-125. - 8. G. P. Scott, Finitely generated 3-manifold groups are finitely presented, J. London Math. Soc. 6 (1973), 437-440. - 9. ____, Compact submanifolds of 3-manifolds, J. London Math. Soc. 7 (1973), 246-250. - 10. ____, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487. - 11. J.-P. Serre, Trees, Springer, Berlin, 1980. - 12. W. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381. - _____, The geometry and topology of 3-manifolds, Mimeographed Notes, Princeton Univ., Princeton, N.J., 1978. Department of Mathematics, Kyushu Institute of Technology, Tobata, Kita-Kyushu 804, Japan