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3-MANIFOLD GROUPS WITH THE
FINITELY GENERATED INTERSECTION PROPERTY

TERUHIKO SOMA

Abstract. In this paper, first we consider whether the fundamental groups of

certain geometric 3-manifolds have FGIP or not. Next we give the sufficient

conditions that FGIP for 3-manifold groups is preserved under torus sums or

annulus sums and connect this result with a conjecture by Hempel [4].

A group G is said to have the finitely generated intersection property (for

short FGIP) if, for each pair of finitely generated subgroups H, K c G, HnK

is finitely generated. Greenberg [2] proved that the fundamental groups of

surfaces have FGIP. For given 3-manifolds M, we would like to know if their

fundamental groups 7ii(M) have FGIP or not. In the case where nx(M) does

not have FGIP, certain structures on H n K for finitely generated subgroups

H, K of iti(M) are studied by Kakimizu [6]. In [5, Chapter V], Jaco proved

that, for every surface bundle M over S1 with fiber F of negative Euler

number, nx (M) does not have FGIP, hence in particular, the group (Z*Z) x Z

does not have FGIP. This result implies that, if the following Conjecture 1

proposed by Thurston [12] is true, then Conjecture 2 is also true (see Hempel

[4]).

Conjecture 1. Every hyperbolic 3-manifold of finite volume is finitely covered

by a surface bundle over the circle.

Conjecture 2. The fundamental group of every hyperbolic 3-manifold of finite

volume does not have FGIP.

In [4], Hempel proved that every geometrically finite Kleinian group Y of the

second kind has FGIP. Here Y of the second kind means that the limit set of

r is not equal to the sphere S2^ at infinity. By using this result, it is not hard

to prove that the fundamental group of every hyperbolic 3-manifold of infinite

volume has FGIP, see Proposition 1 in § 1. We also consider the fundamental

groups of 3-manifolds with the geometric structures other than the hyperbolic

structure. For every 3-manifold M with S3, S2 x E1, E3, Nil or Sol structure,

nx(M) has FGIP (Proposition 2), and for every 3-manifold M with H2 x E1

or SL2(R) structure of finite volume, nx(M) does not have FGIP (Proposition

3).
According to Baumslag [1], the free product A * B of two groups A and

B with FGIP has also FGIP. This result implies that, if two 3-manifolds have
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fundamental groups with FGIP, then that of their connected sum also has FGIP.

The following question is the torus sum version of this result.

Question. Let M be a 3-manifold and let T be an embedded, two-sided in-

compressible torus in M. If, for each component A of M - T, nx(N) has

FGIP, does nx(M) have FGIP?
Let A, (/ = 1, 2, ... , n) be 3-manifolds whose boundaries dN¡ contain

incompressible torus components and such that all nx(N¡) have FGIP, and

let M be a 3-manifold obtained from {A,} , for some pairs (T, V) of torus

boundary components, by identifying T with V . The following theorem gives

a sufficient condition for nx(M) to have FGIP.

Theorem 1. With the notation as above, we suppose that, for each i, int A, is

homeomorphic to H3/T, where Y is a geometrically finite Kleinian group of the

second kind. Then nx(M) has FGIP.

To prove Theorem 1, in §2, we will define a geometric model Mg for M

and piecewise geodesic loops in Mg .

This theorem asserts that, under torus sums for certain 3-manifolds, FGIP

(for the fundamental groups) is preserved. The following corollary implies that,

if Conjecture 2 is true, then FGIP is preserved under torus sums for 3-manifolds.

Corollary. Let T be a union of mutually disjoint, two-sided incompressible tori

in a connected 3-manifold M (possibly noncompact, nonorientable or reducible).

If Conjecture 2 is true and nx(N) has FGIP for every component N ofM-T,

then nx(M) has FGIP.

Under annulus sums for 3-manifolds, FGIP is not preserved. In §3, we will

give a simple counterexample.

Let A = A] U • • • U A„ be a disjoint union of n connected 3-manifolds, and

let A = A\ LM7/U- • -LM+ UA~ be a disjoint union of 2m annuli in dN which

are incompressible in A.
Suppose M is the 3-manifold obtained from A by identifying /!+ and Aj

for all 5 = 1, ... , m by some homeomorphisms A+ —> A~ . For each pair i, j

(possibly i = j), let A¡j be the union of components of A such that A¡j D A+

(resp. A~) if and only if A n dN¡ D A+ (resp. A~) and A n dNj D A~ (resp.
^4+). We note that A¡j c A n dN¿. When i ^ j , this Ai} nonempty means
that A, is adjacent to A; in M.

Theorem 2. With the notation as above, if the following two conditions are sat-

isfied, then nx(M) has FGIP.

(i) For each N¡, nx(Nj) has FGIP.
(ii) For each pair A,, A; (possibly i = j) with At] ^ 0, at least one of

(Ni, A n Ni) and (Nj, A n Nj) contains no properly embedded essential

annuli or Mobius bands.

The proof of Theorem 2 is similar to that of the Corollary, but in this case,

we do not need the assumption that Conjecture 2 is true.

1. Proofs of Propositions

We refer to Hempel [3] and Jaco [5] for the notation on the 3-dimensional

topology and to Scott [10] and Thurston [13] for the notation on hyperbolic

3-manifolds and other 3-dimensional geometric structures.
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The following lemma is an elementary exercise.

Lemma 1. Let A, B, C be subgroups of a group G such that A and B are

finitely generated and C is of finite index in G. Then Ar\B is finitely generated

if and only if An B DC is finitely generated. In particular, G has FGIP if and
only if C has FGIP.   D

We say that a 3-manifold M is atoroidal if, for every incompressible torus

T in M, at least one of the components of M - T is homotopic to the torus.

According to Thurston [13, Proposition 5.4.4], every complete hyperbolic 3-

manifold is atoroidal.

Proposition 1. The fundamental group of every hyperbolic 3-manifold M of

infinite volume has FGIP.

Proof. We may assume that M is orientable and nx(M) is nonabelian and

finitely generated. Furthermore, by Baumslag [1], we may also assume that

nx(M) is indecomposable. Note that even after these reductions, we may as-

sume that M still has infinite volume since any covering space of M also has

infinite volume. By Scott [8], M contains a compact submanifold A such that

the inclusion N c M is homotopy equivalent and dN is incompressible in

M. Since M is irreducible and atoroidal and since d A is incompressible in

M, N is also atoroidal and irreducible. Since the volume of M is infinite,

dN ^ 0. If the euler number x(dN) — 0, then dN would consist of a finite

number of tori. Since M is atoroidal, M - int A would consist of parabolic

cusps of M. This contradicts that M has infinite volume. Therefore the Eu-

ler number x(dN) is negative and hence by Hempel [4, Theorem 1.3], nx(M)

(=nx(N)) has FGIP.   □

Lemma 2. Let M be an orientable torus bundle over S1. Every subgroup A of

nx(M) is either of finite index in nx(M) or A contains a free abelian subgroup

with rank at most 2 of finite index. Hence, in particular, A is finitely generated.

Proof. Let p:M —> M be the covering associated to A . The covering space M
has the surface bundle structure 5? induced from the torus bundle structure

on M. A fiber F in 5? is either a torus or an open annulus or an open

disk, and the_base space is either S1 or R. If the base space is R, then

nx(F) = nx(M) = A is free abelian with rank at most 2. So we may assume

that the base space is S1 . If F is a torus, then M is a closed 3-manifold and

hence nx(M) is of finite index in nx(M). If F is an open disk (resp. an open

annulus), then nx(M) is isomorphic to Z (resp. to the fundamental group of

either a torus or a Klein bottle).   D

Proposition 2. For every 3-manifold M with S3, S2 x E1, E3, Nil or Sol struc-

ture, nx(M) has FGIP.

Proof. If M has S3, S2 x E1 or E3 structure, then nx(M) has an abelian

group of finite index. Hence nx(M) has FGIP. If M has Nil or Sol structure,

then M is finitely covered by a torus bundle over S1 . Hence, by Lemmas 1

and 2, nx(M) has FGIP.   D

Proposition 3. For every 3-manifold M with H2 x E1 or SL2(R) structure of

finite volume, nx(M) does not have FGIP.
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Proof. There exists an S'-bundle M over a surface F with x(F) < 0 which

finitely covers M. Let p:M —» F be the fibration. The base surface F contains

mutually disjoint, noncontractible, simple loops lx, l2 which are nonparallel in

F . Let a be a simple arc in F connecting /) and l2 and with intan(/tU/2) =

0. We set C = p~x(li UaU/2). Since nx(C) is isomorphic to (Z*Z)xZ and

since the homomorphism nx(C) -» 7Ti (A/) induced by the inclusion is injective,

nx(M) and hence nx(M) do not have FGIP.   D

2. Proof of Theorem 1

Let Ni be compact, orientable 3-manifolds whose interiors admit complete

hyperbolic structures, and let M be a 3-manifold obtained from {A,}, for

some pairs (T, V) of torus boundary components, by identifying T with T

by some diffeomorphisms.

Let A be a finitely generated subgroup of 7Ti(A/) and let g e 7ti(A/). By

Bass-Serre Theory, nx(M) is the fundamental group of a graph of groups (see

[11, §5]), and hence so is A . Since A is finitely generated and the edge-groups

are finitely generated (subgroups of Z x Z), it is an exercise to show that the

vertex groups B = A n gnx(N¡)g~l are finitely generated. Thus we have the

following:

Lemma 3. For every finitely generated subgroup A of nx(M) and g e nx(M),

An gnx(Nj)g~l is finitely generated.   D

We will define the geometric model Mg for the 3-manifold M given as

above and the piecewise geodesic loops in Mg.   From now on, we identify

int A, with H3/r, for some finitely generated Kleinian group Y,■. Let H¡ '

be mutually disjoint neighborhoods of the parabolic cusps of A,, which are

covered by horoballs in H3 . We set N¡ = N¿ - \Jk int H¡ '. We can construct a

3-manifold Mg from {A,}, for some pairs {T, T'} of boundary components,

by identifying T and T so that int Mg is homeomorphic to int M. The set

C = Mg - U, int Ni consists of incompressible tori and open annuli in Mg .

We will equip each component C¡ of C with a complete euclidean structure.

Even in the case where Cy c <9 A,, the structure on Cj may not be that induced

from N¡. This is because, in general, the structures on Cj induced from the

3-manifolds on the right and left sides of Cj are distinct. The 3-manifold Mg

with the hyperbolic structures on {A,} and with the euclidean structures on

{Cj} is called a geometric model for M.
Let * £ Mg-C be the base point of M and let / be a noncontractible loop in

Mg containing * . We will define the piecewise geodesic loop in Mg homotopic

to / fixing *. Modifying / by a homotopy fixing *, we may assume that /

meets C transversely and the number of the points of / n C is least among

all loops in Mg homotopic to / fixing * . Let ax, ... , an be the closures of

the components of / - (/ n C) U {*} such that ax n a„ = {*} and, for each

i, at and a,+ i are adjacent in /. We suppose that a, is contained in A,.

If 1 < j < n, then a¡ connects two neighborhoods H¡ and H¡ (possibly

p = q). Then (ay, day) is homotopic to a unique geodesic arc (ßj , dßj) in

(Ni,dH\p)\JdH\q)) suchthat ß, meets dH¡p)UdH¡9) orthogonally. Note that,

in general, ßj is not contained in A,. Let y¡ be the arc in A, homotopic fixing
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dy¡ to ßj in A, and hence to ay such that y¡ n int A, = ßj n int A, and, for

each arc component /?js) of ßj - ßj n (int A,), y¡ has the geodesic arc yy in

dNi connecting the two points of dß^p and homotopic to ß^ fixing dy(p in

A,. When j = 1 or «, the arc yy in A, connecting * with dH\p) can be

defined similarly. When ay c A, and ay+i c A,, (possibly i = i'), let Cy

be the component of dN¡ n dN? containing the point p = day n <9ay+i . A

proper homotopy from a; to y7 traces an arc Sj in Cy connecting p with

dyj n Cy. Similarly an arc i' in Cy connecting p with öyy+i n Cy is defined.

Let tj be the geodesic arc in Cy homotopic to Sj Lls'j fixing dtj . We say that

lg = y i U h U • • • U y„_i U r„_i U y„ is a piecewise geodesic loop (for short p.g.

loop) in Mg homotopic to / fixing *.

The following lemma is straightforward from the definition of p.g. loops.

Lemma 4. If lg and l'g are p.g. loops homotopic fixing * to the same loop, then

lg = l'g-   ü

The proof of Theorem 1 is based on the argument in Hempel [4].

Proof of Theorem 1. With the notation as above, we suppose furthermore that

each r, with H3/T, = int A, is geometrically finite and of the second kind.
Let Ax and A2 be two finitely generated subgroups of nx(M) = nx(Mg) and,

for j = 1, 2, let p¡: Mj -» Mg be the covering associated to A¡. Let G¡ be a

finite 1-graph in M¡ with the base point of Mj as a unique vertex and such that

it(nx(Gj)) = nx(Mj), where i: G¡ —» M¡ is the inclusion. Let R¡ be the finite

union of the closures SJ ' of those components of Mj -pJx(C) that meet Gy

nontrivially. We will construct a certain compact core of Rj. Here a core of

Rj is a connected subset of Rj such that the inclusion is homotopy equivalent.

By Lemma 3, the Kleinian group 1} ' associated to SJfc) is finitely generated,

hence it is geometrically finite, see [7, Proposition 7.1]. Hence CJ ' n S^' is

compact, where CJ ' is the smallest closed convex core of H3/T( '. If S¡ is

the closure of the component containing the base point * , we may assume that

dfc) B *. let A(.] c S2 be the limit set of r(,fc) and let Q(,fc) = S2 - A<,fc).

Here, we define that, if Yf] = {1}, then Ayfc) = 0, and if I^fc) is abelian,

then A^' is the set of the fixed points for Yf^. The Kleinian manifold O^

is defined by (H3 U Qj^/Tf , see [13, Definition 8.3.5]. Let ^:H3 -» H3/Yf
be the universal covering, and let {Bs} be the set of horoballs in H3 such that

q~l(S{j ') = H3 - \JS inXBs. We say that the fixed point in S2^ of any parabolic

transformation fixing a horoball B is the base point of B. Let xx, ... , xr

be the finite points in d OJ    corresponding to the base points of horoballs Bs

connected to another B, by an arc in q~l(GJnS'j '). Let C//j ' be the convex

hull of Af ' U 0-'({*, , ... , xr}) and let Cf ' = Cfíf/Y^ . Let //,,...,//„

be those components of H3/T* ' - int SJ corresponding to parabolic cusps

of H3/rJ*) and let PJk) = of] - lj,int//,. Since each component of P\k) -

inXCjk) n Pj '    is homeomorphic to (a compact surface)   x [0,1],   Pjk)  is
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q(Bt)

Figure 1

(k)
compact. We set T)K> = Cf] n S)k} and U)k) = P)k) n Cf} - \JS int q(Bs), see

Figure 1. Since t/j ' is compact and since T^ is the complement of the set

{x\,..., xr} of isolated points in t/j ), 7J ' is also compact and hence the

number of the components of <9SJ ' meeting 7J ) nontrivially is finite. Let Cu

be any component of pjl(C) meeting some Tjk) nontrivially. If nx(Cu) = {1}

(resp. = Z), there exists a closed convex disk (resp. closed annulus with geodesic

boundary) Du in Cu such that Cu n rj ' c int £>„ . In the case where C„ meets

two
Ak) A') {k) <lh

Tf] and T)'>, we choose Du so that Cu n (rjK; U 7}';) c int/)u . Then
,(*)

Kj = (\\k Tj ') U (\JUDU) is the compact set in Rj such that (ey).(rei(Äy)) =

nx (Rj) = yly, where e,: A^y c Rj, see Figure 2.

Let /: (K, *) —► ( Af?, *) be the pull-back of the two maps pj o ef. (Kj, *) —»

(Mg , *), where j — 1,2. Since A^ and K2 are compact, AT is also compact,

hence in particular, nx(K) is finitely generated. By Lemma 4, every element of

Axn A2 is represented by the unique p.g. loop lg in Mg. Let /y be the p.g.

loop in Mj passing through the base point and covering lg .

Now we show that l¡ is contained in K¡. For i = 2, ... , n—I, let y, c Sj '

be the part of /, obtained from the geodesic arc /?, in H3/T. ' meeting <9SJ J

orthogonally at dßi by replacing each component of ß, - ß,nS{k) by a certain

geodesic arc in p~x(C).   Let ^, c H3 be a lift of /?,.   Let Bs, ß, be the

horoballs connected each other by /?/ and let x5, x, be the base points of

Bs,Bt. Since /?,■ meets dBsUdBt orthogonally, ßj can be extended to the

geodesic line /?, in H3 connecting xs with x,. Since /?, is contained in the

convex hull  CHj ',  /?,  is contained in Cj '.   Since every Du  is convex in
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,(k)

J

(k)

PT^(C)

SJ(O

,U)

Figure 2

/»/'(C), y,
7i, y« of /,

is contained in

containing

T{k)U(\JuDu) j c Kj.   Similarly the both parts

are contained in K¡. Again by using the convexity

of Du , it is proved easily that each component /, of l¡ - (J, y i is contained in

Uu Du . Therefore we have /y c Kj .

Thus f(nx(K)) = AxnA2 and hence AxnA2 is finitely generated.   D

3. Proofs of Corollary and Theorem 2

Proof of Corollary. Let M be a connected 3-manifold and let T be a union

of two-sided incompressible tori in M satisfying the assumptions of Corollary.
By a combination of Scott's Theorem [9], Baumslag's Theorem [1] and Lemma

1, we may assume that M is compact, orientable and irreducible. We separate

M into the simple pieces S¡, ... , S„ (that is, every incompressible torus in Sy

is parallel to a torus component of <9Sy) by the union T, of incompressible

tori in int M with T* d T. By Thurston's Uniformization Theorem (see [7]),

for each j, either Sy is Seifert fibered or intSy is homeomorphic to H3/Ty,

where Yj is a geometrically finite Kleinian group. Since 7Ti(Sy) is isomorphic

to a subgroup of 7Ti(A) for some component A of M - T, it has FGIP.

If Sy is Seifert-fibered, then, by Proposition 3, it is homeomorphic to either

T2 x [0, 1 ] or the twisted /-bundle over a Klein bottle. If necessary, replacing

M by its certain double covering, we may assume that M contains no ni-

injectively embedded Klein bottles, in particular that every Seifert piece Sy is

homeomorphic to T2 x [0, 1]. If intSy is hyperbolic and if Conjecture 2 is
true, then Ty is of the second kind. Therefore, by Theorem 1, ni(M) has
FGIP.   D

The following simple example implies that FGIP for 3-manifold groups is
not closed under annulus sums for 3-manifolds.
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Example. Let Mx, M2 be 3-manifolds homeomorphic to T2 x [0, 1]. For

/=1,2, let Ai be a noncontractible annulus in dM¡. Let M be the 3-

manifold obtained from Mx and M2 by identifying Ax and A2 by some

homeomorphism Ax -^ A2. Then nx(M¡) is isomorphic to Z x Z, hence in

particular, it has FGIP. On the other hand, since nx (M) = (Z * Z) x Z, it does

not have FGIP.

Let /: (A, dA) —> (M, B) be a proper embedding (resp. 2-fold covering of

a Möbius band embedded in M) from an annulus to a 3-manifold, where B

is a subsurface in dM. We say that the annulus (resp. Möbius band) f(A) is

essential in (M, B) if /*: nx(A) —> 7ti(Af) is injective and if a simple arc a in

/(^4) connecting the two components of dA is not homotopic fixing da to an

arc in B.

Note that, in the above example, a component of dM¡-inX A ¡ is an essential

annulus in (M¡, A¿).

Proof of Theorem 2. Let q: Nx U • • • U A„ —► M be the natural quotient map.

We set q(A) = A' and q(A¡j) = q(Aj¡) = A'¡j. As in the proof of Corollary,

we may assume that M is compact, orientable and irreducible and that M

contains no 7ti-injectively embedded Klein bottles. For any Ay, if dNj -

int(AnNj) contains an annulus component which is inessential in (Ay, An Nj),

then nx(M) is isomorphic to nx(M - q(N¡)). So we may assume that

(3.1 ) each annulus component of dAy - int(^4 n Ay) is essential in (Ay, A n

We will separate Ay into simple factors S{, ... ,SJn¡. Let SJk c Ay and

Sf c Nu (possibly j = u or k = I) be simple pieces such that A'junq(SJk)nq(S")

is nonempty. Now we show the following (3.2).

(3.2) At least one of (SJk , A n SJk) and (Sf, A n Sf) contains no essential
annuli.

If both (SJk, AnSJk), (Sf, A n Sf) contained essential annuli, then for the
original M before the reductions and for the original Ns 's and As, 's, we would

have Ns and A, such that Ast ^ 0 and both (N¡, An N¡) (i = s, t) contain

nondegenerate, immersed annuli. If A, is orientable, then by the Annulus

Theorem (see [5, VIII. 13]) (A,, A n A,) contains an essential annulus. When

A, is nonorientable, let p:N¡ —> A, be the orientable double covering. Agaiin by

the Annulus Theorem, (A,■-, p~x(A n A,)) contains an essential annulus A . By

the elementary cut and paste argument, we may assume that A is equivariant

under the covering transformation. Then p(A) is either an essential annulus or

an essential Möbius band in (A,, A n A,). This contradicts the assumption (ii)

and hence (3.2) holds.
Now we return to the reduced case. For the union To of the tori used for

the torus decompositions of all Ay, we set T¿ = q(To) C M. By (3.2), for any

component U of M - T¿, any essential torus in int U is ambient isotopic to
a torus disjoint from A' n U . So we have the disjoint union Tv of essential

tori in int U defining a torus decomposition of U with A' n Tu = 0. The

union T» of T¿ and Tu 's for all components U of M - T¿ separates M into

simple pieces Ux, ... , Um . If A'n Ur - 0, then nx(Ur) has FGIP, and hence

either Ur is homeomorphic to T2 x [0, 1 ] or int Ur is complete hyperbolic.

We may assume that all these Ur are in the latter case. If A' n Ur ^ 0 , then by
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(3.1) and (3.2) x{9Ur) < 0. By Thurston's Uniformization Theorem, inXUr

is homeomorphic to H3/Tr, where Yr is a geometrically finite Kleinian group

of the second kind. Therefore the geometric model Mg for M is defined. Let

Bx and B2 be finitely generated subgroups of nx(Mg) and let fj'.Mj -> Mg

be the covering associated to B¡. As in the proof of Theorem 1, there exists

a finite union Rj if the closures  Vf of components of Mj - f~x(T*) such

that i*(%i(Rj)) = iti(Mj). Let Kj be the submanifold of Rj obtained by

replacing all the Vf such that fjCV^nA' / 0 by compact convex cores Tk

defined as in Theorem 1. Let Xj be the union of these Tk and let Y¡ be the

closure of Kj-Xj. We set gj = f\Kj and denote by g: (K, *) -> (Mg, *) the
pull back of gi and g2 . Note that K is a closed set contained in Ki x K2 =

(*1x*2)u(X1xF2)U(F1xX2)U(F1xF2). Since Kn(XxxY2) and Kn(YxxX2)

are contained in (Yx xY2), K = (Kn(XxxX2))U(Kn(Yx x F2)). Since gx(Yx)

and g2(Y2) are contained in Mg-A, by the assumption (i), for each component

A of A'n(FixF2), 7ti(A) is finitely generated. Since Kn(XixX2) is compact,

7ti(K) is finitely generated. As in Theorem 1, nx(K) is isomorphic to BinB2.

This completes the proof.   D
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