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SUBSEQUENCE ERGODIC THEOREMS FOR Lp CONTRACTIONS

ROGER L. JONES, JAMES OLSEN AND MATE WIERDL

Abstract. In this paper certain subsequence ergodic theorems which have pre-

viously been known in the case of measure preserving point transformations,

or Dunford Schwartz operators, are extended to operators which are positive

contractions on LP for p fixed.

1. Introduction

Let (£l,&~, p.) be a sigma-finite measure space, T a linear operator from

LP = Lp(Çl, &", p) to itself, for some fixed p , 1 < p < oo, and {«jt}£l0 an
increasing sequence of positive integers. In this paper we will be concerned with

the almost sure convergence of the averages

(i.i) i £***(/)(<»)
k=i

for f £ Lp . Such "subsequence ergodic theorems" have been studied by many

authors including Baxter and Olsen [2], Bellow and Losert [3, 4], Bourgain [5-8],

Jones [11], Jones and Olsen [12], Wierdl [17], as well as others.

For special sequences {«¿J^i, that have zero density, Bourgain [5-8], and

Wierdl [17] obtain the existence of the limit for averages of the form (1.1) for

all T of the form Tf(co) = f(tco) where t is a measure preserving point

transformation. In particular Bourgain obtains this convergence for nk = k2,

for all f £L2 [5], f £U ,p>( 1+v/5)/2 [7], and p > 1 [8]. He also obtained
this convergence for the case of nk = the kxh prime, and p > (I + V3)/2 [6].

(This last result was generalized by Wierdl [17] to V , p > 1.) In [12] these

are generalized by weakening the assumption that T is induced by a measure

preserving point transformation to the assumption that T is a contraction on

LP(Q) for all p > 1. In this paper we further weaken the assumption on T.

In particular, this paper includes the case when T is a positive contraction on

LP(0), for p fixed.
In §2 of this paper we prove a transfer lemma which allows us to transfer cer-

tain inequalities from the integers to the general operator ergodic theory setting.

We then study a maximal inequality on the integers. This maximal inequality

is used to prove a variational inequality of the type used by Bourgain to obtain
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convergence for a dense subset of LP(Q.). Section 3 uses the results of §2 to

prove a.e. convergence of averages along certain classes of subsequences for a

general class of operators. It is interesting to note that for positive operators, the

variational inequality is already enough to establish almost everywhere conver-

gence for all / e LP(Q), and it is not necessary to appeal to Banach's principle.

Also in §3 we use the variational inequality to obtain almost everywhere con-

vergence results for certain Lamperti operators that are not necessarily positive.

The idea to use inequalities on the integers to prove inequalities in ergodic

theory was contained in Calderón [9]. A special case of our Theorem 2.1 was

contained in the paper by de la Torre [10].

Throughout the paper we will use the following notation. For each positive

real number x, Ax will denote the averaging operator defined by

,   M
Ax = - E on,

7 = 1

where {nf} is a sequence of integers, and

J 1    if k = n,
Sn(k)= \

1.0   if k t¿ n .

For p a fixed real number, 1 < p < 2, and 5 a positive integer, define the

operator Hs by Hs - Ap¡.

Let cp and y/ denote elements of lp(Z). Define the convolution operator

cp * y/(j) by
OC

cp*y=   E  V(k)v(j + k).
k=—oo

Questions regarding operators on LP(Çl) will lead to questions involving con-

volution operators on lp(Z). The solution to these problems on lp(Z) will in

turn lead to the solution of the problem on LP(Q).

Definition. An operator T defined on LP(Q.) will be called Lamperti if it has

the property that whenever / and g have disjoint supports,

(1.2) (a) Tf and Tg have disjoint supports

and

(1.3) (b)T(f+g) = Tf+Tg.

Note that (1.3) is weaker than linearity, but for bounded operators, (1.3) to-

gether with (1.2) does imply linearity. Such linear operators were studied by

Lamperti [14], Kan [13], Olsen [16] and others.

Definition. We will say that the operator T is a quasi-isometry if there exists

an increasing sequence of positive integers {L„}™={ and constants cx and c2

such that for every / £ Lp(Çl) we have

(1.4) ci\\fru{Q)<±- E \\Tkf\\Ua)<cÛf\\Ua)-
"  k=0

Throughout the paper, C will denote a constant, but will not necessarily be

the same constant from one occurrence to the next.
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Definition. The operator T is said to be power bounded if and only if there

exists a constant c such that \\Tn\\D < c for all n > 0.

We first prove a transfer theorem which will allow us to "transfer" the neces-

sary inequalities from operators on lp(Z) to operators on LP(Q,). This transfer

theorem is general enough to allow us to transfer an lp(Z) version of the varia-

tional inequality used by Bourgain in [5, 6, 7]. He used the variational inequality

to establish convergence for a dense subset of L2(D.) in the case of operators

induced by measure preserving point transformations. We use the same in-

equality to transfer the result on the integers to the more general operators on

LP(Q.) considered in this paper.

Theorem 2.1 (The transfer principle). Let k„tS, n= 1,2, ... , N; s = 1,2,...;

be functions in /'(Z+) and let p > 1. Suppose that there is a constant C so

that for any cp : Z+ cp with finite support, we have

(2.1)
n=\

sup|fcMii *cp\ <C\\<p\
If (I*

Then if T is a Lamperti operator and a quasi-isometry on LP(Q), or if T is

any positive contraction of LP(Q., I, m), then for any f £ LP(Q) the operators

Kn s defined by

(2.2)

satisfy

(2.3)

K„,sf(û)) = JTk„iS(m)Tm(f)(œ)
m=0

«=1

sup\K„,sf\ <C\\f"p
L»(Q)

LP(0)-

Before we begin the proof we prove some lemmas which will be needed in

the proof. The first lemma is well known but is included here for completeness.

Lemma 2.2. For T a positive isometry in Lp , or T a positive Lamperti operator

on LP(Q.), we have for any sequence fx, f2, ... , f„ of functions in LP(Q.),

rimax|y;i = max |T/;-1.

Proof. The case where T is a positive Lamperti operator includes the case of

positive isometries. To see this, note that for p > 1, f > 0, g > 0, we

have ||/+ g\\pp = \\f\\pp + \\g\\pp if and only if / and g have disjoint supports.
For T a positive isometry, and / and g having disjoint supports, we have

\\Tf+Tg\\p = \\T(f + g)\\p = \\f+g\\p = U/Iß + \\g\\p = ||r/||$ + \\Tg\\p , thus
property (1.2) is satisfied. Property (1.3) is obvious for positive isometries.

For T a positive Lamperti operator, we have \Tf\ - T\f\. To see this

write / = /1 - / ~ , where /1 and / ~ denote the positive and negative
parts of / . Since these have disjoint supports, and T maps functions with

disjoint supports to functions with disjoint supports, then using the fact that T
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is positive, we have \Tf\ = 7'ft + Tf ¡ = T\f\. To see that T commutes
with the "max" operator, we write

n

max l/l = E *£,!/; I
1=1

where £, is the set where the maximum value is achieved for the first time,

using the function |/|. Since the nonnegative functions XE¡\f¡\ have disjoint

supports, by property (1.3) we have r(max, |/|) = £?=1 T(xE¡\fi\), and by
property (1.2) there exist pairwise disjoint sets B,■, i = 1,2, ... , n , such that

T(mn\fi\)=YiZB,TOlE,\ft\).
^   '        '      i=i

However, using positivity, the right-hand side is dominated by £"_, XB¡T(\f¡\).

Using the fact that the B¡ are pairwise disjoint, this sum is dominated by

max T\f\ which is equal to max \Tfi\. To see the reverse inequality, simply

note that \Tf\ = T\f\ < T(max¡ |/|) for each i, and then take the maximum

over i on each side.   D

We now extend this result to operators which are not necessarily positive.

Lemma 2.3. For T a positive isometry or T a Lamperti operator on LP(Q),

we have for any sequence fx, f2, ... , fn of functions in LP(Q), and any j > 0,

that

= max\TJf\.
i

Further, if the operator S(f) is defined by S(f) = \Tf+\ -\Tf~\ then SJ is a
positive Lamperti operator for each j > 1, and satisfies \SJf\ — \TJf\.

Proof. Note that since the support of Tf+ and Tf~ are disjoint, we have by

the definition of S, \Tf + \ = (Sf)+ and |7*/-| = (Sf)~ , which implies that
the operator S satisfies | Tf \ = \Sf \.

If / and g have disjoint supports, then (f+g)+ = f+ + g+ , and (f+g)~ =

f~+g~. Hence for such / and g , we have

S(f + g) = \T(f+g)+\-\T(f + g)-\

= \Tf + \ + \Tg+\-\Tf-\-\Tg-\

= Sf + Sg.

Thus the operator S satisfies property (1.3). It also obviously satisfies property

(1.2). As a consequence S is a positive Lamperti operator. We now use our re-

sult for positive Lamperti operators to conclude that SXmax, |/|) = max, |5/-|.

Since \Sg\ = \Tg\ we also have ¡/"(max, |/|)| = max, \Tf\.
To complete the proof of the first part of the lemma, note that if T is a

Lamperti operator, so is Tj for any j > 0. Using what was proved above for

any Lamperti operator T, we can conclude that the same result holds for the

Lamperti operator T'.

For the last part of the lemma we use induction. The case j = I is true by

the above argument. Let j > 2, and assume that the result is true for j — 1.

Tj imax|/|j



ERGODIC THEOREMS FOR L" CONTRACTIONS 841

Since S is a positive Lamperti operator, we have |5/| = 5|/|. We can write

\Tjf + \ - \TJf-\ = \T(TJ~xf+)\ - \T(TJ-Xf~)\

= \S(TJ~xf+)\-\S(TJ-xf-)\

= S\TJ-xf + \-S\Tj-xf-\

= S(\TJ-xf + \-\P~xf-\).

However, using the induction hypothesis, the last expression is just S(SJ~xf) =

SJf. Thus we have SJf = \TJf+\ - \TJf~\. Take the absolute value of each
side to complete the proof.   G

Proof of Theorem 1. We will first prove the theorem with a number of special

restrictions, and then later show how these restrictions can be removed. Assume

that the k„tS, n — 1,2, ... , N and s — 1,2, ... , S ; are supported in [0, M]
for some integer M, and that T is a positive isometry of LP(Q).

Fix a large integer L and define

f &(f)(a>)   if 0<j< L + M,
fm0)ss\0 if j> L + M.

We have for each fixed n , and 0 < j < L,

M

max \TjK„ sf((o)\ = max
Ks<S ' Ks<S

= max
kj<í

TJYlkn,s(m)Tm(f)(co)
m=0

M

Y,kn,s(m)T]+m(f)(co)
w=0

=  max \kn^s*cpa(j)\.
l<s<S

Raising both sides to the pxh power, and summing over j and n , we get

N     L N     L

E E ,ma*v\TjKn,sf(co)\p = E E ,ma* I**.* * ̂ u)?
n=l >=0

Ks<S
n=l j=0

Ks<S

L+M

<C\Wa\\plP(Z+) = CY,\TJ(f)(oi)\p.
j=0

The inequality in the above being true by assumption. Integrating both sides of

this inequality, we have

.   L     N

/EE max \TJKn,sf\)(co)

j=0 n=l

Using Lemma 2.3, this is equivalent to

L     N

p .L+M

dp<C J Y^\TJ(f)(a))\"dfi.
j=0

L+M

EE TJ( max \Kn,sf\)(co)   dp<C / E \Tj (f)(co)\p d p

Interchanging the integration and the finite summations, we have

L     N , \    p L+M

(2-4) ¿ZzZ TJ( max \Kn,sf\) < C E II^'/II^q,.
7=0 n=l
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Using the fact that T is an isometry, this is equivalent to

L + M
(2.5)

N

E
n=l

max \K„ySf\
Ks<S

< -CI
U>(CÏ)

p
V(Q)

We now let L —> oo, to obtain

(2.6) E
n=l

max \K„,sf\
Ks<S U(Q)

< cwñUm ■

To prove the theorem in the case T is a Lamperti operator (not necessarily

positive) which is also a quasi-isometry, note that everything in the above argu-

ment holds except the equivalence of (2.4) and (2.5). However, using the fact

that T is a quasi-isometry, and selecting L to be an element of the sequence

{L„}^j from the quasi-isometry property, we still obtain (2.6) (with a different

C).
To extend the case of positive isometries to positive contractions on LP(Q)

we use the fact that for T a positive contraction there exists a positive isometric

embedding D of LP(Çl) into a larger space LP(Ú), a positive isometry Q

on LP(Q), and a conditional expectation operator E such that DT — EQD,

and more generally DT" — EQ"D. (See the important paper by Akcoglu and

Sucheston [1] for this.) Now we have that

(oo \ oo

¿Zkn,s(j)TJf    (co) =Y,knAJ)D(Pf)(o))

= Y.knAJ)EQj(Df)(co) = E ¡Y,kn,sU)Qj(Df)(co)
7=1 \7=l

= E(kn,s(Df))

where Kn<s is an operator associated with the positive isometry Q. Since D

is a positive isometry, by Lemma 2.2 it commutes with the max operator and

the absolute value operator. Consequently we have

E
n=\

max \K„,sf\
Ks<S = Ê|K,?si*«../i)

ma)    n=x LP(Q)

= E
n=l

N

sE
n=l

N

E
n=l

max \D(KtttSf)\
Ks<S

max E\K„,sDf\
Ks<S

-=E
i^(O)      n=i

p V

~iE
^(«)     „=1

max \E(K„,sDf)|
l<s<S

£Í maxl^n^D/

Z7-(Í2)

P

£>(ñ)

< max \K„tSDf
Ks<S

< C\\Df\\
LPiCl)

LP(Cl)
C p

LP(ii)

To remove the restriction of finite support for the functions k„tS, write kn¡s =

gn,s+b„,s where g„iS(j) = k„,s(j) if 0 < ; < M, and ^„,^0") = 0 forj>M.
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We first see that the sequence of functions {gn,s} satisfy the hypothesis of the

theorem. We have

E
<n=l

max \gn,s *cp\
Ks<S

IIP

\n=l

/ N

£   E
\«=1

\n=l

= 1 + 11.

max \k„yS*cp -b„yS*<p\

max \k„ s * cp\ + max \bn s * <p\
Ks<S        ' Ks<S        '

1/p

p

/>(Z+)

Up

max \kn s * <p\
Ks<S

max \kn s * <p\
Ks<S        '

IP(Z+

1?(Z+),

+

1/7'

max \b„ s * cp\
Ks<S       '

IIP

+ E
V/!=l

max \bn , * cp\

Up

By assumption, we have that (I) is dominated by Cx/p\\<p\\ip^+^. We will show

that {gn,s} can be selected so that (II) is dominated by e||ç»||/i>(z+) • To see this

we first replace the maximum in (II) by the larger sum. Thus

(«) <  E
i/p i//'

¿Z\bn,s*<P\P)
j=l /

(N      oo      S \

EEEiv^w
«=1 m=M s=l I

(N     S      oo \

EEE \bn,s*<p(m)\p\
n=l s=l m=M /

/ N     S \  X/p

< E£ii*»., *<,<*>
\n=l s=l /

/ N    S \X/p

< EEh^ilV)    ii^iii
\n=l 5=1 /

"(Z+),

I/P

1//'

Because each of the k„yS is in /'(Z+), we can select M so large that ||èn,i||^(z+)

< ep/NS, and thus (II) is dominated by c|H|/p(z+) as desired. We now have

E
k«=i

max \gn,s*<P\
Ks<S

1//'

/"(Z+),

<(Clt' + e)\\<p\\„lz+)
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Define GtttSf(io) = E^=0Sn,s(m)Tm(f)(co), and

B„,sf(œ) = Ytg„3S(m)Tm(f)(a>)
m=0

Because the {gn,s} satisfy the hypothesis of the original argument, we have

We also have

E
n=l

N

E
n=l

sup|C7n>J/|
V(Q)

<(C[" + £)'||/||î,m.

sE
£>(")      B=l

sap \B„,sf\
s

<E¿IIIWIIIW

¿Z\Bn,sf\
s=\ y (a)

n=l i=l

However,

\Bn,sf\ \\lp(0) Y^bn,s(m)Tmf(co)L
OO r     »

< Elè«.^w)l / \Tmf(<»)\Pd
.     , JQ

1/P

l/P

<   ll^,5|l/>(Z+)Cll/H^(iî)-

Consequently, we have

EE ii iä-.'/i ii^o) * EEiiô-..iif.(I+,cii/ii^(Q) < cB||/iiî,(0).
n=¡ j=l n=l5=1

The desired inequality is now obtained from these results and an application of
Minkowski's inequality as follows:

' n

E
Ln=l

sup \K„,sf\
LP(Q)

l/P

<

<

E
71=1

N

E
71=1

sup|G„,J1 + sup|/3„,

sup \G„,sf\
LP(0)\

i/p

+

IS(Q)

E
«=1

l/P

sup|5n>J/|
LPiO)

l/P

<[(Cí' + e)||/|li,(£i)]1/í' + e||/||¿,(£i).

Since we can take e as small as we want, we obtain the inequality with the
original constant.

To complete the proof let S increase to infinity.   D
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Remark. An analysis of what is needed for the proof to work shows that in fact

we can take T to be a power bounded Lamperti operator with the property

limsup i(||/||£, + ||7y||>, + • • • + \\T"-Xf\\p) > ôp\\f\\p.

This condition appears in Kan [13], and can be used in place of the quasi-

isometry condition in the later theorems.

Theorem 2.4. Let {gs}^x  be a sequence of functions in /'(Z+). If {s„} is an

increasing sequence of positive integers such that

(2.7) E
n=l

max   \(gs - gSn) * <p\
sn<sSsr.+\ /2(Z+)

< b(N)M2Hz+)

where b(N) = o(N), and

(2.8) max|& * cp\ < r* Il o II*- tpHV'll/i'(Z+
/*(Z+

for some p satisfying 1 < p < 2, then for any r satisfying p < r < 2 we have

(2-9) E
«=i

max   \(gs - gs„) * <P\
Sn<S<sn + l

<c(p,r)B(NY"\Wnz )

where c(p, r) is a constant that depends on only p and r, and B(N) = o(N).

Further, if r > 2 and we have sup$ ||&||/i(z-n < Af, then

(2.10)
71=1

max   \(gs - gSn) * (p\
5„<5<5„+i /'(Z+)

<c(r,M)B(N)\\cp\\rn^)

where c(r, M) is a constant that depends only on r and M, and B(N) = o(N).

Proof. We will first consider the case of p < 2, and p < r < 2. Then using
(2.8) we have

max   \(gs - gsj * <p\
5„<5<5„ + i

< Cp\\9\\t>(z+) + \\9

< || max \gs * cp\ ||/P(Z+) + \gSn * i9||/„(Z+

= bp\\<p\\¡P{Z,+)

where bp = cp + 1 .   Raising both sides to the pXh power and summing, we

obtain

(2.11) E
n=\

max   \(gs - gsj * (p\
•ç/i<5<^n+l /P{Z+)

< bpN\\cp\\pp{z+)

We want to interpolate between this inequality and (2.7).   Let   V = Z+ x

{1, 2, ... , A}. Define the sublinear operator U:lp(Z+)^ lp(V) by

U(cp)(j,n)=   max   \(gs - &„) * tp(j)\.
5„<5<5„ + |

Then we can write (2.11) as ||t/ç»||/,(^) < bpNx/p\\tp\\ip{Z+) and (2.7) as

\\Ucp\\IHV)<b(N)x/2\\tp\\lHz+).



846 R. L. JONES, JAMES OLSEN AND MATE WIERDL

Interpolating between these two inequalities, we have for 1 jr — ( 1 - t)/p +1/2,

(hence 0 < / < 1)

\\Ucp\\nv)<C(bpNx/p)x-'b(N)"2Mnz+)

which is (2.9) rewritten in terms of the operator U, and C depends only on

p and r. Eliminating t in the above inequality, raising both sides to the rth

power, and modifying C, we have

\\Ucp\\nv) < CN(b(N)IN)^-p^2-pï\\cp\\nz+).

Since b(N) is o(N), b(N)/N — o(l). We have a positive exponent because

r>p and 2 > p . Thus (6(A)/A)<r-*>/(2-*) = o(l) and we have (2.9).

The case of p > 2 is handled in a similar way. We have the estimate

max\gs*<p\ <M\\cp\
/°°(Z+)

itWe interpolate between this and the I (Z+) inequality (2.7) above to obtain

(2.10).

Theorem 2.5. Let {gs}fix denote a sequence of functions in /'(Z+). Let {s„}

denote an increasing sequence of positive integers such that

(2.12) E
n=l

max   \(gs - gSn) * <P\
S„<5<5„+1 /"(Z+

<o(N)\\cp\\pp{z+)

then for T a Lamperti operator which is also a quasi-isometry, or T a positive

contraction on L*(Q), we have

N

(2.13) E
n=l

max   \Gsf-GsJ\
5„<5<5„+i If (to)

<0(AWIri,(n),

where Gsf(co) = £~=1 gs(m)Tmf(co).

Proof. For each fixed A we use Theorem 2.1 with k„yS — gs - gs„ and C =

C(A) is the constant which appears in Theorem 2.1. In the hypothesis above,

this constant is assumed to be o (A).   □

In this section we use the results from the previous section to obtain a.s.

convergence for averages (1.1) associated with positive contractions on LP(Q)

and certain special subsequences for which the variational inequality on the

integers can be obtained. In particular, we show how to use the variational

inequality (2.13) to establish almost sure convergence. Recall that for p > 1 ,

Hsf(co) = Ap¡f(co), where A¡f(co) = }E'=i^/M- Let hs denote the

/'(Z+) function associated with the operator Hs.

Theorem 3.1. Let {«,-} be a subsequence of the integers, and T a positive con-

traction on LP(Q). If for each increasing sequence {sn} of positive integers, and

for each p with 1 < p < 2, we have

(3.1) E
n=l

max   \(hs - hSn) * <p\
Sn<S<S„+\

< o(N)\\cp\\pp{z+

then the averages ^ Y,f=i T"'(f)(co) converge a.e. for all f £ Lp(£l).



ERGODIC THEOREMS FOR Lf  CONTRACTIONS 847

Remark. It is easy to see from the proof that it is enough to only consider

sequences {s«}^ which are rapidly increasing. In some cases this makes it

easier to establish inequality (3.1).

Proof. Assume / > 0. (If not apply the argument to the positive and neg-

ative parts separately.) We first establish the almost everywhere convergence

of Hsf(co) = Apsf(co), s = 1,2,3,.... Assume that for some / with

Il/llz/(i2) = 1, there is a set B c Q such that Hsf(co) does not converge for all

co £ B, with p(B) > 0. Then there is a set Bx c B such that

lim sup Hsf(co) - liminfHs f(co) > n > 0

for all co £ Bx, and p(Bx ) > 0. It then follows that there is an infinite sequence

of integers si, s2, ... with si+i > s¡ and such that

HsJ\  "
lf(Q)

max   \Hsf
S„<S<Sn+\

>

JB,
max   \Hsf(co)-HsJ(co)\dp > ({n)p{p(Bi).

5n<5<5M+i

Consequently, we have

N

E
2!=1

max   \Hsf
5„<5<5„+i

HSJ\
LP(Q)

>A(-?7 2^i)ll/llW

= 0(AO||/||*,(n),

However, by the hypothesis, and Theorem 2.5 we know

N

E    max   \Hsf-HsJ\

a contradiction,  since   N(^n)pjp(Bi)   is not   o(N).    Thus we know that

Hindoo ApSf(co) exists for almost every co.

Now take a sequence of {p¡}°Zx which converge to 1, and such that {p"}'^=x C

{p]}T=i whenever p¡ > Pj . (The sequence Pj — 2(1/2;) will do.) Thus the limit

using pj must be the same as that obtained using p¡. Call this limit Pf(o>).

Now fix a p from this sequence, and consider Axf(co) = j¡ Y}¡2i T"Jf(co).

Let e > 0 be given. Select r so large that for all s > r we have Pf(<y) -

e < Apsf(co) < Pf(co) + e. Let x be larger than pr and select s such that

ps < x < ps+x . Then using the fact that T is positive, and / > 0, we have

s+l

Axf(co)
1 [A]

X     p 5+1
Er"j/(w)

-,s+l

<
1

7=1

[PI+I

PS    P
5+1

E T"Jf(co)<p(Pf(co) + s).

j=i

By the same argument, we also have Axf(co) > ^(Pf(a>) -e). Because e > 0

is arbitrary, and we can take a sequence of such p which converge to 1, the

result follows.   D

Remark. Note that we have obtained convergence for all / £ LP(Q.), directly,

and have not had to appeal to Banach's principle.
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Corollary 3.2. If nk = k2, or nk

Ñ

the kth prime, then the averages

N

¿ZT"'f(co)
7 = 1

converge almost everywhere for all f £ LP (il) whenever T is a positive contrac-

tion on L*(Q).

Proof. For the sequence nk = k2, Bourgain [5, 8] has proven (2.7) with b(N) =

o(N), and (2.8). The result follows by applying these and the above theorems.

In the case nk = the kxh prime, Bourgain [6] proved (2.7) and (2.8) for p >

(1 + \/3)/2. Wierdl [17] extended this to prove the maximal inequality (2.8)

for each p > 1 . This result is also contained in Bourgain [8].   D

Corollary 3.3. Let nk — k2, or nk = the kth prime, and T a Lamperti operator

on LP(Q), which is a quasi-isometry on LP(Q), then the averages

(3.2) hzbTn'fwN

converge for almost every co for all f £ LP(Q).

Proof. From Theorem 2.1 and Theorem 3.1, we see that we have convergence

for positive Lamperti operators whenever inequality (3.1) is satisfied. (In Theo-

rem 3.1 we assumed we were working with a positive contraction, but the proof

works just as well if the operator is positive, power bounded, and we have in-

equality (3.1).) Let S be a positive Lamperti operator such that \Sjf\ = \Tjf\.

Such an operator exists by Lemma 2.3. Thus we know there is an operator P
such that

- E S"'f^ — pf(w)    for a-e. co.
X j=i

We also have the convergence of (3.2) for x of the form ps¡ for integer 5 and

{Pj}JL\ a sequence converging to 1. This follows exactly as in the proof of

Theorem 3.1. Thus there is a limit operator Q such that for p £ {pj} we have

lp

^ E 7^/(0))-> e/(<u)    for a.e. co.
r   ;=i

Let £ > 0 be given. Fix p £ {Pj}JLx  such that p < 1 + e.

that for all s > s(e) we have

Let s(e) be such

[ps]

Er"j/(
7=1

w Qf(co) < e.

Let x(e) be such that for all x > x(e) we have

P\f\(co)E^i/i(û>)
7 = 1

< e.
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Given y with the property that y > x(e) and ps > y > ps"x with s > s(e),

we have

ly)

¿ZTn>f(co)-Qf(co)
7 = 1

<

<

[>1 IP']
[p!]

i E *"/(«) - ¿ E ̂ /(«î + ¿ E **'/<«) - ß/(
7 7=1 ^   7=1 ^    7=1

0)

Er,/M4Er"j/((
7=1 ^    7=1

i \   M i

*    (y--ë)Y,\T*'fW\ + -pl     E     l^/(«)l+«
V^ ^   J  7 = 1 ^    7=M+1

/1       i \  M i     t*5]

* (ïï-^JE^i/^i + tî E s"'i/(»)i+«
Xy H   '   7 = 1 ^    7=M+1

(\ 1   \    M 1     I/] 1     ÏÏ
^ (v - 7ï) Esni\fw\+ ^zZs"'\fw\ --= E^i/»i+e

VJ        ^   '  7=1 ^    7=1 ^    7=1

&

1   [yl 1   £] v  1   [y]
< Y,Snmco)\ + -¿ZSn<\f(co)\-2l--Y,S"'\f(co)\ + e

y 7 = 1 P    7 = 1 ^   * 7=1

< (/>|/IM + e) + (/»I/Kw) + e) - 2-£(/>|/|((u) - e) + e
P

<2P\f\(œ){l-^j+2e{l + ^j+e

< 2P\f\(co) (l--J+2e(l + p) + e< 2eP\f\(co) + 2e(l + 2) + e.

Since e was arbitrary, we are done.   D
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