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COMPACT ACTIONS COMMUTING WITH ERGODIC ACTIONS
AND APPLICATIONS TO CROSSED PRODUCTS

C. PELIGRAD

Abstract. Let (A,K,ß) be a C*-dynamical system with K compact. In

this paper we prove a duality result for saturated actions (Theorem 3.3). The

proof of this result can also be considered as an alternate proof of the cor-

responding result for von Neumann algebras due to Araki, Haag, Kastler and

Takesaki [14]. We also obtain results concerning the simplicity and the prime-

ness of the crossed product A x ß K in terms of the ergodicity of the commutant

of ß (Propositions 5.3 and 5.4).

1. Introduction

Let (A,G,a) be a C*-dynamical system. In [8] the notion of topological

transitivity was introduced. Namely a is called topologically transitive if for

every two nonzero, globally G-invariant, hereditary C*-subalgebras Bx, Bi of

A , their product is nonzero. As an application of our techniques and notions

we proved [8] some duality results for compact abelian actions commuting with

ergodic actions. Subsequently in [2] a seemingly stronger notion of ergodicity

called strong topological transitivity was considered. The C*-dynamical sys-

tem (A, G, a) is said to be strongly topologically transitive if for every finite

sequence {(x,■, y¡)\i = 1, 2, ... , «} of pairs of elements x¡, y¡ £ A for which

Y, xi ® y i; t¿ 0 in the algebraic tensor product A® A, there is an go £ G such

that 53"_, x¡ag0(yi) ^ 0 in A . It is easy to see that this condition for n = 1 is

equivalent with topological transitivity. Using this stronger notion, in [2] a du-
ality result for compact, not necessarily abelian actions is proved. We will call

an action a weakly ergodic if the fixed point algebra M(A)a is trivial (where

M (A) denotes the multiplier algebra of A). In this paper (Theorem 3.3), we

prove a duality result for compact actions which are saturated in the sense of

Rieffel. The proof of Theorem 3.3 can also be viewed as an alternate proof of

the corresponding result for von Neumann algebras due to Araki, Haag, Kastler

and Takesaki [14]. We also obtain a characterization of the generators of the

one-parameter subgroups of a saturated compact group action in the presence

of an ergodic commuting action (Theorem 4.1).

Finally in §5 we consider the problem of deciding when a cross product

C* -algebra by a compact action is simple or prime. Using our earlier results

contained in [10] we obtain results concerning the simplicity and primeness of
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the cross product in terms of the ergodicity of the commutant of the (compact)

action. We then indicate some open problems in this theory.

I am indebted to the referee for finding several mistakes in the initial version

of this paper.

2. Preliminary notions and results

Let A" be a compact group. We shall denote by K the dual of K (i.e. the set

of all unitary equivalence classes of irreducible representations of K). For each

n £ K we also denote by n a representative of the class n and let [n¡j(k)] be

the matrix of nk in B(H„) where Hn is the finite dimensional Hubert space on

which 71 acts. Let also Xn(k) = (dimn)(Xr(nk-t) be the normalized character

of n.
Let (A, k, ß) be a C* -dynamical system with K compact. For every n £ K

we consider the following mapping p£ : A —► A ,

(1) Pf(a) = fx~ÄF)ßk(a)dk.
Jk

We also denote the following map from A to A by Pnjj ,

(2) Pßni j(a)= f:n~(k)ßk(a)dk.
' Jk

We remark, for further use, the following relations

(3) (a)   PlP*JJ = PÏJJPÏ = ptJJ,       (b)   H.uH.k.i = *»pl.k.r

(4) ßk(PÜ,,j(a)) = £*/#)<,./(«),        k £ K.
i

If we denote the matrix in B <g> B(Hn) with entries PJ¡jj(a) by [PJ¡tij(a)],

then (4) is equivalent with

(5) (ßk®mPf,iJa)}) = [PiiJ(aW®7ik),        k£K.

We make the following notations:

(6) A'(7i) = {aeA\Pg(a) = a}

and

(7) Aß2(n) = {[au] £A® B(Hn)\(ßk ® i)([au]) = [au](l ® nk)}.

If n = i, the trivial one dimensional representation, we use the notation

Aß(i) = Aß for the fixed point algebra of the action.

Clearly Aß(n)Aß(n)* cA® B(Hn)^¡ and Aß(n)*Aß(n) cA® B(Hn)P®adn

are two-sided ideals for every n £ K . By [6] we have the inclusion

{[Pß t J(a)}\a£A}cAß(n).

Conversely, if [a¡j] £ A2CJ1), then by denoting a = J2 aa > a standard calculation

using the orthogonality relations shows that Pnjj(a) = a¡¡ for all 1 < i, j

< dim n so that we have the following equality

(8) {[PßlJ(a)]\a£A} = Aß(n).
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As remarked by Rieffel (see [11, Chapter 7]), A has a natural structure of

A@ - A Xß ií-bimodule. If A with this structure is an imprimitivity bimodule

(see [12]) for the definition of imprimitivity bimodules) then the action is called

saturated. In this case A& and A Xß K are strongly Morita equivalent in the

sense of Rieffel [12]. In [10] it is proved that the action ß is saturated if and

only if Aß(n)*Aß(n) = A® B(Hn)a®adn for every n £ K .

In [10] we have obtained necessary and sufficient conditions in order that the

crossed product A Xß K of A by a compact group action (K, ß), be simple

or prime. Namely, we have proved, in particular, the following result:

Theorem A. Let (A,K,ß) be a C*-dynamicalsystem with K compact. Then

the following two conditions are equivalent:

(1) AxßK is simple (respectively prime),

(2) (a) The fixed point algebras A ® B(Hny®Aàn are simple (respectively

prime) for every % £ K,

(b) Aß(n) ¿ 0 for every n£K.
For the trivial one dimensional representation   n   we obviously have A ®

B(Hn)^md'1 = A& .   We have shown in [10, Example 3.9] that the simplicity

(resp. primeness) of A^ together with the condition (2)(b) does not necessarily

imply the simplicity (resp. primeness) of the crossed product A Xß K.

3. Duality for compact actions

Let (A, K, ß) be a C*-dynamical system with K compact. We denote by

AnXß(A) the group of all * automorphisms of A that commute with ßk for

every k £ K .

3.1 Remark. If p £ AuXß(A) and n £ K then p(Aß(n)) c Aß(n) and p(Aß(n))

c Aß(n). The proof of these inclusions is straightforward.

3.2 Remark. An easy adaptation of [4, Theorem 2.1] shows that there exists an

apprroximate identity (ex)x^\ of A^(tz)*A^(ti) of the form ex = J2"Li(aj)*aj

where aj £ A^(n).

Let Yl(K) be the category of all finite dimensional unitary representations of

K. In addition to the usual categorical operations, l~l(K) admits the operation
of tensor multiplication of any two objects. It also admits the operation of invo-

lution which associates with the object % £ 0\y\l(K) the adjoint representation

71* .

We shall consider the category Yl(K) as the dual object of the group K.

In general Yl(K) is obtained from the set K by specifying the involution * :

Ti —► n* on K and for every nx, tí2£ K the isomorphism of the space HK[®Hni

(« Hn^ni) onto a direct sum of the form Ylne2n^\^i^n- Here> Hn denotes

the space of the representation n and n\ n denotes the multiplicity of the

irreducible representation n in nx ® iii.

By a representation of the category Yl(K) we shall mean a nonzero function

cp on Obl~l(K) taking values in B(Hn) at the point n £ Obn(AT) and satisfying

the following conditions:
(i) Scp(nx) — cp(ni)S for every operator S that intertwines 7Ti and n-i.

(ii) cp(nx ®n2) = cp(nx) ® cp(n2).
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We denote by r(ü(A')) the set of all representations of Yl(K). Then r(n(tf))
has a natural operation and a natural topology under which it is a compact

topological group. Tannaka's duality theorem [5] asserts that K and Y(Yl(K))

are isomorphic as topological groups under the isomorphism k —> cpk where

cpk(n) = nk, n £ ObU(K), k £ K.
We can now state and prove our main result of this section.

3.3 Theorem. Let (A, K, ß) be a C*-dynamicalsystem with K compact and

ß saturated. Assume that there exists a weakly ergodic action (G, a) on A such

that aG c AuXß(A).

If a £ AuX(A) leaves Aß pointwise invariant and commutes with aG then

g = ßk for some k £ K .

Proof. Let n £ K.  Since ß is saturated we have by [10, Theorem 3.3] that

Aß(7t)*Aß(n) = A ® B(Hn)a^dn . hex ex = £"¿i aj*aj be an approximate

identity as in Remark 3.2. Then (strong) lim^A^ = 1 <8> 1 e M(A) ® B(Hn).
Let now o £ Aut(^) be such that oag = ago for every g £ G and a\Aß =

id. Denote by ö = o ® i the extension of a to A ® B(Hn) and let a £ Aß(n)

be an arbitrary element. We have

«a

d(aex) = Y/è(aaî*aî) = ^2aaf*d(aj) = azx
/=!

where

Let B = A®B(Hn)®B(C n,_-

nx

zx = ^aj*d(aj).
i=i

. If we denote

a 0

0

anx    0   ...    0

£B,

we have

aÁ)*(d®inx)(aÁ

zx   0   ...    0
0

0    0   ...    0

Therefore ||z¿|| < H^H2 = ||e^|| < 1 . On the other hand if we fix ko £ A we
have

n>

ex0zx = £ (^)*a>i\a))*o(a)) = ^(^^(a^a^a))

i -j

= £(a/Td «f° E(fli)*4 = E^-0)^^/0^)-

Hence (norm) limx€^ex0zx — zxQ.   Since (ex) is an approximate identity of

(A ® B(HK))a®*àn it is immediate to show that it is an approximate identity
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of A ® B(Hn). From these one can infer that there exists an element zK £

M (A) ®B(Hn) such that:
(1) (norm) limx^^azx = azn , a £ A, and

(2) ö(a) = azn for every a £ A%(n). Since by hypothesis [a, ag] = 0,

g £ G, we obviously have [ö, äg] = 0 for every g £ G. Therefore, from (2)

we infer

(3) àg(d(a)) = àg(a)àg(zn), g £ G. On the other hand, using Remark 3.1

we have

(4) àg(o(à)) - ö(äg(a)) = àg(a)zn , g £ G, and hence

(5) àg(a)àg(z1t) = àg(a)zn, g£G, a £ Aß2(n).

Using (5) for a = aj one can see that àg(zn) = zn, g £ G. Since, by

assumption G acts weakly ergodically on A, it follows that zn £ 1 ® B(Hn)

for every n £ K . Let now p be an arbitrary finite dimensional representation

of K. Then p can be written as a direct sum of irreducible representations

P = 0 ft; • By definition put
n n

Aß(p) = ($Aß2(n,)   and   z, = 0z„f.
¿=i í=i

We have therefore associated to each finite dimensional representation p of K

an operator zp £ B(HP) where Hp is the Hubert space of dimension dim p.

We shall prove that p —» zp is a representation of the category l~l(K) in the

sense discussed above. Let S be an operator that intertwines pi and p2,

namely S : HPl —> HPl is such that Spi - p2S. We shall prove that SzPi -

zP2S. It is enough to consider the case when one of the two representations,

say pi, is irreducible. If px does not occur in p2 then the only intertwining

operator is 5 = 0 and in this case the equality we have to prove is obvious.

Assume now that px does occur in p2 with multiplicity m . Then

Pi = P\ © Pi Pi ®Pi

and px  does not occur in p3. Let S be the following intertwining operator

Sx = oe ■ ■ • ©oe Xj eo © • • ■ © o,      j < m, x c HPi.

Since by definition zPl = mzp¡ © zPi, we obviously have SzPl = zP2S. Since

every operator that intertwines px and p2 is a linear combination of operators

of the above form we are done. We now prove that zPl ® p2 = zPl ® zPl.

Let a = [a¡j] £ Aß(nx]
matrix

and b = [b,j] £ A%(n2) Consider the following

a®b

The (if) entry of a © b equals

bij
0

0 0
0

L o    o

bu    0
0    bII

0      0

0 1
0
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where

C. PELIGRAD

bu    0
0    bn

0
o

bulO      O     .

is a dimpx x dimpx  diagonal matrix with all the diagonal elements equal to

bij.

Claim l.  a ® b £ A^(nx ® 7t2).

Proof of Claim 1. We have

ßk(a®b) = ßka

bu    0
0    bu

0 1
0

ßk(a)

a(pi)k

0      0

ßk(bu)
0

ßk(bu)

0

0
ßk(bij)

ßk(bi

0
0

ßkibij)

0
0

ßk(bn)       0
0 ßk(btj)

ßk(bu)

(Pi)k

ßk(bU)\

Since b = [bij] £ A^(p2) we have ßk(b) - b(p2)k and therefore ßk(b,j) -

Y¿ibup2(k). It follows that ßk(a © b) is the matrix whose (ij) entry is the

dim/?i x dim/?i matrix

(b(Pi)k)u     0

0 (¿(/>2)*)«/J

(/>!)*•

An inspection shows that this last matrix equals (a 0 b)((pi)k ® (p2)k). There-

fore, we^have

(6)  ßk(a © b) = (a © b)((pi)k ® (p2)k ,  k £ K.   From (6) it follows that

a © b £ Aß2 (px ® p2). The above discussion implies

(7) d(a®b) = (a®b)zf ■P2

Claim 2.  a(a © b) = (a® b)(zPl ® zpi>
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Proof. The proof of Claim 2 can be done on the same lines as that of the

previous claim by taking into account that à (a) = azPl and ö(b) = bzPl.

We can now prove that zPx®Pl = zPi ® zP2. Using the relation (7) and Claim

2 we have

(8) (a©b)*d(a©b) = c(zPl®P2) = c(zPl ® zPl) where c = [c¡j] is defined as

follows

cu = E
k

By Remark 3.2 there is an approximate identity ex of A®B(HPx) of the form

ex = Y!¡íia*iai with ai e ^2(Pi) and an approximate identity (fv) of A®

B(HP2) of the form f„ = Y!¡lxb*bi with b, £ Aß(p2). Using this in the
relation (8) it immediately follows that zP{®Pl = zP{®zPl. Therefore p —> zp is

a representation of the category tt(A^) in the sense defined above. By Tannaka's

duality theorem, there is a ko £ K such that zp = p¡^ for every p £ n(K). It

follows that ö(ä) = an^ for every n £ K and a £ Aß(n). Therefore a = ßi^

and the proof is completed.

4. One-parameter subgroups of ßK and their generators

In this section we shall give an infinitesimal characterization of the one-

parameter subgroups of ßK (where (K, ß) is the action on A considered in

Theorem 3.3).

4.1 Theorem. Let (A, K, ß) be a C*-dynamicalsystem with K compact and

ß saturated. Assume that there exists a weakly ergodic action (G, a) on A

such that acAut^^). Let S be a symmetric derivation on A with domain

D(S) = 52   ^Aß(n). Then the following conditions are equivalent:

(1) (a) *S(x) = 0, x£AK (b) S_(ag(x)) = ag(S(x)), x £ D(ô), g £ G, and

(2) ô is closable and its closure a generates a one-parameter subgroup of ßf[ ■

Proof. Obviously (2) —> (1). We will prove that (1) —* (2). We denote by ô

the extension of ô to A ® B(Hn) for various n £ l~l(K), given by ô — ô ® i.

By [3, Theorem 2.3.8], the restriction of ô to Aß(n) is bounded for every

n £ K. Hence the restriction of ô to Aß(n) is bounded for every n £ K.

Using arguments similar to those used in the first part of the proof of Theorem

3.3 it can be shown that for every n £ Yl(K) there is an sn £ B(Hn) such that

ô(a) = asn for all a £ A2(n). By the relation (8) in §2 we have

1,1

for every x £ Aß(n) and n £ K. In particular, it follows that S(Aß(n)) c

A\(k) for every n £ K . Let now {an}™=x c YiK Aß(n) be a sequence such that

lim,,-,^a,, = 0 and limn^00ô(an) = b. Since a„ £ 2Ün^i t71) > we can write

rbt:   0

a a

■bkj   0
0

bh- 0     0 Jkj-
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an = Ejli Pnjn(an) ■ Let na £ k. Then we have

P£0(ô(a„))= Í Xn0(k)ßk(o(an))dk
Jk

k

= E / Xn0(k)ßk(o(Pi.n(an)))dk
j=i JfC

= Y,jKX*o(k)ßk ÍE^;.,,(a")K")"J dk

= E / Xn0(k)ßk(Pß0 ,,(an))dk(sno)u.
1,1 Jk

Since limn^ooö« = 0, we have that lim^^ Pß¡ ,(a„) = 0 for all 7i(¡ £ K

and I < i, 1 < dim7r0. Therefore limßo(o(an)) = 0. But, at the same time

limn^ooPJ!0(ô(an)) = P£0(b) for every n0 £ K. Therefore, P£0(b) = 0 for

every tiq £ K and hence b = 0. Hence S is closable. On the other hand, just

repeating word by word the proof of Theorem 3.3 it can be shown that for each

t £ R, 7T —» exp(tsn), 7i £ l~l(K), represents an element kt £ K and that {akl} ,

t £ R, is a one-parameter subgroup of aK that has ô as its generator.

5. Compact actions commuting with ergodic actions

and applications to crossed products

In this section we shall prove that in the presence of an ergodic action com-

muting with the compact action, the simplicity (primeness) of the fixed point

algebra Ap is equivalent with the simplicity (primeness) of the crossed product

A Xß K. Recall that an action (G, a) on A is called minimal if there are no

nontrivial hereditary C*-subalgebras of A which are globally a-invariant.

5.1 Lemma. Let (K, ß), (G, a) be two commuting actions on the C*-algebra

A with K compact and a minimal. Then A$ is G-simple (i.e., A& has no

nontrivial a-invariant two-sided ideals).

Proof. Let JA^ be a G-invariant two-sided ideal, J / (0). Then B — JAJ
is a G-invariant hereditary C*-subalgebra of A , B ^ (0). Since a is minimal

we have B = A . It is immediately checked that B@ = J . Therefore J = Aß .

5.2 Proposition. Let (K, ß) and (G, a) be two commuting actions on A with

K compact and a minimal. If ß is faithful then Aß(n) ^ (0) for every n £ K.

Proof. By formula (8) in §2 a\ ± (0). But A^(n) can be defined for every

finite dimensional representation n £ Yl(K). Lex P - {% £ l~l(K)\A2(n) ^

(0)} . Denote by [P] the smallest subset of Yl(K) which has the following two

properties:

(a) If n £ [P] then n* £ [P].

(b) If m , 7i2 £ [P] and 7ii®n2 = £® ti' , n> £ K, then ni £ [P] for all

j . We shall prove that P — [P]. Obviously P satisfies property (a). To prove

that P also satisfies (b) it is enough to take nx, n2 £ P n K .
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As remarked in §2, A^(nx)A^(nx)* and A^(n2)A^(n2)* are two-sided ideals

of Aß ® B(Hn). It is immediate that these ideals are G-invariant (because

a and ß commute). Since every such ideal of A$ ® B(HK) is of the form

/ <g> B(Hn) for some G-invariant ideal J of A& , Lemma 5.1 implies that

Aß(n,)Aß(n*) = Aß® B(HK¡),        i =1,2.

Let e\" = E"=i a¡a* > Ai e A2 (n0 ' be an approximate identity of Aß®B(HK2),

and similarly e22 - ¿~2hi B¡B* > B, € ^2(^2) » an approximate identity of Aß ®

B(HKl). We have

Ax®Bj = A,

Hs

Hence,

[Aí®Bj][Aí®Bj]* = A,

0

bis

lZpbJrPbïp

Bj = [b¡sl

EPbiPbJslp "rp^sp

Al

Since

we have

-2   ,  l '

'»,,

Y}Ai®Bj][At®Bj]*

Since eA,  (*)

y=i

/ we then obtain that

h

Ai Aî

A, AU

[Aß(nx) © Aß(7c2)][Aß(7ix) © Aß(n2)]* = Aß ® B(Hn¡0JZ2).

Aß ® B(HK\®n2>

From this equality it follows that

Aß2(7lx ®7l2)

Since Aß(nx ® n2) = Yff A2(ni) where nx ® n2 = £f *' it follows that

A2(%i) ^ 0 for every j and the condition (b) is proven.

By the faithfulness of ß , P separates the points of K. We can now apply

[5, Theorem 27.39(iii)] to obtain P = U(K) and the proof of Proposition 5.2
is complete.

5.3 Proposition. Let (A,K,ß) be a C*-dynamical system with K compact

and ß faithful. Assume that there is a minimal action (G, a) on A such that

o.Q A\xXß(A). Then the following conditions are equivalent:

(1) A Xß K is simple.

(2) A& is simple.

Proof. By Theorem A (1) —> (2). Assume that (2) holds. It can be easily
checked that a minimal action is topologically transitive. Therefore by Propo-

sition 5.2 Aß(n) t¿ (0) for every n £ K. Hence, taking into account Theorem
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A, in order to prove that (1) holds, we have to prove that for every n £ K

the algebra A ® B(HK)a®adn is simple. Since Aß(n) ¿ (0) by §2(8) it fol-

lows that A{(ti) ¿ (0). It is easy to see that Aß2(n)Aß2(n)* = A$ ® B(H„)
which is a simple C*-algebra by assumption. It can be immediately verified

that A^(n) is an A^(n)A2(n)* - A2(n)*A2(n) imprimitivity bimodule (in the

sense of [11]). By [12, Theorem 3.1] A?.(n)*A^(ji) is simple. We shall prove

that A^(n)*Aß(n) = A® 5(//7t)/?®ad* so that A ® B(Hn)^ad7! will be proved

to be simple.
By virtue of Remark 3.2 there exists an approximate identity (ex) of

A^(n)*A^(n) of the form ex = Y!¡i\ a*a¡ where a¡ £ A^(n). Denote ex - [efj]

with efj £ A . Then supAeA^ = e where e = [e¡j] is the unit of A^(7[)*A^(n)a

(where A^(n)*A^(7i)a is the ultraweak closure of ^(7r)*^(;r)). By Remark

3.1 äg(e) = e for every g £ G. Therefore, ag(e¡j) = e¡j , g £ G, i < i, j <

dim n . In particular, e„ ( 1 < i < dim n) is a lower semicontinuous, positive,

element in A" (that is e¡¡ is the strong limit of an increasing net of positive

elements of A). By [1, Proposition 4.1] e¡¡ are all scalar multiples of the

identity, e¡¡ = k¡¡ 1. We shall now prove that all e¡j, 1 < i, j < dim n are

scalar multiples of the identity. Denote by H the Hubert space of the universal

representation of A and let f £ H be arbitrary.

Notice that H®Hn ~ 0?™* H¡ ,//, = // for every 1 < i < dimn. Consider

the following element £y of H ® Hn:

Zij = o © • • • e i,- © o e • • • © ij- © o © • • • © o.
Taking into account that sup ex = e and that e„ = k¡¡, k¡¡ £ R+, i < i <

dim n , we have

(ettj, Ç,j) = (et£, 4) + (eut, S) + (etfi, i) + (erf, Q

= ((eij + e¡j)C,y) + (kii + kjj)\\a2

= sup((efj + ef;)C,t) + (kii + kjj)\\C\\2.
i

Therefore e¡j + e*j is a selfadjoint lower semicontinuous element in A".

Again applying [1, Proposition 4.1] we infer that e¡j + efj is a scalar multiple

of the identity. Similarly considering

Ï ¡j = 0 © 0 © • • • © 0 © (-£) ©0©---©^©0©---©0

we infer that e¡j - e*j is a scalar multiple of the identity. Therefore e¡j = k¡jl,

kjj £ C. Hence all the entries of e = (e¡j) are scalar multiples of the identity.

Since e £ [A® B(Hn)^adn]" c A" ® B(Hny"^dn we obtain e = I. We then

proved that Aß(nYAß(n) = A ® B(Hn)ß®*dK , so A ® B(H„y^dn is simple.

By Theorem A we have that A x ß K is simple.

We will now prove a result concerning the primeness of the crossed product
A xßK.

5.4 Proposition. Let (A,K,ß) be a C*-dynamical system with K compact

and ß faithful. Assume that there is a strongly topologically transitive group

action (G, a) on A such that aG C AuXß(A). Then the following conditions

are equivalent:
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(1) A Xß K is prime,

(2) A^ is prime.

Proof. By Theorem A (1) -» (2). Assume that (2) holds. By [2, Corollary

2.2] Aß(n) t¿ (0) for every n £ K and the condition (2)(b) of Theorem A is

satisfied. Hence in order to prove that ( 1 ) holds it is enough to prove that the

fixed point algebras A ® B(Hn)ß®adK are simple for all n £ K . Let n £ K.

Then the ideal Aß(n)*Aß(7i) of A®B(Hn)ft®adn is a prime C*-algebra. Indeed,

Aß2(ti) is an A2(ti)* A2(n) - A2(n)a2(7r)*-imprimitivity bimodule. Since Aß

is prime by assumption, it follows that Aß2 (%) ® B(Hn) is prime, so its ideal

Aß(7i)Aß(n)* is prime. By [13, Theorem 3.1] it follows that Aß2(%)* Aß2(n) is a

prime C*-algebra. We will now prove that A^(n)*A2(n) is an essential ideal of

A®B(HnY®adn i.e. that C'• Aß(n)*Aß(n) ¿ (0) for every C € A®B(Hn)'i®adn ,

C ¿ 0. Assume by contradiction that there is a C £ A® B(Hn)ß®ad7! such that

CAß(7i)*Aß(n) = (0). Then Aß(n)C = (0).

Therefore [Pß ¡ j(a)][Cij] = 0 for every a £ A, where C = [C¡j]. Let a £ A

be such that Pß(a) ¿ 0. Then by §2, (8) PßtiJ(a) ¿ 0 for some i. We can

assume that Pß x ,(a) ^ 0. Denoting Pß 1 {(a) = axx we have by §2, (3)(b):

PliJ(aii) = ânPllJ(a).

In particular [Pß ;  .(flu)] • [C,7] = 0. Therefore

dim it

(1) y£Pli,j(au)Cij = 0.
(=i

Since a commutes with ß we also have

for every g £ G and 1 < / < dim 7r.

But it is straightforward to check that Pß , Âa) are linearly independent so

that if C ¿ 0 there is an i such that Y,pü i j(<*u) ® cu / 0. This, together

with (2) contradicts the strong topological transitivity of a . Therefore, we have

proved that the ideal A2(ti)*A2(n) is prime and essential. Then the algebra

A ® B(Hn)P®adn itself is prime, and the proof is complete.

The above proof does not seem to carry over to the case of topologically tran-

sitive actions. So the following problem presents itself: Can Proposition 5.2 be

stated for topologically transitive actions (G, a) instead of strong topologically

transitive ones?

Another problem that could shed an interesting light on the relationship be-

tween the simplicity or primeness of the crossed product and the ergodicity of

the commutant of the action is the following:

Does the simplicity (primeness) of the crossed product A xß K imply the

minimality (topological transitivity) of the commutant of /?*; in A\xX(A) ?
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