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Abstract. Let G be an analytic group. Let Q(G) be the union of all compact

subgroups of G . We give a necessary and sufficient condition for Í2(G) to be

dense in G in terms of the action of a maximal compact torus T of G on

the nilradical TV of G.

Let F be a locally compact group. Let Q(F) be the union of all compact

subgroups of F . We study the problem: when Q(F) is dense in F. If F is

not connected, the problem is too broad to have any meaningful answers. On

the other hand, if F is almost connected, i.e., F ¡Fo is compact where Fo is
the identity component of F , then the problem is quickly reduced to the case

where F is a Lie group with finitely many components. This is so because an

almost connected locally compact F has a maximal compact normal subgroup

M so that F ¡M is a Lie group with finitely many components. It is easy

to see that Í2(F) is dense in F if and only if Q(F/A/) is dense in F/M.
Let G = F ¡M. Let C70 be the identity component of G. Since the identity
component Go of G is an open subgroup, so Q(C7) n Go is dense in Go when
Ci(G) is dense in G (the converse is also true, cf. Theorem 2.10). Therefore,

for most of this note we shall assume that G is an analytic group. Now, let G

be an analytic group with Q(G) dense in G. Let M be the maximal compact

normal subgroup of G. Again, Ci(G) is dense in G if and only if Q(G/M) is
dense in G/M, so we may assume that M is trivial. Let A be the nilradical
of G, i.e., the maximal analytic nilpotent normal subgroup of G. Then N

is simply connected since M is trivial. Furthermore, by an argument due to

Djokovic [1] we can show that A is uniform in G. This implies that G is a

semidirect product A • K with K a compact analytic group. Hence K acts on

A as a group of automorphisms. The purpose of the present note is to show
the following statement.

Theorem 2.7. Let G be a semidirect product N • K with A a simply connected

analytic nilpotent group and K a compact analytic group. Let T be a maximal

torus of K. Then Q(t7) is dense in G if and only if the only element in N

fixed by T is the identity element.

Another characterization of Q(C7) being dense in G is the following condi-

tion._
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Theorem 2.8. Let G be an analytic group. Then the closure of 'Q(G) has nonvoid

interior if and only if Q(G) is dense in G.

The present study was partially motivated by the well-known result in alge-

braic groups which says the union of all the Cartan subgroups of an irreducible

algebraic group G over an algebraic closed field of characteristic zero is an open

and dense subset of G. For previous work on this subject, we refer to [1] and

the references therein.

I am grateful to the referee who suggested I use results from algebraic groups

(Lemma 2.4) to prove the main theorem (Theorem 2.7). This approach is much

more elegant and clearer than my original elementary and lengthy proof (which

implicitly duplicates arguments from algebraic group theory).

1. Preliminary

Let F be an almost connected locally compact group. It is well known that

F has a maximal compact normal subgroup M and F/M is a Lie group with

finite components. Let G — F ¡M and n be the canonical homomorphism

from F onto G. Let Q(G) and £2(F) be the union of compact subgroups of

G and F respectively. Then Q(F) = n~x(Q(G)). It is obvious that Í2(F) is
a group if and only if Q(G) is a group.

1.1. Lemma. Let G be a Lie group with finitely many components. If the union

Q(G) of compact subgroups of G is a group, then Q.(G) is the maximal compact

normal subgroup of G.

Proof. Let 77 be the closure of Q(G). Since Q(G) is a group, 77 is a Lie group.

Let 770 be the identity component of 77. Since 770 is open in 77, 770Q(G)

is open (hence closed) and dense in 77. Therefore, 77 = 77o£2(G) is a dense

subgroup of 77o. Every compact subgroup of 770 is also a compact subgroup
of G, so the union of all compact subgroups of H0 is exactly H0 n Q(G), i.e.

Q(77o) = 77o n Q(Go). In other words, H0 is an analytic group with f2(770)

dense in 77o. Let RS be a Levi decomposition of 77o with R the radical

of 77o and S a maximal semisimple group. Let A be the nilradical of Ho.

Since Q(H0) is dense in 770, so Q(770/A) is dense in 770/A. This implies
that 770/A is compact. (Cf. Proposition 2.1 [1] or the proof of Theorem 2.8

of this article.)

Now, for simplicity, we first assume that A is simply connected. Then 77o =

K • N (semidirect product) with K a maximal compact subgroup of 77o . Let n

be any element of A and k be any element of K . Then nkn~x £ Q(770). Since

Q(77o) is a group, so nkn~xk~x is a compact element. But nkn~xk~x £ A.

Therefore nkn~xk~x is the identity of 77o. This implies that 77o is in fact a

direct product K x N. Because £l(H0) is dense in 770 , A must be trivial and

77o is a compact analytic group.

Now, in case A is not simply connected, A has a maximal compact normal

subgroup Q suchthat N/Q is simply connected. Q is a characteristic subgroup
of 77o. From the above argument, H0/Q is compact. Therefore 770 is a

compact analytic group.
Now 77 = 770Q(G). By Theorem 2 of [1], 77/770 is compact. Hence Q(G)

is a compact subgroup of G.
What remains to be shown is that Q(G) is normal in G. Since £2(G) =

\JgeGSQs~l with Q a maximal compact subgroup of G, Q(G) is G-invariant,
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i.e. gQ.(G)g~x = Q(G). Therefore Q(G) is the maximal compact normal

subgroup of G. The proof of the lemma is complete.

1.2. Proposition. Let F be an almost connected locally compact group. If

Q(F) is a group, then ¿1(F) is the maximal normal subgroup of F.

Proof. Let A7 be the maximal compact normal subgroup of F . Let G = F/A7

and n be the quotient map from F onto G. The assertion follows immediately

from Lemma 1.1 and the relation Í2(F) = n~x(Q,(G)).

Now, we assume fi(F) is a group where F is an almost connected group.

Let 77 = Q(F). In general 77 is not compact. However, it has the following

interesting property.

1.3. Proposition. Let F be an almost connected locally compact group. Let

77 = £2(F)~ .7/77 is a group, then H is almost connected and Q(H) is dense

in 77.

Proof. Let A7 be the maximal compact normal subgroup of F . Let G = F/A7.

G is a Lie group with finitely many components. Let n be the quotient map

from F onto G. Then 77 = %-x%(H), since A7 c 77. And n(H) = U(G),

D.(G) is a group. Since Q(G) is G-invariant (under the conjugation), Q(G)

is a closed normal subgroup of G. Let F = Q(G). Then F = Q(G)F0.

Since Fo is a characteristic subgroup of F, F0 is normal in G. We are

going to show that F has only finitely many components. Let Ex - E n

Go = Q(G)Fo n Go . Then Fi/F0 is a discrete normal subgroup of Gq/Eq . So

Ex/Eq is central in Gq/Eq. Since every element in Ex/Eq has a representative

from Q(G), Ex/Eo is a torsion central subgroup of Go/Eq . Hence Ex/Eo is

finite. Since FGo/Go = E/E n Go, and G has only finitely many components,
therefore E/Ex is finite. We conclude that F is a Lie group with finitely many

components. Let Q be a maximal compact subgroup of F. By a result of

G. D. Mostow, such a subgroup exists and any two of them are conjugate by an

inner automorphism. Since E = Q(G), Q is also a maximal compact subgroup

of G. Q(G) = (jgec sQg~x = UgeE sQg~l the last equality follows from the

fact: gQg~x is a maximal compact subgroup of F. Hence F = £2(G) = Q(F).

Finally, 77 = Q(F) = n~x£l(G) = n~x(E). Hence 77 is almost connected

and Q(77) = H as desired. Now, the proof is complete.

In view of Proposition 1.3, the problem of when Q,(F) is a group can be

reduced to the following situation.

1.4. Proposition. Let F be a Lie group with finitely many components. Let M

be the maximal compact normal subgroup of F . Let G = F ¡M. If fi(F) is

dense in F, then G = A • Q a semidirect product with A a simply connected

nilpotent normal analytic subgroup and Q a compact Lie group. Furthermore

Q can be identified faithfully as a group of automorphisms of N.

Proof. Since G has no nontrivial compact normal subgroup, the nilradical A

of G is a simply connected analytic group. Let F be the radical of G and S

be a semisimple Levi factor of G. Since Q(G) is dense in G, so is Q(G/F)

dense in G/R. The group G/R is a finite extension of the semisimple group

S. Let us first remark if F is a Lie group with finitely many components and

£l(E) — E, then Í2(Fo) = Fo since Fo is a open normal subgroup of F. If S
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has nontrivial noncompact simple factor S', Q(S) cannot be dense in S' by

the structure of S'. (Cf. Proposition 2.1 of [1] or the proof of Theorem 2.8 in

this article.) Therefore S must be compact. Note that AS is a closed normal

subgroup of G, G/NS is a finite extension of an analytic abelian group A . If

the vector part of A is nontrivial then Q(G/NS) cannot be dense in G/NS.

Hence we conclude that G/N must be a compact group, a fortiori, G = N-Q.

Let p be the homomorphism from Q into the group of automorphisms of A

defined by p(q) = 4>q where <pq: N —> N, cf>q(n) = qnq~x. Since the kernel p

is a compact normal subgroup of G, it is a trivial group. Hence p is a faithful

representation, i.e. Q can be identified as a group of automorphisms of A.

2. Analytic groups with dense subsets of compact elements

Let F be a locally compact almost connected group. Let A7 be the maximal

compact normal subgroup of F. By Proposition 1.5, Q(F) is dense in F if and

only if Q(F/M) is dense in F/A7. Let G' = F/A7. When Q(F)~ = F, then
G' = A -Q where A is a simply connected nilpotent analytic normal subgroup

of G' and Q is a maximal compact Lie group which can be identified as a

group of automorphisms of A. Let K be the identity component of Q. Then

G = N • K is the identity component of G'. In this section, we shall show

that Q(G') is dense in G' if and only if Q(G) is dense in G. We first give a

necessary and sufficient condition for Q(G) to be dense in G.

From now on we shall always assume that G - N • K a semidirect product

with A a simply connected nilpotent analytic group and K an analytic com-

pact group. Furthermore, K can be faithfully represented as a subgroup of

automorphisms of A. With this identification, sometimes it is convenient to

write k(n) instead of knk~x for k £ K, n £ N. We shall do so in the future.

We shall always use F to denote a maximal torus of K. Let W be the
normalizer of F in K, W = ¿Vk(T). Then W/T is finite. Let x be an

element of G. We say x is a compact element if the smallest closed subgroup of

G containing x is compact, i.e. (x) is compact where (x) — {xn : n integer}.

An element t of F is a dense element in T if (t) = T.

Since all the maximal compact subgroups of G are conjugate by inner auto-

morphisms induced by elements from A, the following statement is obvious.

2.1. Lemma.  Q(G) = {JgeGgKg-x = {(nk(n~x), k): n £ N, k £ K}.

2.2. Lemma. If £l(N • T) is dense in N-T, then Q(G) is dense in G.

Proof. Given any element (n, k) of A • K, k - xtx~x for some t in F and

x in K . Since Q( A • F) is dense in A • F, there exists a sequence of compact

elements (n¡ti(njx), t¡) in A-F which converges to (x~x(n), t). Then

lim(l, x)(n¡ti(n-x), ti)(l, x)~x

= (l,x)(x-x(n),t)(l,x)-x

= (n, xtx'1) = (n, k),        (n, k) £ Q.(N ■ K).

2.3. Lemma. If Q(G) is dense in G, then N-T = Q(N-T)W (notation: x
and y are elements of G, xy = yxy~x).

Proof. Let / be any dense element of T. Let n be any element of A. Since

Q(G) is dense in G,  (n, t) is the limit of a sequence of compact elements
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(niki(n~x), kj) in Q(N • K). Express k¡ = y¡t¡y~x with y, from K and

t¡ from T. Then t = lim A:, = limy^y^1 . Since K is compact, taking a

subsequence, we may assume that y = limy,, t' = limt¡. Hence t = yt'y~x .

Because t is a dense element of T, so t' is also a dense element of T, a
fortiori, y leaves F invariant, y is in the normalizer W of T. Now,

(y-'(n), t') = lim(y-x(nl)t-l(yi(n-1)), U) £ Q(N-T).

Hence (n,t) = (1, y)(y~x(n), t')(l, y)~x £ Q(N- T)w . The proof is now

complete.

It is clear that G = A • K can be embedded as a closed subgroup of some
general linear group GL(«, R) with A as its unipotent radical. Let us identify

G with its image. So G is an algebraic group over the real number field,

and we can apply results from the theory of algebraic groups. Since F is a

compact analytic group, every element in F is a semisimple element. For

each k £ K, define the function 6k: A —> A by 6k(n) — k(n)n~x. Let
Nk = {n£ N: k(n) = n}. Lex C(k, A) = dk(N) = {k(n)n~x : n £ N}. The
results we need from algebraic groups is the following statement.

2.4. Lemma. Let k£K. We have the following conditions.

(i)   Nk  and C(k, A)  are algebraic varieties over the real number field.

The product map from Nk x C(k, A) —> A is a surjective isomorphism of va-

rieties. Furthermore:  6k : C(k, N) —> C(k, A) is a rational automorphism of

C(k, A).
(ii)  The element (n, k) e A • K is a compact element if and only if n £

C(k,N).

Proof. The statement (i) is a special case of a general result due to Borel and

Tits (Lemma 11.1 of [3]). So we show (ii). Since F is a maximal compact

subgroup of A • K, (n, k) is a compact element if and only if there exists an

element «o of A such that

(n0, l)(n,k)(n0, l)~x £ {1} • K.

Equivalently, (nonk(n^x), k) = (1, k). Hence (n, k) is compact if and only

if n = n0~1k(n0) £ C(k, A).

2.5. Lemma. For each t £ T, 6ti = 62, C(t2, A) c C(t, A). Let t0 be a
dense element of T. Then C(t, N) c C(t0, A) for any t £ T.

Proof. The fact 6,2 = 8f follows from a simple computation. Hence C(t2, N)

C C(t, A). Let to be a dense element. Then t = lim t'¿ for some sequence tl¿ .

Hence 6t(n) = lim8^(n) £ C(to, A) since C(io, A) is topologically closed, a

fortiori, C(t, A) c C(t0, A).

2.6. Lemma. Let to £ T such that C(to, A) = A. Then there exists a neigh-

borhood V of to in K such that C(t, A) = A for any t £ K.

Proof. Let Z be the center of A. Then Z is F-invariant. If Z = A, then

6to = I - Ad to is just a linear transformation of Z . If 0,o is surjective, then

there exists a neighborhood V of to in K so that 6t — I - Ad t is surjective

for t £ V. Now, we assume the lemma has been proved for nilpotent groups

with shorter length of upper central series of A.   Since A'0 = {1}, so the
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restriction of to on Z has no nontrivial fixed element. Therefore, there exists

a neighborhood Vx of to in K such that 6t: Z —> Z is surjective for each

t £ Vx. On the other hand, 6to is clearly surjective on A' = N/Z , therefore,

there is a neighborhood V2 of to in F such that 6t is surjective on A'. Let

V = Vx n V2 and let t £ V and n £ N. Since r € J^ , there exists an element

n' £ N such that 6,(n') = nz for some z e Z . There exists an element z' £Z

such that 0f(z') = z"1 . Then 6t(n'z') = dt(ri)(6,(z')) = « . Now the proof is

complete.

2.7. Theorem. Let G = N-K a semidirect product with A a simply connected

analytic nilpotent group and K a compact analytic group. Let T be a maximal

torus of K. Let Q(G) be the union of all compact subgroups of G. Then Q(G)

is dense in G if and only if T does not leave any element in N fixed except the
identity of A. Furthermore, when Q(G) is dense in G,ii(G) contains a dense

open subset of G.

Proof. Let NT = (~)I€T N', the set of F-fixed elements in A. Let to be a dense

element of F. Then Ar = A'0.

(I) Assume that Ar is nontrivial, i.e. NT / {1}. By Lemma 2.6 and (ii) of

Lemma 5, ß(7V • F) c C(t0, A) • F. Since C(t0, A) • F is closed, Q(A • F) c
C(to, N) • T. Since W/T is finite, (C(to, A) • T)w is properly contained in

A • F if A'0 is nontrivial. Therefore Q(G) is not dense in G by Lemma 2.4.

(II) Assume that A7" = {1}. Let D be the set of dense elements of F. Then

NT = Nd = {1} and C(d, A) = A for every d £D. By (ii) of Lemma 2.5,

A • D c Q( A • F). Since A • D is dense in A • F, Q( A • F) is dense in A • F.
By Lemma 2.3, Q(G) is dense in G. Finally, if Cl(G) is dense in G, then
interior of Q(G) is dense in G by Lemma 2.6. Now the proof is complete.

2.8. Theorem. Let G be an analytic group. Then Q,(G) is dense in G if and

only if the closure of Q(G) has nonvoid interior.

Proof. If Q(G) is dense in G, trivially, the closure of Q(G) has nonvoid

interior. So, we show if the closure of Q(G) has nonvoid interior then Q(G) is

dense in G. Clearly we may assume that G has no nontrivial compact normal

subgroup. Now, if Q(G)~ has nonvoid interior, then every quotient group of G

also enjoys the same property. Hence the quotient of its noncompact semisimple

factor S also has the same property. Recall all the eigenvalues of the compact

elements have module one (when we consider the adjoint representation). By

assumption there exists an open set in S such that every element has all its

eigenvalues of module one. This is clearly impossible (in view of Iwasawa

decomposition S = KAN) unless S is a compact group. Hence G has no

noncompact simple factor. Then G is faithfully linear representable (since it

has no nontrivial compact normal subgroup). Thus the commutator [G, G] is

closed and G/[G, G] is an abelian analytic group. It is clear the closure of

Q(G/[G, G]) cannot have nonvoid interior unless G/[G, G] is compact by the

structure of abelian analytic group. Therefore we conclude G = N • K with A

a simply connected nilpotent normal analytic group and K a compact analytic

group. Let L - intfi(G)" , interior of the closure of Q(G). Then F n A • F

is a nonvoid open subset of A • F where F is a maximal torus of G. Now,

suppose Q(G) is not dense in G,then Q(N-T) is not dense in A-F by Lemma

2.2. Hence there exists a dense point / in F such that A' is nontrivial and
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Q(N • F) c C(t, A) x F. This shows that F n A • F is not open in A • F. We
have a contradiction. Therefore we conclude that fi(G) is dense in G. And

the proof is now complete.

Previously, we have concentrated our discussions on analytic groups. Now,

we shall study Lie groups with finitely many connected components.

In view of Proposition 1.4, we may assume that G' - N • Q where A is

a simply connected normal nilpotent analytic group and Q is a compact Lie

group. Let K be the identity component of Q. Let G = A • K. Let K = Q n
Go. Then F is a maximal compact subgroup of G. It is known that there

exists a finite subgroup D of Q such that Q = KD (cf. the appendix).

We reserve all the notations in the following discussions.

2.9. Lemma. Let d £ D. Let (d) denote the cyclic group generated by d.

Then Q(G) n(d)G = Q((d)G).

Proof. Since Q(G) = \Jx^GxQx~x . Let q £ Q and x £ G. If xqx~x e d'G,

then q£d'Gc (d)G. Hence xqx~x £ Q((d)G).

2.10. Theorem. Let G' be a Lie group with finitely many components. Let G

be the identity component of G'. Then Q(G') is dense in G' if and only if

£l(G) is dense in G.

Proof. In essence, we only need to show Q(G')~ = G' when Çl(G)~ = G.

For this purpose, we may write G' = A • KD with A a simply connected

nilpotent analytic group, K a compact analytic group, and D a finite group

which normalizes F. By Lemma 2.9, we may assume that D = (d), a finite

cyclic group. We assume that Q(G) is dense in G.

Now, we assume that A is an abelian group first. Given any k £ K, then

k belongs to some maximal torus of K, say F. Since Q(G) - G,T acts

on A without any nontrivial fixed points. There exists a residue subset of

dense elements t of F arbitrarily close to k such that d~x - t is a surjection.

Suppose this is not true, i.e., d~x(n) - t(n) - 0. Because d~x(n) = t(n),

(d~x)l(n) = tl(n) for any integer /. Since d is a torsion element, so (d~x)' = id

for some positive integer /. Then we have tl(n) — n . Since tl is also a dense

element, it does not have any nontrivial fixed vector, we reach a contradiction.

Hence (d~x - t)(N) = A, d~x - t is a surjection. Now, let n be any element

in A, there is an element m such that (d~x - t)(m) = d~x(n), equivalently,

d(d~x - t)(m) = n . From this we have

(m, 1)(1, dt)(m, l)"1 = (m -dt(m), dt) = (d(d~x - t)(m), dt) = (n, dt).

Hence dG = (Q,(G')ndG)- .
Now, we use the induction on the length of central series of A to show that

fi(G') is dense in G'. Assume A(/) is central in A and Q(G'/A(/)) is dense in

G'/A(/). Let k be an element of the maximal torus F, and U a neighborhood

of k in F. There exists a residue subset S of dense elements of F such that

(1) S is dense in U (2) for each s £ S and m £ N/N^ there is an element

x in A/A(/) such that xds(x~x) = m. Let n be the quotient map from G'

onto G'/A(/). Let n be any element in A. Let m = %(n). Then we have

xds(x~x) - nz for some z in A(/). Since A(/) is central in A, it is an abelian

group. We know there exists a residue subset S' of U such that ( 1 ) S' is dense
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in U (2) S' consists of dense elements of F. And for each z £ A(/), there

exists z' in A'') with the property: z'ds'(z'~x) = z~x . Now, choosing any

5 £ S n S', we have
xz'ds(z'^xx~x) = n .

And the proof is now complete.

2.11. Examples. We have expressed the condition for the density of il(G) in

terms of the actions of its maximal torus F on the nilradical A of G. The

following example illustrates the usefulness of such criteria:

Let G be the subgroup of GL(4, E) which consists of the following matrices

x\

y
z

.0    0    0    1/

where A £ SO(3, E) and x, y, z are real numbers. Then G 3 E3 • SO(3, E)
with A =■ E3 and F s SO(3, E). The maximal torus F of F is a circle
group. Since dimension of A is an odd number, F does not act effectively on

A. Therefore Q(G) is not dense in G. Observe SO(3, E) acts on A without

any nontrivial fixed element.

Now, replace GL(4, E) by GL(5,E) and SO(3,E) by SO(4,E) in the
above construction of G, i.e. G = E4 -S(4, E), then Q(G) is dense in G since

the maximal torus acts effectively on A.

2.12. Proposition. Let G be an analytic group, let H be a subgroup of Q(G)

and let F = H~ . If F0 is solvable then Fq is compact and F c Í2(G).

Proof. Since F is a Lie group, Fo is an open subgroup of F . Hence F = FqH

and 77 n Fo is a dense subgroup of Fo . Since 77 n Fo c Í2(G), (77 n Fo)~ is
compact by Theorem 5.2 of [2], a fortiori, F0 c Q(G). Therefore F = H~ =

F077 c Q(G).

Now, we consider a closed analytic subgroup 77 of a semisimple analytic

group G which is contained in fi(G). First, we need the following lemma.

2.13. Lemma. Every unipotent element x of SL(2, E) is in the closure of the

union of all compact subgroups of SL(2, K) ; x £ Q(SL(2, E)).

Proof. Every unipotent element x of SL(2, E) is conjugate to a matrix of the

following form
l   y
0    1

To show x £ Q(SL(2, E)), we only need to show A e Q(SL(2, E)). First,
assume y is positive. Then y = ô2, ô > 0.

By computation

1    y\ _   y     f on       Sn
0    \)~ ™ \l/Sn   2/Sn

(1- l/«4)'/2 I¡n2       \( 2/ôn     -ôn\

l/n2 (I- l/n4)x'2) {-l/ôn     on )

Hence A £ fí(SL(2, E)). When y is a negative number, A is the inverse of

(¿ 7), hence A £ Q(SL(2,E)).
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2.14. Remark. One may consider the matrix B = (**) in SL(2,E). The

characteristic polynomial of B is A2 - (a + d)X + 1. When (a + d)2 < 4, the
eigenvalues of B have absolute values 1, B is an elliptic element (compact

element). It is easy to see we can find compact elements which approximate to

a unipotent matrix ( ¿ \ ) since we can choose suitable numbers for b and c.

2.15. Proposition. Let G be a linear semisimple analytic group. Then every

unipotent element of G is in the closure of Q(G).

Proof. It is known that every unipotent element x in G belongs to an analytic

group which is locally isomorphic with SL(2, E). By Lemma 2.13, x £ Q(G).

2.16. Corollary. Let G be a linear semisimple analytic group. Let G = KAN

an Iwasawa decomposition. Then every closed analytic subgroup H of G con-

tained in Q(G) is conjugate to a subgroup M • Q (a semidirect product) with

M c A and Q c K. Conversely, every conjugate of M • Q is a subgroup in

Q(G).

Proof. (1) Assume 77 is conjugate Xo M • Q with A7 c A and Q c K. By

Proposition 12 M • Q c Í2(G). Hence every conjugate of M • Q is also a

subgroup of Q(G) since Q(G) is invariant under conjugation.

(2) Assume 77 c Q(G). Every element h of H has all its eigenvalues of

absolute value 1. Hence H = E • P where F is the nilradical of 77 consisting

of unipotent elements and F is a compact analytic group. Since the compact

subgroup of G is conjugate to a subgroup of K, we may assume that F c K.

Since F is a group of unipotent elements, it is known that F is conjugate to a

subgroup of A by the conjugation defined by an element from K. Therefore,

77 is conjugate to a subgroup A7 • Q with A7 c A, Q c F . The proof is now

complete.

Appendix

Here, we shall give a shorter proof of the following useful statement originally

due to D. H. Lee (Math. Z. 104 (1968), 28-49).

1. Proposition. Let G be a Lie group with finitely many components. Then

there exists a finite subgroup D of G such that G = GoD.

Proof. Since G has only finitely many components, by a result due to G. D.

Mostow, G — KE where F is a maximal compact subgroup of G and F is a

simply connected manifold. F c Go . Hence, G = KGq. Let F be a maximal

torus of the identity component Fo of F. Let S be the normalizer of F

in K. Then S is a compact Lie group with its identity component F. Let

x be any element of K. Since xTx~x is also a maximal torus of F, there

exists an element y in F0 such that xTx~x = yTy~x . Therefore y~xx £ S.

Hence x £ Sy c SK0, K = SK0, G = G0K = G0K0S = G0S. Once we
show there exists a finite subgroup F of S such that S = TD we will have

G=G0S = G0F7J> = Go/>.

In passing, we note the above method reduces our original problem to an

extension problem: 1—>F—>S—>S/F—► 1 with an abelian divisible kernel

F. So, we can apply a method from cohomology theory.
Let X = S/T the left coset space. X is a finite set. Let r be the cardinality

of X.   Let a be a cross section of S over X, i.e. a — X —> S such that
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ti o o = id. Here ?r is the canonical map from S onto S/T. Define the

function d) from S into F by the rule cf>(s) — Y[xeXso(x)o(sx)~x . LeX t£T.

Then <j>(t) = f. Since F is a divisible group cf>(T) = T. The function cf> has

following basic property

(*)

<P(sis2l) = X\sis2xa(x)o(sxs2xx)  '

x€X

=   ] J 5i52"'(T(x)rj(52"1x)~15r'15iCr(5^1x)(7(5i52"1X)-1

= J|    II s2xct(x)o(s2xx)-x \s~x Y[ sxct(s2xx)o(sxs2xY

\.x€X J x&X

= sX(ß(s2 x)s{ l<t>(sx).

Now, let D = {s £ S: (f>(s) = 1}. By the above equality, D is a group. Let 5 be

any element of S. Since cf>(T) = T, there exists an element t in F such that

(p(s) = <p(t). Since (p(t-xs) = rx<p(s-x)t<p(t) = I. Hence r'seT», S = TD.

Then F/7) n F « S/F is a finite coset space. Since F n F is the kernel of the

homomorphism cf>: T —> F, 0(í) = f , D n F is a finite group. Hence 7) is a

finite group. Now the proof is complete.

Using the above proposition, we have the proof of the following theorem

which was also due to D. H. Lee (in the same article cited above).

2. Theorem. Let G be an almost connected locally compact group. Then there

exists a compact totally disconnected subgroup D of G such that G = GqD .

Proof. Since G is almost connected, by a theorem of G. D. Mostow, G = GoF

where F is a maximal compact subgroup of G. Let A be a maximal compact

connected abelian subgroup of K. Let B be the normalizer of A in K.

Since the maximal compact connected abelian subgroup of F is conjugate by

inner automorphisms defined by elements from ko, K = KqB . The identity

component B0 of B is the compact connected abelian group A . We are going

to show there exists a compact totally disconnected subgroup D of B such that

B = AD. From this we shall have the statement G = GqD .
Let X be the left coset space B/A. X is a compact totally disconnected

space. It is known that there is a global cross section o: X -* B . (Cf. K. H. Hof-

mann and P. S. Mostert, Elements of compact semigroups, Appendix II, Theorem

1.13, p. 318.) Let ô be the canonical homomorphism from B onto X. Then

S o o : X —> X is the identity map.
Since B is the inverse limit of compact Lie groups with torus groups as its

identity component; there exists an inverse system of compact normal subgroups

{Lx} of B such that B = Hm Bx, Bx = B/Lx. Let Ax = ALX/LX. Then

A = lim Ax and Ax is a torus group for all X. Let Xx = B/ALX. We have the

following commutative diagram:

X  ^—  B   —^  X

p-, i, i,.

XX ̂ ^ BX -ÍL-, Xx
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Here, px : X —► Xx , nx : B —> Bx are the canonical maps and ax is the cross

section from Xx into Bx induced by a. For each X, define the function

(px:Bx^ Ax by the rule <f>x(h) = l~lXl€xÀ bxox(xx)ax(bxxx)~x. Let Dx = {bx £

Bx; <f>x(bx) = 1}. Then Bx — AXDX and Dx is a finite group by the above

proposition. Let 6X: Dx —> Bx be the inclusion map, let 6: lim Dx —► lim F^ =

B, and let D = 6( lim T>¿). Then 7) is compact and totally disconnected since

lim Dx is compact and totally disconnected. Moreover B = AD. Now, the

proof is complete.

3. Remark. We may approach the proof of above theorem in the following

way. For each X and every b in B, the set f]x7z^xn^x(nx(b)) consists of

only one element of A , so we have a well-defined function cf>: B -> A, c/>(b) =

f}xn^x(j)X(px(b)). The function cf> satisfies (*) : 4>(bxb2) = bX(p(b2)b¡~x(j)(bx).
Let D = {b £ B; cf>(b) =1}, then D = lim Dx. D is a compact totally

disconnected subgroup of B and B = AD. Thus G = GoD as desired.

Added in Proof. Professor D. Z. Djokovic kindly informed us that Theorem

2.10 has also been obtained by M. I. Kabenyuk, Connected groups with dense

sets of compact elements, (Ukrainian Math. J. 33 (1981)).
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