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ON TWISTOR SPACES OF ANTI-SELF-DUAL
HERMITIAN SURFACES

MASSIMILIANO PONTECORVO

Abstract. We consider a complex surface M with anti-self-dual hermitian

metric h and study the holomorphic properties of its twistor space Z . We

show that the naturally defined divisor line bundle [X] is isomorphic to the

- j power of the canonical bundle of Z , if and only if there is a Kahler

metric of zero scalar curvature in the conformai class of h . This has strong

consequences on the geometry of M, which were also found by C Boyer [3]

using completely different methods. We also prove the existence of a very close

relation between holomorphic vector fields on M and Z in the case that M

is compact and Kahler.

1. Introduction

The aim of this section is to give the basic definitions and results which will

be used later.

In this work (M, h) will denote a complex surface M together with a her-

mitian metric h whose Weyl tensor W is anti-self-dual. We write h = g-2iœ

where g and œ are the associated Riemannian metric and fundamental 2-

form, respectively. This is equivalent to having a Riemannian 4-dimensional

manifold (M, g) with an integrable almost complex structure J satisfying

g(JX, JY) = g(X, Y) for all tangent vectors X, Y on M.
As the real dimension of M is four we have a famous splitting of the bundle

of 2-forms: A2(tW) = A2 (M) © Ai (M) into the eigenspaces of the Hodge

star operator *: A2(M) —> A2(M), because *2 = 1 . Looking at the curvature

operator 3?: A2(M) —> A2(M) we can then ask that its conformally invariant

part W — W+ + W- be anti-self-dual, that is W+ = 0 with respect to the

orientation of M given by J .

This conformai property of h has an important consequence [1] on the

twistor space Z of M which we are briefly going to describe. The real 6-

dimensional manifold Z can be defined to be the bundle of almost complex

structures on M which are compatible with the metric g and the orientation

given by J :

Z = {/ € 0(TM)\I2 = - id, / > 0}.

We denote by t: Z —> M the twistor fibration and notice that the fiber is

SO(4)/U(2) = S2. The important point is that Z has a natural almost complex
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structure J' given as follows: at each point z G Z we can use the Levi-Civita

connection of M to split the tangent space to Z into vertical and horizontal

components: TZZ = VZ®HZ. The vector space Vz is tangent to the fiber which

is an oriented metric 2-sphere and then has a natural almost complex structure

J\, namely rotation by +90°. On the other hand, Hz can be identified with

Tt(Z)M and given the tautological almost complex structure J2 defined by z

itself. Finally the almost complex structure of Z is J' = J\®J2. The important

theorem [1] is that

(1) J' is integrable if and only if W+ = 0 on W.

In this case the fibers of t become complex submanifolds of Z , isomorphic

to CPi and called twistor lines; the antipodal map on each line induces an

anti-holomorphic involution a of Z called the real structure.

The reason why the integrability of /' only depends on the conformai class

of g , is because the whole construction is indeed conformally invariant [1].
In fact there is an important interplay, called the Penrose correspondence,

between holomorphic properties of Z and conformai properties of M. An

instance of this is the following: as the Lie algebra so(4) = su(2) © su(2), the

locally defined spin bundle of M splits into two complex subbundles, denoted

by S+ and S_ , which have rank 2 and satisfy S+ ©S_ = CT*M. By S™ and
S™ we indicate their symmetric mth powers and notice that for m even these

bundles are globally defined even when M is not spin.

One then considers covariant differentiation

v : r(s?) -+ ns? ® ct*m) = r(s? ® s+ ® s_ )

which, together with the orthogonal decomposition [1],

S™ ® S+ ® S_ = (S?"1 <8> S_) © (S?"1 ® S_)

gives, by projection, the Dirac operator

£>m:r(s^)-,r(s^-'®s_)

and the twistor operator

öm:r(s:!)-+r(s?+1®s_).

Finally recall that the canonical line bundle K of Z always admits a pre-

ferred square root K1/2 . And in fact a fourth root exactly when M is spin.

Having said all this we can state a result of Hitchin [6] which says that global

holomorphic sections of K~mlA exactly corresponds to solutions of the twistor

equation:

(2) H°(Z,K-m/4)^KeTDm   form>0.

We will be mainly interested in the case m — 2, in the case in fact s2 =

A2(Af) and the Dirac operator D2 is just exterior differentiation rf restricted

to self-dual 2-forms [6]. Now the fundamental 2-form co of (M, h) is self-

dual and it is very well known that co is closed if and only if is parallel, h is

called a Kahler metric in this case. In the same spirit we have the following

result which will be needed later:
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Lemma 1.1. Let co be the fundamental 2-form of a hermitian surface, then

D2a> = 0 <=> Vco = dco = 0.

Proof. In terms of spinor indices the formula relating covariant differentiation

to the Dirac and twistor equations on S2 = A2  is

VAA,coBC = V>sc> + ¡eA^VA,Dwc^.

This says that for a self-dual 2-form co,

D2(jo = 0    if and only if    Vco - dco.

But when co is the fundamental 2-form of a hermitian metric one has [8, p.

148] that for all vector fields X,   Y, Z , on M,

{Vxco)(Z ,Y) = \ dco(X ,JY,JZ)-\ dto{X, Y, Z)

therefore D2co — 0 if and only if

dco(X, Y, Z) = 7>dco{X, JY, JZ).

And using that J2 = -1 we get dco - 0 ; then Vco = 0 also.   D

2. The twistor space

Let ? : Z —> v\/ denote the twistor fibration and suppose M is hermitian and

anti-self-dual. Two things are clear from the definition of the almost complex

structure of Z : first, t is never a holomorphic map; second, the complex

structure J of M defines a cross section / : M —> Z , whose image we denote

by Z. By the integrability of /, Z is indeed a complex hypersurface of Z

biholomorphic to M [4]. Similarly -J: M —> Z defines hypersurface Z. The
"real structure" a of Z switches the two hypersurfaces identifying one with

the other in an antiholomorphic fashion. If X denotes the divisor Z + Z in

Z , we can consider the holomorphic line bundle [X] ; since a(X) - rr(Z-(-Z) =

Z + Z = X, [X] is called a "real" bundle.

We then investigate the relation between the holomorphic line bundle [X]

and the complex structure of Z .

First, when M is compact, one has the following topological remark [13]:

(3) cx{[X)) = c,{K-xl1)

where Kz denotes the canonical bundle.
— 1/2

It is then natural to ask when is [X] isomorphic to Kz '  .

Now if H\Z, cf) = 0, the Chern class map c, : Hy{Z, cf*) -+ H2(Z, Z) is

injective and the above implies [X] = K^1 , however by the Ward correspon-

dence [1, Theorem 5.2], Hl(M, R) has to be zero in this case.

The general philosophy of the Twistor Program of R. Penrose is to relate the

conformai geometry of M to the holomorphic properties of Z . In this context,

whether M is compact or not, we have

Theorem 2.1.
[X]*iK~i/2

if and only if h is conformai to a Kahler metric.
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Proof. We start by assuming that h is a Kahler metric and prove that [X] =

K%1' , in two steps. We first define a holomorphic section co G H°(Z , K~xl2)

by using the Kahler form co of M ; then we show that X = {co = 0}. In
the course of this proof we will often use the following (see [1]): Z = P(S+) ;

the symplectic form of S+ defines a linear isomorphism e : S+ —> S* and the

hermitian form an antilinear isomorphism h : S+ —> S+ so that if n G S+ , rj

will denote its image and we will write n ® If G S2 .

Step 1. Recall that f\+(M) = S2 , then the Kahler form co of M is a section of

S2 . Now according to [6, §2] any section y/ G S2 tautologically defines a com-

plex valued function on S+ \ 0 which is a homogeneous polynomial of degree

2 on each fiber; this in turns gives a section y/ e Y(Z, cf{2)) = Y(Z, K~ll2).

And furthermore y/ is a holomorphic section, i.e. y/ G H°(Z , cf (.tv-1/2)) , if

and only if ^ satisfies the twistor equation D2 y/ = 0. It is clear from the

definition of the operators Dm and Dm that in general every parallel section

of S™ is a solution to both the Dirac and twistor equations (in fact, by the

Weitzenböck formulas, these are the only solutions when M is compact and

R = 0). Therefore since co is parallel, co e H°(Z, K~xl2) is holomorphic.

Step 2. Since M is hermitian we have two sections cp and lp: M —> Z rep-

resenting the almost complex structures J and /. Let co e f\2+{M) = S2 be

the Kahler form. According to [1, §1], at each point p e M, co = 4>®(f> where

(f> G S+ and 4> G S+ represents ç> and lp respectively. Now let a G Z = P(S+)

be a twistor at /?. By using the isomorphism e : S+ —> S* it makes sense to

solve the equation 0(a) = 0. Since £ is given by the symplectic form and S+

has complex dimension 2, the only solution is a — cp. Similarly for tp and we
have shown that co(a) = 0 if and only if a = cp or a = lp that is X = {co = 0}.

This proves one direction of the statement.

To complete the proof we assume now that [X] = K^1' , and show that

there is a Kahler metric in the conformai class of h . By hypothesis we have a

holomorphic section p of K^1     vanishing exactly on X. Furthermore since

H°(Z, K^]/2) has a "real" structure, we can choose p to be invariant under

the anti-holomorphic involution a of Z . The corresponding self-dual 2-form

p is then real and satisfies the twistor equation: D2p = 0 [6]. By Lemma 1.1 is

then enough to prove that p is the fundamental 2-form of a hermitian metric

in the conformai class of h .

Now if co is the fundamental 2-form of h , we have already shown that co

also vanishes exactly on X, but is not necessarily holomorphic. However, on

each twistor line P(S+i ), p and co are homogeneous polynomial of degree

two vanishing on the same two antipodal points and therefore they differ by a

nonzero multiplicative constant f(x) which is real. It follows that p = fco

for a never-zero real function / on M. Assume that M is connected, this

means that either p or -p is the fundamental 2-form of the hermitian metric

\f\h.   ü

Remark 2.2. It was proved for example in [9] that a metric is anti-self-dual and

Kahler if and only if it is Kahler of zero scalar curvature. So that the hermitian
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anti-self-dual surfaces for which [X] = K^     are precisely the Kahler surfaces
of zero scalar curvature. The problem of their classification was posed in [16].

The above theorem also gives a "twistor proof of a result of C. Boyer:

Corollary 2.3 [3]. Let (m, h) be a compact anti-self-dual surface then:

If b\ (M) is even,

h is globally conformai to a Khaler metric of zero scalar curvature.

Ifb\{M) is odd,
h is locally conformai to a Kahler metric of zero scalar curvature.

Proof. By (3), [X] = K¿ ' F where F is a holomorphic line bundle of zero

Chern class on Z . By the Ward correspondence then, F — t*E where E is a

hermitian line bundle over M, with anti-self-dual connection and zero Chern

class. In particular the curvature of the connection is harmonic and therefore

zero, by Hodge theory. Now we consider the following commutative diagram:

Z   —i->  Z

{       ,[
M —^ M

where p: M —> M and q: Z —> Z are universal coverings, and t: Z —► M is

the twistor fibration. The pulled-back^connection on the line bundle p*E over

M is trivial, because it is flat and M is simply connected. As a consequence

F := t(p*E) = q*(t*E) = q*F is trivial ft]. And therefore [X] = KZl/2 on

Z , where X is the universal covering of X . Then M is globally conformally

Kahler by 2.1.
It follows that M is locally conformally Kahler (l.c.k. in the notation of

Vaisman). But any compact l.c.k. surface is globally conformally Kahler ex-

actly when b\ (M) is even [3], because the Hodge decomposition Hx (M, C) =

Hl'°{M)®H°'l(M) holds in this case.   □

3. Compact Kahler surfaces

From now on we will assume that M is compact and b\(M) is even. All

known examples of anti-self-dual compact complex surfaces of this type are the

following:

• Flat tori and K3 surfaces with a Yau metric. These are

the hyperkahler surfaces and are the universal coverings

of:
• The other Ricci-flat Kahler surfaces, i.e. the hyperellip-

tic and the Enriques surfaces.

• Sg x CPi , where Sg is a compact Riemann surface of

genus g > 2 with a metric of constant scalar curvature

-1 , and CP[ is the Riemann sphere with constant cur-

vature +1, or, more generally, ruled surfaces which are

flat 5'2-bundle over Sg , g > 2.

• Recently LeBrun has constructed zero scalar curvature

Kahler metrics on ruled surfaces blown up at two or

more points [10].



658 MASSIMILIANO PONTECORVO

The reason why these are hermitian anti-self-dual manifolds is that they have

a Kahler metric of zero scalar curvature.

Notice that the complex projective plane CP2 with its standard orientation

and metricjs self-dual and Kahler, while the same manifold with orientation

reversed, CP2, does not even admit an almost complex structure; otherwise c\

would be equal to 2% + 3t = 3, which implies that the first Chern class C\

cannot be represented by an integral 2-form.

The above theorem also gives precise informations on the normal bundle of

X in Z , denoted by vx¡z ■

Corollary 3.1. When M is compact and b\(M) is even, the normal bundle of

X in Z is isomorphic to the anticanonical bundle: vX/z — Kxl > similarly

uz/z^K^1 and ^/z = ^'•

Proof [13]. The adjunction formulas [5] state that vx¡z = [X\x and Kx =

{Kz ® [X])lx therefore vX/z = ^z\x and K* - (Kz ® K~l/2)lx s K*£x as

wanted. The rest clearly follows from X = ZIIZ    D

Theorem 2.1 says that the line bundle K~yl2 has global holomorphic sections

and this easily implies that K~ml2 has global holomorphic sections for each

m > 0. In fact using the ideas of [ 13] one can show that these are the only line

bundles, within their Chern class, to have global holomorphic sections:

Proposition 3.2. // c,(L) = Ci(^"m/2) then H°{Z, L) /0«LS K~m'2 and

m>0.

When one considers a compact twistor space t: Z —> M as a complex man-

ifold, there is a theorem of Hitchin [7] which states that Z is Kahler (in fact
algebraic) if and only if M is either S4 or CP2, with its standard conformai

structure. It is then interesting to investigate "how far is a twistor space from

being algebraic," for example by looking at its algebraic dimension a(Z). To

this respect Poon has found some very interesting relations between a(Z) and

the geometry of M [12, 13].
The methods of [ 12] show that the algebraic dimension of a compact twistor

space Z is achieved by the Kodaira dimension k(Z, F) of some "real" holo-

morphic line bundle F —> Z , see [ 14] for definitions. Therefore

Remark 3.3.

a(Z) = k[Z,[X]) = k(Z,K-1'2)

when Z is the twistor space of a compact Kahler surface of zero scalar curva-

ture.

The above discussion can then be used as in [11], to give a more direct proof

of a theorem of Poon [ 13] which states that

ß(-Z) < 1 for the twistor space of a compact Kahler surface of
zero scalar curvature. Furthermore equality holds precisely when

M is Ricci-flat.

The situation is different when b\(M) is odd and in [11] we gave the first

example of a twistor space with algebraic dimension equal to two. It is the

twistor space of a Hopf surface.
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4. Holomorphic vector fields

In this section we still assume that M is compact and Kahler; we show that

there is a close relation between the Lie algebras of holomorphic vector fields

of M and Z , which we denote by H°(M, 6) and H°(Z , 6). Again, as in
Poon's theorem the results reflect whether or not M is Ricci-flat.

For a holomorphic vector bundle E over a compact complex manifold N,

h°(N, E) will denote the complex dimension of H°(N, E). We will prove

Theorem 4.1. // M is Ricci-flat

H°(Z, G) s H°(M, 6) © H°(M, 6)

which is also isomorphic to the complexification of the Lie algebra of real parallel

vector fields on M ; so that

h°(Z ,S) = bi (M) = 2h°{M, 6).

Theorem 4.2. If M is not Ricci-flat

H°{Z,e)^H°{M,Q).

To explain this, recall that in the general case, by the Penrose correspondence,

H°(Z , 8) is the complexification of the Lie algebra of conformai Killing vector

fields on M. This in turn is closely related to H°(M, O) when M is Kahler.

To prove the above theorems we will use the following [B]:

Theorem 4.3 (Bochner). On a compact riemannian manifold (N, g) with Ric <

0, every Killing vector field is parallel.

Similarly if g is Kahler, then every holomorphic vector field is parallel.

Theorem 4.4 (Lichnerowicz). On a compact Kahler manifold of constant scalar
curvature

/f°(M,0)^a©h

where a is the abelian Lie algebra of all parallel holomorphic vector fields and

h is the complexification of a Lie algebra consisting of Killing vector fields.

Another result of Lichnerowicz states that: on any compact Kahler manifold

of dimension at least 2 a conformally Killing vector field is automatically Killing.

In complex dimension 2 we also have an elementary proof of this fact:

Lemma 4.5. If M is a compact Kahler surface every conformai vector field is

real holomorphic and in fact Killing.

Proof. Suppose S'vg = fg for some function /; we start by showing that

3vto = 0 where co denotes the Kahler form. In fact let cpt be the flow of

V. For each t, tp¡ is a conformai isometry homotopic to the identity. Since

co is a self-dual closed 2-form, it is also harmonic, and it is easy to check that

the Hodge-star operator * : A" ~~> A" > on a manifold of real dimension 2« ,

is invariant under a conformai rescaling of the metric; so that cp*co is again

harmonic. But [<p¡co] - [co] G H¿R(M) and so by Hodge theory, cp*co — co, i.e.

S?v<ù = 0.
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Now the complex structure J = g ' o co as an endormorphism of the tangent

bundle, therefore

&vJ = i&vg-1) o co + g~l° (5?vco) = fg~loco = fJ,

on the other hand J2 = - id implies that

0 = Sfv{- id) = -2V2 = J(3>VJ) + {2fvJ)J = -2/

i.e. f = 0, 5fvg = 0 and ^7 = 0.   D

It is also straightforward to check that

Lemma 4.6. On any Kahler manifold if V and J V are both Killing vector fields,
they are also parallel with respect to the Levi-Civita connection.

Proof of 4.1. By the Bochner theorem and 4.5 we have that H°(Z, 8) is the

complexification of the Lie algebra of parallel vector fields. Now recall the

Weitzenböch decomposition of 1-forms:

A = rfrf* + rf*rf = V*V + Ric

it says that on a Ricci-flat riemannian manifold a 1-form is harmonic if and

only if is parallel with respect to the Levi-Civita connection. Using the metric

to pass from 1 -forms to vector fields we have:

h°(Z , 8) = diniR (Lie algebra of parallel vector fields) = b\ (M)

and we are left to prove that 2h°{M, 8) = b\{M). By the Bochner theorem

every holomorphic vector field is parallel, so the dual (0, l)-form is parallel;

since M is Kahler, A = 2D = dd * = d *d and a (0, l)-form is parallel if and
only if is d -harmonic; we conclude that

h0(M,e) = h°(M,Q]) = {bx{M).   D

Proof of 4.2. Suppose M has no parallel vector fields, then by the Lichnerowicz

theorem and 4.5, H°(M ,8) is the complexification of the Lie algebra of all

conformai Killing vector fields on M and therefore isomorphic to H°(Z ,8),

and we have proved the result. Then it is enough to show that M admits no

parallel holomorphic vector fields.

To show this is true, we first reduce to the case of a minimal surface: suppose

M is not minimal (i.e. it contains a holomorphically embedded, irreducible

rational curve C with self-intersection = -1 ). Then if @M c denotes the

sheaf of holomorphic vector fields on M which are tangent to C, along C,

we have an exact sequence 0 —> ®m,c —> 8m —> vc¡M —> 0. As H°(C, vc¡M) =

/7°(CPi, (f(-\)) = 0, it follows that every holomorphic tangent vector on M

is tangent to C, along C. Since C = CPi , every holomorphic vector field

vanishes somewhere. (In fact a direct image argument shows that it has to

vanish identically, along C.)
However, if M is minimal and the total scalar curvature is nonnegative, Yau

[15]' has shown that M = CP2 or else is a CPi-bundle over a Riemann surface

Sg. This says that /(M) ^ 0, and therefore M has no parallel vector fields

unless it is a CPi-bundle over a torus; in this case however #(M) = x{M) = 0.

Warning: Proposition 4 in [15] is false, counterexample:  CP¡ x Sg .
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On the other hand, by Chern-Weil theory [3], when M is anti-self-dual with

zero scalar curvature, this implies that M is actually flat, which is absurd.   D

Notice that the result of 4.2 holds for any half-conformally flat compact

Kahler surface with no parallel holomorphic vector field, e.g. CP2 ; or trivially,

for any such surface of negative Ricci curvature.
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