ON TWISTOR SPACES OF ANTI-SELF-DUAL HERMITIAN SURFACES

MASSIMILIANO PONTECORVO

ABSTRACT. We consider a complex surface M with anti-self-dual hermitian metric h and study the holomorphic properties of its twistor space Z. We show that the naturally defined divisor line bundle [X] is isomorphic to the $-\frac{1}{2}$ power of the canonical bundle of Z, if and only if there is a Kähler metric of zero scalar curvature in the conformal class of h. This has strong consequences on the geometry of M, which were also found by C. Boyer [3] using completely different methods. We also prove the existence of a very close relation between holomorphic vector fields on M and Z in the case that M is compact and Kähler.

1. Introduction

The aim of this section is to give the basic definitions and results which will be used later.

In this work (M, h) will denote a complex surface M together with a hermitian metric h whose Weyl tensor W is anti-self-dual. We write $h = g - 2i\omega$ where g and ω are the associated Riemannian metric and fundamental 2-form, respectively. This is equivalent to having a Riemannian 4-dimensional manifold (M, g) with an integrable almost complex structure J satisfying g(JX, JY) = g(X, Y) for all tangent vectors X, Y on M.

As the real dimension of M is four we have a famous splitting of the bundle of 2-forms: $\Lambda^2(M) = \Lambda^2_+(M) \oplus \Lambda^2_-(M)$ into the eigenspaces of the Hodge star operator $*: \Lambda^2(M) \to \Lambda^2(M)$, because $*^2 = 1$. Looking at the curvature operator $\mathscr{R}: \Lambda^2(M) \to \Lambda^2(M)$ we can then ask that its conformally invariant part $W = W_+ + W_-$ be anti-self-dual, that is $W_+ = 0$ with respect to the orientation of M given by J.

This conformal property of h has an important consequence [1] on the twistor space Z of M which we are briefly going to describe. The real 6-dimensional manifold Z can be defined to be the bundle of almost complex structures on M which are compatible with the metric g and the orientation given by J:

$$Z = \{I \in \mathscr{O}(TM) | I^2 = -\operatorname{id}, I > 0\}.$$

We denote by $t: Z \to M$ the twistor fibration and notice that the fiber is $SO(4)/U(2) \cong S^2$. The important point is that Z has a natural almost complex

Received by the editors March 7, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 53C25, 53B55; Secondary 14J30, 14J28.

structure J' given as follows: at each point $z \in Z$ we can use the Levi-Civita connection of M to split the tangent space to Z into vertical and horizontal components: $T_zZ = V_z \oplus H_z$. The vector space V_z is tangent to the fiber which is an oriented metric 2-sphere and then has a natural almost complex structure J_1 , namely rotation by $+90^\circ$. On the other hand, H_z can be identified with $T_{t(z)}M$ and given the tautological almost complex structure J_2 defined by z itself. Finally the almost complex structure of Z is $J' = J_1 \oplus J_2$. The important theorem [1] is that

(1)
$$J'$$
 is integrable if and only if $W_+ = 0$ on W .

In this case the fibers of t become complex submanifolds of Z, isomorphic to \mathbf{CP}_1 and called twistor lines; the antipodal map on each line induces an anti-holomorphic involution σ of Z called the real structure.

The reason why the integrability of J' only depends on the conformal class of g, is because the whole construction is indeed conformally invariant [1].

In fact there is an important interplay, called the Penrose correspondence, between holomorphic properties of Z and conformal properties of M. An instance of this is the following: as the Lie algebra $so(4) = su(2) \oplus su(2)$, the locally defined spin bundle of M splits into two complex subbundles, denoted by S_+ and S_- , which have rank 2 and satisfy $S_+ \oplus S_- = CT^*M$. By S_+^m and S_-^m we indicate their symmetric mth powers and notice that for m even these bundles are globally defined even when M is not spin.

One then considers covariant differentiation

$$\nabla \colon \Gamma(\mathbf{S}_{+}^{m}) \longrightarrow \Gamma(\mathbf{S}_{+}^{m} \otimes \mathbf{C} T^{*} M) = \Gamma(\mathbf{S}_{+}^{m} \otimes \mathbf{S}_{+} \otimes \mathbf{S}_{-})$$

which, together with the orthogonal decomposition [1],

$$\mathbf{S}_{+}^{m} \otimes \mathbf{S}_{+} \otimes \mathbf{S}_{-} = (\mathbf{S}_{+}^{m-1} \otimes \mathbf{S}_{-}) \oplus (\mathbf{S}_{+}^{m-1} \otimes \mathbf{S}_{-})$$

gives, by projection, the Dirac operator

$$D_m \colon \Gamma(\mathbf{S}_+^m) \longrightarrow \Gamma(\mathbf{S}_+^{m-1} \otimes \mathbf{S}_-)$$

and the twistor operator

$$\overline{D}_m \colon \Gamma(\mathbf{S}_+^m) \longrightarrow \Gamma(\mathbf{S}_+^{m+1} \otimes \mathbf{S}_-).$$

Finally recall that the canonical line bundle K of Z always admits a preferred square root $K^{1/2}$. And in fact a fourth root exactly when M is spin.

Having said all this we can state a result of Hitchin [6] which says that global holomorphic sections of $K^{-m/4}$ exactly corresponds to solutions of the twistor equation:

(2)
$$H^0(Z, K^{-m/4}) \cong \operatorname{Ker} \overline{D}_m \text{ for } m \geq 0.$$

We will be mainly interested in the case m=2, in the case in fact $\mathbf{s}_+^2\cong\Lambda_+^2(M)$ and the Dirac operator D_2 is just exterior differentiation d restricted to self-dual 2-forms [6]. Now the fundamental 2-form ω of (M,h) is self-dual and it is very well known that ω is closed if and only if is parallel, h is called a Kähler metric in this case. In the same spirit we have the following result which will be needed later:

Lemma 1.1. Let ω be the fundamental 2-form of a hermitian surface, then

$$\overline{D}_2\omega = 0 \Leftrightarrow \nabla\omega = d\omega = 0.$$

Proof. In terms of spinor indices the formula relating covariant differentiation to the Dirac and twistor equations on $S^2_+ \cong \Lambda^2_+$ is

$$\nabla^A_{A'}\omega^{BC} = \nabla^{(A}_{A'}\omega^{BC)} + \tfrac{2}{3}\varepsilon^{A(B}\nabla_{A'D}\omega^{C)D}\,.$$

This says that for a self-dual 2-form ω ,

$$\overline{D}_2\omega = 0$$
 if and only if $\nabla \omega = d\omega$.

But when ω is the fundamental 2-form of a hermitian metric one has [8, p. 148] that for all vector fields X, Y, Z, on M,

$$(\nabla_X \omega)(Z\,,\,Y) = \frac{3}{2}\,d\omega(X\,,\,JY\,,\,JZ) - \frac{3}{2}\,d\omega(X\,,\,Y\,,\,Z)$$

therefore $\overline{D}_2\omega = 0$ if and only if

$$d\omega(X, Y, Z) = 3 d\omega(X, JY, JZ)$$
.

And using that $J^2 = -1$ we get $d\omega = 0$; then $\nabla \omega = 0$ also. \Box

2. The twistor space

Let $t: Z \to M$ denote the twistor fibration and suppose M is hermitian and anti-self-dual. Two things are clear from the definition of the almost complex structure of Z: first, t is never a holomorphic map; second, the complex structure J of M defines a cross section $J: M \to Z$, whose image we denote by Σ . By the integrability of J, Σ is indeed a complex hypersurface of Zbiholomorphic to M [4]. Similarly $-J: M \to Z$ defines hypersurface $\overline{\Sigma}$. The "real structure" σ of Z switches the two hypersurfaces identifying one with the other in an antiholomorphic fashion. If X denotes the divisor $\Sigma + \overline{\Sigma}$ in Z, we can consider the holomorphic line bundle [X]; since $\sigma(X) = \sigma(\Sigma + \Sigma) =$ $\overline{\Sigma} + \Sigma = X$, [X] is called a "real" bundle.

We then investigate the relation between the holomorphic line bundle [X]and the complex structure of Z.

First, when M is compact, one has the following topological remark [13]:

(3)
$$c_1([X]) = c_1(K_Z^{-1/2})$$

where K_Z denotes the canonical bundle.

It is then natural to ask when is [X] isomorphic to $K_Z^{-1/2}$. Now if $H^1(Z,\mathscr{O})=0$, the Chern class map $c_1\colon H^1(Z,\mathscr{O}^*)\to H^2(Z,\mathbf{Z})$ is injective and the above implies $[X]\cong K_Z^{-1/2}$, however by the Ward correspondence [1, Theorem 5.2], $H^1(M, \mathbb{R})$ has to be zero in this case.

The general philosophy of the Twistor Program of R. Penrose is to relate the conformal geometry of M to the holomorphic properties of Z. In this context, whether M is compact or not, we have

Theorem 2.1.

$$[X] \cong K_Z^{-1/2}$$

if and only if h is conformal to a Kähler metric.

Proof. We start by assuming that h is a Kähler metric and prove that $[X] \cong K_Z^{-1/2}$, in two steps. We first define a holomorphic section $\check{\omega} \in H^0(Z, K^{-1/2})$ by using the Kähler form ω of M; then we show that $X = \{\check{\omega} = 0\}$. In the course of this proof we will often use the following (see [1]): $Z = \mathbf{P}(\mathbf{S}_+)$; the symplectic form of \mathbf{S}_+ defines a linear isomorphism $\varepsilon \colon \mathbf{S}_+ \to \mathbf{S}_+^*$ and the hermitian form an antilinear isomorphism $h \colon \mathbf{S}_+ \to \overline{\mathbf{S}}_+$ so that if $\eta \in \mathbf{S}_+$, $\overline{\eta}$ will denote its image and we will write $\eta \otimes \overline{\eta} \in \mathbf{S}_+^2$.

Step 1. Recall that $\bigwedge_{+}^{2}(M) = \mathbf{S}_{+}^{2}$, then the Kähler form ω of M is a section of \mathbf{S}_{+}^{2} . Now according to $[6, \S 2]$ any section $\psi \in \mathbf{S}_{+}^{2}$ tautologically defines a complex valued function on $\mathbf{S}_{+} \setminus 0$ which is a homogeneous polynomial of degree 2 on each fiber; this in turns gives a section $\check{\psi} \in \Gamma(Z, \mathscr{O}(2)) = \Gamma(Z, K^{-1/2})$. And furthermore $\check{\psi}$ is a holomorphic section, i.e. $\check{\psi} \in H^{0}(Z, \mathscr{O}(K^{-1/2}))$, if and only if ψ satisfies the twistor equation $\overline{D}_{2}\psi = 0$. It is clear from the definition of the operators D_{m} and \overline{D}_{m} that in general every parallel section of \mathbf{S}_{+}^{m} is a solution to both the Dirac and twistor equations (in fact, by the Weitzenböck formulas, these are the only solutions when M is compact and R = 0). Therefore since ω is parallel, $\check{\omega} \in H^{0}(Z, K^{-1/2})$ is holomorphic.

Step 2. Since M is hermitian we have two sections φ and $\overline{\varphi}\colon M\to Z$ representing the almost complex structures J and \overline{J} . Let $\omega\in \bigwedge^2_+(M)=\mathbf{S}^2_+$ be the Kähler form. According to $[1,\S 1]$, at each point $p\in M$, $\omega=\phi\otimes\overline{\phi}$ where $\phi\in\mathbf{S}_+$ and $\overline{\phi}\in\mathbf{S}_+$ represents φ and $\overline{\varphi}$ respectively. Now let $\alpha\in Z=\mathbf{P}(\mathbf{S}_+)$ be a twistor at p. By using the isomorphism $\varepsilon\colon\mathbf{S}_+\to\mathbf{S}_+^*$ it makes sense to solve the equation $\phi(\alpha)=0$. Since ε is given by the symplectic form and \mathbf{S}_+ has complex dimension 2, the only solution is $\alpha=\varphi$. Similarly for $\overline{\phi}$ and we have shown that $\widecheck{\omega}(\alpha)=0$ if and only if $\alpha=\varphi$ or $\alpha=\overline{\varphi}$ that is $X=\{\widecheck{\omega}=0\}$. This proves one direction of the statement.

To complete the proof we assume now that $[X] \cong K_Z^{-1/2}$, and show that there is a Kähler metric in the conformal class of h. By hypothesis we have a holomorphic section $\check{\rho}$ of $K_Z^{-1/2}$ vanishing exactly on X. Furthermore since $H^0(Z,K_Z^{-1/2})$ has a "real" structure, we can choose $\check{\rho}$ to be invariant under the anti-holomorphic involution σ of Z. The corresponding self-dual 2-form ρ is then real and satisfies the twistor equation: $\overline{D}_2\rho=0$ [6]. By Lemma 1.1 is then enough to prove that ρ is the fundamental 2-form of a hermitian metric in the conformal class of h.

Now if ω is the fundamental 2-form of h, we have already shown that $\check{\omega}$ also vanishes exactly on X, but is not necessarily holomorphic. However, on each twistor line $\mathbf{P}(\mathbf{S}_{+_x})$, $\check{\rho}$ and $\check{\omega}$ are homogeneous polynomial of degree two vanishing on the same two antipodal points and therefore they differ by a nonzero multiplicative constant f(x) which is real. It follows that $\rho = f\omega$ for a never-zero real function f on M. Assume that M is connected, this means that either ρ or $-\rho$ is the fundamental 2-form of the hermitian metric |f|h. \square

Remark 2.2. It was proved for example in [9] that a metric is anti-self-dual and Kähler if and only if it is Kähler of zero scalar curvature. So that the hermitian

anti-self-dual surfaces for which $[X] \cong K_Z^{-1/2}$ are precisely the Kähler surfaces of zero scalar curvature. The problem of their classification was posed in [16]. The above theorem also gives a "twistor proof" of a result of C. Boyer:

Corollary 2.3 [3]. Let (m, h) be a compact anti-self-dual surface then:

If $b_1(M)$ is even,

h is globally conformal to a Khaler metric of zero scalar curvature. If $b_1(M)$ is odd,

h is locally conformal to a Kähler metric of zero scalar curvature.

Proof. By (3), $[X] = K_Z^{-1/2}F$ where F is a holomorphic line bundle of zero Chern class on Z. By the Ward correspondence then, $F = t^*E$ where E is a hermitian line bundle over M, with anti-self-dual connection and zero Chern class. In particular the curvature of the connection is harmonic and therefore zero, by Hodge theory. Now we consider the following commutative diagram:

$$\widetilde{Z} \xrightarrow{q} Z$$

$$\downarrow \downarrow \qquad \qquad \downarrow \downarrow$$

$$\widetilde{M} \xrightarrow{p} M$$

where $p\colon\widetilde{M}\to M$ and $q\colon\widetilde{Z}\to Z$ are universal coverings, and $\widetilde{t}\colon\widetilde{Z}\to\widetilde{M}$ is the twistor fibration. The pulled-back connection on the line bundle p^*E over \widetilde{M} is trivial, because it is flat and \widetilde{M} is simply connected. As a consequence $\widetilde{F}:=\widetilde{t}(p^*E)=q^*(t^*E)=q^*F$ is trivial [1]. And therefore $[\widetilde{X}]=K_{\widetilde{Z}}^{-1/2}$ on \widetilde{Z} , where \widetilde{X} is the universal covering of X. Then \widetilde{M} is globally conformally Kähler by 2.1.

It follows that M is locally conformally Kähler (l.c.k. in the notation of Vaisman). But any compact l.c.k. surface is globally conformally Kähler exactly when $b_1(M)$ is even [3], because the Hodge decomposition $H^1(M, \mathbb{C}) = H^{1,0}(M) \oplus H^{0,1}(M)$ holds in this case. \square

3. Compact Kähler surfaces

From now on we will assume that M is compact and $b_1(M)$ is even. All known examples of anti-self-dual compact complex surfaces of this type are the following:

- Flat tori and K3 surfaces with a Yau metric. These are the hyperkahler surfaces and are the universal coverings of:
- The other Ricci-flat Kähler surfaces, i.e. the hyperelliptic and the Enriques surfaces.
- $S_g \times \mathbf{CP}_1$, where S_g is a compact Riemann surface of genus $g \ge 2$ with a metric of constant scalar curvature -1, and \mathbf{CP}_1 is the Riemann sphere with constant curvature +1, or, more generally, ruled surfaces which are flat S^2 -bundle over S_g , $g \ge 2$.
- Recently LeBrun has constructed zero scalar curvature Kähler metrics on ruled surfaces blown up at two or more points [10].

The reason why these are hermitian anti-self-dual manifolds is that they have a Kähler metric of zero scalar curvature.

Notice that the complex projective plane \mathbb{CP}_2 with its standard orientation and metric is self-dual and Kähler, while the same manifold with orientation reversed, $\overline{\mathbb{CP}}_2$, does not even admit an almost complex structure; otherwise c_1^2 would be equal to $2\chi + 3\tau = 3$, which implies that the first Chern class c_1 cannot be represented by an integral 2-form.

The above theorem also gives precise informations on the normal bundle of X in Z, denoted by $\nu_{X/Z}$.

Corollary 3.1. When M is compact and $b_1(M)$ is even, the normal bundle of X in Z is isomorphic to the anticanonical bundle: $\nu_{X/Z} \cong K_X^{-1}$, similarly $\nu_{\Sigma/Z} \cong K_{\Sigma}^{-1}$ and $\nu_{\overline{\Sigma}/Z} \cong K_{\overline{\Sigma}}^{-1}$.

Proof [13]. The adjunction formulas [5] state that $\nu_{X/Z} \cong [X]_{|X}$ and $K_X \cong (K_Z \otimes [X])_{|X}$ therefore $\nu_{X/Z} \cong K_{Z|X}^{-1/2}$ and $K_X \cong (K_Z \otimes K_Z^{-1/2})_{|X} \cong K_{Z|X}^{1/2}$ as wanted. The rest clearly follows from $X = \Sigma \coprod \overline{\Sigma}$

Theorem 2.1 says that the line bundle $K^{-1/2}$ has global holomorphic sections and this easily implies that $K^{-m/2}$ has global holomorphic sections for each $m \ge 0$. In fact using the ideas of [13] one can show that these are the only line bundles, within their Chern class, to have global holomorphic sections:

Proposition 3.2. If $c_1(L) = c_1(K^{-m/2})$ then $H^0(Z, L) \neq 0 \Leftrightarrow L \cong K^{-m/2}$ and m > 0.

When one considers a compact twistor space $t: Z \to M$ as a complex manifold, there is a theorem of Hitchin [7] which states that Z is Kähler (in fact algebraic) if and only if M is either S^4 or \mathbb{CP}_2 , with its standard conformal structure. It is then interesting to investigate "how far is a twistor space from being algebraic," for example by looking at its algebraic dimension a(Z). To this respect Poon has found some very interesting relations between a(Z) and the geometry of M [12, 13].

The methods of [12] show that the algebraic dimension of a compact twistor space Z is achieved by the Kodaira dimension k(Z, F) of some "real" holomorphic line bundle $F \to Z$, see [14] for definitions. Therefore

Remark 3.3.

$$a(Z) = k[Z, [X]) = k(Z, K^{-1/2})$$

when Z is the twistor space of a compact Kähler surface of zero scalar curvature

The above discussion can then be used as in [11], to give a more direct proof of a theorem of Poon [13] which states that

 $a(Z) \le 1$ for the twistor space of a compact Kähler surface of zero scalar curvature. Furthermore equality holds precisely when M is Ricci-flat.

The situation is different when $b_1(M)$ is odd and in [11] we gave the first example of a twistor space with algebraic dimension equal to two. It is the twistor space of a Hopf surface.

4. Holomorphic vector fields

In this section we still assume that M is compact and Kähler; we show that there is a close relation between the Lie algebras of holomorphic vector fields of M and Z, which we denote by $H^0(M,\Theta)$ and $H^0(Z,\Theta)$. Again, as in Poon's theorem the results reflect whether or not M is Ricci-flat.

For a holomorphic vector bundle E over a compact complex manifold N, $h^0(N, E)$ will denote the complex dimension of $H^0(N, E)$. We will prove

Theorem 4.1. If M is Ricci-flat

$$H^0(Z, \Theta) \cong H^0(M, \Theta) \oplus H^0(M, \Theta)$$

which is also isomorphic to the complexification of the Lie algebra of real parallel vector fields on M; so that

$$h^0(Z, \Theta) = b_1(M) = 2h^0(M, \Theta).$$

Theorem 4.2. If M is not Ricci-flat

$$H^0(Z, \Theta) \cong H^0(M, \Theta)$$
.

To explain this, recall that in the general case, by the Penrose correspondence, $H^0(Z,\Theta)$ is the complexification of the Lie algebra of conformal Killing vector fields on M. This in turn is closely related to $H^0(M,\Theta)$ when M is Kähler. To prove the above theorems we will use the following [B]:

Theorem 4.3 (Bochner). On a compact riemannian manifold (N, g) with $Ric \le 0$, every Killing vector field is parallel.

Similarly if g is Kähler, then every holomorphic vector field is parallel.

Theorem 4.4 (Lichnerowicz). On a compact Kähler manifold of constant scalar curvature

$$H^0(M,\Theta) \cong \mathbf{a} \oplus \mathbf{h}$$

where **a** is the abelian Lie algebra of all parallel holomorphic vector fields and **h** is the complexification of a Lie algebra consisting of Killing vector fields.

Another result of Lichnerowicz states that: on any compact Kähler manifold of dimension at least 2 a conformally Killing vector field is automatically Killing. In complex dimension 2 we also have an elementary proof of this fact:

Lemma 4.5. If M is a compact Kähler surface every conformal vector field is real holomorphic and in fact Killing.

Proof. Suppose $\mathcal{L}_V g = fg$ for some function f; we start by showing that $\mathcal{L}_V \omega = 0$ where ω denotes the Kähler form. In fact let φ_t be the flow of V. For each t, φ_t is a conformal isometry homotopic to the identity. Since ω is a self-dual closed 2-form, it is also harmonic, and it is easy to check that the Hodge-star operator $*: \bigwedge^n \to \bigwedge^n$, on a manifold of real dimension 2n, is invariant under a conformal rescaling of the metric; so that $\varphi_t^* \omega$ is again harmonic. But $[\varphi_t^* \omega] = [\omega] \in H^2_{dR}(M)$ and so by Hodge theory, $\varphi_t^* \omega = \omega$, i.e. $\mathcal{L}_V \omega = 0$.

Now the complex structure $J = g^{-1} \circ \omega$ as an endormorphism of the tangent bundle, therefore

$$\mathcal{L}_V J = (\mathcal{L}_V g^{-1}) \circ \omega + g^{-1} \circ (\mathcal{L}_V \omega) = f g^{-1} \circ \omega = f J,$$

on the other hand $J^2 = -id$ implies that

$$0 = \mathcal{L}_V(-id) = \mathcal{L}_V J^2 = J(\mathcal{L}_V J) + (\mathcal{L}_V J)J = -2f$$

i.e.
$$f = 0$$
, $\mathcal{L}_V g = 0$ and $\mathcal{L}_V J = 0$. \square

It is also straightforward to check that

Lemma 4.6. On any Kähler manifold if V and JV are both Killing vector fields, they are also parallel with respect to the Levi-Civita connection.

Proof of 4.1. By the Bochner theorem and 4.5 we have that $H^0(Z, \Theta)$ is the complexification of the Lie algebra of parallel vector fields. Now recall the Weitzenböch decomposition of 1-forms:

$$\Lambda = dd^* + d^*d = \nabla^*\nabla + Ric$$

it says that on a Ricci-flat riemannian manifold a 1-form is harmonic if and only if is parallel with respect to the Levi-Civita connection. Using the metric to pass from 1-forms to vector fields we have:

$$h^0(Z, \Theta) = \dim_{\mathbf{R}} (\text{Lie algebra of parallel vector fields}) = b_1(M)$$

and we are left to prove that $2h^0(M,\Theta)=b_1(M)$. By the Bochner theorem every holomorphic vector field is parallel, so the dual (0,1)-form is parallel; since M is Kähler, $\Delta=2\square=\overline{\partial}\,\overline{\partial}\,^*=\overline{\partial}\,^*\overline{\partial}$ and a (0,1)-form is parallel if and only if is $\overline{\partial}$ -harmonic; we conclude that

$$h^0(M\,,\,\Theta) = h^0(M\,,\,\Omega^1) = \frac{1}{2}b_1(M).$$

Proof of 4.2. Suppose M has no parallel vector fields, then by the Lichnerowicz theorem and 4.5, $H^0(M,\Theta)$ is the complexification of the Lie algebra of all conformal Killing vector fields on M and therefore isomorphic to $H^0(Z,\Theta)$, and we have proved the result. Then it is enough to show that M admits no parallel holomorphic vector fields.

To show this is true, we first reduce to the case of a minimal surface: suppose M is not minimal (i.e. it contains a holomorphically embedded, irreducible rational curve C with self-intersection =-1). Then if $\Theta_{M,C}$ denotes the sheaf of holomorphic vector fields on M which are tangent to C, along C, we have an exact sequence $0 \to \Theta_{M,C} \to \Theta_m \to \nu_{C/M} \to 0$. As $H^0(C, \nu_{C/M}) \cong H^0(\mathbf{CP_1}, \mathscr{O}(-1)) = 0$, it follows that every holomorphic tangent vector on M is tangent to C, along C. Since $C \cong \mathbf{CP_1}$, every holomorphic vector field vanishes somewhere. (In fact a direct image argument shows that it has to vanish identically, along C.)

However, if M is minimal and the total scalar curvature is nonnegative, Yau [15]¹ has shown that $M \cong \mathbb{CP}_2$ or else is a \mathbb{CP}_1 -bundle over a Riemann surface S_g . This says that $\chi(M) \neq 0$, and therefore M has no parallel vector fields unless it is a \mathbb{CP}_1 -bundle over a torus; in this case however $\chi(M) = \tau(M) = 0$.

¹Warning: Proposition 4 in [15] is false, counterexample: $\mathbf{CP_1} \times S_g$.

On the other hand, by Chern-Weil theory [3], when M is anti-self-dual with zero scalar curvature, this implies that M is actually flat, which is absurd. \square

Notice that the result of 4.2 holds for any half-conformally flat compact Kähler surface with no parallel holomorphic vector field, e.g. \mathbf{CP}_2 ; or trivially, for any such surface of negative Ricci curvature.

ACKNOWLEDGMENTS

Most of the material presented here is part of the author's Ph.D. thesis. I would like to thank my advisor Claude LeBrun for his guidance, help and encouragement, and Y. S. Poon for informing me of his work.

REFERENCES

- 1. M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four dimensional riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461.
- 2. A. Besse, Einstein manifolds, Springer, Berlin and New York, 1987.
- 3. C. P. Boyer, Conformal duality and compact complex surfaces, Math. Ann. 274 (1986), 517-526.
- D. Burns and P. de Bartolomeis, Applications harmoniques stables dans Pⁿ, Ann. Sci. École Norm. Sup. (4) 21 (1988), 159-177.
- 5. Ph. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New York, 1978.
- N. J. Hitchin, Linear field equations on self-dual spaces, Proc. Roy. Soc. London Ser. A 370 (1980), 173-191.
- 7. ____, Kählerian twistor spaces, Proc. London Math. Soc. (3) 43 (1981), 133-150.
- 8. S. Kobayashi and K. Nomizu, Foundations of differential geometry. II, Wiley, New York, 1969.
- 9. C. R. LeBrun, On the topology of self-dual 4-manifolds, Proc. Amer. Math. Soc. 98 (1986), 637-640.
- 10. ____, Scalar-flat Kähler metrics on blown-up ruled surfaces, Institute for Advanced Studies, preprint.
- 11. M. Pontecorvo, Ph.D. Thesis, SUNY at Stony Brook, 1989.
- 12. Y. S. Poon, Algebraic dimension of twistor spaces, Math. Ann. 282 (1988), 621-627.
- 13. ____, Twistor spaces with meromorphic functions, Proc. Amer. Math. Soc. 111 (1991), 331-338.
- 14. K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Math., vol 439, Springer, Berlin, and New York, 1975.
- S. T. Yau, On the curvature of compact hermitian manifolds, Invent. Math. 25 (1974), 213– 239.
- 16. ____, Problem section, Seminar on Differential Geometry, Ann. of Math. Studies, no. 102, Princeton Univ. Press, Princeton, N.J., 1982.

SISSA, STRADA COSTIERA 11, 34014 TRIESTE, ITALY