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ON THE POSITIVE SOLUTIONS OF SEMILINEAR EQUATIONS
Au + ku- huP = 0 ON THE COMPACT MANIFOLDS

TIANCHENG ouyang

Abstract. In this paper, we study the existence, nonexistence, and uniqueness

of positive solutions of semilinear equations Au + Au - hup = 0 on compact

Riemannian manifolds as well as on bounded smooth domains in R" with

homogeneous Dirichlet or Neumann boundary conditions.

1. Introduction

In this paper, we study the existence of positive solutions of the semilinear

equation

Au + ku - hup = 0

on compact Riemannian manifolds as well as on bounded smooth domains in

R" with homogeneous Dirichlet or Neumann boundary conditions.

Analysis on Riemannian manifolds is a field currently undergoing great de-

velopment. Analysis proves to be a very powerful tool for solving geometric

problems (see e.g. [1]). A basic problem in Riemannian geometry is to deter-

mine what curvatures a given manifold can possess.

In this paper we shall limit our discussions to a compact connected smooth n-

dimensional manifold without boundary, n > 3 . (Throughout, M will always

denote an «-dimensional compact connected Riemannian manifold.) Since we

consider several Riemannian metrics on the same manifold M, we denote by

(M, g) the Riemannian manifold with metric g. In the tangent space 7> at
a point P on M , the Riemannian metric g defines an inner product g(X, Y)

of two vectors X and y on 7> , and the angle 9 between X and Y is given

by

cos 9 = _   . =.
jg(X,X)y/g(Y,Y)

Let there be given two metrics g and g* on M. If the angles between two

vectors with respect to g and g* are always equal to each other at each point

of the manifold, we say that g is pointwise conformai to g*. A necessary and

sufficient condition for g to be pointwise conformai to g* of M is that there

exists a function p > 0 on M such that g* = pg (see e.g. [2]).

Now let (M, g) be a Riemannian manifold of dimension > 3 with scalar

curvature k and let K be a given function on M. One may ask the question:
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Can we find a new metric g* on M such that K is the scalar curvature of
4

g* and g* is pointwise conformai to g (i.e., g* = w-2g for some u > 0

on M )? This is equivalent to the problem of finding positive solutions of the

equation (see e.g. [4, Chapter 6; 11])

4(n - I) .       .        „ ji±i     n
—-=-LAu-ku + Kw-2 =0,

n - 2

where A is the Laplace-Beltrami operator (simply say Laplacian) in the g met-

ric.

Yamabe [5] attempted to show that any Riemannian structure on a compact

manifold of dimension > 3 could be pointwise conformally deformed to one

with constant scalar curvature. It was found by Trudinger [6] that Yamabe's

paper contained an error. Trudinger was able to correct Yamabe's proof in the

case when the total scalar curvature (i.e., the integral of the scalar curvature)

is nonpositive. In this case the constant scalar curvature is negative. A couple

of years later, Eliasson [7] and Aubin [8] showed that every compact manifold

of dimension > 3 possesses a metric whose total scalar curvature is negative.

This, together with Trudinger's results, shows that every compact manifold of

dimension > 3 admits a Riemannian metric with constant negative scalar cur-

vature.

Kazdan and Warner in [3] studied the first eigenvalue kx(g) of the operator

L with corresponding eigenfunction cp ,

ÍA(n-l) \
Ly) = - l—^—j-Atp - ktp \ = kx(g)y>    onM,

and obtained that if kx(g) < 0 then one can always pointwise conformally

deform g to a metric of constant negative scalar curvature. In this paper

we shall only consider the case where the given metric already has a constant
negative scalar curvature k < 0 .

We now free our problem from geometry and consider instead a general

nonlinear equation

( Au +ku - hup = 0   on M,

\ u > 0   on M,

where k > 0, p > 1 are constants and h(x) > 0 is a C1-function on M.

In [3] Kazdan and Warner observed that if h > 0 in ( 1.1 ) then there exists

a solution of ( 1.1 ) for any constant k > 0, and posed the question of whether

one can prove the same result for the case h > 0. It turns out that the problem

is more subtle than one might expect. The purpose of this paper is to give a

complete answer to this question.

Let M+ = {x£ M\h(x) > 0} and M0 = M\M+ .
Our main result may be stated as follows.

Theorem 1. Assume that h > 0 (^ 0) is a smooth function on M.

(i) If Mo = 0, then for every k > 0 there exists a unique solution u(k) of
problem (1.1).

(ii) // Mo ^ 0, then there is a positive k £ (0, oo) such that for any k <k

there exists a unique solution u(k) of (I.I), and for k >k there is no solution

o/(l.l). Moreover

lim||M(A)||L2(A/) = oc.
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Furthermore, for the open subset Mo c M one can define the first eigenvalue

kx (Mo) of the Laplacian operator on Mo with zero Dirichlet boundary condition

in a natural way (see §2, Definition 2). Let kx(M0) > 0 be the first eigenvalue

and <p > 0 be the corresponding unit eigenfunction, i.e.,

Atp + kx<p = 0   in Mo,

cp = 0   on dM0.

Then k = kx.

The conclusion in (ii) of Theorem 1 is independent of the norm and the

shape of h , only depends on the support of h , and is also independent of the

power p > 1.

Returning to the original geometric problem, our result implies that

(i) if K < 0 on M, then there exists a conformai metric g* such that K is

the scalar curvature of the manifold (M, g*) ;

(ii) if the zero set of K (i.e., {x £ M\K(x) = 0} ) is not too "large," then

the same conclusion as in (i) is also true. More precisely, if -k is smaller

than the first eigenvalue of the Dirichlet problem on A/n = M\M+, where

M+ = {x £ M\K(x) > 0} , then there is a conformai metric g* such that K is

the scalar curvature of the manifold (M, g*);

(iii) if the zero set of K is too "large," then k is not pointwise conformai

to K . More precisely, if — k is greater than or equal to the first eigenvalue of

the Dirichlet problem on Mn , then there is no conformai metric g* such that

K is a scalar curvature on (M,  g*).

Therefore negative constant scalar curvatures are not always pointwise con-

formal to nonpositive scalar curvatures; it depends on the measure and the

shape of the zero set of K but is independent of the norm and the shape of

K.
We also have similar results for the Neumann problem and Dirichlet problem

of equation (1.1) in a bounded domain Q c R". The result for the Dirichlet

problem is the following.
Let Q be a bounded smooth domain in R" . Consider the following problem

{Au + ku - hup = 0 in fi,

u > 0 in Q,,

u = 0   ondfi,

where k > 0, p > I are constants, and h(x) is a function in f2.

Letting ko be the first eigenvalue of the Dirichlet problem in Q and

Q+= {x £ çi\h(x) > o},     n0 = ß\n+,

we have

Theorem 2. Assume that h>0(^0) is a smooth function in £i.

(i) If Qo — 0. then for every k > ko there exists a unique solution u(k) of

problem (1.2).

(ii) If ilo ^ 0, then there is a positive k £ (An, co) such that for any A e

(ko, k) there exists a unique solution of( 1.2), and for A > k there is no solution

of (1.2). Moreover
lim||w(A)||L2(n) = oo.
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Furthermore, suppose kx > 0 is the first eigenvalue of the Laplacian in Mq

with zero Dirichlet boundary condition and cp > 0 is the unit corresponding

eigenfunction, i.e.,
Acp + kx<p = 0   in fio,

cp = 0   on dÇlo.

Then 1 = kx.

For Neumann problems we have the following result.

Let Q be a bounded smooth domain in R" . Consider the problem

' Au + ku-hup = 0   infi,

(1.3) < «>0   infi,

^- = 0   ondfi,
*■ ov

where A > 0, p > 1 are constants, v is the unit outer normal vector on <9fi,

and h(x) is a function in fi.
Letting

fi+ = {x£Ci\h(x) >0},        fi0 = fi\fi+,

we have

Theorem 3. Assume that h>0(^0) is a smooth function in fi.

(i) If fin = 0. then for every A > 0 there exists a unique solution u(k) of

problem (1.3).

(ii) If fio / 0, then there is a positive k £ (0, oo) such that for anyk £ (0, A)

i/zere ex/sto a unique solution of( 1.3), and for A > Â ¿Aere « «o solution of( 1.3).

Moreover

rim||w(A)||L2(i2) = oo.

Furthermore, suppose kx > 0 ¿s the first eigenvalue of the Laplacian on fi0

with zero Dirichlet boundary condition, and cp > 0 is the corresponding unit

eigenfunction i.e.,
Acp + kxy> = O   /«fio,

<p = 0   o« 9fio.

r/ie« Ä = A] .

2. Preliminaries

The following theorems will be needed in the proof of Theorem 1. The first

one, Strong Maximum Principle, is a manifold version of the regular strong

maximum principle in R" domain.

Strong Maximum Principle. Let (M" , g) be a smooth compact and connected

manifold without boundary, A the Laplacian on M, and u £ C2(M) satisfying

Au + cu < 0   on M,

u>0(^0)    on M,

where c is a bounded function on M. Then u > 0 on M.

Proof (this is a modification of the proof of Theorem 3.5 in [10, p. 35]). Let

M+ = {x £ M\u(x) > 0}. If M+ = M, then we are done. So we assume

Mo = {x£M\u(x) = 0},        Mo/0.
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By the definition of the Riemannian manifold (Mn , g), for all x £ M there

is a neighborhood Ux of x and a diffeomorphism

<t>x • Ux -* V c R",        F is a open set in R".

Since M is compact, we have

m

M= U Cx = (J UXi
x€M i=\

and
m

M = M+\JM0 = \JUXr
1=1

Let
t/+=    (J    C/*,,        i/o=    (J    t/^-

(7*,CA/+ f/r.-CA/o

Then {7+ c A/+ , U0 C M0 . We claim that {/+ U U0 c M,  except for « = 0.

Suppose M = U+ U Uo ', we claim Co = M0. In fact, Vx e M0, we have

x £ U+ (by definition of U+ ), so x must belong to Co. Hence Mo C Co

and Uo = Mo, and therefore Afo is both an open and closed set. By the

connectedness of M, we have M0 = M and therefore u = 0 on M.

This means that if u ^ 0, then there is a C/, such that

CxnM+ t¿ 0,       ^nMo/0

and a corresponding cpx: Ux ^ V c R" which is a diffeomorphism of Ux onto

an open set V c Rn . In the coordinate neighborhood V , the Laplacian is

where |^| = det(&7), (g^) = inverse(^), and gu = ¿?(^_1(x/), <p-x(xj)).

Since g is a symmetric, positive definite, bilinear form and M is compact,

it follows that A is uniformly elliptic. Also u((p~l) is a C2-function in V

satisfying

Au((p-x) + cu(4>-x) <0   inF,

m(^_1)>0(^0)   inK,

and the set
V+ = {x£ V I m(0~')(x) >0}

satisfying V+ c V. Let

F0 = {xeF| w(</)-1)(x) = 0}.

Choose xo G 1+ such that

dist(jc0, Vq) < dist(x0, dV)

and consider the largest ball B c V+ centered at xo. Then there is a point

y £ dB n V0 such that

u((p-x)(y) = 0,        u(çb~x)>0   inB.
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The Hopf boundary lemma implies Du(tp~x)(y) ^ 0, which contradicts the

fact that y is an interior minimum in V . Hence u> 0 on M.   D

Definition 1. A function v £ C2(M) is said to be a super-solution (sub-solution)

of the problem

(2.1) Au + fi(x, u) = 0    onM,

where f(x ,Q £ M x R -> R is a smooth function on M, if v satisfies the

inequality

(2.2) Av + f(x, v) < (>) 0    onM.

Proposition 1. Let (Mn, g) be a C°°-compact Riemannian manifold without

boundary, f(x, £) £ M x R —> R be a Cx-function, and ux,u2 £ C2(M) be

super-solutions of

(2.3) Am, + f(x, Ui) = 0   on M,  i = 1, 2.

Let

u(x) = min(ux(x), u2(x)),    x £ M.

Then u is a super-solution of (2.3) in the following weak sense:

[ VuV</> - f f(x, u)cp > 0       V0 € C°°(M), cp > 0.
Jm jm

Proof. Let

Mx = {x £ M\ ux(x) < u2(x)} ,

M2 = {x £ M\ ux(x)> u2(x)} .

First, we assume dMx is a piecewise C1-boundary.
For all 4>>0, 4>£C°°(M),

[ VuV4>- I   f(x,u)<f>=   i   VuxV<p- [   fi(x,ux)(p
,~ .,        Jm Jm Jm, Jm{

+ I    Vu2V(p- i   f(x, u2)<p.
Jm2 Jm2

Using the divergence theorem, we have

(2.5) [   VulVcf>= [     ^i<t>- [  Au.cj),        i =1,2.
Jm¡ JdM,   öv Jm¡

Combining (2.4) with (2.5), we have

/ VWV0- / f(x, u)(f>
Jm Jm

= -/   [Aux + f(x, ux)](p -       [Au2 + f(x, u2)]cp
Jm, Jm2

+ /     d^+[     ^0
JdM,  dv        J9Mi dv

= - [  [Aux + f(x, ux)]</. - [  [Au2 + f(x, u2)]4> + í     d("'~"2)<¿>
Jm, Jm2 JdM,       av

= Ix+I2 + h.
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From the definition of super-solution, we have Ix > 0,12 > 0. To show 73 > 0,

we note

ux - u2 < 0   in Mi        and        ux-u2 = 0   ondMx.

It follows that
fiiu, - «,1

>0,
d(ux -u2)

dv dM,

and therefore h>0. Hence

/ VuVcp- [ f(x, u)(p>0.
Jm Jm

Next, assume dMx is not a C1-boundary. Suppose ux - u2 £ C"(M) By

Sard's theorem there is a sequence en > 0 such that lim,,-^ e„ = 0 and the

boundary of { ux - u2 < £„} belongs to the C1-class.

Denote

Mi,«„ = {x £M\ ux -u2 <£„},

M>,£„ = {x £M\ ux -u2 >£„},

ue„(x) = min{ux(x),  u2(x) + en}.

For all <p>0, 0eC°°(M),

/  Vw£„V</>- /  f(x, uE„)<f)
Jm Jm

= Vu,V0- /      f(x,ui)4>+ V(u2 + e„)V(p
Jm,,. Jm,c„ Jm2c„'I.in

/      f(x,u2 + en)4>
JM2,e„

= -/      [Aux + f(x, ux)](p - [Au2 + f(x, u2 + en)](p
JmKc„ Jm2.c„

+ f       £WJdM, ,_   av Jdl

du2 + e„

>i>M2,e„

= -/      [Am, +f(x, ux)]4>- /      [Au2 +f(x,u2)](p
Jm,.c„ Jm2.c„

+
J<>!

d(ux - U2 -£„)

dv
f
Ml

+   / [f(X, U2)-fi(X, U2 + En
Jm, ,_

m
IOM,,ln

= IX+I2 + h + h.

Since

ux-u2-en<0   in Mii£i        and        ux-u2-en = 0   on<9Mli£n,

it follows that
rllu,   — 1J- — P-\

>0
d(ux -u2-e„)

and

/JdM,

dlJ dM,,

dux - u2 - En

dv
4>>0.
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By using the definition of super-solutions ux and u2, we have Ix > 0 and

/2>0.

And since

/        [f(x,u2)-f(x,u2 + en)](p < /        \fs(x, u2 + 9)\en(p
JdM2,Cn JdM2,Cn

< ll/dlc(A/x(-||W2||c(M)-£„,||„2||C(M)+E„))l^llc(A/)e»'

we have

jf^ V«^V0 - ^/(Jf. «*.)0 > -H^llc(Aix(-||Ra||C(Jf)-«li,||Ka||c(J#)-M.))ll^llc(AOe-

Letting en —> 0, we have lim^oo uEa(x) = u(x) and

/ VuVcp -f f(x ,u)<p> 0   V<p>0,<p£Coc(M).
Jm Jm

Finally, if ux - u2 & Cn(M) and since ux, u2 £ C2(M), then ux and u2 can

be approximated by uXt and u2t respectively such that uXe, u2t £ C" and for

£>0
II Ui - w/£||C2(A/) < £       for i = 1, 2,

and

Aw,e + f(x, UiE) < £    on M,   i = 1, 2.

Let w£ = min(wie, u2t). Then it follows from the above argument that

/ VueV<p - [ f(x, u£)(f> >Ce   V</)>0,(f>£ C°°(M).
Jm Jm

Letting £ —► 0, we have

/ VhV(/> - / f(x, u)<f> > 0    V0>O, 0eC°°(M).    D
Jm Jm

Proposition 2 (Sub-super-solution method). Let ü (u) be a super-solution (sub-

solution) of the equation

(2.6) A + f(x,u) = 0   onM,

where f(x, u) £ C1 (M x 7%), and satisfy

u<Ti   on M.

Then there exists a solution u of equation (2.6) satisfying

u<u<u   on M.

Proof. This is a well-known result (see e.g. [3]).

Next, let us define the first eigenvalue of the Laplacian operator A on Mo .

We can decompose Mo into at most countably infinitely many connected com-

ponents and express Mo as

oo

M0 = (J M,       and       M, n M, = 0   for i / ;'.
K=l
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For each M, e Mo, M, is a compact and connected subset of M with dM¡ ^

0. The first eigenvalue Ai(M,-) of the Laplacian operator A on M, with zero

Dirichlet boundary condition is defined as

(2.7) kx(Mi)=      inf       [ \V<p\2.
ipeHl0(M,)  Jm

IWIt2(M.,=i

Definition 2. The first eigenvalue of the Laplacian operator A on Mo with zero

Dirichlet boundary condition is

(2.8) Ai(M0)=   inf kx(M¡).
\<i<oo

It is not difficult to show that there is an M , 1 < i < oo, such that

(2.9) A1(M0)=Ai(M/).

In fact, if M) has only finite, say N, components M,, where 1 < i < N, then

(2.9) is true. If Mo has infinite components M,, 1 < i < oo, and since M is

compact, we have

lim Vol(M,) = lim /  dV = 0.
/-»oo i-oo JM.

Therefore

lim kx(M¡) = oo,
/—»oo

and we have

kx(Mo)=   inf kx(Mi)
\<i<N

for sufficiently large N.

Definition 3. The inner boundary 9'fi of a subset fi c M consists of the

points on 9fi which are not on the boundary of any component of M\fi.

From the smoothness of h and the definition of Mo in the previous section,

we have that

(2.10) d'Mo = 0.

3. Main proof

Lemma 1. Assume h(x) > 0. Then, for any A > 0, there exists at most one

positive solution u(k) o/(l.l).

Proof. Suppose, for some A > 0, there exist two positive solutions ux and u2

of (1.1) with ux / u2. We may assume

(*) ux > u2   on M.

If ux ^ u2 and u2 ^ ux, then we set

I7(x) = min{ ux(x), u2(x) },        x £ M.

It is easy to see that u > 0 on M and from Proposition 1 in the previous

section we know that ïï is a super-solution of (1.1). It is also easy to check that

uc(x) = const < min < I — J       , minw(x) > ,
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where H = \\h\\Lx,(M~), is a sub-solution of (1.1).   By the sub-super-solution

method there is a solution v of ( 1.1 ) satisfying

uc <v < ïï   on M.

So we may choose v to replace u2 such that the new pair of solutions satisfy

(*). Moreover, we can assume

«i > u2   on M.

In fact, if ux > u2 and wi(xo) = »2(^0) for some xq£ M, then set

w(x) = ux(x) - u2(x).

It follows that

Aw + kw + f(x)w = 0    on M,

w > 0    on M,

w(x0) = 0,    xo £ M,

where f(x) = -h(up - up)/(ux - u2) is a continuous function on M. Since M

is compact, / is bounded on M and therefore

Au; + f(x)w < 0   on M.

By using the Strong Maximum Principle, we have w > 0 on M, hence ux> u2

on M. Since ux and «2 are solutions of (1.1),

(3.1) Aux + kux - hup = 0    onM,

(3.2) Au2 + ku2 - hup = 0    on M.

Multiplying both sides of (3.1 ) by w2 and integrating by parts over M , we have

(3.3) -/   VuxVu2 + k      uxu2-      hupu2 = 0.
Jm J m J m

Similarly, we have

(3.4) -/   WuxVu2+k      uxu2-      hu\ux=0.
Jm Jm Jm

Subtracting (3.4) from (3.3), we obtain

/ huxu2(uxp~x -u2p~x) = 0.
Jm

But h > 0 (^ 0) and ux > u2 > 0, so the left-hand side of the above equation

must be positive. This contradiction means U\ = u2.   G

In order to prove the existence of a positive solution of (1.1) we need the

bifurcation theorem below.

Let X and Y be Banach spaces and let F : R x X ^ Y be continuously

differentiable. Suppose F(k, 0) = 0 for A e A, where A c R is an open

interval containing A0 , and that every neighborhood of (Ao, 0) contains a zero

of F(k, x) which does not lie on the curve h= {(k, 0); k £ A}. Then (Ao, 0)

is said to be a bifurcation point of F(k, x) with respect to h.
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Bifurcation theorem [9]. Let X ,Y be Banach spaces, let V be a neighborhood

of 0 in X, and let F : (-1, 1) x V —» Y have the properties:

(1) F(t,0) = 0for\t\<l;
(2) The partial derivatives Ft, Fx , and Ftx exist and are continuous ;

(3) N(Fx(0,0)) and Y/R(Fx(0,0)) are one dimensional;

(4) Flx(0, 0)x0 i R(Fx(0, 0)) where N(Fx(0, 0)) = span{x0}.

If Z is any complement of N(Fx(0, 0)) in X, then there is a neighborhood U of

(0, 0) in RxX, an interval (-a, a), and continuous functions cp: (-a, a) —* R

and ip: (-a, a) —> Z such that cp(0) = 0, \p(0) = 0, and

F~x(0) n U = {(<p(a),ax0 + aip(a))\ \a\ <a}U {(t, 0)\(t, 0) £ U}.

Lemma 2. Assume h(x) > 0 (^ 0). Then for any fixed p > 1 there exists a

bifurcation solution curve (k,u(k)) of problem (I.I) starting from (0,0) which

is positive.

Proof. In order to apply the Bifurcation Theorem, let

X = {u£C2>a(M)\\\u\\x = \\u\\c2,„{M)},

y = {M6C0'Q(M)|||M||v = ||"|lco..(A/)}'

where 0 < a < 1 is a fixed constant. Obviously X, Y , are Banach spaces. Let

F(k, u) = Au + ku - hup .

We have

Fx(k,u) = u,    Fu(k, u)v = Av + kv -phup~xv ,    Fxu(k,u)v = v,

and for / = 0, u = 0, we have

FA(0,0) = 0,    Fu(0,0)v=Av,    FXu(0,0)v=v.

A has 0 as its first eigenvalue with a constant as a corresponding eigen-

function. Obviously N(Fu(0, 0)) = N(A operator) and Y/R(Fu(0, 0)) are one

dimensional with

7V(F„(0,0)) = span{l},

R(Ftt(0,0))={feY\ ^/ = o}>

FXu(0,0)ltR(Fu(0,0)).

So by the Bifurcation Theorem, there is a bifurcation curve (k(s), u(s)) start-

ing from (0, 0)   with

A = k(s),     u(s) = si + si//(s)       for 5 near 0 ,

where A : (-a, a) —► R and y : (-a, a) —> C2(M), such that

A(0) = 0,        y(0) = 0,

F-'(O) = {(k(s), u(s)),  \s\ < a} U {(A, 0), A £ (-a, a)}

in a neighborhood of (0,0) in RxX. Replacing u and A in equation (1.1)

by the above expressions, we have

(3.5) Au + ku - hup = sAip(s) + k(s)(s + sip(s)) - h(s + si//(s))p

= 0    on M,



514 TIANCHENG OUYANG

u(x, s) = s(l + i//(s)) > 0    on M,

for s > 0 small enough. Integrating both sides of (3.5) over M, we have

k(s)s(l + o(l)) -sp i h(l + o(l))p = 0,
Jm

k(s) = sp'x f h + o(sp-x) > 0   for 5 > 0 small.
Jm

Hence from the point (0,0) £ Rx C2(M) there is a bifurcation curve (A, u(k))

such that

Au(k) + ku(k) - hu(k)p = 0    on M

and

A^7 _!_
A>0,    u(k) =-—-r-o(A"-')    for A near 0.   D

Remark 2. Elementary arguments show that there is a maximum number k £

(0, oo] such that there exists a continuous function u : [0, k) -> C2(M) satis-

fying
F(k,u(k)) = 0    on M

and
Fu(k, u(k)) is nonsingular (invertible) for k < k.

This means we can continue to extend the above bifurcation (A, u(k)) to all

/ < 7. To study the properties of the bifurcation curve (A, u(k)), we claim

Lemma 3. For all k £ (0,1), u(k) is differentiable with respect to k, and is

monotone increasing, i.e., u'(k) > 0 on M, where u'(k) is the derivative of u(k)

with respect to A.

Proof.

Step 1. We claim u(k) is nondecreasing for A £ (0, Ä).

In fact, suppose the claim is not true. Then there are two pairs of solu-

tions (kx, u(kx)) and (A2, u(k2)) such that kx < k2 and, for some x £ M,

u(kx)(x) > u(k2)(x). Since

Au(k2) + k2u(k2) -hup(k2) = 0   onM,

we have

Au(k2) + Aiw(A2) - hup(k2) = -(A2 - kx)u(k2) < 0   on M.

Therefore u(k2) is a super-solution of (1.1) at A = kx . It follows from Propo-

sition 1 that

u(x) = min(u(kx)(x), u(k2)(x))   on M

is a super-solution of ( 1.1 ) and

0 < u < u(kx)   on M.

We also know that uc = constant small enough is a subsolution of ( 1.1 ) with

uc < u. Using sub-super-solution methods, there is a second positive solution

u2(Ai) of (1.1) at A = kx . This contradicts the uniqueness in Lemma 1. Hence

the claim is true.
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Step 2. First, we claim that for A £ (0, A), Fu(k, u(l)) is invertible.
Let (p, v) be the first eigenvalue and eigenfunction of Fu(k, u(k)), which

satisfy

(3.6) Av + kv -phup~x(k)v = -pv   on M,

v > 0    on M.

Recall that

(1.1) Au(k) + ku(k)-hup(k) = 0   onM.

Multiplying both sides of (3.6) by u(k) and integrating by parts, we have

(3.7) /   VuVv+k i uv-p j   hupv = -p [
Jm Jm Jm Jm

Multiplying both sides of ( 1.1 ) by v and integrating by parts, we have

(3.8) /  VuVv + k í uv- [ hupv = 0.
Jm Jm Jm

Subtracting (3.8) from (3.7), we have

(p - I) I  hupv = p /  uv.
Jm Jm

Since u, v > 0, we have p > 0. Therefore Fu(k, u(k)) is invertible. It follows

from the Implicit Function Theorem that u(k) is differentiable with respect to

A. Combining this with the fact that u is nondecreasing we have

u'(k)>0   on M for A £ (0,1).

Differentiating (1.1) with respect to A, we have

Aw'(A) + ku'(k) - phup~x(k)u'(k) + u(k) = 0   on M,

u'(k) > 0   on M.

By using the Strong Maximum Principle we have u'(k) > 0 on M for all A e

(0,Ä).   D

Remark 3. We claim that there exists a function h* £ CX(M) satisfying

(1) supp h* = M+ ;
(2) 0<h*(x) <h(x) Vx€M+;

(3) supx€M+ \Vh*/h*x~£\ < C(£) = C/e2 for V£ > 0.

For example, let d(x) denote the distance between x and dM+ , i.e.,

d(x) = dist(x, dM+)   for x £ M+.

Choose ö > 0 small enough and define h* as follows

- e-l/h{x)     for x G M+ and ¿,X) < g >

h*(x) = < h(x)        for x £ M+ and d(x) > 26,

0 for x G M\M+.

It can be shown that h* satisfies our assumption.
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In fact, when d(x) < ô , we have that V/z* = e *<*> V/z//z2(x) and

V/z*

,.'-*
= |V/z|

e  »

/z2
<C

Moreover, it is easy to verify that the maximum of e  * /h2 for d(x) near zero

is bounded by C/s2 In fact,

e »

l2"

e  ífi-2/ze  s

when /z(x) = £/2 it gets its maximum, and therefore

V/z*

/z*'-£
< C(«) = %

Lemma 4. For any e > 0, if u(k) is the positive solution o/(l.l) with k < k,
then h*up-x~e £ Lco(M+) and

sup h*up-x~e <C(e, A).
x€M+

If A is finite, so is C(e, A).

Proof. Again let (//, v) satisfy (3.6). From Lemma 3 we know that p(k) >

0 for all A £ (0, A). By the variational properties of the first eigenvalue of

Fu(k, u(k)), we have that for all <p £ Hx (M)

(3.9) / \V<p\2-k [ <p2+p [ hup~xcp2>p [ <p2.
Jm Jm Jm Jm

Choosing cp = (h*)suk in (3.9), where s > 0 and k > p will be determined

later, we have

V<p = s(h*y-xukV(h*) + k(h*)suk-xVu,

\V<p\2 = s2(h*)2s-2u2k\V(h*)\2 + k2(h*)2su2k-2\Vu\2 + 2skh2s-xu2k-xVhVu.

Replacing the terms in (3.9) by the above expressions, we have

(3.10)

s2 f (h*)2s-2u2k\V(h*)\2 + 2sk [ (h*)2s~xu2k-xVh*Vu
Jm Jm

+ k2 f (h*)2su2k~2\Vu\2-k [ (h*fu2k+p f h(h*)2sup~x+2k
Jm Jm Jm

>p [ (h*fu2k.
Jm

Recall

(1.1) Au + ku + hup = 0   on M.

Choosing y/ = ku2k~x(h*) s, multiplying both sides of (1.1) by \p, and inte-

grating by parts over M, we have

2sk Í u2k-x(h*)2s~xV(h*)Vu + k(2k - 1) / u2k~2(h*)2s\Vu\2

(3.11) f
-kk      (h*)2su2k+k /  h(h*)2sup+2K-x =0.

Jm Jm
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Subtracting (3.11) from (3.10), we have

s2 / (/z*)2i_2w2i:|V(/z*)|2-/t(Â:-l) f (h*)2su2k~2\Vu\2
Jm Jm

+ k(k-l) [ (h*)2su2k + (p-k) [ h(h*fup+2k-x>p ( (h*)2su2k.
Jm Jm Jm

Since k > p, we have

(k-p) Í (h*)x+2sup+2k-x+k(k-l) f (h*)2su2k~2\Vu\2

<s2 f (h*)2s~2u2k\V(h*)\2 + k(k - I) f (h*)2su2k.
Jm Jm

By using (3) in Remark 2, we have

(3.13) / (h*)2s-2u2k\V(h*)\2 = f   (h*)2{s~e)u2k   V(A"
Jm Jm+

517

(A*)*\i-«

<T*I   (h*)1{S-£)»2k
e Jm+

<
C

f  ((h*)2(s-e)u2k)2^
Jm±

Ik+p-, ,,-|

|M+|2*+p-

(3.14)

/    e          (s - e)(2k + p - I)     ,     .
Setting-'——- = 1 + 2s,

(l + 2e)k l+2£,
we have   5 =-;-he,    s-e =-—k. i

p-l p-l    I

C I   (h*
.Jm+

*)x+2su2k+p-x

2k
2k+p-l

|M+|2*+P-

By using Young's inequality, we have

s2 [   (h*)2s~2u2k\V(h*)\2
Jm+

(3.15) < ^r~ ' /   (/z*)1+2V
Jm+

2k+p-,

\M+\2^F^

2k+p~\

<^(/z*)1+2V^-' + (^-)  '   "|M+|,

(3.16)

l(k-l) [   (h*)2su2k
Jm+

<k(k- l)sup|(/z*)2e| /   (h*
M+ Jm+

< [   (h*)1+2su2k+p-i + (k(k- l)sup\(h*)2£\)
Jm+ V M+ )

<fs-e)u2k

2k+p-,
p-l

\M+\



518 TIANCHENG OUYANG

Combining (3.12), (3.14), (3.15), and (3.16), we have
2k+p-,

[Cs2f   (h*)l+2sup+2k-x < Í ^p- |M+|,

and

/   (h*)2su2k~2
Jm+

Vwl2<
Cs'

+ Ck

2k+p-l
p-l

\M+\,

where s = (1 + 2e)k/(p - 1) + £ and k > p + 3 will be determined later.

By using (3.14) and the fact 5 = 0(k), we have
p+2k-l

(3.17) J^mmur*-><(&+Ck)"   |M+|,

and
P+2k-l

(3.18) J   (/z*)^£2+V¿-2|VW|2<(^- + C/vV      |M+|,

where C = C(supM+ \h*\, sup^ |V/z*|, A, p) and 0 < e < 1.
s.

Now set co = (h*)k u, where s/k = (1 + 2e)/(p - 1) + £//c. We have

/   \Vcok\2 = s2f   (h*)2s~2u2k\Vh*\2 + k2 [   (h*)2su2k~2\Vu\2
Jm+ Jm+ Jm+

+ 2sk [   (h*)2s~xu2k'x\7(h*)Vu
Jm+

<2s2 f   (h*)2s~2u2k\Vh*\2 + 2k2 [   (h*)2su2k-2\Vu\2
Jm+ Jm+

< 2s2 [   (h*)2s~2u2k\Vh*\2
Jm+

+

IM+

2k2

k(k- 1

where (3.12) is used.

For k big enough, we have

k2

[   (h*)2s~2u2k\Vh*\2 + k(k- 1) f   (h*)2su2k   ,
Jm+ Jm+

k(k- 1)
<2,        k- 1 <k2,

and

/   (/z*)V*<sup|(/z*)2£| /   (h*fs~e)u2k
Jm^ Mi Jm.

\2(s-£)u2k

lM+

V(/z*)

(h*\i-« £/     (h*f*-%2k.
E   Jm^

[   (h*)2s~2u2k\V(h*)\2 = [   (h*
Jm+ Jm+

Combining the above inequalities, we have

/   \Vcok\2<c(S^+kk) [   (h*)2{s~e)u2k <C(l+k)^r [   (h*f(s~e)u
Jm^ Ve / Jm+ e  Jm+

since 5 = (1 + 2e)k/(p - 1) + e, 0 < 6 « 1.
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By using the Sobolev inequality, we have

* — ">

2(s-c)u2k i(f  ((A')V)Ä)      <C f   \Vœk\2<C(l+kA [   (h*]
\Jm+ / Jm+ e   Jm+

i.e.,

ll i i     //V2\S s-e||(A*)s/*u|U/(»-*>(A,+) < C*(l +A)* (^J    ||(A*)t«||^(V+),

where s/k = (1 + 2e)/(p - 1) + e/fc . Now set

(3.19) *=kTT2'        ^ = r'

where m is a sufficiently large integer. Then we have

l+2c , s 1       / y^"1 \ 2xlm 1+2.

(3.20) ||(/z*)^+^||L2,m+,(A/+) < C^ ^L-J       ||(/z*)-M||L^(A/+)

Choose £ = £o > 0 small enough and set

1 +2£0      eo_ __ l+2(l + fpr)e0 _ 1 + 2ex

P-l   + Xm= P-l P-l   '

where £i = (1 + (p - l)/2^m)£o • Then (3.20) becomes

,2m \ 2*
I v-2m

i y¿m \   2*

||(/z*)^M||L2,m+,(A/+) < C^'m    ^— ||(A*)"î=fllll^-^,.
£ö

By the same procedure as before, we have

1+2£|    |        E|

\\(h*)>-i+^'u\\L2^2(M+)

,   -(„+!)  /y2(m+l)\ I* 1+2a

<^' ^-r- II(^)-'"IU-(m+)
'1

^/-2(m+I)
2(m+l)\ 2*~

ßoH
<CW (^-4- ll((«*))^«||L^+.(M+)

(since £, = M + ?—— j £0 > £0

,,  _(m+1)     _m    /v(m+l)/-2<"'+"+m/-2'"\ 1+2fa

h
2(x-2{m+,)+x-lm)        I IH."   ) u\\L2xm(M+)

Setting en+x = (1 + (p - l)/2xm+")e„ and iterating the above inequality, we

have

l+2en   .      cn

||(A*)     »-'      M||L2,mtn+1(A/+)   =   ||(/Z*)"-'+^"M||L2,m+„+l(w+)

2yn     7-21

,™   y-(m+i)yEL,('»+^-2""+" u^
<C*£«* 2V"   ,-«™,   IK***'" »llww

£nÄ0
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Since x - nl(n - 2) > 1, we have

OO . ^y 00 ,       • y-,
El n        C y-^ m +1       C

2ym+i ~ 4y"I  —  y m ' / ■> 2ym+'  —  y^m

and

Let

5"=£-'(1+2f^t) = n(1+f^>»

—n(»+&à2/'i=0 v A

We have that o is finite and

IP*)    "-'    ULl*m+"(M+)   <   C\\(h*)  P~l   U\\L2xm+n(M+)

_V"-1 ly-(*+0    V""'im+/W-2(m+/)      -2 V"~' y-2""+l''n/i «n '+2e°     ,
<C¿-M>4*       z2-/-o(m+i)*        £02^.=o'        ||(A*) P-i u\\L2xm(M+)

l+2en

< C(*, £0, ||A||Loo(^+))||A *=l u\\L2x«,(M+).

Letting « —» oo , we have

l+2q£0 l+2e0

sup |(A*) "-' u\ < C(x,e0, l|A||cl(M+))||(A*)"-' u\\Litm.M).
x€M+ +' ^   +l

Combining the above inequality with (3.17), we have

sup |(A*) '-' u\ < C(k,e0,P, \\h\\c,(M))\M+\.
xeM+

Since 1 < o < C, for all e > 0, we can choose £o such that £ = 2fj£o and

(3.21) sup \(h*)&u\ <C(k, /7,||/z||c,       )e-*|M+|,
xeM+ v  +;

where p = 2 Y,°lo l/x2(m+i) < +oo    0 .

Lemma 5. Assume that Mo / 0. Then k = kx in problem (1.1), where kx is

the first eigenvalue of the Dirichlet problem on Mq with the unit corresponding

eigenfunction cp > 0.

Proof. From the definition of kx and (p , we have

Acp + kxcp = 0    on M0,

(3.22) cp > 0    on MQ,

cp = 0    on 9Mo.

Assume u(k) is a positive solution of (1.1) with A > 0,

(1.1) Au(k)+ku(k)-hu"(k) = 0    onM.

Denote
r cp(x),     x £M0,

9 =(o, x £ M\M0.
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We know cp* £ HX(M), cp* > 0 on M. Multiplying both sides of (1.1) by cp*
and integrating by parts over M, we have

(3.23) -J    V(pVu + k(   cpu = 0.

Multiplying both sides of (3.22) by u(k) and integrating by parts over Mo, we

have

(3.24) /     «-£-/   V(pVu + kx(   (pu = 0.
JdM0     OV       Jm0 Jm0

Subtracting (3.24) from (3.23), we have

/     u-—h (Ai - A)/   cpu = 0.
JdM0    vv Jm0

Since |£ < 0 on dMo , we have kx > A. Therefore k <kx. We claim that

(3.25) lim||u(A)||L2(A/) = +oo.
X->X

In fact, suppose (3.25) is not true. Then there exist a constant C < oo such

that

(3.26) / u2(k) < C    for all A < 1
Jm

From equation (1.1) we have

/ |Vu|2 + / hup+x =k f u2 <kC,
Jm Jm Jm

and

k [ z^-'IVmI2 + / hup+k = A / uk+x,    for all k > 1.
Jm Jm Jm

By using a similar iteration as in the proof of Lemma 4, we can prove that

(3.27) !|w|IlooW < C\\u\\LHM] < C.

From (3.26) and (3.27) we have

u(k)(x) = lim«(A)(x)
X-â

is a positive C2-solution of ( 1.1 ).

It is easy to show that the functional F(k, u) = Au + ku-hup is nonsingular

at (k, u(k)). Therefore we can extend the bifurcation curve beyond the k by

using the Implicit Function Theorem. But this contradicts the definition of A.

Hence the claim of (30) is true.

Define

\\U\Á)\\L2(M)

Then co(k) is a positive solution of

Aco +kco - hup~xco = 0   on M,    and   IMIi^) = 1.

Let

F(x) = hup-xco(x) =
U\\l2(M)
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It follows that F(x) £ LX(M) with ||F||Li(A/) < C(k, n), and since

Aco + kco = F(x) > 0    onM,

co is a positive sub-solution of

(3.28) Aco + kco = 0    on M.

By using the same argument as applied in the estimate of (3.27), we have

IMIl~(m) ̂ c&> n)>   and  WuWWww) < c(¿> ")•

By the boundedness of co(k) in HX(M), there is a subsequence of {<y(A)}A j,

say {««(An)}^!, such that

lim A„ = A,    and     lim co(kn) = co(k),
n—»oo n—»oo

where oj(A„) is strong convergence in L2(M) and weak convergence in HX(M).

In M0 , for any A < Ä, w(A) is a positive solution of

Aco + kco = 0    on M0.

So Cfj(Ä) is a weak solution of

Aoj + kco = 0    on M0.

On the other hand, since co(k) is a sub-solution of (3.28), by the semicontinuity

of the weak convergence we have that co(k) is a weak sub-solution of (3.28) in

the following sense:

[ Vco(k)V<p -k[ co(k)<p < 0       Vç> e Hx (M),  cp > 0.
Jm Jm

By the same methods as before, we have

\\°>W\\l<*>(M) £ CHWWIIl2(A/) ^ C(^' «)•

So by the regularity of the linear elliptic equation, we have that co(k) is a strong

nonnegative solution of

(3.29) Aco + kco = 0    on M0.

From Lemma 4, we know that

lima>(A)(x) = 0    a.e. on M+.

Hence

(3.30) oj(A)(x) = 0     a.e. on M+.

We have already obtained that co £ HX(M), where co\M = 0, M+ is an

open set in M . Now we claim that co actually belongs to H0x(Mo). It should

be noted that the above problem with a more general setting has been studied

in [12, 13] by L. I. Hedberg. He claimed that
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Theorem Hl (Theorem 1.1 in [12]). Let f £ lV%(Rd) for some q>2-\ and

some positive integer m . Let K c Rd be closed, and suppose that Daf\K = 0

for all a,   0 < \a\ < m - I .    Then f £  Wqm(Kc), where Kc  denotes the

complement of K, i.e. Rd\K.

Theorem H2 (Theorem 11 and Corollary 3 in [13]). Let E be compact, 2 < p <

oo. If the inner boundary d'E = 0, cp £ Wxq, and cp = 0 q-a.e. on Ec, then

<p £ W\(E°).

Here we give a straightforward proof which is suited particularly to the case

where <9M0 is C1, i.e., we assert that

co(k)(x) = 0    on dM0.

In fact, from (3.29) we have

co(k) £ C°°(M0) n Hx (M) n L°°(M).

Let M- cc Md be a subset in Mo such that

(3.31) Mr = {x £ Mo I dist(x, dM0) > r},

where 0 < r < 1 .

Since 9Mo isa C'-boundary, dMr is a piecewise C'-boundary of Mr, for

r > 0 small enough. Let ñ = (nx, n2, ... , nn) denote the unit normal vector

on dMr. Since dMr is piecewise C1 , the n¡(x), x £ dMr, i = 1, 2, ... , n ,

are piecewise continuous on dMr and we can modify n¡, i = 1,2, ... , n ,by

a piecewise C1-vector function ip = (ipx, <p2, ... , y/n) on dMr such that

(3.32) ^-n>^     on dMr.

Furthermore we can extend the boundary vector function y/ to a global piece-

wise C -vector function, denoted by y/ again, on M suchthat

ll^llc'(M) < C.

Since co(k) £ HX(M), we have

(3.33) / (Vw)-f = - /   a)div(^) = - /   a>div(^),
J M J M Jm0

/ (Vw) • y/ = /   (Vco) ■ y/ + /       (Vw) • y/
Jm Jm, Jm\m,

(3.34) = [ (Vw) • y/ + [       (Vw) • y/       (by (3.30))
Jm, Jm0\m,

= /     co(y/-n)- /   codivy/+ /        (Vw) • |?.
JdMr Jm, JM0\Mr

Combining (3.33) with (3.34), we have

/     co(y7-n) = - /        codivy/- /       (Va>) • y/.
JdM, JMíJ\M, J Ma\Mr

Since

/        wdiv^  <C [        dV <Cr
JM0\Mr Jm0\M,
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and

/Ja.
Veo • iff

MQ\Mr

we have

From (3.32), we have

(3.35)

< C / |Vtw|
M0\Mr

<

7Jm

7.Jm
\Vco\2 7Jm,

dV      < CrL2

Mo\Mr )      \JMo\M,

co(y/ • n) < Cñ.I ■JdM,

I     co<2        co(y/'ñ) <Cr2,
JdM, JdM,IdM, JdM,

where the constant C is independent of r.

Define M* = Mo\Mr. From (3.35) we have

/Jm;

and therefore

m;

co(k) < CA

< C (J   co(k)"j<Cri.

Now we are going to construct a sequence of co¡ £ WQx'9(Mo) for some q > 1,

such that
coi^co(k)   inWx'q(Mo).

Let Sr = {x £ M | dist(x, 9Mo) < r} be a strip containing <9Mo, and

dSx = {x £ M+\ dist(x, dMo) = r},

dS2 = {x£ M0| dist(x, ôM0) = r},

S- = M0\Mr.

We claim that, for any r > 0 small enough, there is a "shrinking" diffeomor-

phism

(3.36) 4> : Sr - 5"

with VtfS}) = dM0, *¥(dS2) = dS2, and

sup|V¥|<C,
xes,

suplVT-'^C,
xes,

COr =

where C is a constant independent of r. Assume the above claim is true and

let

' C0ÇP~X(X))      if X£Sr,

co(x) if x £ Mr.

It follows from (3.30) that cor £ HQX(M0) for all r > 0 small enough, and

'\COr - OJ\\,2,m-\ =   Huir - °>\\lM,MQ\Mr) -  Wœr\\LHM0\Mr) + Wœ\\L2(M0\Mr)\L2(M0[

nox\\mM0\Mr)<Cr"2,
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and

||V((Ür - CO)\\L2„Hn+,){Mo) = ||V(Wr - (O)\\L2«/(n+0(M0\Mr)

< llV<yrll,f>/<"+'>(Mo\M,) + llV<yllz.2»/(»+i)(Afo\M)

< 2SUPIVT-'! ||Vo;||L2„/(„+„(MoWr) < Crx'\

1   Ja. 1   2h.

Therefore cor —► <y strongly in W^, ' "+1 (Mo) and w G WQ ' "+1 (Mo). Now

applying the Lp estimates for the strong solutions of the second order elliptic
equation (see e.g. [10, Theorem 9.14]), we have

co£ W2'&(Mo)nW(¡'^(Mo),

and||<ü||W2,2n/(i.+i)Mo < C. Using the Sobolev imbedding inequality, we have

||V<y||L2„/(„-,)W)) < C,  and therefore

(*) l|Vo>||L2(Jl/oWr) < Crx>\

It follows from (*) and the above argument that co, —► co strongly in W^'^Mo)

and co £ H¿ (M0).
Next we need to show that the claim (3.36) is true.

In fact, for any Xo £ dM0, since 9M0 is of class C , there is an open set

UXo c M and a diffeomorphism

4>x0 ■ Ux0 -* V^(xo) C 3tn ,        Vftxù is an open set in 3ln.

Moreover, <f>Xo straightens the boundary 9 Mo n CXo in the following way: Let

BXo = UXo n Sr ; then

(1) <pXQ(BXonMo)c^;

(2) <t>(dMor\uXo)cdâ?ï;
(3) <t>£Cx(UX0), <p-x£Cx(D), where D = <p(UXo);

(4) <f>(dSxr) c 311 and <t>(dS}) c 31* .

Considering a finite covering of <9Mo by U¡ = Ux., i = 1, 2, ... , m , without

loss of generality we may assume <pXl(Bx¡) is a coordinate cube {x G 3ê"\ - 2 <

x, <2, i = I, ... , n} for i = I, ... , m, and Sr c (J/=i #/ •

For simplicity we may assume that <px¡ also straightens the boundaries dSrx n

UXo and dS2 n CXo such that 4>(dSxr n UXo) c {x £ 3?"\ 0 < x¡ < l,i =

1, 2, ... , n - 1 ; x„ = -1} and ^(dS2 n CXo) C {x G ^"|0 < x,< 1, /' =

l,2,...,«-l;x„ = l} respectively. Since r > 0 small, 95/ also belongs to

the C1 class for i = 1, 2.
Let {?,,}, z = 1, 2, ... , m , be a partition of unity subordinate to the covering

W"}/=1 satisfying

(1) ífc€C¿(üí) for /=l,2,...,m;
(2) m>0, £ifc=l i" Sr,

and set
m

*/ = £] ?/#(*)    for;'= 1, ... , n.
i=i

It is easy to check that
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<Pr = («DJ, <P2, ... , <P?) : Sr -> {x G &"I -1< xn < 1}

is a differomorphism.

Let

X,,X2, ... ,  ^Y^\  , Vr = (Pr"1 °Pr°<l>r.

Then % : SV -► 5" is a diffeomorphism with *¥r{dS}) = dM0 and ^(dS2) =

dS2.

Therefore co £ H¿(M0). Hence co(k) is the unit positive eigenfunction of

the Dirichlet problem on Mo and hence k = kx.    D

Proof of Theorem 1. Conclusion (ii) of Theorem 1 follows from Lemma 5.

To prove (i), we need the following fact: Suppose {fi„}, «=1,2,..., is

a sequence of normal connected open sets on M such that

fii D fi2 7> fi3 D • • • D fi„ D • • •

and Vol fi„ —► 0, as n —> oc. Then the first eigenvalue kx(n) of the Dirichlet

problem on fi„ satisfies

(3.37) lim kx(n) = oc.
n—>oo

Suppose the k in (i) is finite. Then from the above geometric fact we can find

a small connected open set fi c M+ with smooth boundary such that the first

eigenvalue kx of the Dirichlet problem on fi satisfies kx > k. It is easy to

construct a function h* satisfying

(3.38) 0<h*<h   and   M0(/z*) = fi.

Then for A G (A, kx(h*)) there is a finite positive solution u(k) of

Au + ku-h*up = 0    on M.

From (3.38) we know that u(k) is a super-solution of (1.1), which means there

is a positive solution of (1.1) for A > A but which contradicts the definition of

A. Hence the conclusion of (i) is true.   D

Proof of Theorem 2. Since the first eigenvalue Ao of the Dirichlet problem in

a bounded smooth domain fi g Mn is strictly positive and the corresponding

eigenfunction vx keeps the same sign on fi, we may choose it to be strictly

positive in fi.

The proof exactly follows that of Theorem 1, except we replace the first

eigenvalue 0 of the A operator on the compact Riemannian manifold by the

first eigenvalue Ao > 0 of the Dirichlet problem in fi, and in the proof of

Lemma 3, we Replace the small positive constant (as a sub-solution of problem

(1.1)) by cvx, where c is a small positive constant, as a sub-solution of problem

(1.2).
Therefore we omit the details of the proof.   D

Proof of Theorem 3. Since problems (1.3) and (1.1) have the same eigenvalue 0

and constant eigenfunction for the A, the proof of Theorem 3 follows exactly

from the proof of Theorem 1.   D
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