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ON THE ANALYTICITY OF SOLUTIONS
OF FIRST-ORDER NONLINEAR PDE

NICHOLAS HANGES AND FRANÇOIS TREVES

Abstract. Let (x, r) e Rm x R and u e C2(Rm x R). We discuss local and

microlocal analyticity for solutions u to the nonlinear equation

ut = f(x, t, u, ux).

Here f(x, /, fo . 0 's complex valued and analytic in all arguments. We also

assume / to be holomorphic in (Co, C) € C x Cm . In particular we show that

WF^ u c Char(/_")

where WF^ denotes the analytic wave-front set and Char(L") is the charac-

teristic set of the linearized operator

L" = d/dt-J2df/di;j(x,t,u, ux)d/dXj.

If we assume  u 6 C3(Äm x R)  then we show that the analyticity of u

propagates along the elliptic submanifolds of Lu .

Introduction

The present article concerns &2 solutions of a nonlinear PDE

(*) ut = f{x,t,u,ux)

where f(x, t, Co, C) is complex-valued and real analytic, and holomorphic

with respect to (Co > 0 • Here x varies in an open subset of lm, / in an

interval, and (Co, C) m an open subset of Cm+1 . In [Chemin, 1988] it is

proved, under the weaker hypothesis that / is merely W°° with respect to

(x, t), that the W00 wave-front set of any i^2 solution u is contained in the

characteristic set of the linearized operator

m

(**) v = a/at - £(¿>/y¿>Cj)(x ,t,u, ux)d/dxj.
7=1

We prove the analogous theorem with W°° replaced by '&'" . Perhaps the result

is known, though we have been unable to find it in the literature. Possibly it

can be established by the methods of paradifferential calculus. Nevertheless

we thought that a simple proof was worth publishing. Our proof relies solely
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on the implicit function theorem in conjunction with known results of linear

theory—but the linear theory of hypo-analytic structures (see [Baouendi-Chang-

Treves, 1983]). Two lemmas (1.1 and 1.2) are needed, which might qualify as

slightly harder analysis, on estimating the FBI transform of a solution to a linear

equation. But the authors have included their proofs only to persuade the reader

that what is true, and known, for linear partial differential equations with W°°

coefficients is also true when the coefficients are Wl. Section 3 shows that the

analyticity of W* solutions u of (*) propagates along the elliptic submanifolds
of the linearized vector field (**). This is the same phenomenon as in the linear

case (see [Hanges-Treves, 1983]).

1. Preliminaries about a first-order linear PDE

We consider a complex vector field in an open neighborhood of the origin,
Q,in Rm+1,

m

L = d/dt + J2 cj(x. t)d/dxj,
;=i

with coefficients c¡ e Wl(£l). We shall reason under the following hypothesis:

/, ... there exist m  W1 functions y/¡   (1 < / < m) in Q. such that,

if we set set Z, =x¡ + tyf¡(x, t), then LZ¡ = 0.

We write y/ = (y/\, ... , y/m), Z - (Z\, ... , Zm). We select an open neighbor-

hood U <g Q of 0 such that the mapping U 3 (x, t) -> (Z(x, t), t) e Cm x R

is a diffeomorphism of U onto a £?' submanifold Z of Cm x R. In particular

the Jacobian matrix Zx must be nonsingular in U. It is convenient to take

U = 38 x/ with 38 an open ball in x-space Rw and y an open interval in

the Mine M, both centered at the origin.

We have
m

y CjdZj/dXj = -dZj/dt, i = I, ... , m,

whence, in vector-matrix notation,

(1.2) c = -Z~1Zt.

Of course, Zx = I + ty/x, Z) = y/ + ty/, (I : m x m identity matrix). The

symbol of L is given by

(1.3) X = x-Z,'tZx-li

(left superscript ' indicates transposition).
We consider now the submanifold 3? of U defined by t — 0, i.e., Sf —

& x {0}. On <r, dZ¡ = dx, + y/,{x, 0)dt. The characteristic set T° of L,
i.e., the subset of T*Rm+]\0 Si Rm+1 x (Rm+1\{0}) on which the function X

vanishes, consists of the points (x, t, £, r) such that, for some Ç eCm ,

£ • dx + x dt = C • dZ

(the center dot  •  stands for the "real" scalar product). Over 2? this means

(1.4) C = £,T = Re^(x,0K,     Im^(x,0K = 0.



SOLUTIONS OF FIRST-ORDER NONLINEAR PDE 629

The pull-back map Cr*Rm+V -> CT*2f transforms T°\*r into the set

(1.5) {{x,0),Ç-dx)err%';    Im^(x,0K = 0.

This said, consider an arbitrary W] solution h of the equation Lh = 0 in

fi and its FBI transform

Srh{t\z,Q= [ e*'^-zW'-t))-<tn*-zix''>'))2h(x',t)dZ{x',t).

Here (C) = (C • C)1^2 (main branch of the square-root). Notice that

Fh{0;z,Q= [ eli-{z-x,)-{l:){z-x')2h(x',0)dx'.

Lemma 1.1. Let r > 0 be the radius of the ball 38. There is an open neigh-

borhood (fofO in Cm, a conic open neighborhood & o/Rm\{0} in Cm\{0}

and positive constants ô, C such that

(1.6) \Fh(t; z, 0-^/2(0; z, C)| < C\t\e~'2^2    Max    \h\
d¿Sx[-o ,<5]

for all solutions h G Wl(Q) of Lh — 0 and all

(1.7) îêR,    \t\<ô,    zer?,    ÇeW.

Proof. We have

-(d/dt)^h(t;z,Q

= i /L(^í,(z-Z(jr''í))-<í><z-Z(x'',)>2/í(x',?)detZx(x',í))^'

Jag
.    m

+ /  Y(d/dXj)(cje'f{z-Z{x'<t))-{Q{z-Z{xl''))2h(x',t)detZx(x', t))dx'.

The first integral is equal to zero due to the hypothesis that Lh = 0. Integration

in the second integral shows that

-(PldtWh(t;z,Q

=  Í   eif(z-z(*' J))-(Q(z-z(x','))2h(x>, t)a(x', t)d<j(s-,.

Putting z = 0, C e £ G Rm\{0} shows that

-(d/dt)^h(t;z,Q

(1-8) = /    e-'í-(y+'^'''»-líKy+'^'''»2/!(x',í)a(x',0^(x')

for a suitable choice of the density a (da is the spherical measure on d38).

In the integral over 338 in (1.8) we have

Im{-£ • \x' + tyj(x', i)] + i\i\(x' + ty{x', /)>2}/|C|

= t Im y/(x', t) • i + r2 + It Re y/{x', t) • x'

+ t2\ Re y/(x', t)\2 - t2\ Im y/{x', i)|2

where C = £/|£| • We select ô > 0 small enough that

(1.9) |/Imy(x', 0-¿l + 2|íx'- Rev/(x', t)\ +t2\lmy/(x', t)\2 < r2/4
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for all x1 Gd38 , \t\<S. From (1.8) and (1.9) we derive

\{d/dt)^h(t;0,cl)\<Ce-3r2^/4    Max    \h\.
d¿&x[-ó,S]

If we allow z to vary in tf and C to vary in the cone %, provided Q and

the conical distance from Cm\W to Rm are sufficiently small, we obtain

(1.10) \{d/dt)3rh{t;z,Q\<Ce-r2^'2    Max     \h\.
d&x[-ö ,S]

Integration from 0 to t shows that (1.7) is a consequence of (1.10).   D

We shall now restrict the variation of C to a conic neighborhood W° in

Cw\{0} of a point £° g Sm~l (the unit sphere in Rm) such that no character-

istic point of L lies above (0, £°) G T*2f. By what was said above this means

that lm^(0, 0)-C° ^ 0. Possibly after replacing £0 by -£° we may always

assume that

(1.11) Im^(0,0K°>0.

Lemma 1.2. Suppose (1.11) holds. Then there is an open neighborhood of 0 in
Cm , tf, an open conic neighborhood W° of £° g Sm~l in Cm and constants

C, ¿i > 0 such that

(1.12) \Ph(t;z, n\<Celt-lm^0-0)'i0]^2    Max    \h\
&x[-ô,S]

for all solutions h G ̂ ' (Q) of Lh = 0 and all

(1.13) /gE,    -ôi<t<0,    ze(f,    ÇeW°.

Proof. We have, for t e R and /? > 0,

^h{t; 0, />C°) = / f-rf-U'+'rlAiD-tf+i^,!))^^^ t)dZ(x', t).

The hypothesis that ^ is of class ^' allows us to write, for some constant

K > 0 and all x' e38 , ta S , í < 0,

Im{-cf ■ [x' + í^(jc' , /)] + i(x' + tyi(x', í)>2}

= -tlmy/(x', /)-C° + |x'|2 + 2íRey/(x\ t)-x'

+ t2\ Re íí/(x' , t)\2 - t2\ Im y/(x', t)\2

> \t\lm y/(0, 0) -C° + 0[|í|(|x'| + \t\)] + ¡xf

> -t{lmy/(0,0)-C°)-Kt2.

If we require

/<0, \t\<\K-llmy/(0,0)-Ç° = S{

and select <f small enough and W° sufficiently "thin" about the ray through

£° we reach the desired conclusion.   D

If we combine Lemmas 1.1 and 1.2 we get
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Lemma 1.3. Suppose (1.11) holds. Then there is an open neighborhood of 0 in

Cm, (f, an open conic neighborhood W® of C° G »S'"-1 in Cm and constants

C, Co > 0, such that

(1.14) \^h(0;z,C)\<Ce-c^    Max    \h\
SSx[-ô,ô]

for all solutions he^l{Q) of Lh = 0 and all z e&, Ç g £?°.

Let us now reason in (x, t,Ç, r)-space. We look at the characteristic points

that lie above the origin (x = 0, t = 0). As pointed out earlier they are given

by

(1.15) r-Re^(0,0)-C = 0,        Im KO, OK = 0.

It follows that a point (0, 0, £°, t°) g Rm+1 x Rm+1 is noncharacteristic if any

one of the two equations (1.15) is violated.

We introduce an extra variable s G R, a parameter 8 G [0, 27t) and we

define the vector field in Ixfi,

£?e = d/ds-e-'eL.

We note that every solution h eWl(Çl) of Lh = 0 can be regarded as a solution

of the equation S?6h = 0 in R x Q..
Let J^ be an open interval in R centered at the origin. We shall assume

that S?e satisfies hypothesis (1.1) in the open set J^ x il. This means that

there are m functions y/f G (e,l(J^ x Q.) (1 < i < m) such that, if Zf =

Xj + sy/f(x, s, t), thenS?6Zf = 0. Actually we need one more "first integral,"

one whose value at 5 — 0 is equal to t ; it suffices to take Z^+1 = t + e~'es .

We observe that, above the points x = 0, t = 0,

symb(^e) = a- e~'e Í r + ¿ c,(0, Ofo J .

On the other hand, by (1.2) we also have

(1.16) Cj(0,0) = -y/j(0,0),        7 = 1,..., m

[here y/¡ is the same function as in (1.1)]. It follows that, when x = 0, t — 0

symb(^e) = a - [(t - Re y/ ■ f) cos 6 - (Im y/ • C) sin ô]

+ i[(t - Re y/ ■ t¡) sin 6 + (Im y/ • Ç) eos 6].

We introduce the FBI transform with respect to (x, t) :

&h(z,W,t, T) =   / ^[C-(Z-x')+r(«,-0]-<(i,T))[(z-x')J+(ll,-i')2]A(x/; t')dx'dt'.

This is the same as the FBI transform defined above, but in (x, s, /)-space,

and computed on the submanifold s - 0. If we apply Lemma 1.3 we reach the

following conclusion:

Lemma 1.4. Suppose that, for some 9 G [0, In),

(1.18) [r-Rey(0, 0)-i]sino + [Im^(0, 0)-i]cos0 / 0.
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Then there is an open neighborhood of 0 in Cm , (f, an open conic neighborhood

^° o/<C° G Sm~x in Cm and constants C, c0>0 such that

(1.19) \&h{z,w, C,T)|<C<?-ColilMax|A|

for all solutions heWl{Q) of Lh = 0 and all z e&, CeW°.

It is clear that the set of points (£, t) such that there is ô G [0, In) such

that (1.18) holds is the same as the set of points (£, t) which violate (1.15).

Thanks to the characterization of the analytic wave front set of a distribution

u, WFau, by the exponential decay of its FBI transform we may state

Theorem 1.1. Suppose that, for some choice of the interval Jq c R centered

at the origin and for every 6 e [0, 2n), the vector field Jzfe satisfies condition

(1.1) in JqxÇI. Then, at the origin, the analytic wave-front set of every solution

h G £?'(Q) of the equation Lh = 0 is contained in the characteristic set of L.

Remark 1.1. Suppose the vector field L is elliptic, which requires m = 1,

and that L satisfies (1.1). Then, in some open neighborhood of the origin, an

arbitrary solution h of the equation Lh = 0 has the form h(Z) with h a

holomorphic function in some open neighborhood of the origin in the complex

plane. As a consequence of this and of (1.1) h(x, 0) = h(x) which shows that

h(x, 0) is analytic at the origin. This is in agreement with the conclusion in

Lemma 1.3.   □

Remark 1.2. Assume that the coefficients of L are analytic. Then condition

(1.1) is always satisfied. We derive from Lemma 1.3 that the analytic wave-

front set, at x = 0, of each trace of an arbitrary solution h of Lh = 0 on a

hyperplane / = const, is contained in the pull-back to that hyperplane of the

characteristic set of L. This result implies that the analytic wave-front set of

h itself is contained in the characteristic set of L, by the argument used to

prove Lemma 1.4, since clearly ¿¿fe also satisfies (1.1). This complements the

arguments on the hypo-analytic wave-front set of solutions in [Baouendi-Chang-

Treves, 1983].   D

Finally we shall need the following result.

Lemma 1.5. Suppose there is an open interval Jq such that the following is true.

For every 6 G [0, 2n) the vector field S?6 satisfies condition (1.1)/'« 4X^;

h(x, t, X) G £P'(Q) is a solution of Lh — 0 which depends analytically on
leJ". Then the analytic wave-front set of h(x, t, t) at the origin is contained

in r0°.

Proof. We extend h{x, t, X) as a holomorphic function of X in an open disk

AcC1 centered at 0, valued in Wl(U) (that such a disk exists is what we

mean by saying that h depends analytically on X). Consider a unit covector

(£°, t°) £ T§ ; there is a conic open neighborhood of ((0, 0), (£°, t0)) in

which the FBI transform of h decays exponentially (as |£| + |t| —» -l-oc ; see

Lemma 1.4). Inspection of the inversion formula for the FBI transform shows

that there are finitely many open convex cones in Rm+1\{0}, T],..., Tr, in-

dependent of A G A (possibly contracted about 0) and such that

Ç°-y + T°s<0,        ^(y,s)eTj(\<j<r),
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and an equal number of distributions h\,... ,hr depending holomorphically

on X in A, such that, in some open neighborhood V c U of the origin in
Rm+1,

h = hi + ■ ■ ■ + hr,

and that, for each j = \, ... , r, h¡ is the distribution boundary value, as

(z, w) —► (x, t), of a holomorphic function hj(z, w, X) in (V + iTj) x A. We

observe that h¡(x, t,t) is the boundary value (in V) of hj(z, w , w) which

is obviously a holomorphic function in the wedge

Wj = {(z,w)e V + iTj;weA},

whence the claim.   □

2. Application to first-order nonlinear PDE

Same notation as in §1. In what follows f(z, w, Co, C) will denote a holo-

morphic function in an open neighborhood fix/ of ((0, 0), (a, co)) in

Cm+i x Cm+i We assume u c Q c QnRm+1 and study a solution u£^2(U)

of the nonlinear differential equation

(2.1) u, = f(x,t,u,ux)

under the hypothesis that

(2.2)
w(0,0) = a,        1^(0, 0) = c<j;        V(x,t)eU,  [u{x, t), ux(x, t)) e Jf.

We introduce the vector field in Q, depending on the parameters (Co, C) G JV,

m

&    =   ô/dt   -   £(d/7öC,)(X,    t,    CO,    CWXj:.
7=1

We form
m

V = d/dt-^2{df/aCj){x, t, u, ux)d/dxj;
j=i

Lw is a vector field with if1 coefficients in t/ .

We differentiate both sides of (2.1) with respect to x and we introduce a

vector-valued function v= [u, uXi, ... , uXm) G ̂ '(Q; Cm+1) ; by (2.2) v(C/) C

yf . We may rewrite equation (2.1) as

(2.3)o Luu = g0(x, t, v)

where

go=f-¿2wWj-
7=1

For i = 1,..., m we have

(2.3), Luux¡ = gj(x,t,v),

where

gi = fx, + Udf/dCo) ■
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We can regard the system of equations (2.3)0, (2.3), (1 < i < m), as a quasi-

linear system of differential equations

(2.4) L"v = g(x,/,v).

Here g(x, /, Co > C) extends as a holomorphic function in fix/; and v is a

&1 map of U into JT.

We introduce the principal part of the (holomorphic) Hamiltonian of the

system (2.4):
m

7 = 1

Now let h be any if1 map U -» JV such that h(0) = (a, co) ; if *F(x, /, Co, C)

is any holomorphic function in fix/" we set *Fh(x, t) = *P(x, /, h(x, t)).

We denote by 5?h the vector field in U obtained by substituting h(x, t) for

(Co > C) in each coefficient of J? . [In this notation J?v = Lu .] Direct compu-

tation shows that

^hvph = (//y)h + (ai'/ÔCo)h(-2?,,Ao - S0h)

u i/u^j)   y-¿.    rij - g

7=1

We solve the following Cauchy problems

(2.6) //Z, = 0,       Z/|m) = */( 1 < í < m) ;

(2.7) tf~, = 0,        H7|,=0 = C,(0<;<m).

Possibly after contracting fi about 0 and JV about (a, co) there are unique

holomorphic solutions Z, and E; in fix/. We substitute them for *F in

(2.5). We obtain

(15) + f>¥/dC,)h(^-gj'

(2.8)

(2.9)

^hZ,h = (9Z,/ôCo)h(^hAo - S0h) + 5>Z,/dCy)h(^h/zj - ¿rj1),

7=1

i=l, ... ,m;

m

.2*E? = (dZi/dÇo^i^ho - g$) + $>E,/dC,)h(-S^ - gf),
7=1

/ = 0, I, ... , m.

We shall write Z = (Z\, ... , Zm), 5 = (E0, Si, ... , Em). Since the Ja-

cobian determinant (¿>E,/<9C/)o<ij<i is nonzero in a full neighborhood of

(0, 0, a, œ) we see that, the validity of (2.4) in some neighborhood of 0 is

equivalent to the validity, in such a neighborhood, of the system of differential

equations

(2.10) ^VS; = 0,        i = 0,l,...,m.

And (2.4) entails

(2.11) ^TZJ = 0,        i=\,...,m.
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Note that

(2.12) Z*\l=0 = x,        EVo = v(x,0).

It is clear that we may apply the implicit function theorem (in the holomor-

phic category) and solve the equations

Z(x, t, Co, C) = Z,        E(x, t, Co, C) = 3,

with respect to (x, Co, C) :

(2.13) x = P(Z,t,E),        (Co,0 = Q(Z,t,E),

with P(0,0, Co, C) = 0, ß(0,0, a, co) = (a, œ). We derive

(2.14) v = o(Z'(x,iM,Ev(x,0).

The vector field (in R x U, with 0 < 6 < In fixed)

(2.15) d/ds - e~l6Sr = {d/ds - e-,e5f)y

has first integrals as required in condition (1.1) (with s replacing t). This

simply follows from the fact that (2.15) originates with the nonlinear equation

us - e~,e(ut - f(x, t,u, ux)) which is of the same kind as (2.1). If Jo is

a sufficiently small open interval in the real line, centered at 0, the function

ß(Zv(x, t), t', Ev(x, /)) G W1 (U x Jq) is a solution of the homogeneous equa-

tion J?vh = 0 and is analytic with respect to t' e Jo ■ We are in a position to

apply Lemma 1.5 and, returning to the solution u of (2.1), to state

Theorem 2.2. Let ueW2^) be a solution of the nonlinear differential equation

(2.1). The analytic wave-front set of u is contained in the characteristic set of

the linearized differential operator Lu .

Remark 2.1. Obviously if we restrict our attention to a quasilinear equation

such as (2.4),
m

v'~zZ a^x ' l ' VK = s(x ' ' >v) >
7=1

the conclusion that the analytic wave-front set of v is contained in the charac-

teristic set of the linearized differential operator

m

5?y = d/dt-^2aj(x, t,v)d/dXj
7 = 1

remains valid under the weaker hypothesis that v be of class £f' . [As usual we

are assuming that v and g are vector-valued, that the coefficients a¡ are scalar

and that they, as well as the right-hand side g, can be extended as holomorphic

functions of their arguments in some open neighborhood of (0,0, v(0, 0)) in

complex space.]   □

3. Propagation of analyticity of solutions of
first-order nonlinear pde

We return to the complex vector field L of § 1. We shall assume that hy-

pothesis (1.1) holds in a neighborhood of every point of fi . However we shall

strengthen our requirements on the regularity of the functions y/¡ and by way
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of consequence, of the "first integrals" Z,. We shall hypothesize that they are

of class g72 in fi:

Given any point (xo, to) of fi there exist W2 functions

y/¡(x, t, x0, to) (1 < i < m) in an open neighborhood U0

of (xo, to) such that, if we set Z,(x, t, xo, to) =

Xi - xo, + (t - to)y/i(x, t, x0, t0), then LZ¿ = 0 in U0.

Moreover, we suppose there is a W2 submanifold A of fi endowed with

the following property. Let (xo, to) be an arbitrary point of A and let Z, =

Z,(x, t, Xo, to) be the functions in (3.1) (referred to in the sequel as "first

integrals"). Then

the pull-backs to A of dZ\, ... , dZm span a vector subbundle

(3.2) ^ of cr+A such that jv n ̂  = 0

The vector bundle T'A defines an elliptic hypo-analytic structure on A and we

refer to A as an elliptic submanifold. Near an arbitrary point p G A we may

assume that a number of pull-backs nA dZ¡ form a basis of T'A ; suppose for

the sake of the argument that these correspond to i = I, ... , r = rank of T'A .

Then (3.2) demands that

nAdZx A • • • A 7TAdZr A n*AdZx A • • • A n*AdZr ¿ 0.

If h is any Wl function in some neighborhood of p in A whose differential

is a section of T'A then there is a holomorphic function H in an open neigh-

borhood of (Zi(p), ... , Zr(p)) G C such that h — H o (Zt, ... , Zr) over a

full neighborhood of p in A. Let ^a be the vector subbundle of CTA or-

thogonal to T'A ; a vector field L in A is a section of ^a if L(Z¡\a) = 0 for all

i = 1,... , r. If L\, ... , Lv form a basis of W over some open subset of A
the common real zero-set of the symbols of the vector fields Lj (j = 1, ... , u)

is the zero section of T*A ; which is the reason for the name "elliptic struc-

ture." (On all this see [Trêves, 1991].) We are going to apply the main result in

[Hanges-Treves, 1983]:

Lemma 3.1. Suppose Z\, ..., Zm e W2(Q.) and the elliptic submanifold A of
fi is of class W2 and connected. Let h be a Wl  solution of Lh = 0 in fi.

Suppose that, in some neighborhood in Qofa point pGA, h = h o Z  with

h holomorphic in some neighborhood of Z(p) in Cm . Then the same property

holds at every other point of A.

In [Hanges-Treves, 1983] Lemma 3.1 is proved under the hypothesis that the

first integrals Z, and the submanifold A are of class i?°° ; but inspection of

the proof show that W2 suffices. See also [Trepreau, 1990].

We go now to the nonlinear equation (2.1). Here we assume that u is a

solution of class ^3 in the whole of fi. Solving the Cauchy problem at t = to

for the vector field Sf of §2 shows that hypothesis (3.1) is satisfied.

Theorem 3.1. If the solution u G i?3(fi) of equation (2.1) is analytic in an open

neighborhood of a point of an elliptic submanifold A of fi in the sense of the

linearized operator L" it is analytic in a full neighborhood of A.

Proof. We go to the quasilinear system (2.4); here v G W2(Q; Cm+1) is a so-

lution in the whole of fi.   Assume that the origin lies on A and that  u,
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and therefore v, are analytic in an open neighborhood of 0 in fi. Let then

U = 38 x J* be an open neighborhood of 0 such that there exist analytic so-

lutions Z, (1 < i < m), Ej (0 < j < m) of (2.6)-(2.7) in U x JT \Jf

is the open neighborhood of (m(0) , du(0)) in Cm+1 in §2). By hypothesis

x —► v(x, 0) is an analytic function in an open neighborhood 38' c 38 of

the origin. It follows that x —> ET(x, 0) is an analytic function H(x) in 38',

valued in Cw+I . But then the components //,(Zv(x, t)) (0 < i < m) are

solutions of the homogeneous equation 2Cyh - 0 (see (2.10), (2.11)). Since

Ev = HoZy when t = 0 it must also be true in a full neighborhood of the origin

in fi, by the uniqueness in the Cauchy problem in locally integrable structures

(a consequence of the approximation formula of [Baouendi-Treves, 1981]). By

Lemma 3.1 the analogous property must hold at every point of A n U.

We apply the implicit function theorem (in the holomorphic category) with

respect to (Co, 0 to the equations

S = E(x, t, Co, 0

getting (Co, C) = 4>(z, t, E). We get

(3.3) v = <D(x,i,Ev).

Consider now an arbitrary point p — (xo, to) G A n U ; in some neighborhood

of p in fi we may write Sv = H(Zy). Since the Jacobian of the map Z with

respect to x is close to 1 we see that the first partial derivatives of the functions

H¡ will be bounded independently of p (though the function H may change

from point to point). Using this fact and the fact that the partial derivatives

of the Z, with respect to (Co, C) are as close to zero as we wish (provided we

contract U) we may apply the implicit function theorem with respect to (Co, C)

to the equations

Çj = <S>j(x,t,H[Z(x,t,Q]),        ; = 0, l,...,m,

thus getting C,j = Gj(x, t) with Gj analytic in some open neighborhood of

(xo, to). But then, by (3.3), v, = Gj(x, t) in that same neighborhood. We

conclude that v, and therefore u, is analytic in a neighborhood of Ant/.

This shows easily that the subset of points of A in a neighborhood of which

u is analytic is closed; since it is trivially open this completes the proof of

Theorem 3.1.   □

Remark 3.1. One could likewise apply Theorem 2.2 of [Trepreau, 1990] to show

that the elliptic submanifolds (for the linearized vector field Lu) propagate the

holomorphic extendability to wedges, as defined in [Trepreau, 1990], of the

solution u.   G
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