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THE BERGMAN PROJECTION ON HARTOGS DOMAINS IN C2

HAROLD P. BOAS AND EMIL J. STRAUBE

Abstract. Estimates in L2 Sobolev norms are proved for the Bergman pro-

jection in certain smooth bounded Hartogs domains in C2 . In particular, ( 1 )

if the domain is pseudoconvex and "nonwormlike" (the normal vector does not

wind on a critical set in the boundary), then the Bergman projection is regular;

and (2) Barrett's counterexample domains with irregular Bergman projection

nevertheless admit a priori estimates.

In this paper we study the Bergman projection (and, in the pseudoconvex case,

the d -Neumann operator) on certain Hartogs domains in C2. Our attention

is drawn to these domains because of a number of important counterexample

domains that are Hartogs domains (see [15, 16, 1, 4, 23, 20]).

The so-called "worm domains" constructed by Diederich and Fornsess in [ 16]

are smooth bounded pseudoconvex Hartogs domains in C2 that provide coun-

terexamples to a number of questions in several complex variables. Recently

Kiselman showed in [20] that for certain nonsmooth pseudoconvex worm do-

mains in C2 the Bergman projection is not regular. Since his argument is sensi-

tive to perturbations of the domain, such as smoothing of corners, it remains an

open question whether the Bergman projection is regular for the smooth worm

domains. As the counterexample properties of the worm domains are rooted in

the winding of the normal on the critical annulus, it is natural to ask whether

the Bergman projection and the d-Neumann operator are regular when similar

behavior of the normal is excluded. This is indeed the case.

We prove in §1 that all smooth bounded pseudoconvex Hartogs domains
in C2 that are nowhere wormlike (for the precise definition see § 1 below) have

regular Bergman projection. The Bergman projection for such a domain fi pre-

serves the space C°°(fi) of functions smooth up to the boundary, and more-

over maps the Sobolev space Wk(Q.) continuously into itself for positive k.

(Here Wk(Çl) denotes the space of functions with square-integrable deriva-

tives through order k .) The simplest example of a nowhere wormlike Hartogs

domain is a complete one; we have shown previously in [10] that a smooth

bounded complete Hartogs domain in C2 (pseudoconvex or not) has regular

Bergman projection. (For some positive regularity results in higher dimensions,

see [9].) Here we adapt the technique of [10] to incomplete nowhere worm-
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like pseudoconvex domains. A portion of our technique, combined with results

from [5, 16], also yields regularity of the Bergman projection on pseudoconvex

domains in C2 (not necessarily Hartogs) whose weakly pseudoconvex boundary

points are exactly an analytic disk. Through [8, proof of Catlin's Lemma] or [ 11,

formula (4)], all our estimates for the Bergman projection yield corresponding

estimates for the d -Neumann operator.

Barrett constructed in [1] a family of smooth bounded nonpseudoconvex

Hartogs domains in C2 with irregular Bergman projection. In these domains

the Bergman projection does not even map all smooth, compactly supported

functions into ^'(fi). Surprisingly, for these domains the Bergman projection

nonetheless satisfies a priori estimates in Sobolev norms. We demonstrate this

in §2.
We thank Alan Noell for useful remarks.

0. Preliminaries

We fix the following notation for the remainder of the paper: fi is a smooth

bounded domain in C2 (exception: we state the lemma below for C" ) with

smooth defining function p . Most of the time, fi will also be a Hartogs domain

with symmetry plane {w = 0}. This means that when (z, w) is in fi, so

is (z, e"w) for every real t. We denote the argument of m by 9. The

Bergman projection P is the orthogonal projection from the space L2(fi) of

square-integrable functions in fi onto the closed subspace of square-integrable

holomorphic functions in fi. Angle brackets ( , ) denote the inner product

in L2(fi), and | ||¿t denotes the norm in the Sobolev space Wk(Q7). When

writing inequalities, we employ the convention that C and Ck denote constants

that may change their identity at each occurrence.

In the proofs of Theorems 1 and 2 we will use the following technical, but

standard, integration by parts lemma.

Lemma. Let fi be a smooth bounded domain in C". Let y/ be a function in

C°°(fi), and let U be an open subset of fi containing fi n supp^. Fix a

positive integer k.

(1) There exists a constant C such that for every function h in Wk(Q) that

is holomorphic in U and every function fi (not necessarily holomorphic) in
Wk(Cl),

\(VJf,^k-jh)\<C\\f\\k\\h\\o

when 0 < j < k .
(2) Let X be a vector field of type (1,0) with coefficients in C°°(U). Suppose

that Xp ^ 0 on bQ. n supp yi, and let b be a function in C°°(fi) that equals

Xp/Xp near èfinsupp^. There exists a constant C such that for all functions

g and h in H-^fi) that are holomorphic in U,

\(Xkg, y/h)\ < \{g, ipbkXkh)\ + C\\g\\j-i\\h\\k-j

when 1 < j < k .

Proof. By the Cauchy-Riemann equations, an arbitrary derivative of a holomor-

phic function can be rewritten as a derivative that is tangential at the boundary

of fi. Hence one can integrate k — j derivatives by parts without boundary

terms and then apply the Cauchy-Schwarz inequality to obtain (1).
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Since \b\ = 1 near ôfi n supp y/ , the L2 norm of a holomorphic function

controls its derivatives on a compact set, and X - bX is tangential at the

boundary on the support of y/ , we have, in view of part (1),

\(Xkg, ¥h)\ < \(bkXkg, yvbkh)\ + C||s||o||A||o

<\(ÍX--bXy<g,y,bkh)\ + C\\g\\j-i\\h\\k„j

KKg^b'm-x^h^ + cwgWj.xWhU-j
<\(g,y,bkXkh)\ + C\\g\\j-i\\h\\k_j.

This proves (2).

1. Nowhere wormlike pseudoconvex Hartogs domains

It is enough to study regularity of the Bergman projection near the boundary

of fi. Since the Hartogs domain fi is invariant under rotations in 9 (which

are isometries of L2(fi) that preserve the holomorphic subspace), the Bergman

projection commutes with the derivative d/d9 . Since derivatives transverse to

the complex tangent space control all derivatives of holomorphic functions (see,

for instance, [24, Lemma 5.3]), it follows that the Bergman projection is regular

in Sobolev norms away from the part of the boundary where w(dp/dw) = 0,

or what is the same, where dp/dw = 0. (For boundary points in the symmetry

plane, the normal to bQ, is invariant under rotations in 9 , so dp/dw = 0 at

these points.) Therefore our attention focuses on the set

S:=i(z,w)£bQ:^(z,w) = o\.

For each fixed z in C, let Sz denote the intersection of S with the complex

line {(z, t) : t £ C}. Since fi is Hartogs, each slice Sz has circular symmetry

and is therefore a (possibly empty) union of circles and annuli and possibly a

disk or a point. On Sz , the unit normal to bü. has the form (n(z, \w\), 0).

To rule out the winding of n exhibited by worm domains, we wish to impose

the condition that for each z the function « is a constant function of w on

each connected component of Sz. We say that fi is nowhere wormlike when

this condition holds.

Theorem 1. Let fi be a smooth bounded pseudoconvex Hartogs domain in C2

that is nowhere wormlike. Then

(1) the Bergman projection is continuous on the Sobolev space IVs(fi) for

every positive real s (and a fortiori is continuous on C°°(fi)), and

(2) the d-Neumann operator is continuous on the space of (0, 1 )forms with

coefficients in WS(Q7) for every positive real s (and a fortiori is contin-

uous on (0, lyforms with coefficients in C°°(fi)).

Example 1. A Hartogs domain is called complete if the condition (z, w) £ fi

implies (z, kw) £ fi for every complex number k of modulus less than one.

It is easy to see that a complete Hartogs domain is nowhere wormlike.

We have previously shown in [10] that completeness (even without pseudo-

convexity) implies regularity of the Bergman projection. If fi intersects the

plane {w = 0}, then pseudoconvexity forces fi to be complete, so the in-

teresting new domains to which Theorem 1 applies do not intersect the plane
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{w = 0}. (In this case the closure fi also does not intersect {w = 0} , in view

of [4, Lemma 1].) Examples 2-4 provide large classes of incomplete Hartogs

domains that satisfy the assumptions of Theorem 1.

Example 2. If {(z, \w\) £ R3 : (z, w) £ fi} is a convex subset of R3, then

fi is nowhere wormlike. If fi is in addition pseudoconvex, then Theorem 1

applies.

Example 3. On the components of Sz that are circles, the normal is constant by

rotation invariance. Therefore those pseudoconvex Hartogs domains for which

none of the slices Sz contain annuli (that is, for which the planar sets Sz all

have empty interior) satisfy the assumptions of Theorem 1.

Example 4. If the Hartogs domain fi admits a defining function p that is

plurisubharmonic in the interior of fi, then fi is pseudoconvex and nowhere

wormlike. Indeed, the plurisubharmonicity implies that dp/dz is a holomor-

phic function of w in the interior of each planar set Sz (see [19, pp. 113-114]).

By rotation invariance, the argument of dp/dz is independent of 9. Hence

dp/dz is constant on each annulus contained in Sz, and so fi is nowhere

wormlike (in view of the observation in Example 3). We note that there ex-

ist nowhere wormlike pseudoconvex Hartogs domains not admitting a defining

function that is plurisubharmonic inside (see [18, 6]).

It is interesting to compare this special case of Theorem 1 with the result of

Bonami and Charpentier from [13] (see also [14]) that if fi (not necessarily

Hartogs) admits a defining function that is plurisubharmonic in the interior,

then the Bergman projection is at least minimally regular: namely, continuous

on the space Wxl2(Çï).

Proof of Theorem 1. The two parts of the theorem are equivalent (see the proof

of Catlin's lemma in [8]). A more general equivalence of regularity for the

Bergman projection and the ¿/-Neumann operator is demonstrated in [11]. We

will now prove part (1) of the theorem.

By interpolation theory, it will suffice to prove this when k is a positive inte-

ger. The first step is to prove an estimate of the form H/VH^o.) < Q-H/H.^jq) ,

with Ck independent of /, under the assumption that fi and Pf are in

C°°(fi). This is a so-called a priori estimate. We proceed by induction on k ,

the case k = 0 holding by definition of the Bergman projection. We will omit

some of the details of the proof, since it is similar to the proof in [10, §1].

As noted above, the rotational symmetry implies that \\(l-<p)Pf\\k < Ck\\fi\\k

when 0 is a smooth cutoff function that equals 1 in a neighborhood of the crit-

ical set 5. It remains to estimate the norm of Pf near the set S, that is, to

estimate \\(pXkPf\\o when X is a vector field transverse to the boundary in a

neighborhood of S1. Suppose we can find such a field of type (1,0) with coeffi-

cients holomorphic in a neighborhood of S that is a close approximation on S

to the normal to the boundary. More precisely, suppose that 4k \argXp\ < n

in a neighborhood of S. (This is Barrett's condition (Ak) from [2, p. 334].)

Take cp to be supported in this neighborhood, and take b in C°°(fi) equal to

Xp/Xp on the support of 0. Then |argM| < n/2 on the support of 0, so

there is a positive number 6 and a positive number a less than one such that

\bk - S\ < a on the support of <j>.
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Applying the lemma from §0 gives

UxkPf\\l<\{Pf,<t>2bkx2kpf)\ + ck\\Pf\\k.i\\Pf\\k.

Adding and subtracting ô in the right-hand factor of the inner product and

using the lemma a second time gives

WXkPf\\2 < S\(Pf, cp2X2kPf}\ + \(bkcpXkPfi, (bk - S)cpXkPfi)\

+ Ck\\Pf\\k_x\\Pf\\k.

We replace the Bergman projection in the left-hand factor of the first inner

product with the identity minus d Nd , where N is the d -Neumann operator.

Moving the d to the other side of the inner product as d and applying the

lemma to the term with the identity gives

\{Pf, cf>2X2kPf)\ < \(Ndf, (X2kPf)(d<p2))\ + Ck\\f\\k\\Pf\\k,

since X2kPf is holomorphic in fi on the support of (p. Now the inner prod-

uct on the right-hand side is Odl/IUII-P/H/t) because the support of dcp2 is

contained in the set where the rotations are transverse. (The operator Nd is

regular on this set; see [9, Proof of Theorem 2].) Consequently,

\\cpXkPfi\\2 < a\\4>XkPf\\2 + Ck(\\f\\k + HP/llfc-OIIP/ll*.

The first term on the right-hand side can be absorbed into the left-hand side.

Invoking the induction hypothesis, and recalling that ||(1 - 4>)Pf\\k is under

control, we obtain

ll^/II^QIiP/iy/Hfc,
from which the desired a priori estimate follows.

Thus the proof of the a priori estimate will be complete if we show how to find

a holomorphic vector field in a neighborhood of S that on S approximates the

normal to ¿fi as closely as we wish to prescribe. To do this, we first associate

to fi a Riemann surface R as in [4, §4] by identifying points (z, wx) and

(z, w2) if both are in fi and if (z, n) is in fi whenever \n\ is between \wx\

and \w2\. The projection n: R —» C taking the equivalence class [(z, w)] to z

is a local biholomorphism, and the map p: fi —^ R taking (z, w) to [(z, w)]

is holomorphic.

By [4, Proposition 1], there is an extension (R, ñ) of (R, n) such that R\R

has no component relatively compact in R. In principle R could have branch

points on the boundary of R (in R ). However, this does not happen in our

situation of a nowhere wormlike fi because, in view of [4, proof of Lemma 2],

there would correspond to such a branch point a component of some Sz on

which the normal does wind a definite amount. Moreover, since fi is both

pseudoconvex and nonwormlike, no slice Sz can have a component of the type

called "interior" in [4, bottom of p. 67] (compare [10, §1]). In this special

situation it is implicit in [4] that there is an extension p of p that maps a

neighborhood of fi holomorphically into R and that maps the critical set S

onto the boundary of R in R .
We apply an approximation theorem on Riemann surfaces. The hypothesis

that n(z, \w\) is constant on each component of each set Sz  means that a



534 H. P. BOAS AND E. J. STRAUBE

continuous function h on the boundary of R in R is well defined by the

formula h(p(z, w)) = n(z, \w\) for (z, w) in S. Choose a point (z0, w0)

in fi such that SZo is empty. The complement of the boundary of R in

R\{[z0, w0]} has no relatively compact component, so by Bishop's theorem (see

[22, Theorem 1.4]), there exists a holomorphic function g on Ä\{[z0, w0]}

that approximates h as closely as desired on the boundary of R. The field

X := (g(p(z, w)), 0) then closely approximates the normal to the boundary

of fi at points of S, and it is holomorphic in a neighborhood of 5.

We have now seen that the existence of a suitable vector field X implies

an a priori estimate for the Bergman projection, and we have seen how to

construct the field. It remains to convert the a priori estimate to a genuine

estimate on Wk(Çl). To do this, exhaust fi by the domains fi£ := {(z, w) :

dist[(z, w), bO.] > e(\z\2 + \w\2)}, which for all sufficiently small positive e

are smooth bounded strictly pseudoconvex Hartogs domains. If the field X ap-

proximates the normal to èfi within say S in a neighborhood K of S, then

the same field X approximates the normal to bQ.c within 26 on V n ôfi£,

uniformly in e for sufficiently small positive e. On bQ.£\V, the rotations

in w are transverse to the boundary, the angle with the normal being bounded

away from zero uniformly in e (for e sufficiently small). Accordingly, the

above argument applies to the approximating domains uniformly in s. Since

the Bergman projection _P£ for the strictly pseudoconvex domain fi£ is of

course regular, and C^fig ) is dense in Wk(í7l¡7), we get the (genuine!) es-

timate \\P£f\\ivk(cic) < Ck\\f\\k for / £ Wk(Q), with Ck independent of e.

Passing to the limit as e goes to zero gives the required conclusion for the

Bergman projection of fi via a slight extension of Ramadanov's convergence

theorem [21 ] for the Bergman kernels. This completes the proof of Theorem 1.

It is interesting to consider what happens if one attempts to apply the above

method of proof to the worm domains denoted fir by Diederich and Fornasss.

In these domains, the critical set S contains an annulus, which consists of

(exactly) the weakly pseudoconvex boundary points. It is easy to see that the

normal direction to the boundary cannot be arbitrarily well approximated on

this annulus by holomorphic fields (compare the discussion in [19, pp. 113-

114]). When r > en¡2, it is even impossible to find a holomorphic field that is

transverse to the boundary on this annulus (see [5, Theorem 4.6]).

However, since the normal to the boundary of fir winds on the critical annu-

lus by 2 log r, a constant field approximates the normal to high accuracy when

r is close to 1 . This means that when r < enl2, one can obtain estimates near

the critical annulus for the Bergman projection in Wk up to a certain level k

that depends on r. The Bergman projection is locally regular on the remaining

(strictly pseudoconvex) part of the boundary, so just as in [8, Example 3] one

obtains some regularity for worm domains that wind only a little. The precise

amount of regularity is determined by Barrett's condition (Ak).

Proposition 1. Let k be a positive integer, or k = 1/2, and suppose that 1 < r <

exp(n/4k). The Bergman projection on the Diederich-Forncess worm domain fir

is continuous on the Sobolev space Ws(Çlr) when 0 < s < k. Also, the d-

Neumann operator is continuous on the space of (0, l)-forms with coefficients in

Ws(Çir) when 0<s<k.
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Sketch of the proof '. The initial step in the argument for k = 1/2 is different

from the case of integral k in [8, Example 3]. One uses that the WXI2(ÇÏ) norm

of a holomorphic function is equivalent to the L2(bQ) norm. Now if 0 is a

cutoff function localized near the critical annulus, and X is a constant vector

field that is transverse to the boundary of fi near this annulus, then

/   cp\Pf\2 da < C  f  <p\Pfi\2\Vp\-x(Xp)do
JbQ JbQ

<C(\(cpXPf,Pf)\ + \\Pf\\2o).
As before, we reduce to a known estimation off the critical annulus (and hence

on the strictly pseudoconvex part of ¿fi ) by replacing P in the right-hand side

of the inner product by / - d*Nd and integrating by parts.

For all k , the continuity of the d -Neumann operator follows from that of

the Bergman projection by [11, formula (4)] in view of the regularity of the

¿/-Neumann operator in (top) degree 2 [17, p. 63].

The fact that the worm domains have a Bergman projection and a d-

Neumann operator regular up to some level in the Sobolev scale has been known

for some time; apparently this was first realized by David Catlin (via a different

argument). We remark that the worm domains to which the proposition ap-

plies are the less pathological ones that do admit a basis of Stein neighborhoods

(see [5]).

The proof of Proposition 1 we have just sketched differs slightly from the

proof of Theorem 1 : the set S in Theorem 1 is not the set of weakly pseu-

doconvex points. The common feature of the two proofs is that off a certain

"critical set" one knows estimates (by the transversality of the rotations in Theo-

rem 1, by strict pseudoconvexity in Proposition 1), and on the critical set S one

can find a vector field of type (1,0) transverse to ¿>fi, with coefficients holo-

morphic in a neighborhood of 5", and with | argXp\ small on 5. This can be

done in other situations as well. We briefly digress from the context of Hartogs

domains to prove the following result, which says that the Bergman projection

and the d -Neumann operator are regular if the set of weakly pseudoconvex

boundary points is precisely an analytic disk.

Proposition 2. Let fi be a smooth bounded pseudoconvex domain in C2 (not

necessarily Hartogs). Suppose there exists a holomorphic embedding cp: D ^-> ¿fi

of the unit disk D into the boundary of fi that extends to a diffeomorphism

between D and (p(D), and suppose y>(D) coincides with the set of weakly pseu-

doconvex boundary points of fi. Then

(1) the Bergman projection is continuous on the Sobolev space WS(Q.) for

every positive real s (and a fortiori is continuous on C°°(fi)), and

(2) the d-Neumann operator is continuous on the space of (0, 1 )-forms with

coefficients in Ws(Çi) for every positive real s (and a fortiori is contin-

uous on (0, lyfiorms with coefficients in C°°(fi)).

By [7], a biholomorphic mapping between smooth bounded pseudoconvex

domains extends smoothly to the boundaries if one of the domains has globally

regular Bergman projection. Accordingly, Proposition 2 implies that the prop-

erty of the weakly pseudoconvex points being exactly an analytic disk (in the

above sense) is a biholomorphic invariant.
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Proof of Proposition 2. As observed in the proof of Theorem 1, the two parts

are equivalent; we prove part (1). We need to produce a vector field X of

type (1,0) with coefficients holomorphic in a neighborhood of cp(D) that is

transverse to the boundary and such that | argXp\ is as small as we wish (near

cp(D) ). By [5, Remark 2.5 and the proof of Theorem 1.1 (p. 13)], there is a
biholomorphic mapping g from the unit ball B in C2 onto a smooth bounded

strictly pseudoconvex domain such that the restriction of g to D x {0} agrees

with cp . In view of [16, Claim, p. 290], the restriction to D x {0} of the unit

complex normal to the hypersurface g~'(¿>fi n g(B)) has the form (0, e'e),

where 0 is a harmonic function in the unit disk D that is smooth on D.

Multiplying by ee, where 0 is a harmonic conjugate of 0 in the disk, gives

a (still normal) field that is holomorphic in B . Pulling this field back via g~x

and approximating it by fields holomorphic in a neighborhood of the (strictly

pseudoconvex) domain g(B) gives the required field X.

The a priori estimate now follows as indicated above. To obtain a genuine es-

timate, fix a neighborhood of <p(D) and approximate fi from inside by strictly

pseudoconvex domains whose Levi forms are uniformly bounded away from

zero outside this neighborhood. By using the same field X for the approx-

imating domains, one obtains uniform estimates and completes the proof of

Proposition 2 the same way as the proof of Theorem 1 above.

2.  A PRIORI ESTIMATES ON BARRETT'S DOMAINS

The proof of Theorem 1 had two steps. The first step was to show that if

both / and Pf are in C°°(fi), then ||P/||Ä < Ck\\fi\\k . This is a so-called a
priori estimate: it holds assuming that Pf is known to be smooth a priori. The

second step was to remove the a priori assumption from the estimate. There is

a wide-spread philosophical belief that it should be possible to accomplish the

second step (by some technical argument) whenever some a priori estimate can

be established. This philosophy is wrong: we show in this section that Barrett's

nonpseudoconvex counterexample domains from [ 1 ] do admit a priori estimates

in Wk(Çl) for every natural number k even though they have irregular Bergman

projections.

We will say that P satisfies an a priori estimate in Wk(il) if there exists

a constant Ck (independent of /) such that ||/V||jt < Qll/lk whenever /

and Pf belong to W^fi). The existence of an a priori estimate in Wk(Q.)

can be interpreted in the following way. View the Bergman projection P as

an unbounded operator on the Sobolev space Wk(ÇÏ) with domain equal to

{/ e Wk(£l) : Pf £ W-^fi)}. Its graph is closed because P is by definition
continuous in the L2 topology. By the closed graph theorem, an a priori es-

timate in Wk(Q.) is therefore equivalent to the domain of P being closed in

Wk(Çï). In this case, P is a bounded operator on its domain.

We now recall the construction of Barrett's counterexample domains from [ 1 ].

These have the form fi := {(z, w) £ C2 : 1 < \w\ < 6, \z - c(\w\)\ > ri(|u;|),

and \z\ < r2(|io|)}, where rx , r2, and c are certain real-valued functions.

Thus fi has circular symmetry in the variable w , and each slice for fixed w

is a disk centered at the origin with a second disk of variable center removed.

The following conditions are imposed on the functions used to define fi :
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( 1 ) on the interval 2 < x < 5 , the function rx equals 1 and the function

r2 equals 4;

(2) r1(l) = r2(l) = r,(6) = r2(6) = 3;

(3) c(x) = 0 when 1 < x < 2 and when 5 < x < 6 ;
(4) c(x) = (x - 3)2J - 1 for x near 3 and c(x) = -(x - 4)2j + 1 for x

near 4, where j is a positive integer;

(5) the functions rx , r2, and c are monotonie on the intervals where they

have not yet been specified, and they are chosen to make fi smooth.

Thus the circles (0, 3e'e) and (0, 4e'e) are contained in the boundary of fi.

Theorem 2. Let fi be one of Barrett's domains, recalled above. Then, even

though the Bergman projection P for fi is irregular, it satisfies an a priori

estimate in Wk(Çï) for each positive integer k. More precisely, there exists a

constant Ck such that if Pf £ Wk(Çï), then the estimate \\Pf\\k < Ck\\f\\k
holds.

We reemphasize that there exists a smooth compactly supported function cp

in fi suchthat Pep i Wk(Q7).

Proof of Theorem 2. We claim the following.

(1) When k > 1, every holomorphic function in Wk(Çi) extends holomor-

phically at least to the set {(z, w) : 1 < \w\ < 6 and \z\ < r2(\w\)} .

(2) When k > 1, every holomorphic function in Wk(Q) can be approxi-

mated in the norm of Wk(Q) by polynomials in z, w , and w~x .

Notice the stark contrast of (2) to the nonapproximation result in [1] for k = 0.

Let us accept the claim for the moment and proceed with the proof of the

theorem. Suppose then that Pf £ Wk(Çl), and we wish to estimate ||.P/||/fc in

terms of \\f\\k. As observed in §1, this estimate is immediate near boundary

points at which the rotations in w act transversely to the complex tangent

space, which includes in particular points for which \z\ = 3. Because Pf

extends holomorphically to {(z,w): 1 < \w\ < 6 and \z\ < r2(|it;|)}, the
maximum principle and Cauchy's estimates imply that the /c-norm of Pf on

the set where \z\ < 3 - 6 is dominated by the supremum of Pf on a compact

subset of fi, and hence by \\Pf\\o , which by definition does not exceed ||/||0 .
The remaining boundary points are those for which simultaneously \z\ > 3 and

dp/dw = 0. Call this critical set S.
At points of S, the holomorphic field X := z(d/dz) is normal. No approx-

imation is required, and essentially the argument from [8, Example 3] gives the

required estimates. For the reader's convenience, we sketch the argument. We

may normalize the defining function p so that Xp = 1 on 5. If 0 is a smooth

cutoff function that is equal to 1 in a neighborhood of the critical set S, and

{gj} is a sequence of polynomials in z, w, and w~x approximating Pf in

Wk(Sl), then the lemma from §0 gives

\(<t>XkPf, <f>Xkgj)\ < \(Pf, 4>2bkX2kgj)\ + Ck\\PfWk-i\\gj\\k »

or, after adding and subtracting 1 on the right-hand side of the inner product,

\(<pXkPf, <t>xkgj)\ < \(Pf, x2kgj)\ + \(Pf, (4>2bk - i)x2kgj}\

+ Ck\\Pf\\k-i\\gj\\k-
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We may assume by induction that ||P/||¿_1 < Q_i||/||í;-i • Since 4>2bk = 1

on S, and the norm of Pf away from S is under control, the right-hand side

is at most

4Pf\\k\\gj\\k + \{Pf, X2kgj)\ + Ck\\f\\k\\gj\\k

for an arbitrary positive e . Because X has holomorphic coefficients, the middle

term is

\(f, X2kgj)\ < Ck\\f\\k\\gj\\k.

Accordingly,

\(<pXkPf, <pXkgj)\ < e\\Pf\\k\\gj\\k + Ck\\f\\k\\gjh ,

where the constant depends on e and k , but not on j . By fixing e sufficiently

small (depending on k ) and passing to the limit as j —> oo, we conclude that

\\Pf\\k 2i Qll/lk ■ Thus the proof of Theorem 2 is reduced to verification of
the claim above.

To verify (1), let h be a holomorphic function in WX(Q,). Observe that

when z is fixed and \z\ > 2, the slice {w £ C : (z, w) £ fi} is an annulus, in

which h has a Laurent expansion h(z, w) = Y^=_00 an(z)wn. The coefficients

an are given by the integrals

w~"   f2n    / \
a„(z) = -^— /    h(z, weiej e'1"6 dB.

Here w can be any point contained in the slice, and consequently the an

continue holomorphically from the annulus {2 < \z\ < 4} to the annulus

{0<|z| <4}.
Even more is true. Differentiating under the integral sign and applying Fu-

bini's theorem implies that the an are in Wx(Çl), and in particular in L4(fi)

by the Sobolev embedding theorem. By [1, Lemma 3], the a„(z) extend holo-

morphically to the disk {\z\ < 4}.
Our goal is to show that the Laurent series X^l-oo an(z)wn converges when

|z| < 3 and 1 < \w\ < 6 . By the classical lemma of Hartogs, the sum of the se-

ries will be holomorphic. Consider the sum of the terms for which n is positive.

The upper semicontinuous regularization of limsup,,^^ \an(z)\xl" in the disk

{\z\ < 4} is a subharmonic function (in view of the above integral formula and

the maximum principle, the sequence {la«!1/"} is locally uniformly bounded)

that is at most equal to 1/6 when \z\ = 3. By the maximum principle, it does

not exceed 1/6 in the disk {\z\ < 3}. Consequently the series Y,n<Loan(z)w"

converges for |z| < 3 and \w\ < 6. After the inversion w h-> w~x , the same

argument shows that J2ñ=-<x>an(z)w" converges for \z\ < 3 and \w\ > 1 .

This proves part ( 1 ) of the claim.

To prove (2), consider for small positive ô the Reinhardt domain R :=

fiu{(z, w) : 1 +ô < \w\ < 6-3 and \z\ < 3}. By claim (1), every holomorphic

function in Wk (fi) extends to R, and the argument used at the beginning of the

proof of Theorem 2 shows that this extension is in Wk(R). The extension has a

series expansion in powers of z, w , and w~x that converges in Wk(R) (since

the monomials are orthogonal in Wk of approximating Reinhardt subdomains),

and since fi c R, part (2) of the claim is proved. This completes the proof of

Theorem 2.
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We remark that we know no smooth bounded domains that fail to admit a

priori estimates for the Bergman projection.

Note added June 1990. Using techniques related to the ones we develop in this

paper, we recently showed [ 12] that the Bergman projection and the d-Neumann

operator are regular in Ws for all positive 5 in every smooth bounded domain

in C" (not necessarily Hartogs) admitting a defining function that is plurisub-

harmonic on the boundary. This result contains the above-mentioned theorem

of Bonami and Charpentier.

Note added November 1990. Recently Barrett [3] has shown that the Bergman

projections for the worm domains fif are not continuous on the Sobolev space

Wk(Çlr) when k > n/(2lo%r). Continuity in the space C°°(fir) remains open.

References

1. David E. Barrett, Irregularity of the Bergman projection on a smooth bounded domain in

C2 , Ann. of Math. (2) 119 (1984), 431-436.

2. _, Regularity of the Bergman projection and local geometry of domains, Duke Math. J.

53(1986), 333-343.

3. _, Behavior of the Bergman projection on the Diederich-Fornass worm, Acta Math, (to

appear).

4. David E. Barrett and John Erik Fornass, Uniform approximation of holomorphic functions

on bounded Hartogs domains in C2 , Math. Z. 191 (1986), 61-72.

5. Eric Bedford and John Erik Fornaess, Domains with pseudoconvex neighborhood systems,

Invent. Math. 47 (1978), 1-27.

6. Mechthild Behrens, Plurisubharmonische definierende Funktionen pseudokonvexer Gebiete,

Schriftenreihe des Math. Inst. Univ. Münster, Ser. 2, Heft 31, Univ. Münster, Münster,

1984.

7. Steven R. Bell, Biholomorphic mappings and the 0-problem, Ann. of Math. (2) 114 (1981),

103-113.

8. Harold P. Boas, Small sets of infinite type are benign for the d-Neumann problem, Proc.

Amer. Math. Soc. 103 (1988), 569-578.

9. Harold P. Boas, So-Chin Chen, and Emil J. Straube, Exact regularity of the Bergman and

Szegö projections on domains with partially transverse symmetries, Manuscripta Math. 62

(1988), 467-475.

10. Harold P. Boas and Emil J. Straube, Complete Hartogs domains in C2 have regular Bergman

and Szegö projections, Math. Z. 201 (1989), 441-454.

11. _, Equivalence of regularity for the Bergman projection and the d-Neumann operator,

Manuscripta Math. 67 (1990), 25-33.

12. _, Sobolev estimates for the d-Neumann operator on domains in C" admitting a defin-

ing function that is plurisubharmonic on the boundary, Math. Z. 206 (1991), 81-88.

13. Aline Bonami and Philippe Charpentier, Une estimation Sobolev 1 /2 pour le projecteur de

Bergman, C. R. Acad. Sei. Paris Sér. I Math. 307 (1988), 173-176.

14. _, Boundary values for the canonical solution to  d-equation and  Wxl2   estimates,

preprint.

15. Klas Diederich and John Erik Fornsss, A strange bounded smooth domain of holomorphy,

Bull. Amer. Math. Soc. 82 (1976), 74-76.

16. _, Pseudoconvex domains:  an example with nontrivial Nebenhülle, Math. Ann. 225

(1977), 275-292.

17. G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex,

Ann. of Math. Stud., No. 75, Princeton Univ. Press, Princeton, N.J., 1972.



540 H. P. BOAS AND E. J. STRAUBE

18. John Erik Fornaess, Plurisubharmonic defining functions, Pacifie J. Math. 80 (1979), 381 —
388.

19. John Erik Fornaess and Berit Stensenes, Lectures on counterexamples in several complex

variables, Princeton Univ. Press, Princeton, N. J., 1987.

20. Christer Kiselman, A study of the Bergman projection in certain Hartogs domains, paper

presented at the 1989 AMS Summer Research Institute on Several Complex Variables,

Santa Cruz.

21. I. Ramadanov, Sur une propriété de la fonction de Bergman, C. R. Acad. Bulgare Sei. 20

(1967), no. 20, 759-762.

22. Stephen Scheinberg, Uniform approximation by functions analytic on a Riemann surface,

Ann. of Math. (2) 108 (1978), 257-298.

23. Nessim Sibony, Un exemple de domaine pseudoconvexe régulier où l'équation du = f

n'admet pas de solution bornée pour f bornée, Invent. Math. 62 (1980), 235-242.

24. Emil J. Straube, Exact regularity of Bergman, Szegö, and Sobolev space projections in non

pseudoconvex domains, Math. Z. 192 (1986), 117-128.

Department of Mathematics, Texas A&M University, College Station, Texas 77843-

3368
E-mail address, H. P. Boas: hpb8640@venus.tamu.edu

E-mail address, E. J. Straube: ejs5155@venus.tamu.edu


