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MAXIMAL TRIADS AND PRIME DECOMPOSITIONS
OF SURFACES EMBEDDED IN 3-MANIFOLDS

MICHAEL MOTTO

Abstract. In 1975, Suzuki proved that prime decompositions of connected

surfaces in S3 are unique up to stable equivalence of the factors. This paper

extends his result to a large class of 3-manifolds, and demonstrates that this

result does not apply to all 3-manifolds. It also answers a question he raised by

showing that it is possible for inequivalent surfaces in S3 of the same genus

to be stably equivalent. The techniques used involve the notion of Heegaard

splittings of 3-manifold triads.

In 1975, Suzuki proved in [Su] that prime decompositions of connected sur-

faces in S3 are unique up to stable equivalence of the factors. This paper will

extend his result to all two-sided surfaces (not necessarily connected) embed-

ded in 3-manifolds which do not possess any nonseparating 2-spheres. It will

also provide a counterexample demonstrating that this result does not apply to

3-manifolds which do possess nonseparating 2-spheres.

The goals of the first two sections are to summarize material that appears

elsewhere, and to establish the conventions to be used here. The third section

describes the maximal triad for a surface embedded in a 3-manifold, which is

the primary tool that will be used in our proofs. Section 4 is devoted to proving

the main results. The last section takes a closer look at stable equivalence of

surfaces in S3, and answers a question raised by Suzuki in [Su].

1. Surfaces, connected sums, and stabilization

Throughout this paper, the term surface will refer to a pair (M, F), where

M is a compact, connected 3-manifold, and F is a compact 2-manifold which

is tame, two-sided, and properly embedded in M. Certain special surfaces are

the following. (S3, S2) is a 2-sphere embedded in S3. (S3, T2) will denote

an unknotted torus in S3, one which bounds a solid torus on both sides, or in

other words, a torus which forms a Heegaard splitting of S3. (B3, D2) will

denote a disk properly embedded in a 3-ball.
We define a binary operation # for surfaces, called connected sum. Let

(Mi, Fi) and (M2, F2) be two surfaces. For i = 1, 2, let B, c IntM, be a

tame 3-ball such that (B¡, B¡ n F¡) = (B3, D2). Let

h : (dBi ,FxndBi)^ (dB2, F2 n dB2)
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be a homeomorphism. Construct a surface (M, F) as follows. Let M be

the manifold obtained by gluing Mx - lnXBx and M2 - lnXB2 using h , and

let F be the manifold obtained by gluing Fx - Int Bx and F2 - Int B2 using

h restricted to Fx n dBx. We write (M, F) = (Mx, F-)#(Af2, ^2), and refer
to (Mx, Fx) and (M2, F2) as factors of the connected sum. This operation is

not well-defined due to the arbitrary nature of the component of F¡ which B¡

intersects, and since there are four choices (up to isotopy) of homeomorphism

h for any choice of Bx and B2. Of course, in some cases different choices of

Bx, B2, and h will yield surfaces that are homeomorphic. For example, the

connected sum of n copies of (S3, T2) is a genus n Heegaard splitting of S3,

which is unique up to homeomorphism within S3 ; we will denote this surface

by n(S3, T2).

In the special case of (Mx, FX)#(S3, F2) = (M, F), note that Mx s M, so
we may think of Mx and M as the same 3-manifold. Viewed this way, we see

that (M, F)#(S3, S2) = (M, F) for any surface (M, F). Another important

connected sum involving S3 is (M, F)#(S3, T2), which is called an order

one stabilization of (M, F). Any two order one stabilizations of (M, F) are

ambient isotopic in M, provided they involve the same component of F. A

stabilization of (M, F) is a surface obtained by a finite sequence of order

one stabilizations on (M, F). Two surfaces (M, Fi) and (M, F2) in the

same 3-manifold are stably isotopic if and only if there exist stabilizations of

both surfaces which are ambient isotopic in M. Two surfaces (Mi, Fx) and

(M2, F2) are stably equivalent if and only if there exists a homeomorphism

h : Mi —> M2 such that (M2, h(Fx)) and (M2, F2) are stably isotopic. The

reader is warned that the term "stably equivalent" is more traditionally used to

refer to our notion of "stably isotopic."

Given any surface (M, F), can it be expressed as a connected sum where
neither factor is (S3, S2) ? If it cannot, then (M, F) is prime. By convention,

(S3, S2) is not considered to be a prime surface. It is natural to ask whether

every surface can be represented as a connected sum of prime factors, and if

so, whether there is any sense in which such a representation is unique.

Let (M, F) be a surface. Define a set S of disjoint 2-spheres in IntAf to

be a decomposition system (of spheres) for the surface if and only if for every

S £ S, S separates M and S intersects F transversely in a single simple

closed curve. The elements of S are decomposition spheres for the surface. Let

P be the set of all surfaces (R, G) for which R is the closure of a component

of M - IJS, and G = F n R. Let F be the set of all surfaces (M', F')
obtained from (R, G) £ P by attaching copies of (B3, D2) to all elements of

S in dR. The elements of F are the factors of the decomposition (the notation

P was motivated by "punctured factors"). Note that there is a clear one-to-one

correspondence between elements of P and F. We may also refer to F as F(S)

or ¥(M, F ; S) in case of ambiguity (likewise for P). It should be pointed out

that we want to think of (R, G) £ P as actually being contained in (M, F),

and equaling the intersection of (M, F) and (M', F') £ F.

The point of all this is that if S is a decomposition system for (M, F),

then (M, F) is a connected sum of the factors F. Such a set of factors, or

the expression of (M, F) as a connected sum of such a set of factors, is a

decomposition of (M, F). If all of the factors are prime, then we have a prime

decomposition, and S is a prime decomposition system.
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By a fairly standard argument using a complexity function on (M, F), which

in this case would involve the number of components of F and dF, the genus

of F, and the number of factors in any prime decomposition of M as a 3-

manifold, it is easy to prove the following theorem.

Theorem 1.1. Every surface (M, F) other than (S3, S2) has a prime decom-

position.

The question remains as to whether such decompositions are unique in any

sense. Suzuki's result, mentioned above, is the following.

Theorem 1.2 (Suzuki, 1975). If a connected surface (S3, F) has two prime de-

compositions

(S3 ,F) = (S3,FX)#--- #(S3, Fm)#p(S3, T2)

= (S3,F()#---#(S3,F¿)#q(S3,T2)

with (S3, F¡), (S3, Fj) ¥ (S3, T2), then m = n and, after reordering if neces-

sary, for every i - 1, ... , n we have that (S3, F¡) is stably isotopic to (S3, F¡).

In general, we will say that a surface (M, F) has unique prime decom-

positions up to stable equivalence if the following holds. Let S and S' be

any two prime decomposition systems for the surface. Let {(M¡, F,)}™, and

{(M¡, F¡)}"=1 consist of those factors in F(S) and F(S') respectively which

are not homeomorphic to (S3, T2). Then m = n and, after reordering if nec-

essary, for every i = I, ... , n we have that (M¡, F¡) is stably equivalent to

(M\ ,F[). Furthermore, in the category where M is oriented, we would prefer

to be able to claim that the homeomorphisms involved in the stable equiva-

lences, hi : Mi —> M\, are orientation-preserving. Our primary concern here is

the determination of which surfaces possess this property.

2. Three-manifold triads

A triple (M ; Bx, B2) is a 3 -manifold triad if M is a compact 3-manifold,
if Bi, B2 c dM are disjoint (possibly empty) compact 2-manifolds, and if

dM-(BiUB2) is homeomorphic to dBx x / with dBx = dBx x 0 and dB2 =
dBx x 1 . A triad may be viewed as a cobordism between compact 2-manifolds

Bi and B2.

Recall that a Heegaard splitting of a closed 3-manifold may be viewed as

a surface which separates the 3-manifold into two handlebodies. In order to

generalize the notion of Heegaard splitting to triads, we must first generalize the

notion of a handlebody. A compression body is a triad (W ; d-W, d+W) with

d+ W ^ 0, which has a decomposition into a collar of d+ W and 2-handles and

3-handles attached to this collar, and which is furthermore required to have

no 2-sphere components in d-W. The last requirement implies that W is

irreducible (all 2-spheres in W bound 3-balls in W). Furthermore, for any

compression body W, d-W is incompressible in W (there is no disk in W

whose boundary is an essential simple closed curve in d- W). Note that any

handlebody is a compression body. We will usually refer to a compression body

(W; d-W, d+W) simply as W.
By considering a dual to the collar and handle decomposition described

above, one can obtain an equivalent definition for a compression body, to wit:
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(W ; d-W, d+W) is a compression body if and only if d-W has no 2-sphere

components and W has a decomposition into a collar of d- W and 0-handles

and 1-handles. It is due to this definition that compression bodies are also

known as hollow handlebodies, and d- W and d+ W are referred to as the in-

terior boundary and exterior boundary of W respectively.

An optimal handle decomposition for a compression body W is one in which

we minimize the number of 3-handles (or 0-handles). In particular, an optimal

2- and 3-handle decomposition for a connected compression body W has one

3-handle if d-W - 0 and no 3-handle if d-W is nonempty. Likewise for

0-handles. A complete disk system D for a compression body W is a disjoint

union of properly embedded disks, which may be viewed as the cores of the

2-handles in some optimal 2- and 3-handle decomposition, with boundaries

extended vertically to d+W.
A Heegaard splitting of a triad (M ; Bi, B2) is a surface (M, F) such that

F is disjoint from Bx and B2, and which separates M into two compression

bodies Wx and W2 such that F is their common exterior boundary and /3, is

the interior boundary of W¡. Note that this is only possible if Bx and B2 have

no 2-sphere components. If dM = 0 , this corresponds exactly with the notion

of a Heegaard splitting of a closed 3-manifold. The following is a theorem that

is proven in a manner completely analogous to the case for a closed 3-manifold.

Theorem 2.1. If a 3-manifold triad (M ; Bx, B2) has no 2-sphere components

in Bx or B2, then it possesses a Heegaard splitting.

A classical result known as the Reidemeister-Singer Theorem states that any

two Heegaard splittings of a closed 3-manifold are stably isotopic. This state-

ment and its proof readily generalize to say the same thing about triads.

Theorem 2.2. Any two Heegaard splittings of a 3-manifold triad are stably iso-

topic.

Proofs of the classical statement may be found in [Re, Sin, Cr, and Sie].

Waldhausen states the above generalization without proof in [W], for the case

of a triad (M ; Bx, B2) in which Bx and B2 are closed. A proof of the theorem

as it is stated here may be found in [M]. It is this theorem which will allow us

to conclude that the factors of our surface are stably equivalent, by obtaining

those factors as Heegaard splittings of the same triads, which will themselves be

factors of a triad corresponding to the original surface. So we need to discuss

connected sum decompositions of triads.

The connected sum of two triads is defined by

(M ; 73, , B2)#(M' ; B[, B2) = (M#M' ;BXUB[,B2U B'2),

where M#M' is the standard connected sum of two 3-manifolds obtained by

removing one 3-ball from each of InXM and Int M' and gluing the result-

ing boundaries together. Our definitions for decompositions of triads are very

similar to those we made for surfaces. A decomposition system for a triad

(M ; Bx, B2) is a set S of disjoint separating 2-spheres in Int M. The set

P = P(S) = P(M;BX. B2;S)

consists of all triples (R; C\, C2) for which R is the closure of a component

of M - IJ S, and C,• = R n B¡. These are not triads due to the spheres of S
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in dR, but note that dCx x / c dR. The set of factors F is obtained from P

by capping off 2-spheres of S in dR with 3-balls for every (R ; Ci, C2) £ P.
The factors are 3-manifold triads, and (M ; Bi, B2) can be obtained as a con-

nected sum of the factors. Note that a factor (M' ; Cx, C2) which corresponds

to (R ; Ci , C2) £ P has the same 2-manifolds Ci and C2 in the triple. A

decomposition is nontrivial if and only if none of the factors are (S3 ; 0, 0).

A triad is prime if it has no nontrivial decompositions. A prime decomposition

system is one all of whose factors are prime. It follows immediately that a

triad (M; Bx, B2) is prime if and only if M is prime as a 3-manifold, that a

decomposition of a triad (M ; Bx, B2) is a prime decomposition if and only if

it provides a prime decomposition of M as a 3-manifold, and that every triad

has a prime decomposition.

Likewise, uniqueness of prime decompositions of 3-manifold triads follows

from uniqueness of prime decompositions of 3-manifolds, but we need to

strengthen the usual statement of uniqueness with the following theorem. As

with 3-manifolds, we require that if M is nonorientable, then the prime de-

compositions under consideration must have no factors of S2 x Sx (the choice

of decomposition spheres may be changed so as to replace a factor of S2 x Sx

with a nonorientable 2-sphere bundle over Sx).

Theorem 2.3. Let (M; Bx, B2) be a triad and let S and S' be prime decompo-

sition systems of this triad with associated sets of factors F = {(Mi ; Cu, C,2)}™ ,

and F' = {(M¡ ; C'n , C'¡2)}"=1, and satisfying the property that if M is nonori-

entable, then no factor is (S2 x Sx ; 0, 0). Then m = n and, after reordering,

for every i = 1, ... , n :

(1) dM¡ = Mt C\dM = M¡r\dM = dM¡,
(2) there exists a homeomorphism h¡ : (M¡ ; C¡x, C¡2) —* (M\ ; C'n , C¡2),

(3) h¡\dMj is the identity (thus note CiX = C'ñ and Ci2 = C'i2), and
(4) if M is oriented, then h¡ is orientation-preserving.

Proof. All of this follows from considering S and S' as providing prime de-

compositions of M as a 3-manifold, except that conclusions (1) and (3) are

not usually included in the statement of the theorem. In order to see that

these conclusions are valid, consider a proof such as that in [He, Chapter 3].

Let P and P' correspond to F and F', with, for example, (R¡ ; C¡x , C¡2) £

P corresponding to (M, ; Cu, Ci2) £ F. One constructs a sequence S =

So, S), ... , S„ = S' of prime decomposition systems where each Sk+\ is ob-

tained from Sk by replacing one 2-sphere with another, causing an exchange

between two /?,, Rj £Pk of a punctured 3-sphere not meeting d M. This pro-

vides a sequence from (Rm ; Cmi, Cm2) £ P to (R'n ; C'nX, C'n2) £ P' (renum-

bering if necessary) through additions or subtractions of punctured 3-spheres not

affecting the boundary, and thus provides an (orientation-preserving) homeo-

morphism between (Mm ; CmX, Cm2) and (M'n ; C'nX, C'n2) which is the identity

on their boundary.   D

Our plan is to consider prime decompositions of a surface, show that these

may be viewed as decompositions of a certain 3-manifold triad, and that they

will in fact be prime decompositions of this triad. In doing this we will need the

following lemma, which is stated here essentially as it appears in [CG, Lemma

1.1], and which is a generalization of a result in [Ha] (an account of whose proof
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is also given in [Ja, Chapter 2]). A proof of a version of this lemma appears in

[BoO].

Lemma 2.4. Let (M, F) be a Heegaard splitting of (M'; Bx, B2). Let S be
a disjoint union of essential 2-spheres and disks properly embedded in M with
dS c (Bi U B2). Then there exists a similar disjoint union of essential 2-spheres
and disks S' in M such that

(1) there exists a sequence S = Sq, Si , ... , S„ = S' where S¡+i is obtained

from Si either by ambient isotopy or by surgery along a disk D with dD c S¡,

InXDnSi = 25, and DnF = 0,
(2) each component of S' meets F in a single simple closed curve, and
(3) there exist complete disk systems Dx and D2 for the two compression

bodies on either side of F such that DxnS' = D2C\S' = 0.
Furthermore, if M is irreducible (and therefore S consists of disks), then S' is

ambient isotopic to S.

3. The maximal triad of a surface

In the previous section, we mentioned that there will be a certain 3-manifold

triad associated with the surface. We are now ready to define this object, which

will be called the maximal triad of the surface. We will only define the maximal

triad (and will only need to use it) for surfaces (M, F) for which the 3-manifold

M - F is irreducible.
Let (M, F) be a surface for which M-F is irreducible. A triad {T; Bx, B2)

is a maximal triad for (M, F) if and only if the following conditions are

satisfied:

(1) TCM,
(2) the components of Bx and B2 are either properly embedded in M or

lie in dM, dT- (Bx UB2) is contained in dM, and no component of Bx u B2

is parallel to dM in M - F ,
(3) no component of Bx U B2 is a 2-sphere,

(4) Bx U B2 is incompressible in the closure of M - T, and

(5) F is a Heegaard splitting of (T; Bx, B2).
Note that if M is oriented, then it induces a canonical orientation on T. We

immediately set about proving existence and uniqueness of maximal triads.

Theorem 3.1. Every surface (M, F) for which M-F is irreducible possesses a

maximal triad.

Proof. Since F is two-sided in M, let M' = Fx[-l,l] be a bicollar of F
in M, and let B\ = F x 1 and B'2 = F x -1 . If either B[ or B'2 has any

component parallel to dM in M-F, then thicken the bicollar to the boundary

at that place. We now have a triad (M' ; B[, B2) which satisfies conditions (1),

(2), and (5). Let A' be the closure of M - M'.
If either B[ or B2 is compressible into A', then add a 2-handle to M' with

core a compressing disk. F remains a Heegaard splitting since on each side of

F there is a collar of F with 2-handles attached to this collar. Continue adding

such 2-handles until there are no more such compressing disks; the process must

terminate since the addition of each 2-handle reduces the genus of B[ or B2. At

this stage we have a triad (M"; B{', B2) which satisfies every condition except

(3). Of course, if during the additions of the 2-handles any component of B['



SURFACES embedded in 3-MANIFOLDS 857

or B2 becomes parallel to dM in M - F , then M" should be thickened to

the boundary at that place. Let A" be the closure of M - M" .

Now if any component S of B'{ U B2 is a 2-sphere, then irreducibility of

M-F implies that S bounds a 3-ball B in M - F, and necessarily B c A" .
So add B to M" and remove S from B[' or B2 . Do this with all 2-sphere

components of B'( U B2 . The result is a triad (T; Bx, B2) which satisfies all

five conditions, and is therefore a maximal triad for the surface.   D

In order to prove uniqueness, we rely on the work of [Bo, §2], in which

Bonahon proves that for M irreducible, dM possesses a maximal compression

body W c\M with d+W = d M, which is unique up to ambient isotopy of M

with dM fixed. This work immediately generalizes to prove, for any compact

2-manifold F c dM, that a maximal compression body in M whose exterior

boundary is F is unique up to ambient isotopy in M with F fixed. The basic

idea of his proof is that a system of disks with boundary in F , and therefore

compression bodies with exterior boundary F , can be isotoped into the interior

of a maximal compression body, and that two maximal compression bodies, one

inside the other, have parallel interior boundaries.

In order to be consistent about the numbering, we suppose that for a given

surface F we can refer to the two "sides" of F as side 1 and side 2. In

other words, for a sufficiently thin bicollar F x [-1, 1] (one contained in every

maximal triad of F under consideration) refer to F x 1 as side 1, and Fx-1

as side 2. Then for any maximal triad (T; Bx, B2) for F, require that the

compression body with Bx as interior boundary must contain side 1, and the

compression body with B2 as interior boundary must contain side 2.

Theorem 3.2. Let (M, F) be a surface with M-F irreducible. Then any two

maximal triads for (M, F) are unique up to an ambient isotopy of M with F

fixed.

Proof. Let (T; Bx, B2) and (V ; B[, B'2) be two maximal triads for (M, F).
Let C = Fx[-l, 1] bea bicollar for F in M, which is contained in both
maximal triads. Let A be the closure of M—C, and note that A is irreducible.

Let G be the union of F x 1 and Fx-1, and note that G c d A. Let W and
W' be the closures of T - C and V - C respectively. Then W and W' are

maximal compression bodies for G in A, and by [Bo] they must be ambient

isotopic in A with G fixed. This isotopy easily extends to an ambient isotopy

of M with F fixed, which takes one maximal triad to the other.   D

Our main reason for studying maximal triads of surfaces is the fact that

they provide information on whether two surfaces are stably isotopic. This is

accomplished by the following theorem.

Theorem 3.3. Let (M, F) and (M, F') be two surfaces in the same 3-manifold

such that M-F and M-F' are irreducible. (M, F) and (M, F') are stably
isotopic if and only if they have the same maximal triad (up to ambient isotopy

in M).

Proof. If they have the same maximal triad, then they are both Heegaard split-

tings of this triad, and so they are stably isotopic by the Reidemeister-Singer
Theorem (Theorem 2.2). So now suppose that (M, F) and (M, F') are stably

isotopic. Then there exists a surface (M, F") which is a stabilization of both.
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Construct a maximal triad for (M, F) in the following way. Let Ci, ... ,C„

be disjoint 3-balls in M which we remove to perform the connected sum of n

copies of (S3, T2) in order to stabilize (M, F) to (M, F"). So we replace

each disk of C, n F with an unknotted punctured torus inside C,. Since these

punctured tori compress on both sides, we can start building a maximal triad for

(M, F") by taking a bicollar and adding 2-handles with cores these compressing

disks, in such a way that these 2-handles fill in each of the 3-balls C, entirely.

The resulting 3-manifold at this stage is then a bicollar of F, since it consists

of each 3-ball C, and a bicollar of F" - lj"=1 C, = F - \J"=l C,. Now continue
to build a maximal triad by adding 2-handles and 3-handles as in the proof of

the theorem above. The result is a triad (T; Bx, B2) which is a maximal triad

for both (M,F) and (M, F").
Likewise build a triad (T';B[,B-) which is a maximal triad for both (M, F')

and (M, F"). Now M-F" is irreducible, and by the previous theorem we can

perform an ambient isotopy in M (with F" fixed) taking the maximal triad

(T1 ; B[, B'2) of (M, F") to the maximal triad (T;BX,B2) of (M, F"). We

therefore have an ambient isotopy of M between maximal triads for (M, F)

and (M,F').   D

4. Uniqueness of prime decompositions

We are now ready to use maximal triads to help us prove theorems on unique-

ness of prime decompositions of surfaces. Our first task is to show how a de-

composition of a surface gives rise to a decomposition of its maximal triad.

Lemma 4.1. Let (M, F) be a surface such that M-F is irreducible, and let S

be a decomposition system for the surface. Then we may assume without loss of

generality that S is contained in the interior of the maximal triad of (M, F).

Proof. Each sphere of S meets the interior of F in a single simple closed curve.

Choose a bicollar of F in M such that the spheres of S meet this bicollar in

vertical annuli. For each sphere S in S, this bicollar separates S into two

disks; add two 2-handles to the bicollar whose cores are these disks. When this

is done we have a triad containing S in its interior. Now add 2-handles and

3-handles to complete this triad to a maximal triad for the surface.   □

Note also in the previous lemma that since the spheres of S separate M,

they must also separate the maximal triad. Thus if F is connected, and there-

fore its maximal triad is connected, then S is a decomposition system for the

maximal triad. Now for every (Q; Cx, C2) £ P(T; Bx, B2; S) there exists a

unique (R, G) £ P(M, F ; S) such that Q c R . Then we may view the copies

of (B3, D2) with which we cap off members of P(M, F;S) to obtain the

factors F(M, F ; S) as providing the 3-balls with which we cap off members

of V(T;B\,B2; S) to obtain the factors ¥(T; Bx, B2 ; S). Thus there is a
one-to-one correspondence between factors (V ; Cx, C2) of the maximal triad

and factors (M', F') of the surface such that F' c V c M'. We now need to

conclude that these corresponding factors are related in the way that one would

hope.

Theorem 4.2. Let (M, F) be a connected surface such that M-F is irreducible,

let (T; Bx , B2) be the maximal triad for this surface, and let S be a decompo-

sition system for the surface which is contained in the interior of the maximal
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triad. If (M', F') and (T';CX,C2) are corresponding factors of the surface

and the maximal triad, then (V ; Ci, C2) is the maximal triad for (M', F').

Proof. Let (R,G)£ P(M ,F;S) correspond to (M', F'), and (Q;Ci, C2) e
P(T; Bi, B2 ; S) correspond to (V ; Ci, C2). In the proof of the previous

lemma, we built the maximal triad for (M, F) by first taking a bicollar of F

and adding 2-handles containing disks in the spheres of S as cores. (Q ; Cx, C2)

is obtained by taking the intersection of this object with R (which provides a

bicollar of G plus 2-handles lying on the 2-sphere boundary components), and

then adding 2-handles and 3-handles that lie within R. In the copies of B3
which capped off R, we also take a bicollar of D2, thus having a bicollar of

the entire 2-manifold F', and then add the two 3-handles in B3 which meet

this bicollar and the two 2-handles lying along the boundary. This will be a

maximal triad for (M1, F'), and is in fact (T' ; Cx, C2).   U

We now turn our attention to prime decompositions. We would like to con-

clude that a prime decomposition of the surface corresponds to a prime decom-

position of its maximal triad, but we need to make an exception for certain

3-manifolds which contain nonseparating 2-spheres.

Theorem 4.3. Let (M, F) be a prime, connected surface such that M-F is

irreducible and such that no nonseparating 2-sphere in M intersects F in a

single simple closed curve. Let (T; Bx, B2) be the maximal triad for (M, F).

Then either (T;BX, B2) is prime, or (M, F) = (S3, T2) and T = S3.

Corollary 4.4. Let (M, F) be a connected surface such that M-F is irre-

ducible and such that no nonseparating 2-sphere in M intersects F in a single

simple closed curve. Then any prime decomposition of (M, F) corresponds to a

decomposition of its maximal triad into factors each of which is either prime or

trivial.

Note that the condition on nonseparating 2-spheres is certainly satisfied if M

contains no nonseparating 2-spheres at all. For M orientable, this is equivalent

to saying that M has no factor of S2 x Sx .

Proof of Theorem. (M, F) is a Heegaard splitting of (T; Bx, B2). Thus if
T = S3, then (M, F) is a Heegaard splitting n(S3, T2) of S3, and the fact

that it is prime implies that n = 1 .

Now suppose that T ^ S3, and assume that (T ; Bi, B2) is not prime. Then

there exists a nontrivial decomposition sphere 5" for this triad. By Lemma 2.4

there exists an essential 2-sphere 5" in T which meets F in a single simple

closed curve. S' must separate M since M contains no nonseparating 2-

sphere which meets F in a single simple closed curve. Since (M, F) is prime,

5" induces a decomposition

(M, F) = (M', F')#(S3, S2).

But this implies that S' bounds a 3-ball in M and thus in T, contradicting

the fact that it is supposed to be essential. Thus there can exist no such non-

trivial decomposition sphere S for the triad, and therefore (T; Bx, B2) must

be prime.   D

Our condition on nonseparating 2-spheres was necessary to prevent the pos-

sibility of a 2-sphere which separates the maximal triad (T; Bx, B2) but which
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Figure 1

does not separate the 3-manifold M. Is this in fact possible? The answer is

yes, as the following example shows. Let M be S2 x Sx with the interior of

a 3-ball removed. Let F be an annulus properly embedded in M such that a

nonseparating 2-sphere of M meets F transversely in a single simple closed

curve (see Figure 1). Now any 2-sphere in M which intersects F in a single

simple closed curve is either nonseparating or induces a trivial decomposition,

and therefore (M, F) is prime. The maximal triad (T;BX,B2) is obtained

by adding a single 2-handle on each side of F, and on one side thickening

to the boundary of M. Bx will consist of two disks on dM, and B2 will

consist of two disks properly embedded in M. The cores of the two 2-handles

join to give a 2-sphere which is nonseparating in M but does separate T,

and induces a decomposition of the triad both of whose factors are copies of

(D2 x I ; D2 x 0, D2 x 1 ). Therefore the maximal triad of this prime surface is

not prime.

We are now ready to prove that a surface (M, F) has unique prime decom-

positions up to stable equivalence, provided that no nonseparating 2-sphere of

M is disjoint from F or meets it in a single simple closed curve. We will ac-

complish this in stages, first for M-F irreducible and F connected, then for

F not connected, and finally for M-F reducible. We start with F connected

because it is easier to follow what is happening in this situation.

Theorem 4.5. Let (M, F) be a connected surface such that M-F is irreducible

and no nonseparating 2-sphere of M meets F in a single simple closed curve.

Then (M, F) has unique prime decompositions up to stable equivalence.

Proof. Let S and S' be two prime decomposition systems for (M, F), and

assume without loss of generality that both are contained in the maximal triad

(T; Bx, B2) of (M, F). Let {(M,, F)}™, and {(M¡, F/)}f=1 consist of those

factors in F(M, F ; S) and ¥(M ,F;S') respectively which are not (S3, T2).

Let {(Tí; CiX, C;2)}™, and {(T[, C(',, C'i2)}"=i be the corresponding factors in
F(T; Bi, B2 ; S) and F(T; Bx, B2 ; S'), which in each case are exactly those
factors of the maximal triad that are prime. Since all of the other factors

are trivial, the factors of the maximal triad listed above provide two prime

decompositions of the maximal triad. Note that no factor of the triad is (S2 x

Sx ; 0, 0) since the fact that some factor of the surface would have to be a

Heegaard splitting of this triad factor (necessarily of genus 1 since it is prime

and by [W] every Heegaard splitting of S2 x Sx is a stabilization of the standard

genus 1 splitting) would imply that there exists a nonseparating 2-sphere in M
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which meets F in a single simple closed curve. Therefore by Theorem 2.3,

m = n and, after reordering, for every i = I, ..., n:
(1) dT¡ = dT!,
(2) there exists a homeomorphism h¡ : (T¡; Cu , C,2) —> (T'¡ ; C'n , C'¡2),

(3) hj\8Ti is the identity, Cn = C'n , Ci2 = Ci2, and
(4) if M is oriented, then h¡ is orientation-preserving.

Assume that the reordering is also performed on the factors of the surface to

maintain their correspondence with the factors of the triad. Note that we now

have m = n .

For every i = 1, ... , n, the fact that d7/ = dT[ implies that Mi - T¡

and M\ - T[ must consist of the same components of M - T (if they are

nonempty), and therefore these complements are equal. Since h¡\dTi is the

identity, h, extends to a homeomorphism h¿ : M¡ —> M'¡ which is the identity

on M¡ - T¡. Note that h¡\dM¡ is the identity, and h¡ is orientation-preserving

if M is oriented. Since (M¡, h¡(F¡)) and (M{, F¡) have the same maximal

triad (T[ = h¡(T¡) ; CiX, Ci2), it follows from Theorem 3.3 that they are stably

isotopic, and therefore that (M¡, F¡) and (M[, F¡) are stably equivalent.   D

Note that Suzuki's result, Theorem 1.2, is a corollary to this theorem (an

orientation-preserving homeomorphism of S3 can be realized as the end result

of an ambient isotopy of S3). We now drop the condition that F be connected.

The proof of the following theorem is just a generalization of the proof of the

preceding theorem.

Theorem 4.6. Let (M, F) be a surface such that M-F is irreducible and no

nonseparating 2-sphere of M meets F in a single simple closed curve. Then

(M, F) has unique prime decompositions up to stable equivalence.

Proof. As in the previous proof, let S and S' be two prime decomposition

systems for (M, F), assume without loss of generality that both are con-

tained in the maximal triad (T; B\, B2) of (M, F), and let {(M¡, Fi)}?=l

and {(A/7 , F-)}nj=x be the factors of the surface which are not (S3, T2). Now

let Ti, ... ,Tq be the components of T, one for each component of F , and let

{T¡j} and {T¡j} be the nontrivial factors of T, under those spheres of S and

S' which meet 7,. By uniqueness of prime decompositions of each triad T¡,

there is a one-to-one correspondence T¡j <-> T¡¡ (after reordering the j's) such

that for every i and j there exists an (orientation-preserving) homeomorphism

hij '■ (Tjj ; Q/i, C,y2) —► (T¡j ; C¡j\, C(j2)

which is the identity on d T,j.

Consider a graph Y whose vertices consist of triad factors T¡j and of com-

ponents of M - T, and whose edges join any two vertices of different types

which meet along their boundary. Similarly construct P using T¡¡. Since any

two vertices joined by an edge must be in the same factor of the surface, there

is a one-to-one correspondence between components of Y (or Y') and factors

of the surface other than copies of (S3, T2), where for each factor (Mk , Fk),

the corresponding component r¿. of Y consists of all vertices contained in Mk

and the edges joining them.

Let (Mk , Fk) be a factor of the surface other than a copy of (S3, T2), with

corresponding component Yk of Y. Let o : Yk —» Y' map vertices Tn to the
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corresponding T¡¡, components of M—T to themselves, and edges joining two

of these vertices to the edge in Y' corresponding to the same boundary along

which the vertices meet; this latter edge must exist since the maps h¡j\dT¡j are

identities. Clearly o(Yk) is connected. In fact, o(Yk) must be a component

of P since any vertex of Y' connected to o(Yk) by an edge must correspond

to a vertex in Y connected to Yk by an edge. Renumber the factors of the

surface under S' and the corresponding components of P so that a(Yk) = Y'k

for all k . Thus a induces a one-to-one correspondence between components

of T and P .
We now have m = n . For every k , the homeomorphisms h¡¡ on vertices 7/;

of Yk extend as the identity across components of M - T which are vertices

of Yk, to produce an (orientation-preserving) homeomorphism hk : Mk —► M'k

such that hk maps the maximal triad of (Mk, Fk) onto that of (M'k, Fk). By
Theorem 3.3, (Mk,Fk) and (M'k,Fk) are stably equivalent.   □

We are now ready to drop the condition that M - F be irreducible. The

2-spheres in M - F which do not bound 3-balls will give rise to specific factors

of the surface which must correspond between different prime decompositions,

and after these are removed what remains will be surfaces with irreducible

complements. In order to obtain the relationship between a 2-sphere in the

complement and a factor of the surface, we use the following lemma.

Lemma 4.7. Let (M, F) be a prime surface and T c (M - F) a separating

2-sphere which does not bound a 3-ball in M - F. Then either
(1) M is a prime 3-manifold, F is a 2-sphere, and T bounds a 3-ball in M

containing F, or
(2) M = S3, F is a disjoint union of two 2-spheres, and T separates the

components of F.

Proof. There is a component of F on one side or the other of T. Let a be an

arc in M with one endpoint on T and the other endpoint on F , and meeting

neither of these in its interior. Let S be the 2-sphere boundary component of a

small regular neighborhood of Töa which meets F in a single simple closed

curve. Note that S separates M since T does. Since (M, F) is prime, S

must bound a copy of (B3, D2) on one side or the other. It cannot be the side

containing T and a, since in that case T would bound a 3-ball in M — F .

Therefore F is the union of the disk in (B3, D2) and the disk in the regular

neighborhood of a, and is therefore a 2-sphere. Furthermore F is contained

in the union of the 3-ball of (B3, D2) and the regular neighborhood of a,

which is a 3-ball bounded by T in M.
Since the same procedure can be used on the other side of T if there are

components of F on that side, it follows that if T separates components of

F, then M = S3 and F consists of two disjoint 2-spheres, one on each side

of T.
So suppose that T does not separate components of F . Then F is a single

2-sphere which bounds a 3-ball in M .If M were not a prime 3-manifold, then

one could choose a separating 2-sphere S in M which induces a nontrivial

decomposition of M as a 3-manifold, and without loss of generality S can be

taken to meet F in a single simple closed curve. But this S would then yield a

nontrivial decomposition of the surface (M, F), contradicting the fact that it is

prime. Therefore, there is no such S, and M must be a prime 3-manifold.   □
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Theorem 4.8. Let (M, F) be a surface such that no nonseparating 2-sphere of

M is disjoint from F or meets it in a single simple closed curve. Then (M, F)

has unique prime decompositions up to stable equivalence.

Proof. Let S and S' be two prime decomposition systems for (M, F). Let

A be the 3-manifold obtained by cutting M along F, or in other words, if

F x [-1, 1] is a bicollar of F in M which meets the spheres of S and S'

in vertical annuli, then A is the submanifold of M obtained by removing

F x (-1, 1). Let T and T' be the unions of prime decomposition systems for

the components of A as 3-manifolds, and further require that the spheres of

S and T be disjoint and that the spheres of S' and T' be disjoint.
In order to see that this is possible, consider S and any prime decomposition

system T for the components of A. Assume without loss of generality that

the spheres of S and T intersect transversely in simple closed curves. Let D

be an innermost disk in some sphere S £ S, where there exists some sphere

T £ T such that dD c T, and Int/) does not meet any sphere of T. Let Ft

and F2 be the two 2-spheres obtained by surgering F along D and pushing

slightly off of T and S. Both Tx and T2 separate A (and M) by hypothesis.
In the factor A' of A which contains Tx and F2, exactly one of these two 2-

spheres, say Tx , must bound a 3-ball which contains the other. If we replace F

by Ti, then we obtain a new prime decomposition system for A which meets

S in fewer simple closed curves. Continue in this fashion until the systems are

disjoint.
Since T and T' are prime decomposition systems for the components of A,

there is a one-to-one correspondence between the factors N{, ... , N„ under T

and the factors N[, ... , N'n under T' such that for every /' there exists an

(orientation-preserving) homeomorphism hi : A, —> N{ which is the identity

on ON,. For those factors A, and N'¡ whose boundaries meet Int M, which

occurs where the bicollar of F was removed, reattach those components of

the bicollar which meet A, and N¡, and extend h¡ as the identity across the

bicollar. This may involve the merging of some A,'s into single 3-manifolds. We

obtain 3-manifolds Rx, ... , Rm and R\, ... , R'm which result from cutting

M along T and T' respectively and then capping off with 3-balls, and we also

obtain homeomorphisms g¡ : R¡ —> R'¡ which are identities on dR¡ and on

F n R¡■. For every i, let S, and S'¡ consist of those spheres of S and S'

which are contained in R¡ and /?J respectively.

Suppose that there is some /?, which does not meet F. Let X¡ be the

closure of the component of M - (J T which when capped off with 3-balls

yields R¡. Let T £ T be one of the spheres in dX¡. Let (A/*, F») be the
factor of F(M, F ; S) which contains T. If F were to bound a 3-ball in

(A/*, F») which did not meet F», then necessarily it would bound a 3-ball in

M which did not meet F, since the only thing to prevent it from bounding

such a 3-ball would be the presence of other spheres of S on the appropriate

side of F, which would imply that F meets M« on that side of F. Thus X¡
would be a punctured 3-sphere, and R¡ would be a 3-sphere, contradicting the

nontriviality of T. Therefore T does not bound such a 3-ball in (A/,, F»).

By the previous lemma, (A/,, F») must be one of two possible types, and since

Xi c Af* cannot be a punctured 3-sphere, it must be the case that A/* is a

prime 3-manifold, F» is a 2-sphere, and T bounds a 3-ball in A/, containing
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F». All of the above applies equally to R't = g,(F,), and therefore we may

convert g¡ to a homeomorphism f : (A/,, F*) —> (Ml, F'). The same process

should be carried out for all such F,. Before leaving this case, let us note a

few additional facts. First, there is only one sphere of T in dX since all such

spheres are in A/* and due to the fact that A/» is prime, the presence of more

than one such sphere would lead to the fact that some component of A - \J T

is a punctured 3-sphere, contradicting nontriviality of T. Second, let Yj be the

closure of the component of M - (J T - (J S on the other side of T, contained

in some Rj. Clearly the factor of (Rj, F n Rj) under Sj which contains Yj

must be the trivial factor (S3, S2) since T bounds a 3-ball in A/* containing

the 2-sphere F*. The same applies of course to R'j.

Let T0 and T0 consist of those spheres of T and T' which are not contained

in the boundary of components X¡ and X[ of the type described above. For

each such sphere of To , the F, and Rj on either side must both meet F , and

likewise for T0. Since the number of F,'s which meet F is the same as the

number of F,'s which meet F , the number of spheres in To and T0 must be

the same. Let F be any sphere of To , with R¡ and Rj on either side, and let

(A/,, F») be the factor of F(M, F ; S) which contains T. Since R¡ and Rj
must both meet F, necessarily both components of A/„ - T must meet F*. By

the previous lemma, A/, = S3 and F» consists of two disjoint 2-spheres. Note

that no other sphere of T can be contained in A/*, since this would induce a

punctured 3-sphere component of A - (J T, contradicting nontriviality of T.

Thus there is one such factor of F(M, F ; S) for each sphere of To , and one

such factor of F(M, F ; S') for each sphere of T0 . Since the number of spheres

in To and T0 is the same, there is a one-to-one correspondence between such

factors under S and S', and corresponding factors are clearly homeomorphic.

Now, let y, be the closure of the component ofA/-(JT-tJS on either side of

T, contained in some R¡. Clearly the factor of (R¡, F n R¡) under S, which

contains Y, must be the trivial factor (S3, S2) since on this side T bounds a

3-ball in A/» containing one of the two 2-spheres of F*. This is also true on

the other side of T, and also for spheres of T0 .

Now any factor (A/,, F„) of F(M, F ; S) which is not one of the ones

considered above must contain no spheres of T. Thus it is a factor of some

F(Rj, F n R,• ; S,). Consider any such F, and R'¡ with homeomorphism g¡ :

R¡ — R'i. Let F, = F n R¡ and F¡ = F' n R'¡. Recall that g¡ : Fi -> F/
is the identity. S, provides a decomposition of (R¡, F¡) into factors which

are prime or trivial, since the existence of any nontrivial decomposition sphere

for (R¡, F,) would contradict the fact that S was a prime decomposition sys-

tem. Those factors of (R¡, F¡) which are trivial are exactly those which arise

from splitting factors of F(M, F; S) along spheres of T. Thus there is a

one-to-one correspondence between factors of F(M, F ; S) which do not meet

spheres of T and the prime factors of the various F(R¡, F, ; S,). Drop any

unnecessary spheres from S, and S'¡, one for each trivial factor. By Theorem
4.6 there is a one-to-one correspondence between the factors of (R'¡, F/) under

each of S' and g¡(S), which are not copies of (S3, T2), such that correspond-

ing factors are stably equivalent. This implies such a correspondence between

F(F,, F, ; Si) and F(R\, F[ ; S') for every i, and therefore there is such a cor-

respondence between all factors of (M, F) under each of S and S' which

have not previously been dealt with.
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Figure 2

Therefore (A/, F) has unique prime decompositions up to stable equiva-

lence.   D

We conclude this section with an example which demonstrates that nonsep-

arating 2-spheres in M-F do cause problems. Let F be a 2-manifold, and

identify F with a fiber of F x Sx . Let F be a 3-ball in F x Sx disjoint from
F .LeX M be the connected sum of F x Sx and S2 x Sx, where B is the 3-ball

in F x Sx whose interior is removed to form the connected sum. We consider

the surface (M, F), noting that M-F contains nonseparating 2-spheres, and
construct two different prime decompositions of (A/, F) (see Figure 2). For

the first prime decomposition, let S be one boundary component of a small

regular neighborhood of dB U a, where a is an arc from dB to F . For the

second prime decomposition, let So be a nonseparating 2-sphere of M - F,

let ß be a simple closed curve which meets each of F and So transversely

in a single point, and let S' be the boundary of a regular neighborhood of

S0 U ß . In each decomposition, one of the factors is (FxSx, F), and the other

factor is of the form (S2 x S1, G) where G is a 2-sphere. In the first decom-

position, G bounds a 3-ball in S2 x Sx, and in the second decomposition, G

is a nonseparating sphere in S2 x Sx . Since stabilization can never change a

separating surface to a nonseparating surface or vice versa, the factors of these

prime decompositions are not stably equivalent.

Question. Does Theorem 4.6 remain valid if the nonseparating 2-sphere hypoth-

esis is dropped, or does there exist a counterexample for this case? Note that

in this situation, any nonseparating 2-sphere must intersect F.

5. Stable equivalence versus equivalence in the 3-sphere

In [Su], Suzuki raised the following question: if two surfaces in S3 are prime

and stably equivalent, does it follow that they are isotopic? In other words, can

his main theorem (stated here as Theorem 1.2) be strengthened to say that the

factors in any prime decomposition of a connected surface (S3, F) are unique

up to ambient isotopy? In this section, we will demonstrate that the answer is

"no" when the surfaces are of genus 3 or greater. We begin by proving that

stable isotopy does imply ambient isotopy for genus less than 3. Throughout

this section, we will write surfaces (S3, F) as just F .

Theorem 5.1. Let F and F' be connected surfaces in S3 of the same genus

g < 2. If F and F' are stably isotopic, then they are ambient isotopic.

Proof Note that S3-F and S3-F' are irreducible. Thus, by Theorem 3.3, we
may assume without loss of generality that F and F' have the same maximal

1



866 MICHAEL MOTTO

triad (T; Bi, B2). If T = S3, then F and F' are both Heegaard splittings of
S3, and by [W] they must be ambient isotopic. If either Bx or B2 is connected

of genus g, say Bi, then the compression bodies W and W' which have

interior boundary Bx and exterior boundaries F and F' respectively must be

simply collars of Bx , and therefore F and F' are both ambient isotopic to

Bx and thus to each other. If either g = 0 or g = 1, then one of the above

circumstances must occur.

Now suppose that g = 2, that T ^ S3, and that neither of Bx or F2

is a connected surface of genus 2. This means that both F and F' must

have compressing disks on each side. By [T], a genus 2 surface in S3 which

compresses on both sides is not prime, and therefore F and F' have nontrivial

decomposition spheres S and S' respectively which are contained in F. Since

the factors of T under S or S' have Heegaard splittings of genus 1, they must

be prime, and thus it is possible to isotope S' to S within T. So we will assume

that S = S'. Let (T, ; C¡x, C¡2) for i = 1, 2 be the factors of F under the
decomposition given by S. Also let Gx and C2 be the factors of F given by

S, and G\ and G'2 be the factors of F', all of these necessarily of genus 1.

Since each F, is a maximal triad for both (7, and G\, and these surfaces must

compress on at least one side, F, is either a solid torus or S3. For the same

reasons as cited above, Gx must be ambient isotopic to G\ within Tx and G2

must be ambient isotopic to G2 within T2. Therefore F is ambient isotopic

to F' in F and thus in S3.   D

In order to obtain examples of inequivalent surfaces in S3, of genus 3 or

higher, which are stably isotopic, consider the work of [Mo2 and BRZ]. Let V

be a solid torus in S3 which is a regular neighborhood of a (p, q) torus knot

with 2 < p < q, and let X be the closure of the complement of V. These

papers demonstrate that (X ; 0, dX) has at least two inequivalent Heegaard

splittings of genus 2 if p + 1 < q, and has three inequivalent Heegaard split-

tings of genus 2 if q ^ ±1 (modp). Let H c V be a handlebody of genus

g > 1, which meets d V in a disk, and such that the closure of V - H has

incompressible boundary. Let M = X U H ; M is a submanifold of S3. We

can manufacture Heegaard splittings of M in the following way: let G be a

surface in Int// parallel Xo dH, let F0 be a genus 2 Heegaard splitting of X ,

and form a surface F by connecting G to Fo by a "nice" tube in M, where

by "nice" we mean an annulus that is vertical in the collar of dX in an optimal

1-handle decomposition of the compression body with interior boundary dX

and exterior boundary F0. Then F is a Heegaard splitting of M of genus

2 + g > 3, and in fact (A/; 0, dM) is the maximal triad of F due to the

fact that the closure of S3 - M = V - H has incompressible boundary. If we

start with an inequivalent Heegaard splitting F0' of X, then we obtain a Hee-

gaard splitting F' of M which is also of genus 2 + g. Since F and F' are

both Heegaard splittings of M, they are stably isotopic in M, and thus in S3.

Next, it is possible to show that F and F' are inequivalent in M by the same
techniques used by Moriah in [Mo 1 ] to show that Fo and F0' are inequivalent

in X (it does not appear possible to directly apply the techniques used to prove

inequivalence in [Mo2 or BRZ]). Finally, inequivalence of F and F' in M

implies inequivalence in S3 since M is the unique maximal triad for both F

and F'. Therefore F and F' are inequivalent surfaces in S3 of the same

genus (greater than 2) which are stably isotopic.
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Suppose that such a Heegaard splitting F was not a prime surface in S3.

Then there would exist a nontrivial decomposition sphere S for F contained

in M, since M is the maximal triad of F. S bounds a 3-ball in M due

to the fact that M is irreducible, and therefore F is a stabilization of some

Heegaard splitting F* of M which is of genus 1 + g , the same genus as dM.

This is impossible since it would require F* to be parallel to dM, and M is

not a handlebody. Therefore F must be prime.

If F" is a stabilization of F and F', then F" has prime decompositions

whose factors on the one hand consist of F and copies of (S3, F2), and on

the other hand consist of F' and copies of (S3, T2). But F and F' are only

stably isotopic, not ambient isotopic. Therefore the answer to Suzuki's question

is "no."
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