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COMMUTATOR THEORY
FOR RELATIVELY MODULAR QUASIVARIETIES

KEITH KEARNES AND RALPH McKENZIE

ABSTRACT. We develop a commutator theory for relatively modular quasivari-
eties that extends the theory for modular varieties. We characterize relatively
modular quasivarieties, prove that they have an almost-equational axiomatiza-
tion and we investigate the lattice of subquasivarieties. We derive the result
that every finitely generated, relatively modular quasivariety of semigroups is
finitely based.

1. INTRODUCTION

A quasivariety is a class of similar algebras closed under the formation of
subalgebras, products, and ultraproducts; equivalently, a class defined by a set
of quasi-equations. For a quasivariety .# and any algebra A similar to the
algebras in 7', we define ConA to be the lattice of all congruence relations
of A and ConzA to be the lattice consisting of all & € ConA such that
A/6 € Z . The meet in ConyA is the same as in ConA, but the join is
different. The members of Congz A will be called % -congruences of A. The
least % -congruence of A containing a set 7 C A% will be denoted Cgy (T);
then Cgs is an algebraic closure operator on 42 and ConyA is the lattice of
closed sets for this operator.

A quasivariety % will be said to be relatively modular (relatively distributive)
iff for every A € % the lattice Conyz A is a modular (respectively, distribu-
tive) lattice. Our route to a commutator theory for relatively modular quasi-
varieties will parallel the way taken in [FM] to develop the commutator theory
for congruence-modular varieties. For a relatively modular quasivariety that
happens to be a variety, our commutator will be the same as the old one. Our
motivation to seek a commutator theory for quasivarieties sprang from two re-
cent results. In [M], R. McKenzie proved that a variety of finite type generated
by a finite algebra is finitely axiomatizable provided the variety is congruence-
modular and residually small. In [P], D. Pigozzi proved that every relatively
distributive quasivariety generated as a quasivariety by a finite set of finite sim-
ilar algebras of finite type is finitely axiomatizable. These two theorems have a
natural join, every relatively modular quasivariety of finite type generated by a
finite set of finite algebras is finitely axiomatizable. The italicized statement is
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still a conjecture; but we believe that the commutator theory developed in this
paper will lead to a proof of it.
The first theorem gives a rather surprising result that is quite useful.

Theorem 1.1. Suppose that the quasivariety % is relatively modular. For every
A in X, the operator Cgs restricted to ConA is a lattice homomorphism of
Con A onto CongzA.

PROOF. Assume that .7 is relatively modular and that A € % . For any
quasivariety, Cg, is a complete join homomorphism. We must prove that
for a, f € ConA, we have Cgy(a- f) = Cgy(a)-Cgy(B). To do so, we
consider the algebra C consisting of all ordered triples (x, y, z) € 43 such
that (x,y) €a and (y, z) € B (a subalgebra of A3). Since C € %, ConyC
is modular. We consider three members of this modular lattice, namely the
kernels 7o, 111, 2 of the three coordinate projections pg, p;, p» of C onto
A.

For congruences y, 6 of an algebra, we shall write 6’ in place of Cgs(0)
and 6+'y in place of Cgy(0+y). For i € {0, 1,2} and for # € ConA, we
shall write 6; for p; 1(8), a congruence of C. Note that 6, € ConyC iff 6 €
CongA, since p; maps C homomorphically onto A. From this observation,
it easily follows that (0'); = (6;)".

Our first calculations, involving congruences of C and their % -extensions,
will show that (af’)’ = o'B’. Note that 7y < «;, and that

n+m=ag=ay, Mm+ m=a=a, mn+mn=}p.
In the calculation that follows, the third equality is a consequence of the mod-

ularity of ConyC, and the final equality becomes obvious by working with the
elements.

(@B = (a)'(B1) = (no+" m)(m +' m)
=m+ no(m +" m)=m+" (no-ay-py)
=m+'"no- (@) = (af’)).
Thus (af’) =d'f’.
The formula we have just proved will hold of course for congruences of C.
Substituting «; for a and 5, for B, and using that #} = 1, , we derive

(a1mp)' = (a1my) = (1) (m2)' = (mo +' m)na.
Now a1 < (af);, hence (af)] > (no +' n)n,. Thus

(af)y > (mo+ m)m+" ni = (mo+ m)m+" m) = ('

Since it is clear that o'’ > (af)’, we obtain that o'’ = (af)’ as desired. O

The property that the operator Cgs is a lattice homomorphism from
ConA onto Con yA for each A € % will be called the extension principle.
To indicate that .7 satisfies the extension principle, we write % Fcon
Cgz(a-B) = Cgy(a) - Cgy(B).

Henceforth, when working with a single quasivariety %Z , we shall use o’ to
denote the .Z -congruence generated by o (or % -extension of o). We shall
also use 6 +' w to denote the .%Z -congruence join of 6 and y . If more than
one quasivariety is under discussion, we will revert back to Cgy (a) to denote
the %7 -extension of o and use + % to denote the % -join.
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Theorem 1.2. If % is a locally finite, relatively modular subquasivariety of a
semisimple, congruence-modular variety 7”, then % is a variety.

Proof. Assume that 7 # H(%'). Then there is a simple algebra A € H(.%Z') —
% . Now W. Dziobiak proved in [Dz1] that every subdirectly irreducible al-
gebra X is embeddable into an ultraproduct of finitely generated subdirectly
irreducible algebras belonging to HS(X). This allows us to assume that A is
finitely generated. H(.%') is a locally finite variety so A is finite. Choose a
finite algebra B € .# of least cardinality that has a congruence y with the
property that B/ = A. Our assumptions insure that y is a maximal proper
congruence on B and that y is not a % -congruence. Notice that if 6 is any
completely meet-irreducible member of CongyzB then, by Theorem 1.1, 6 is
at least meet-irreducible in ConB; since B is finite and lies in a semisimple
variety, this means that 6 is a maximal proper congruence. Let {6;]|i <n+1}
be an irredundant set of completely meet-irreducible 7 -congruences that sep-
arate the points of B. Let v = A,_,0,. ¥ is a % -congruence since it is
a meet of Z-congruences. By the irredundancy of the 6, and the modular-
ity of 77, 0 < y. Further, ¥ £ w by the minimality of |B|. Hence, 0
= Cgz(0) = Cgy(yv-y) # Cgy(y)-Cgy(y) = 1-y = y. Thisisa
contradiction. O

An analogue of Theorem 1.2 for relatively distributive quasivarieties can be
found in [Dz2].
Example 1.3. The lattice Mj; generates, of course, a semisimple, congruence-
distributive variety. We will show that the quasivariety generated by M3, can-
not be relatively modular. Let JZ be that quasivariety. Now .Z is a locally
finite subquasivariety of the (semisimple) variety generated by Mj;. We have
that 7" = SPP,(Mj;) = SP(Mj;). Since M33 is simple and not embeddable
into Mj,;, then Mj3 ¢ 7. However, Ms; € H(Mj;), showing that 7 is
not a variety. By Theorem 1.2, % cannot be relatively modular. From the
proofs of Theorems 1.1 and 1.2, we can conclude that some subdirect power of
nine copies of Mj; has a nonmodular lattice of .Z-congruences. In fact, the
lattice L in Figure 2 is a subdirect product of only two copies of Mj; and has
a nonmodular % -congruence lattice.

In [GL], it is proved that ¥ (M33) has 2™ subquasivarieties that are distinct
from varieties. By Theorem 1.2, none of them are relatively modular.
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2. COMMUTATOR THEORY

Theorem 2.1 (Relative shifting lemma). Let Z be a relatively modular quasi-
variety.

(1) Suppose that A € %', that 6y, 0,, w € CongA, and that a, b,c,d €
A satisfy (a,b),(c,d) € 0;, (a,d),(b,c) € 0y, and (b,c) € w. Then
(a,d) € w+' 600,. (This statement is expressed pictorially in Figure 3. In
diagrams like this, lines are assumed to be labeled by any label appearing on a
parallel line.)

a 8, b a 61 b
] [e] (] [e]
0 > Y implies ¥ +' 606, < 6o > Y
-] (o] o (o]
d c d c

FIGURE 3

(2) There exist a finite set X; of pairs of terms in the language of % ,
(p(x,y,z,u),q(x,y, z,u)), such that: (i) if (p, q) € X5 then the equations

p(x,y,y,x)=q(x,y,y,x) and p(x,x,y,y)=q(x,x,y,y)
arevalid in % ; and (ii) if a, b, d belong to an algebra A in % and
p*a,b,b,d)=q*a,b,b,d)

for all pairs (p,q) € L, then a=d .

Proof. The first assertion follows immediately from the modularity of Cony A .
To prove the second assertion, let F be the free algebra in the variety generated
by % , freely generated by x, y, z, u. Then F isin 7, and every congruence
of F generated by some equivalence relation on the four-element set of free
generators is a 7 -congruence (since it is the kernel of an endomorphism of
F). Let 6; be the congruence of F generated by {(x, u), (v, z)}, 6; be the
congruence generated by {(x, y), (z, u)}, and y be the congruence generated
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by {(y, z)}. Applying part (1) to this situation, we have that
(x, u) € v+ 6p6,.

This means that (x, u) belongs to Cggy({(¥, z)} U606,), and since Cgy is
algebraic, there exists a finite set 7 of ordered pairs contained in 6y6; such
that (x, u) belongs to Cgy ({(¥, z)} UT). We can write

T={(p"x,y,z,u),qx,y,z,u): (p, q) € %}

for a finite set X, of pairs of terms.

The equations in (2)(i) hold in Z because T is a subset of 6y6,. The
condition (2)(ii) holds because (x, u) is in the Z'-congruence of F generated
by T together with the pair (y, z). O

The two assertions of this theorem will be valid if % is a quasivariety that ex-
tends to some modular variety. Hence Example 1.3 shows that the assertions of
the theorem do not characterize the family of relatively modular quasivarieties,
and shows, in fact, that no set of assertions similar to these can characterize
this family. (Compare this statement to Theorem 4.1.)

Theorem 2.2 (Relative cube lemma). Let % be a relatively modular quasivari-
ety.

(1) Suppose that A € %, that 6y, 0,, v € CongA, and that ay, ... , a3,
by, ... , by are elements of A satisfying (ag, a,), (a2, a3), (bo, by), (by, b3) €
6o and (a,~, b,) € 6, for i€ {0, 1,2, 3} If (al y az), (b] y bz), (bo, b3) ey
then (ap, a3) € ¥ +' 606, .

ap 0 b
0 ———————0
/ / 4
ag o o) bo w
implies b+ 000, 7°—r70 by
o——0
as b3
(2) There exists a finite set X, of ordered pairs of terms
(.p(x()) cee 5 X3,)0,5 -0 ,J’3), (I(XO» cer 5 X3, Y05 -0 ’y3))

in the language of % such that: (i) for each (p, q) € Z. the equations
p(x,y,y,Xx,z,u,u,z)=q(x,y,y,X,z,Uu,u,z),
px,x,y,y,z,z,u,u)=q(x,x,y,y,2,2,U, U,
p(x,y,z,u,x,y,z,u)=q(x,y,z,u,x,y,2z,Uu)

hold in % ;and (ii) if A€ % and a,d,u,, u,, us € A and if

A
(asulauZ,u3adaulau29 u3)

pA(a,ulauZau3a daul’u2>u3)=q
forall (p,q)€X,, then a=d.
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Proof. Suppose that A, 6y, 6,, v, and ag, ... , by satisfy the hypotheses of
(1). Choose any pair of terms (p, g) in X;. Define elements

a=p(a, a1, a2, a3), b=p(bo, b1, by, b3),

d=Q(ao,al,az,a3), C=q(b0’bl>b2ab3)'

Then the hypotheses of Theorem 2.1(1) are satisfied, and so (a, d) € w+'646, .
Also (a;, ap) € w+'6p0, . Now applying Theorem 2.1(2)(ii) in the algebra A/y,
where y = w +' 646, , it follows that (ay, as3) € y as desired.

Except for one small detail, statement (2) is a consequence of (1) in the
same way that (2) followed from (1) in Theorem 2.1. The variation in the
argument goes as follows. We will work in the free algebra F € Z7 generated
by x0, ..., X3, Y0, ... ,y3. Let ¥ be the congruence generated by {(x;, y;),
(x2,¥2), (x3,¥3)} andlet 6, be the congruence generated by w U {(xo, o)} -
Let 6y be the congruence generated by the pairs {(xo, x3), (x1, X2), Vo, V3)»
(1, y2)} and 6, be the congruence generated by {(xo, x1), (X2, x3), Vo, Y1)
(»2,y3)}. All of these congruences are .# -congruences. Until this point the
proof has been like that of Theorem 2.1. Now, an application of part (1) of this
theorem shows that (xg, yo) € w +' 6¢0, . Further, (xg, y9) € 8, and y < 6,.
The relative modularity of 2" implies that (xg, yo) € ¥ +' 606,60, . From this
point on the proof is exactly like the proof of Theorem 2.1. O

Definition 2.1. Given elements a,b,c,d in an algebra A, we define
Z(a, b; c, d) to mean that for all polynomial operations f(x, y) and g(x, y)
of A, if

fla,c)=g(a,c), fla,d)=ga,d), [f(b,c)=g(b,c)
then f(b, d)= g(b, d). The relation Z(a, b; c, d) can be rendered as (a, b)
centralizes (c, d) relative to the two-term condition.

Using the terms X; from the relative shifting lemma, we now show that in a
relatively modular quasivariety the relation just defined is very well behaved.

Lemma 2.3. Suppose that % is relatively modular and A € % .
(a) Forany a,b,c,d € A we have

Z(a,b;c,d)—> Z(c,d;a,b)~ Z(a,b;d, c).
(b) For any (a, b) € A* the relation
Za,b)y={(c,d):Z(a,b;c,d)}

is a congruence of A.

(c) Suppose that Z(a;, b;; cj,d;) for 0 <i<m and 0 < j < n. Then if
f(x,p) and g(x, y) are any (m+n)-ary polynomials of A such that f(a, c)
gla,c), fla,d)y=g(a,d), and f(b,¢)=g(b,¢). it follows that f(b,d)
g(b,d).

b
b
b

S

Proof. Let XZ; be the finite set of pairs of terms supplied by Theorem 2.1. To
prove statement (a), suppose that Z(a, b; ¢, d). It should be clear that this
implies Z(c,d;a,b). To see that Z(a,b;d,c), let f(x,y) and g(x, y)
be any two binary polynomial operations of A and suppose that f(a,c¢) =
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gla,c), f(a,d)=g(a,d), and f(b,d) = g(b,d). In order to prove that
f(b,c)=g(b, c), note that by Theorem 2.1 it will suffice to prove that for any
(p, q) € L; we have

p(f(b,c), f(b,d), gb,d), gb,c))
=q(f(b,c), f(b,d), g(b,d), g(b, ¢)).

Given such a p and ¢, define

f’(x,y)=p(f(x,c), f(x9y)’ g(x’y)’ g(x,c))
and
g'(x,y)=a(f(x,c), f(x,y), glx,¥), &x, c)).

From the equations satisfied by p and ¢ in %, it follows that we have
flla,c)=g'(a,c), f'(a,d)=¢g'(a,d),and f'(b,c)=g'(b,c). Thus from
Z(a,b;c,d) we conclude that f'(b, d) = g'(b, d); and this is just what we
had to prove.

To prove (b), let us first show that Z(a, b) is transitive. (The relation
is obviously reflexive, and by statement (a) it is symmetric.) Suppose that
(u,v), (v,w) € Z(a, b); ie., that Z(a,b;,u,v) and Z(a,b;v,w). To
see that Z(a, b; u,w),let f(x,y) and g(x, y) be polynomials such that f
and g are equal at (x,y) = (a, u), (a,w), (b, u). We prove that f(b, w)
= g(b,w) by showing that for each (p,q) € X;, p and ¢ are equal at
(f(b,w), f(a,w), gla,w), g(b, w)), then applying Theorem 2.1.

To do this consider the polynomials

fx,y)y=p(f(x,y), fla,y), gla,y), gx,¥)),

g'(x,y)=q(f(x,y),f(a,y), g(a,y)’ g(x’y))

Now f"(a,u)=g'(a,u), f'(a,v)=g'(a,v),and f'(b, u)=g'(b, u) from
the equations valid for p, g; hence f'(b,v) = g'(b, v) since Z(a, b; u,v).
Now obviously, f'(a, y) = g'(a, y) forany y; thus f'(b,v) = g'(b, v) and
Z(a,b;v,w) imply f'(b,w) = g'(b, w). This is the equation claimed in
the last paragraph. It completes the proof that Z(a, b) is transitive.

Since Z(a, b) is seen to be an equivalence relation, all that remains in order
to conclude that Z(a, b) is a congruence is to observe that it follows trivially
from our definition that whenever Z(a, b; ¢, d) and h(x) is a unary polyno-
mial operation of A then Z(a, b; h(c), h(d)). This means that Z(a, b) is
closed under unary polynomials; so it is a congruence.

Statement (c) can be proved by induction on m for n = 1, and then by
induction on n. The case m = n = 1 is a tautology. Now suppose the
statement is true for a certain m when n = 1. Let a, b be (m + 1)-tuples,
c,d be elements, f(x,y), g(x,y) be polynomials such that Z(a;, b;; ¢, d)
holds for all i < m, and f(a,c) = g(a,c), fla,d) = g(a,d), f(b,c) =
g(b, c). As usual, letting (p, gq) € Z;, we need to prove that p and g agree at
(f(b,d), f(b,c), gb,c), gb,d)). We do this in two stages. Consider first
the (m + 1)-ary polynomials

f1(x,y)=p(f(x,am,y), f(X,am, ), X, am, ), &Xx, am,y)) ,

gx,y)=q(f(x,am,y), f(X,am, ), gX,am, ), gX, am,y)).
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Let @' = (ag, ... , am-1), b' = (bo, ... , by—1). From our assumptions, we see
that /' and g’ agree at (@', ¢), (@', d), and (b’, ¢). Thus, by the induction
assumption, we have f’ and g’ agreeing at (b, ... , by_1, d). This means

that where we define
f'x,y)=p(f(b',x,y), fb',x,¢c), g, x,c), g, x,y)),

g”(x’ y) =q(f(b/’ X, y)’ f(bl’ X, C)’ g(b,, X, C)’ g(bl’x’ y)),
we have f"(a,,d) = g"(am, d). Since it also follows directly from our as-
sumptions that f"(a,,, ¢) = g"(am, ¢) and f"(by, c) = g"(bm, ¢), then from
the fact that Z(a,,, bm; ¢, d) we derive f"(by,,d) = g"(bm, d). This is ex-
actly the equation we were after. The inductive proof that (c) holds for n =1
and for any positive value of m is now complete.

We complete the proof of (c) by assuming that the statement holds for a
certain value of n and for all positive m. Then let a, b be m-tuples (for
some m > 0), let ¢,d be (n+ 1)-tuples, and suppose that f and g are
(m + n + 1)-ary polynomials and the hypotheses in (c) are fulfilled. Thus f
and g agree at (x,y) = (a,c), (a,d), (b, ). Asusual, (p, q) denotes an
arbitrary pair in X;. Our reasoning parallels that of the last paragraph. We
define (m + n)-ary polynomials f’ and g’ by

f(x,9)=p(f(x;9,¢cn), f@;9,cn), 8a; y,cn), X3 7, ¢n)) s

gl(xs )7) =q(f(x5j7a Cn), f(a,J_’, Cn)’ g(ay.va Cn)’ g(X,)_), cn))-
We note that f” and g’ agree at (a, ¢'), (a,d’), and (b, ¢’), where ¢ and
d’ are ¢ and d truncated by removing the last term of these (n + 1)-tuples.
Using the inductive assumption, we conclude that where

f(x,y)=p(f(x;d",y), fla;d,y), ga,d,y), gx,d,y),

g'(x,y)=a(f(x;d",y), fa;d',y), ga,d',y), gx,d,y)),
we have f"(b, c,) = g"(b, c,). Since it is obvious that f” and g” agree at
arguments of the form (a, y), it follows from statement (c) in the case n = 1
(which we have already proved) that f”(b, d,) = g"(b, d»). In other words,
we have proved that p and g agree at (f(b,d), f(a,d), g(a,d), gb, d)).
As usual, since this holds for all (p, q) € ; we can conclude that f(b, d) =
g(b,d), as desired. O
Definition 2.2. Let «, f, u be congruences of an algebra A. We write
Z(a, B; u) to denote that for all (a, b) € a and (¢,d) € B and for all
binary polynomial operations f(x, y) and g(x, y) of A, if f(a, c)ug(a,c),
fla,d)ug(a,d),and f(b,c)ug(b,c) then f(b, d)ug(b, d). If this relation
holds, then we say that « centralizes 8 modulo u (in the sense of the two-term
condition). The relation Z(a, f;0,) will be abbreviated to Z(a, ).

Lemma 2.4. Let % be a relatively modular quasivariety, A € %, a,f €
ConA, and u € CongzA.

(1) If Z(a, B; 1) then o centralizes B modulo p in the sense of the clas-
sical one-term condition.

(2) Wehave Z(a, B) iff Z(a, b; c,d) holds forall (a,b) € a and (c, d)
ef.

(3) The conditions Z(a, B; ) and Z(a + u, B+ u; u) are equivalent

and equivalent to Z(a, B) holding in A/u, where & = (o + u)/u and

B=B+uu.
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Proof. All parts are straightforward, using Lemma 2.3, except (1). To prove (1),
suppose that Z(a, B; 1), that f(x, y) is a polynomial operation of A, and
that a, b, ¢, d are elements and tuples of elements of A such that (a, b) € o
and (¢;, d;) € B for all i. Assume also that f(a,¢)= f(a,d) (mod u). We
must prove that this equivalence modulo u remains true after exchanging a
for b. Todo it, let (p, g) be any member of X, and define

f'x,9)=p(f(x,0), fla, ), fa,p), f(x,7),
g’(x,j/)=q(f(x,é), f(a’('_‘)’ f(a9)7)’ f(x9J7))

Then f” and g’ giye a pair of u-congruent values when applied to each of the
tuples (a,?), (a,d), (b, ). Hence by Lemma 2.3(c) applied in the algebra

A/u, we deduce that f'(b,d)=g'(b,d) (mod u). This means that

p(f(b,¢), f(a,?), fla,d), f(b,d)
a(f(b,¢), fla,¢), fla,d), f(b,d)) (mod u).

Since f(a,c) and f(a,d) represent the same element of A/u, applying
Theorem 2.1 to the algebra A/u gives us that f(b,c) and f(b,d) are u-
equivalent. O

Henceforth, .#Z denotes a fixed relatively modular quasivariety, and all al-
gebras entering the discussion belong to .7 . Our stroke notation for denoting
the % -extension of a congruence has been explained earlier. We reintroduce
the convention of denoting the kernels of the coordinate projections from a
subdirect product of two algebras by 7y and 7.

Definition 2.3. Suppose that A € Z and a, f € ConA. By A(a) we denote
the subalgebra of A% whose universe is a. By A,5 we denote the congruence
on A(a) generated by identifying (x, x) and (y, y) whenever (x,y) € S
(i.e., the congruence on A(a) generated by the fg- diagonal) We define [a, B]
to consist of the ordered pairs (x,y) such that (x,y) is A,-congruent to
(x, x). Notice that the set of congruences

{6 € Con A : 6pA,p = 01A,5 holds in Con A(a)}

is closed under arbitrary intersection. We let x(a, ) denote the least member
of this set.
Lemma 2.5. We have A5 = A, < B’ x B'. Moreover, the following are equiv-
alent for any a, b € A, and they imply (a, b) € aff’.

(1) (a,b) € o, Bl.

(2) (a, b)A4(c, c) for some c.
(3) (a,c)A (b c) for some c.
4 (c, a)Afl (c, b) for some c.

Proof. Clearly A/ s < B’ x B (so [a, f] € aB’), and A;B is invariant under
the canonical automorphism of A(a), i.e.,

(x,) aﬂ(u v) iff (y,x) aﬂ(v u).

It is easy to show that A;ﬁ contains the B’ diagonal on A(a); from this it
follows that A/, 5= Al g - These facts easily imply that (3) and (4) are equiva-
lent, and that (1) and (2) are equivalent. It is easy to show that (1) implies (4).
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Finally, to see that (3) implies (2), suppose that (a, c)A] ﬂ(b, c). Then a, c,
and b are all a-related. We have

(arb) o (avc)
o o
m ap
o o
(b,0) (b,¢)

By the relative shifting lemma, (a, b)A);(b, b). O

Lemma 2.6. Let A€ % and o, f € ConA.
(1) [a, B] is a congruence. If a € CongA, then [a, B] € CongA. If
B € CongA, then [a, f1 < af.
(2) In ConA(e), [a, Blom = Alymi. [a, Blino = Algio. and

lo, BloAug = [a, BLiAL = [, Blola, Bli.

(3) Any u € CongA satisfies pol,; = i, i u > k(a, p) iff u >
[a, B].

Proof. [a, B] is clearly reflexive and it is symmetric by (3) of Lemma 2.5. One
can also use Lemma 2.5(3) to show that [«, #] has the substitution property.
To see that it is transitive, suppose that a[a, B]b[a, Blc. Then

(a’ b) :rﬂ(b’ b) ;ﬂ(ca b)’

hence (a, ¢) € [a, B] by Lemma 2.5. Thus the relation is a congruence. If 8
= f’ then, by Lemma 2.5, [a, 8] < aff’ = aff. Before proving that it is a
JZ -congruence if « is, we prove (2).

We have seen in Lemma 2.5 that Alpm < [a, Blom . On the other hand, if
(a, b) € [a, B] and (a, ¢), (b, ¢) € A(a) then we have the rectangle

(a,c) o (a,b)
o o
m A;ﬁ
o Qo
(b,c) (b.b)

which yields, via the relative shifting lemma, that (a, c)Ap(b, c). Thus
[a, Blom = A;Bm. The similar equation with the subscripts 0 and 1 in-
terchanged must of course also be true.

To see that [, B]p and [«, f]; have the same intersection with A:,B , We
apply the cube lemma. Suppose that (a, b)Aflﬂ(C, d) and (a, ¢) € [a, B]. We
have a cube in A(a):
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(a b) (a c)

(a,b) o (a c)
Cd)O o(Cc)

(a cl

The cube lemma asserts that (a, b) and (a,d) must be congruent modulo
A' +' nony , i.e., modulo A’ np - Hence (b,d) € [a, B]. This shows that
[a ﬁ]OAap < [a, B]i . We thus conclude that [a, ﬂ]oAaﬂ = [a, B]IA . These
equal congruences are obviously contained in [«a, Blo[a, B]; . For the reverse
inclusion, we simply note (by examining elements) that

[a, Blola, Bl = [, Blom: + [a, Blino
= A +Agno < Aygle, Bli + Algle, Blo

Now we return to the second statement in (1). By (2), we have [a, Blom =
A;ﬂm. Applying the prime homomorphism (see Theorem 1.1) we get that
[, Blom = Alzm . Hence, [a, Blom = A,zm = [a, Blon . Forming meets
on both sides with «ag, we find that (aofa, B])om = (a[a, B])on . But in
ConA(c), whenever 6y < 6y < ap and 6oy = 6Gom holds, one always has
6 = 6. Hence, in ConA we have ofa, 8] = ofa, B] = [a, B]. Now
[a, B1<a,s0 [a, B <. If a = o, then [a, B] = afa, B] = dla, BY
= [a, B]'.

To prove (3), notice that if 4 € CongzA, then ,uOA;ﬁ = uIA;B implies
MoAapg = 11A.p since the latter equation is obtained from the former by taking
meets with A,z on both sides. Conversely, we have that oA,z = u14,p implies
MoA,, s = wA, 8 by applying the prime homomorphism. Thus, qu;ﬂ = A 8
holds iff uoA,s = mi1A.p holds, and these equations obviously imply that
K(a, B) < u holds. The latter inclusion implies that x4 > [a, B], since by
(2),

#OA;/; > Kk(a, B)OA;;; = K(a B)lAaﬂ > mA (,p = [, Blom -
Now assume that u € ConyA and u > [, B]. Suppose (a, b)/‘OAa/;(C’ d).
Then we have a rectangle

(b,6) m (a,b)

] o
v D
af Ho
o °

(d,d) (c,d)
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from which we get that (b, b) and (d, d) are congruent modulo
(M + oA p) = ALt + 1ol = [, Blom +' 1oAys < Ho.

This implies that (b, d) € u, and hence (a, b) = (¢, d) (mod u;). Obviously,
it follows that oAl = m4A,,. O

Example 2.7. We examine the .Z'-commutator in a relatively distributive qua-
sivariety % . Since A;B =A, g < B’ x B’, it follows that in ConA(a) we have
Bi = n +A;ﬂ = n;+ A;ﬂ for i =0, 1. Hence,

BoBi = (o + ALp)(m + ALg) = mom +' Ag = Ay

Thus, [a, B] consists of the set of pairs (x, y) for which (x,y) is ByBi-
related to (x, x). This set of pairs is precisely af’. Hence, [a, f] = af’
is a commutator equation holding in .# . Now suppose that some algebra in
% has a congruence a that is not a #-congruence. Then [a, '] = a #
o = [d, a], so the Z-commutator of ordinary congruences is not always
symmetric. Further, [@',a] = ¢ £ a = d'a, so the Z-commutator of
ordinary congruences is not always sub-multiplicative. Also, since [a, ¢'] = a,
the % -commutator of two ordinary congruences need not be a Z -congruence.

Even if a, B € ConyA, we may have A,5 # A, ;. In fact, the set of pairs
A,p-related to the diagonal in A(a) may be different than the set of pairs A 5
related to the diagonal. Let .7 be the class of all commutative rings R such that
in R, x2 =0 implies x = 0. This class is a relatively distributive quasivariety.
CongR consists of the congruences corresponding to the radical ideals of R.
For any F € % we also have F[x] € Z . Let a = B be the congruence on
F[x] corresponding to the radical ideal generated by the element x. One can
check that, in this example, ((x, 0), (0, 0)) € Al ; — A,p. Our claims follow
from this.

Lemma 2.8. Suppose that o <6 and B <y. Then A,p C Asy, A;ﬂ C Agy, and
[a, B1 <10, 7]
Proof. Straightforward. O

We have proved that [a, f], as a binary operation on CongzA, is sub-
multiplicative and monotone. Our next goal is to prove that this operation
on CongzA is symmetric and completely additive in each variable. In order to
do so, we proceed to establish a connection between the commutator and the
“centralizer” notion defined in Definitions 2.1 and 2.2.

Lemma 2.9. Suppose that o, f € ConA and p € CongA. Then Z(a, f; u)
i u>le, Bl

Proof. Assume first that u > [a, 8], so that qu;ﬂ = A, (by Lemma
2.6(3)). In order to prove that Z(«, f; u) holds, let f(x,y) and g(x,y)
be polynomials of A, let (a,b) € o and (c,d) € B, and suppose that
f(x,y) = g(x,y) (mod u) for (x,y) = (a,c), (a,d), (b, c). Note that
the pairs

.Xo=(f(a,d),f(b,d)), x|=(f(a,c),f(b,c)),
X2=(g(a,C), g(b,c)), x3=(g(a,d),g(b,a'))
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belong to A(a) and that xpA’ X1 and szaﬂxg Moreover, (X, X2) € Holy
and (xp, x3) € up. Therefore,

(X0, Xx3) € po(Ayp + Hotr) = Holyg + Mottt < iy

since ﬂoAﬁ,ﬂ < ;. This simply means that f(b, d) = g(b, d) (mod u ), which
completes the proof that Z(a, 8; u).

Now suppose, conversely, that Z(a, f; ). To see that u > [a, ] will
require our first (rather nontrivial) use of the terms supplied by the relative
cube lemma (Theorem 2.2). Using those terms, we shall show that puoA.p < u; .
Then applying primes we shall have that yoAaﬂ < up, and an application of
Lemma 2.6 then completes the proof. To simplify matters, we write A for A,z .

First we prove

(10.1) Let (a, a')A(b, b’) and let f(x, y) and g(x, y) be polynomi-
als. If f(a,a)ug(a,a), f(@,a)ugla,a), and f(a,b)u
gla, b), then f(a', b')pug(a',b').
To prove (10.1), assume its hypotheses. Since (a, a’)A(b, b’), we can choose
elements
a=Xx0,X15.-. ,Xn=b, a=yo,y1,...,yn=b",

pairs (c;, d;) € B for i < n, pairs of tuples (i;, 0;) € o™ for i < n (and for
a sufficiently large integer m ), and polynomials F; so that, for each i < n,
(xi’yl) (ul,cl) Fi('Di, Ci))a
(Xix1, Yin1) = (Fi(@; , di), Fi(v;, d;)).
In proving that f(a’, b’) u g(a’, b') we shall apply Theorem 2.2(2) in the alge-
bra A/u. To that end, let (p, g) be any member of X.. Define, for i <n,
Zj =p(f(a,9yi)a f(aa xi)w f(a’, al)’ f(a’ a)’
ga,y), gla, x), gla,a), ga, a)),
w; = q(f(al’ yi), f(a’ X,‘), f(a,> a’)’ f(a7 a)’
ga,yi), gla, xi), gla', a'), g(a, a)).

(F,
(F;

We will show that
Zo M wo; moreover, foreach i<n, z;uw; ff z;,  pwiy.

That zo uwy follows from the third of the three equations in 2(i) of Theorem
2.2 satisfied by p and ¢ in %, since

fla',ad)ug(a,a) and f(a,a)ug(a,a).

To show that (z;, w;) € u iff (z;4,, wiy,) € u we define two new polynomials.
Put
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Now f’(a, @;, z) = g'(a, &;, z) for every z, by the second of the three equa-
tions for p and ¢. Hence by Lemma 2.3(c), applied in A/u, and using that
Z(a, B; 1), we must have

f’(a/’ Ui, c,-)/tg'(a', Ui, Ci) A fl(al > Uiy di)#gl(al’ (U dl)
This equivalence can also be written as
ZilW; < Zip) U Wiy,
which finishes our proof of (10.2).
Now (10.2) implies that z, uw, . Since
zn=p(f(d',b), fla,b), fla',a), fla,a),
gla',b'), gla,b),gld,ad), gla,a)
w, =q(f(a',b"), fla,b), f(a',d), fla,a),
gla,b'), gla,b), gld,ad), ga,a),

and since (p, q) € X, is arbitrary, it now follows by Theorem 2.2(2)(ii) that
f(a',b')ug(a,b'), finishing our proof of (10.1).

To finish our proof that poA.p < u, let (a, a’)A.p(b, b’) and aub. Let
(p, q) be any member of Z;. Put f(x,y) = p(x,a,b,y) and g(x,y) =
qg(x,a,b,y). Then for any x we have

fx, x)up(x,a,a,x)=q(x,a,a,x)ugx, x).

Thus, f(a,a)ug(a,a) and f(a’',a’)ug(a’, a’) holds. Moreover, f(a, b) =
g(a, b). Thus, by (10.1), f(a', b )uga,?d);i.e.,

pd,a,a,byufla,byugla,b)uq(d,a,a,b).

Since this holds for all (p, q) € X;, we conclude by Theorem 2.2(2)(ii) that
aub. O
Lemma 2.10. Let o, p € ConA and u € CongA. Then [a, BY =[, B']; in
fact, the following are equivalent.

(1) Z(a, B u).

(2) Z(a', p';5 1.

(3) [, B1<u.
Proof. By Lemma 2.9, (2) and (3) are equivalent, and obviously (2) implies (1).
Now suppose that (1) holds. By Lemmas 2.9 and 2.6(3), we have

HolAog = 1Ay,
Since A;ﬂ = A;ﬂ, , the displayed formula implies that Z(a, 8’; 1), again by
Lemmas 2.9 and 2.6(3). Then by Lemma 2.3(a), we also have Z(f', a; u).
Now just as above, this implies Z(f’, o’; u) and then Z(o/, p'; u). O

Corollary 2.11. For any a, b € A the congruence Z(a, b) of Definition 2.1
belongs to CongyA. In fact, the following are equivalent for any a, b, c,d
and, for 6(a, b) and 0(c, d), the ordinary congruences generated by the pairs
(a, b) and (c,d).

(1) Z(a,b;c,d).

(2) Z(6(a,b),0(c,d)).

(3) [e(a, b)l’ O(C’ d),] = OA .
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Proof. Straightforward, from the preceding results. O

Notice that the commutator operation (on ConA and on CongA) that
we have introduced seems to be dependent upon the specific relatively mod-
ular quasivariety containing A that is under consideration. This is because
the passage from A,z to A/ s depends upon %Z . Thus we should call it the
JZ -commutator. Although the value of the .Z-commutator of a, § € ConA
depends on .7, this value is closely related to x(a, ) which is independent
of % . For example, we know from Lemma 2.6 that x(a, 8) < [a, B] and
that x(a, B) = [a, B] . These relations imply a certain stability in the values
of the relative commutator, which is emphasized in the next result.

Theorem 2.12. If ¥ C % are relatively modular quasivarieties and A € &,
then Cgy : CongA — CongA is a commutator-preserving lattice homomor-
phism.

Proof. The fact that this homomorphism is a (join-complete) lattice homomor-
phism follows from Theorem 1.1. We only need to show thatif o, f € CongzA,
then Cgy ([, Bly) = [Cgx(a), Cegxr(B)]ly - In fact, for any o, f € ConA
we have

Cgo(la, Blx) = Cex(Cgy(k(a, B))) = Cex(k(a, B))
=Cgy(le, Blz) =[Cgx(a), Cex(B)ly. O

Theorem 2.13. Let % be a relatively modular quasivariety and let A, B e % .
Fora, B, B; (iel), uin CongA, and d, 0 in CongB the % -commutator
satisfies the following.

(1) [a, B1=[8,al<af.

(2) [a, V{Bitie}]=V{la, Bi]:iel}.

(3) [a, Bl < u iff a centralizes B modulo pu in the sense of the two-term
condition.

(4) If f: A— B isonto, then f~'([5, 0]) =kerf +' [f~1(d), f~1(0)].

Proof. Parts (1) and (3) have already been proved. Part (4) follows directly
from Lemmas 2.4 and 2.9. The only part of this theorem remaining to be proved
is (2). Since the commutator is monotone, it is clear that the % -congruence
represented by the right-hand side of (2) is contained in the one represented by
the left-hand side. To demonstrate the other inclusion, let x4 be the smaller of
these two congruences. By Lemma 2.10, we have that Z(«a, 8;; u) for all i.
It follows easily from Lemmas 2.3 and 2.4 that the set of all pairs (c, d) such
that Z(a/u, b/u; c/u, d/un) holds for all (a, b) € a is a congruence J of A
and we have Z(a,d; u) and B; < 6 for all i. Then § = ¢’ follows from
Lemma 2.10, and so \/'{f;: i € I} <J and Z(a, \/'{Bi:i € I}; u). Thus
u>[a, \V'{B::i€I}], which is precisely what we had to prove. O

This ends our development of a basic commutator theory for relatively mod-
ular quasivarieties. Many of the results of commutator theory for modular
varieties extend immediately to relatively modular quasivarieties. In the cases
where this can be done, Theorem 1.1 and Theorem 2.13 are the tools needed to
convert the proofs. On the other hand, there are some very important results
in varietal commutator theory that we have not been able to extend to quasi-
varieties. Most importantly, we do not have a structure theorem for Abelian
algebras. For modular varieties, it is known that an Abelian algebra is affine;
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that is, it is polynomially equivalent to a module over some ring. It can be shown
that any quasivariety of cancellative, commutative semigroups with operators,
which are endomorphisms for the semigroup structure, is relatively modular
and consists of Abelian algebras. These algebras need not be affine, but they
are quasi-affine. Another important problem that we have not solved is whether
there is a connection between solvability and permuting congruences analogous
to the results discovered by H. P. Gumm for modular varieties. These are
probably the most important problems in the theory that need to be solved.

3. AN APPLICATION

We mention one result of varietal commutator theory that does extend to
quasivarieties.

Theorem 3.1. If % s relatively modular and there is a bound on the size of
the relatively subdirectly irreducible algebras in % , then Z =g .con [@f, B] =
a[B, B]. In particular, this will be true if % is finitely generated.

An algebra in % is relatively subdirectly irreducible if its % -congruence
lattice is monolithic (i.e., has a smallest nonzero member, which is called the
monolith). We use Zrs; to denote the class of algebras in % that are relatively
subdirectly irreducible (relative to .7 ). If A € Fgs; then the full congruence
lattice of A need not be monolithic, but, if .7 satisfies the extension principle,
then the zero element of this lattice must be at least meet-irreducible. We say
that such an algebra (whose zero congruence is a meet-irreducible element of the
congruence lattice) is finitely subdirectly irreducible; and we write Zgs; for the
class of algebras in .Z  that are finitely subdirectly irreducible. Thus, we have
Jrs1 € Frs1 whenever %7 is a quasivariety satisfying the extension principle.
We use g for the class of algebras in % that are subdirectly irreducible in
the absolute sense (i.e., whose full congruence lattice is monolithic).

The first statement of Theorem 3.1 can be proved in essentially the same way
as Theorem 10.14 in [FM], which is the corresponding statement for modular
varieties. The second statement follows from the the first statement and the fact
that when % is generated by the class of algebras M , then s C SP,(M);
hence, if % is relatively modular and if M is a finite set of finite algebras,
then Frs1 € Zrs1 CS(M) .

Notice that the relative commutator equation in Theorem 3.1 may be writ-
ten as an implication that holds for all congruences, not just . -congruences.
Indeed, the following are easily seen to be equivalent:

(a) FZ ExconlaB, Bl = a[B, B,

(b) Z Econ [@f, 1 =0 — a[f,B] =0,
(c) Z Eenk(ap,B) =0—a-x(f,B)=0,
(d) 4 |=con [aﬂ’ B].z" =0 a[,B, B]f = 0.

In (d), & can be any relatively modular quasivariety containing .%# . Condition
(c) is especially interesting. It shows that, for any algebra A, there is an intrinsic
condition that A must satisfy in order for A to belong to any relatively modular
quasivariety which satisfies the relative commutator equation in (a).

Corollary 3.2. If % is a finitely generated, relatively modular quasivariety of
groups, then % contains no non-Abelian nilpotent groups. Hence % s finitely
axiomatizable.
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Proof. The hypotheses guarantee that % satisfies the above equivalent condi-
tions (a)-(d). In condition (d) we may choose .# to be the variety of groups.
Then the #-commutator is the usual commutator of group theory, so it fol-
lows that .Z contains no non-Abelian nilpotent groups. This establishes the
first statement. The second statement follows from a result of Ol'shanskii. In
[O], one finds the result that the quasivariety generated by a finite group G is
finitely axiomatizable iff all the Sylow subgroups of G are Abelian. (This con-
dition is equivalent to the requirement that all nilpotent groups in the variety
generated by G be Abelian.) O

4. CHARACTERIZATIONS OF RELATIVELY MODULAR AND
RELATIVELY DISTRIBUTIVE QUASIVARIETIES

In §2, we developed a commutator theory for relatively modular quasivari-
eties. Unfortunately, very little is known about these quasivarieties. Several
papers written in the past few years contain examples or results concerning the
characterization of relatively distributive quasivarieties; for example, [CzDz,
D, DQS, Dz2, Dz3, K1, K2, P]. But none of these papers contains a complete
characterization. We can find in the literature no example of a quasivariety
which is claimed to be relatively modular that is not relatively distributive, or
is not contained in a modular variety. In fact, only a very few known examples
fail to be either a modular variety or a relatively distributive subquasivariety
of a modular variety. The purpose of this section is to characterize relatively
modular and relatively distributive quasivarieties. We will exhibit, in §7, nat-
ural examples of relatively modular quasivarieties which are not contained in
any modular variety nor in any relatively distributive quasivariety.

Our first theorem may be viewed as a quasivariety analogue of Day’s Theorem
which characterizes congruence-modular varieties.

Theorem 4.1. A quasivariety % is relatively modular if and only if % satisfies
the extension principle and the relative shifting lemma (Theorem 2.1(2)).

Proof. Theorems 1.1 and 2.1 already show that if .7 is relatively modular then
the conditions listed must hold. We must show that if the conditions hold, then
J is relatively modular. We will argue by contradiction.

Assume that % satisfies the extension principle, and possesses a finite set
of pairs of terms X; fulfilling Theorem 2.1(2), but that % is not relatively
modular. Then there is an A € Z and «a, B, y € ConyA such that a < f,
ay = By,and a+'y = B+'y. Let 6 = (a+y)B. Of course, a <5 < B so
ay = 0y . By the extension principle, ¢’ = (a+'y)f = f so a<J.

The definition of J is such that o < 0 < a + y, so there is an n such that

(yoa)'oy N B Za.

Let k& be the least n with this property. k is greater than 0 since yf =
ya C a. By the minimality of &,

(yoa)~loyn B Ca,

SO

(o) N B = (yoa)~loyoanpCa.
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Choose a pair (a, b) € ((yoa) oy N B) —a and a sequence of elements a =
Xo, X1, ... » Xoks1 = b such that (x;, x;;) is a member of y when i is even
and a member of «a if i is odd. To reach a contradiction, we will consider two
separate cases depending on whether k is odd or even.

If £ isodd, then & = 2r+1 for some r. In this case, the “middle link” in
the chain of elements connecting a to b, (x;, Xx4;), is a member of «. For
any (p, q) € X, we have
A

p aakaxk+l’b) (‘yoa)roypA(a’a’b’b)

= qA(a’ a, b’ b) (“/oa)roy qA(aa Xk s Xk+1> b)
Further,

pA(a, xi, Xkq1, b) B pra, xi, xi, a)
= qA(a7 Xie s Xk » a) ﬂqA(a, Xk s Xket1 s b)

Now, (yoa) oyo(yoa) oy = (yoa)¥ oy C (yoa)* and (yoa)*NB C a. Hence,
pA(a, xi, Xiy1, b)agi(a, xi, xi41, b) holds. The pair (p, g) was arbitrary
and « is a % -congruence, so the quasi-equation in Theorem 2.1(2)(ii) implies
that (a, b) € a.

Now assume that k is positive and even and that & = 2r. Then (x;_;, Xx)
is a member of o . As before,
A(a9 Xk—15 Xk » b) (y Oa)r pA(a7 a, Xzk—1, ka—l)

= qA(a> a, Xok—1, x2k—l) ao(yc’a)r qA(aa Xi—15 Xk » b)a

p

so pA(a, xk_y, Xk, b) (y o) g*(a, xk_1,xc,b). We also have that
pAa, xk_1, xk, b) B q*(a, x¢_;, x¢, b) holds by the same argument that
we used above. Since

(o)’ N B =(yoa)npCa,

we again obtain that pA(a, xx_,, xx, b)ag?(a, xx_;, xx, b) holds. Since
(Xk—1, Xx) € a, this provides the same contradiction that we reached in the
last paragraph.

The two cases we have argued are exhaustive, so the proof is finished. O

It is worth pointing out exactly where the extension principle was used in the
proof of Theorem 4.1. The only time it was used was in the second paragraph of
the proof where we proved that a < J by observing that « < and o' = a <
B =0'. We could have proved this with a condition weaker than the extension
principle:

F EonW'0=0-y'6'=0.

To see this, let § = (a+7)/a € ConA/a andlet ¥ = ¥’ = f/a € ConA/a.
Then y'0 = (B(a+7y))/a = d/a. If a = J then, since A/a € Z and
F Ecn ¥'0 =0- y'6 =0, we get that 0 = y'60’ = f/a. This is false
since a < f; hence a < 0. Thus, in the presence of the terms given by the
relative shifting lemma, the extension principle is equivalent to the condition
that Z Econ ¥'0 =0— y'0' =0.

We will call the terms involved in the set X, which fulfill Theorem 2.1(2) for
Z , quasi-Day terms for % . More generally, we will call a condition postulating
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the existence of a finite set of terms satisfying certain quasi-equations a quasi-
Mal'cev condition. The existence of a congruence-modular variety with a sub-
quasivariety that fails to be relatively modular (Example 1.3) demonstrates the
impossibility of characterizing relative modularity by any set of quasi-Mal'cev
conditions. Nevertheless, the previous theorem shows that relative modular-
ity is the join of a quasi-Mal’cev condition and the extension principle. If 7
is a congruence-modular variety with Day terms myy(x,y, z,u), ...,
my(x,y, z,u) satisfying the usual equations, then we may choose X; to be
the set of pairs {(m;(x,y, z, u), miy (x,y,z,u)) : i<n, ieven}.Itisan
easy exercise to check that this (finite) set of pairs of terms satisfies the relative
shifting lemma for % .

It is also easy to show that a quasivariety satisfies the extension principle iff its
finitely generated algebras do. Further, the proof of Theorem 2.1 shows that a
quasivariety has quasi-Day terms if its 4-generated free algebra has a relatively
modular congruence lattice. Together, these facts imply that a locally finite
quasivariety is relatively modular iff its finite algebras have modular relative
congruence lattices.

The next theorem is an easily stated (and easily proven) characterization of
relatively distributive quasivarieties.

Theorem 4.2. A quasivariety % is relatively distributive iff for every A € %7,
every completely meet-irreducible member of Cony A is a meet-prime member
of ConA.

Proof. The necessity follows easily from the extension principle; the sufficiency
is also a quite straightforward argument. O

The next theorem combines quasivariety analogues of Jonsson’s Theorem
characterizing congruence-distributive varieties with analogues of the com
mutator-theoretic characterization of congruence-distributive varieties found in
[FM].
Theorem 4.3. The following conditions are equivalent for a quasivariety % :

(1) Z is relatively distributive.

(2) Z isrelatively modular and satisfies the commutator equation [a, f]=
a-p.

(3) & is relatively modular and satisfies [a, a] =0 — a=0.

(4) Z satisfies the extension principle, and there exist a finite set £; of
triples of terms (r(x, v, z),s(x,y, z), t(x,y, z)) in the language of
F such that. (1) if (r,s,t) € X, then the equations

rix,y, x)=sx,y, x)=tx,y,x),

rx, x,y)=s(x,x,py),  s(x,y,y)=tx,y,y)
are valid in % ; (1) the quasi-equation

/\ (rix,y,z)=s(x,y,z)&s(x,y,z)=t{x,y,z) > x~rzZ
(r,s,1)eX,
is valid in % .
(5) Z satisfies the extension principle, and there exist a finite set X!, of
quadruples of terms (r(x,y, z),s(x,y, z), 8 (x,y, z), t(x,y, z)) in
the language of Z such that: (i) If (r, s, s', t) € L, then the equations

rx,y,x)=s(x,y,Xx), Sx,y,x)=tx,y, x),
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rix, x,y)=s(x,x,y), Sx,y,y)=ix,y,y)
are valid in % ; (i1) the quasi-equation

N e,y 2 ms(x,y, 2)&s'(x,y, 2)mt(x,y,2) > x =~z
(r,s,s’,t)e):"i

is valid in % .

Proof. 1t was shown that (1) implies (2) in Example 2.7. Conversely, the addi-
tivity of the commutator (property (2) in Theorem 2.13) shows that (2) implies
(1). The proofs that (2) implies (3) and that (4) implies (5) are obvious. To
show that (3) implies (1), we will argue by contradiction. If (3) holds but (1)
fails, then % is relatively modular, but not relatively distributive. There must
be an algebra A € Z with distinct congruences «, #, y € CongzA such that
af = ay = By and a+' B = a+'y = B+ y = 6. Necessarily, a < 4.
This means that

[0,0]1=[a+' B, a+' 71<a+'[B,7]<a.

Hence, in B = A/a we have a congruence § = ¢/a for which [6, 0] =0
even though 6 # 0. This is a contradiction. This shows that the first three
conditions are equivalent.

The argument that produces the terms in (4) is very similar to the argument
we used in Theorem 2.1. To show that (1) implies (4), let F = Fg(x,y, 2)
be a 3-generated free algebra in Z. Consider the % -congruences «, £,
and y generated by {(x, z)}, {(x, )}, and {(y, z)}, respectively. If tr(X)
denotes the transitive closure of the relation X C F?2 then, since .% is relatively
distributive,

(x,z)€a(f+ 7)=af + ay =[tr(afoay)].

Hence, there is a finite subset 7 of afoay such that [tr(7T)]' contains (x, z).
For each (rF,F) € T, where r and ¢ are terms, there is a ternary term
s(x,y, z) such that rF af s¥ ay tF. If we let £; be a set of such triples
of terms {(r,s, 1) : (rF, F) € T}, then it is straightforward to verify that the
quasi-equations listed in (4) hold. Of course, (1) implies that Z satisfies the
extension principle by Theorem 1.1. This finishes the proof that (1) implies (4).

We can finish the proof by showing that (5) implies (3). Assume that (5)
holds. For each (r, s, s', t) € £, we define two pairs (p;, q1) and (pz, ¢2) by

p(x,y,z,u)=r(x,y,u, Q(x,y,z,u)=s(x,y,u),
n(x,y,z,u)=s"(x, z,u)), Qx,y,z,u)=tx, z,u).

If we let Z; be the (finite) collection of all pairs of the form (p,, ¢;) and
(p2, q2) that arise this way, one finds that this set satisfies Theorem 2.1(2) for
Z . Hence, condition (5) implies that .7 satisfies the extension principle and
has quasi-Day terms. By Theorem 4.1, .% is relatively modular. Now suppose
that A € %7 and o € ConA satisfies [, a] = 0. In other words, suppose that
Z(a, a) holds. Choose (a, b) € a and assume for the moment that a # b.
It is not true that rA(a, b, b) = s*(a, b, b) and s'*(a, b, b) = t*(a, b, b)
forall (r,s,s’,t) € £, by 5(ii), but at least s’A(a, b,b) =t*a, b, b) does
hold. Hence, we can find a tuple in X, for which rA(a, b, b) # s*(a, b, b).
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Let f(x,y) = rA(x, b,y) and let g(x,y) = sA(x, b, y). The equations
listed in (5) imply that f(a, a) = g(a, a), f(b,a) = g(b,a),and f(b,b)
= g(b, b), but we have chosen these polynomials so that f(a, b) # g(a, b).
This contradicts the fact that Z(a, ) holds unless our assumption that a # b
is false. Since (a, b) € o was arbitrary, o = 0. This shows that (3) holds,
finishing the proof of Theorem 4.3. O

(After the first draft of this paper was written we learned that A. M. Nu-
rakunov had discovered a proof that a quasivariety .# is relatively distributive
iff Zrest C Frs1 and % satisfies quasi-equations listed in Theorem 4.3(5). The
condition Jrrsi C Frsi, that every relatively finitely subdirectly irreducible
member of .7 is finitely subdirectly irreducible, is weaker than the extension
principle, so Nurakunov’s result is a better characterization of relatively dis-
tributive quasivarieties than condition (5) of Theorem 4.3. Condition (4) of
Theorem 4.3 can be improved similarly. In [Dz3], W. Dziobiak proved Nu-
rakunov’s result for subquasivarieties of a congruence permutable variety.)

We will call the terms in condition (4) quasi-Jonsson terms.

The next few results concern locally finite quasivarieties. We will use the
terminology and methods of tame congruence theory. The reader not familiar
with the theory is referred to [HM].

Lemma 4.4. Assume that A € % is finite and that o € ConA is a minimal
nonzero congruence. If % is relatively modular, then typ(0, a) € {2,3,4}. If
Z is relatively distributive, then typ(0, a) € {3, 4}.

Proof. Assume first that %7 is relatively modular. Let X; be a set of pairs of
terms satisfying the shifting lemma for .7 . We need to eliminate the possibility
that typ(0, @) € {1, 5}. Choose U € Mx(0, a) andlet T bea (0, a)-trace in
U . Pick distinct elements a, b € T. Since a # b, there is a pair (p, q) € X
such that pA(a, b, b, b) # q*(a, b, b, b). However,

pra,b,b,b)aprb,b,b,b) = q*b,b,b,b)agra,b,b,b),

so pAa,b,b,b) (a—04)qra,b,b,b). There is a unary polynomial of
A, f,such that f(4) = U and fpA(a, b, b, b) (a —04) fq*(a,b, b, b).
By suitably altering f if necessary, we may assume that fpA(a, b, b, b) and
fqA(a, b, b, b) are distinct elements of 7. Now U is closed under fpA and
under fgA,and T isan a|y-class of U;so T is closed under fp* and under
fq*. We are now in a position to show that typ(0, o) ¢ {1, 5}.

For our first case, assume that typ(0, ) = 1. Then Aly is essentially unary,
so fpA(x,y, z,u) and fq*(x,y, z, u), restricted to T, depend on at most
one variable. But fpA(a,b,b,b) # fq*(a,b,b,b) and fpA(b,b,b,b)
= fqA(b, b, b, b), so at least one of these polynomials depends on the first
variable. By a similar argument, fpA(a,a,b,b) = fq*(a,a, b, b) shows
that one of them depends on the second variable and fpA(a, b, b,a) =
fq*(a, b, b, a) shows that one of them depends on the last variable. This
forces one of them to depend on at least two variables (when restricted to 7),
which is impossible. Hence, typ(0, a) is not 1.

Now assume that typ(0, a) = 5. Then |T| = 2 and Aly is polynomially
equivalent to a semilattice. Since a and b were chosen arbitrarily, we may
assume that b is the label that we gave to the element of 7' that is the absorbing
element for all polynomials. Since fpA(a, b, b, b) and fg*(a, b, b, b) are
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different, we may assume that fpA(a, b, b,b) = a and fq*(a,b,b,b) =
b . This forces the conclusion that fp? , restricted to T, does not depend on its
last three variables. Hence, fq*(a,a,b,b) = fpAr(a,a,b,b) = a, which
implies that fg?, restricted to T, does not depend on its last two variables.
This gives us the contradiction that

a=fp*a,b,b,b)=fp*a,b,b,a)
= fg*a, b, b,a)=qu(a, b,b,b)=0>b.

Thus typ(0, a) is not 5.

To finish the proof we need to show that under the stronger assumption
that Z is relatively distributive, we can rule out the possibility that
typ(0, ) is 2. With an argument similar to that in the first paragraph, using
quasi-Jonsson terms instead of quasi-Day terms, we can arrange it so that
rA(a, b, b) (a — 04) s*(a, b, b), where r and s are components of a triple
(r,s,t) € £;. There is a unary polynomial of A, g, such that gri(a, b, b)
and gs*(a, b, b) are distinct elements of 7. Further, T is closed under gr?
and gsA. If we assume that typ(0, a) = 2, the algebra Aly is polynomially
equivalent to a module. Choosing b as zero element for this module, set

h(xayaZ):grA(xay*Z)_gSA(x’y’Z)‘

One can quickly verify that A(x,y,x) = A(x,x,y) = b forall x, ye T,
but that A(a, b, b) #b. Thatis, h(a,a,a) = h(a,a,b),but h(a, b, a) =
b # h(a, b, b). This is a failure of the (one-) term condition in Alz, which is
impossible. Hence, typ(0, a) is not 2. This finishes the proof. O

The next theorem is weaker than Theorem 4.1 in that it is not a complete
characterization of relative modularity for locally finite quasivarieties. Never-
theless, it may be easier to apply than Theorem 4.1. The monolith of a subdi-
rectly irreducible algebra is the smallest nonzero congruence of the algebra.

Theorem 4.5. Let #Z be a locally finite quasivariety. The following conditions
imply that % is relatively modular-

(1) Z satisfies the extension principle.
(2) Every finite A € Zs has monolith of type 2, 3, or 4.
(3) Where ua is the monolith of A, each U € MA(0, ua) has empty tail.

Conversely, if Z is relatively modular, then (1) and (2) must hold.

Proof. The converse is by Theorem 1.1 and Lemma 4.4. We need to prove the
forward direction.

Assume that (1), (2), and (3) hold for .7 . We will assume that .% is not
relatively modular and argue to a contradiction. Since .7 1is locally finite, we
can find a finite algebra A € % which has a nonmodular relative congruence
lattice. Say that «, B, y € ConyA and that o < B, ay = By, and a+'y
= B+'y.Setd = (a«+7)B. By (1), 6’ = B so « <. There must exist a
congruence ¥ € ConzA which is completely meet-irreducible in Con A such
that o < wv and J £ w. By condition (1) and the fact that A is finite, y is
completely meet-irreducible in Con A as well. Let w* denote the unique upper
cover of . Now, pick U € Mj(w, w*). Since the restriction map is a lattice
homomorphism from ConA to ConAl; , we have

oy Sylu <y'le <0+ w)|lv =0lv+v|u.




COMMUTATOR THEORY FOR RELATIVELY MODULAR QUASIVARIETIES 487

Hence, a|y < d|y . Since ay = dy and a+y = d+y, we also have a|yy|v =
dluy|lv and a|y +y|lv = dly + y|u . This shows that Con Al is nonmodular.
However, conditions (2) and (3) imply that Aly is (¥|v, ¥*|y)-minimal of
type 2, 3, or 4 and that Al; has no tail, therefore Aly is E-minimal. This
implies that either U has only two elements or that Aly is Mal'cev. In either
case, Aly has permuting congruences which implies that Con Al is modular.
This is the contradiction that we sought. [

An analogous but stronger result is true for relatively distributive quasivari-
eties.

Theorem 4.6. Let % be a locally finite quasivariety. The following conditions
imply that % is relatively distributive:

(1) The finite algebras in Fgsy are subdirectly irreducible.
(2) Every finite A € F#s has monolith of type 3 or 4.
(3) Where uy is the monolith, each U € My (0, up) has empty tail.

Conversely, if % is relatively distributive, then (1) and (2) must hold.

Proof. The extension principle implies that the zero congruence of a relatively
subdirectly irreducible algebra is at least meet-irreducible as an ordinary con-
gruence; for a finite algebra it must be even completely meet-irreducible. Hence,
condition (1) is implied by the extension principle. If 7 is relatively distribu-
tive then (1) must hold. Further, Lemma 4.4 shows that (2) holds, in this case.
This proves the converse.

To prove the sufficiency of the conditions, we are going to argue by contradic-
tion again. Suppose that (1), (2), and (3) hold and that .7 fails to be relatively
distributive. The remarks that we made after Theorem 4.1, which apply equally
well to Theorem 4.3, show that we can find a finite algebra A € Z which fails
to have a distributive relative congruence lattice. Say that o, f, y € CongA
and

0=af+7)>af+ ay=24.

There is a congruence y which is completely meet-irreducible in Congy A such
that 6 < ¥ and 6 £ . Condition (1) guarantees that y is completely meet-
irreducible as an ordinary congruence. Let y* denote the unique upper cover of
w. Now, if <y and y <y then 6 < f+'y < v, which is false. Therefore,
we may assume that f £ w. Further, o £ . Now pick U € Mj(v, v*).
Conditions (2) and (3) imply that |U| = 2. Hence, Aly is an algebra with
exactly two congruences: Oy and 1y . Since w|y < w*|y, it must be that |y
= Oy and y*|y = ly. Restriction of congruences is a lattice homomorphism
from ConA to ConAly and this homomorphism could only be the map

éH{OU if&<y,

1y otherwise.

Hence, a|y = 1y and By = ly and this should force (af)lv = (alv)(Blv)
= 1ly. But aff < v, so (af)lu = Oy. This contradiction finishes the
proof. O

If Z is generated by a finite set M of finite algebras, then Zrs C S(M).
This allows us to rewrite condition (1) in Theorem 4.6, for finitely generated
quasivarieties, as Frs1 C %51 . As we mentioned, the hypothesis that Zrg C
s is much weaker than the extension principle. Indeed, showing that every
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relatively subdirectly irreducible algebra in a finitely generated quasivariety %
is subdirectly irreducible can be accomplished by examining the algebras in
S(M) and the homomorphisms between them. One may now ask if Theorem
4.5 remains valid if we weaken its condition (1) to the condition Zgs; C Fs -
The answer is no. If we let H be the quaternion group and .# = SP(H), then
Frs1 € Zs1 and conditions (2) and (3) of Theorem 4.5 hold. However, .7 is
not relatively modular. (That this is so can be deduced from Theorem 3.1 or
Theorem 4.8(3)(ii).)

One of the appealing aspects of Theorem 4.6 is that it allows us to prove that
a finite set of finite algebras generates a relatively distributive quasivariety just
by checking that the generating algebras satisfy certain conditions. The other
theorems that we have given require us to verify that the generated quasivariety
satisfies the extension principle; and we do not know a general test to check
that the extension principle holds. However, this problem can be avoided if
one knows merely that the generated quasivariety is contained in some rela-
tively modular quasivariety. This will become apparent after we characterize
the relatively modular subquasivarieties of a given relatively modular quasiva-
riety.

In characterizing relative modularity for the subquasivarieties of a given rel-
atively modular quasivariety, we will require an extension of Ralph Freese’s
notion of similarity of two subdirectly irreducible algebras in a congruence-
modular variety. Suppose that 7~ is a congruence-modular variety. Two sub-
directly irreducible algebras A and B in 77 are said to be similar in 7" iff
there is an algebra C € 7° and congruences «, a*, 8, f*,d,y of C such
that C/a = A, C/f =B, o* and p* are the unique covers of o and g, and
a*la \, y/d / B*/B. (By o*/a \ y/0, we mean that a* = o+ y and ¢
= ay. Similarly, y/6 / p*/f means that f* = y+ f and 6 = yf.) The
relation of similarity is an equivalence relation on the class of subdirectly irre-
ducible algebras in 7 ; when A, B, C are related as above, we can always take
0 = aff, and thus we can always arrange that «ff = Oc and C is a subdirect
product of A and B.

Now if Z is a quasivariety, then we say that finitely subdirectly irreducible
algebras A and B are similar in % iff they are members of .Z° and there exist
C € % and % -congruences a, B, a*, f*,d,y of C such that C/a & A,
C/p 2B, a<a* and B < f*; and o*/a \, y/0 / B*/B in the lattice
Conyz C. We will write thisas A~y B.

Suppose that .¥ C %, where % and .£ are quasivarieties and 7 is rela-
tively modular. We say that Zg; is closed under similarity in % if whenever
we have finitely subdirectly irreducible algebras A and B such that A ~4 B,
A€.Z,and B e H(.Y), then we necessarily have B € .2 . Note that, as in the
definition of similarity for subdirectly irreducible algebras in a modular variety,
we can always take C (in the definition of similar algebras) to be a subdirect
product of A and B (so long as .#Z is relatively modular). Note also that if
A,B e % and both # and & are relatively modular (and . C %) then
A ~4 B isequivalent to A ~ B. Observe, finally, that if A and B are finitely
subdirectly irreducible algebras and are similar in .7, then A is relatively sub-
directly irreducible in % iff B is, and if they are subdirectly irreducible and
Z is a variety, then they are similar in the sense of Freese’s definition.

Now assume that A ~5 B, where % is a relatively modular quasivariety.
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Assuming also that A % B, we can show that A (as well as B) has a nonzero
Abelian congruence. Thus if %7 is relatively distributive then the relation of
JZ -similarity is not very interesting—it is just the same as isomorphism. To see
this, assume that A 2 B. Using the notation of the last paragraph, it follows
that a # #, and hence that § £ a, since ay = fy and CongC is modular.
Hence u > a, where u = (e +' B)(a +' y). The argument concludes with the
calculation

u, pl <fa+' B, a+'71<a+'[B,7]1<a+' By=0a,

showing that [u, u#] < a, and thus u/a is a nonzero Abelian congruence of
Cla (ZA).

Lemma 4.7. If % and % are relatively modular quasivarieties and & C % ,
then S is closed under similarity in % .

Proof. Assume that A € Y, Be€ Fsi NH(Z), and C, a, a*, B, B*, 0,
y witness that A ~5 B. As noted earlier, we can choose C so that aff = 0¢,
hence C belongs to the variety H(.%¥). Then making another choice of C,
we can assume that C € . Now a € ConyC; ie, a = Cgyp(a). We
need to show that f = Cgy(f). To get a contradiction, suppose that g <
Cgw(B). Then of course Cg(B)B* > B. Replacing p* by Cgo(B)B*, 7
by Cg(B)yB*, and a* by a +5 Cgs(B)yB*, we can change notation and
assume that Cgo.(f) > f* > y. By the extension principle, we now have

Cgy(0) = Cegn(vB) = Cegr(v)Cesr(B) = Cege(¥) ;
then

Cgy(a*) = Cgpla+y 7) = Cegzla) +» Cga(?)
=Cgy(a) +» Cgy(d) = Cgop(a+d) = Cgy(a) = a.
This is a contradiction, since a < o* < Cgy(a*). O

Theorem 4.8. Assume that % is a relatively modular quasivariety and that & C
Z is a subquasivariety. Then the following conditions are equivalent:

(1) Z is relatively modular.
(2) & satisfies the extension principle.
(3) (1) Zks1 C L1 and(ii) F4s; is closed under similarity in % .

Proof. Theorem 4.1 easily implies that conditions (1) and (2) are equivalent.
Further, from Lemma 4.7 and earlier work, we already know that conditions
(3)(i) and (3)(ii) are necessary conditions for .2’ to be relatively modular.
Suppose that these conditions hold. We shall prove that (2) holds.

Arguing by contradiction, we suppose instead that (2) fails. We have A € .¥
and congruences a and f# of A such that Cg,(af) < Cgo(a)Cgs(B). Since
JZ satisfies the extension principle,

Ceo(Coz()Cey(B)) = Coy(af) < Coyr(Coy(a))Ceyr(Cer (B)).

Replacing o and f by their %7 -extensions if necessary, we may assume that
they are % -congruences.

There is a congruence u € ConA which is completely meet-irreducible in
CongyA such that 4 > aff and u 2 Cgo(a)Cgy(f). We can assume that
a and B are maximal with respect to being .Z -congruences and satisfying
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af < u,ie., that if o* is a # -congruence and o* > o then o*f £ u, and
similarly, if §* isa JZ-congruence and 8* > f then aff* £ u. Clearly, neither
a nor B is contained in u. (If o < u then Cg,(a) < Cgy(u) = pu which is
false.)

Since a(ua +% B) = pua +% aff < u holds by modularity, it follows from
the maximality of # that ua < . Similar arguments give that

af =apn=pu
Now 4 is meet-irreducible, by (3)(i). Hence

A=(p+za)(n+x B)> .

We have A/u \ y/af in Cony A, where y = (4 +4 a)f . Moreover, we have
a*fa\, y/ap,where o* =a+4 y. Thus a*/a\ y/af / A/u in CongzA.

We can now show that o is meet-irreducible as an ordinary congruence.
For this, it will suffice to show that o is meet-irreducible in ConyzA , since
JZ satisfies the extension principle. From (3)(i), u is meet-irreducible as an
ordinary congruence and therefore as a .%#-congruence. This fact and the .7'-
isotopy shown in the last displayed formula show that a is meet-irreducible in
the interval o*/a of ConyA. Thus we need only show that if y € ConyA
and y > a then yo* > a. Assume that y > . By the maximality of «, we
have that yf £ u. Hence xf +% 1 > u, and it follows that A(xf +5 u) > u.
Working back through the isotopies, we have that

a+z yAXB +7 1) > a.

Since A>u, Af =y,and yu = af, the displayed inequality can be rewritten
(using the modular law) as yy £ «. This implies o*y £ a, since o* > y. Thus
a is meet-irreducible as a 7 -congruence and also as an ordinary congruence.

Now the displayed isotopies show that the finitely subdirectly irreducible
algebras A/a and A/u are % -similar; hence we conclude by (3)(ii) that A/« €
& ,and so a = Cg,(a). A similar argument gives that f = Cgo(f). This
of courses contradicts our assumptions that aff < u while Cgy(a)Cgy(f) £
u. O

One can use Theorem 4.8(3)(ii) and the remarks preceding Lemma 4.7 to
show that, in Theorem 4.8, .¥ is a relatively distributive subquasivariety of
F iff Ke € Fs1 and L Econ [X, Xl = 0 —» x = 0. This was proved
in [K2] under the assumption that # is a variety. If, in Theorem 4.8, .7 is
relatively distributive, then .# is relatively modular iff it is relatively distribu-
tive iff Zs1 € FEs1. This extends the result that % is a relatively distributive
subquasivariety of a congruence distributive variety iff Zgg1 C Zs1, which was
proved in [Dz2].

5. AN ALMOST-EQUATIONAL AXIOMATIZATION

By a A-axiom we mean a first order sentence of the form “for all x, ... , z
we have pi(x,x,u,u,z2) = qi(x,x,u,u,z) forall i € {0,... ,n—1},
and if pi(x,y,u,u,z)=¢qi(x,y,u,u,z) forall i e {0,...,n—1} then

x =y,” for some finite system of terms p;(x,y,#,7, 2), qi(x,y,a,7, Z).
We write this axiom as A(p;, q¢;; 0 < i < n), or simply A(p, q). If we have a
quasi-equation

/\ ri(2) = 5;(2) — r(z) =~ s(z)
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and a A-axiom A(p, q), where p =p(x,y,u, 7, z) and &, T are m-tuples
of variables, then obviously this quasi-equation is implied by A(p, gq) together
with the system of equations

pi(r(Z), S(Z)’ rO(Z)’ cee s rm—l(z)9 S0(2)> cee Sm—l(z)a Z)
~ qi(r(f)a S(f), rO(Z), cee s rm——l(z)a SO(Z)’ cee s Sm—1(2)7 2)‘

This observation leads to the next theorem.

Theorem 5.1. Let % be a relatively modular quasivariety. % is axiomatized
by a set of A-axioms combined with a set of equations.

Proof. Suppose that A jemti ® Sj — r = s is one of the k-variable axioms
of Z . Let F be the % -free algebra generated by z; (j < k) together with
X,V Uy, oo s Um_y, Vg, ... , Um—y . Consider the congruences y generated by
all pairs (x, y), (4;, v;); a generated by all pairs (u;, v;); and B generated
by all pairs (x, r(2)), (v,s(2)), (u;,rj(z)), and (v}, s;(z)). Then (x,y)
belongs to
V(e + B = (a+yB)

by the modularity and the extension principle. So we get finitely many pairs

(pi, q;) of elements of yB such that (x, y) isin every Z -congruence contain-
ing these pairs and « . This just means that

‘% |=p,-(r(2), S(Z)’ rO(Z)v cee s Sm_](Z), Z)
~qi(r(z),s(z), ro(2), ... ,Sm-1(2), 2)

and

%|=p,-(x,x,fl,ﬂ,?)%q[(x,x,u,ﬂ,f)

for all i; and
Z E (/\pi(x,y,a, u,z)=qi(x,y,u,u, 2)) —XRY.
li

Thus the A-axiom A(p, ¢g) holds in .7 ; and, combined with the first set of
equations displayed above, it implies the given quasi-equation. This establishes
the theorem. O

(The referee informs us that Theorem 5.1 for relatively distributive quasivari-
eties is Theorem 4.1 in The deduction-like theorem for quasivarieties of algebras
and its applications, by J. Czelakowski and W. Dziobiak which will appear in
Algebraic Logic (Proc. Conf. Budapest, 1988): (H. Andréka, J.D. Monk, and L.
Németi, eds.), Colloq. Math. Soc. Janos Bolyai, North-Holland, Amsterdam.)

The quasivariety of all cancellation semigroups, % , is axiomatized by the
quasi-equations

Xyx=xz—yxz and yx=zIx - y=x_z.

Each of these quasi-equations can easily be written as a A-axiom. However, the
quasivariety of all cancellation semigroups is not relatively modular; it does not
even satisfy the extension principle. For example, in F(x, y, z, u) we have
Cg(xz, xu)nCg(yz,yu) =0,but (z,u) € Cgo(xz, xu)NCgy(yz, yu).
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Theorem 5.2. Let % be a relatively modular quasivariety. Let A € %, 6 €
ConA,and u,v € A. Then (u, v) belongs to the % -extension of 6 iff there is
some A-axiom A(p, q) validin % , some pairs (a;, b;) € 6, and some elements
¢ €A such that p*(u, v, a, b,o)= atu,v,a, b,¢c) forall i.

Proof. It is obvious that the condition implies that («, v) belongs to the %7-
extension of 6. Conversely, suppose that (u,v) € Cgy(6). Let X = 4
and F = F5(X). Let 6 = p~'(6), where ¢ is the obvious homomorphism
from F onto A (that extends the identity map on X ). Then Cg;?(é) =
9~ 1(Cgz(0)), and so (u,v) € Cg%(é). This means that there exist finitely
many pairs (r;, s;) € 8, 0 <i < m, such that

Z E (/\rizsi) —Srxs,

where, for a certain finite system Z of free generators of F excluding # and
v, we have

ri=ri(u,v,z), s=s(u,v,z), r=u, s=v.

Now the proof of Theorem 5.1 produces a A-axiom A(p, q) satisfied by 7
such that the equations

pi(u,v,r(u,v,z),...,8m—1(u,v,2),u,v, 2)
~qj(u,v,rou,v,z),...,S;m1(U,v,2),u,v, 2z)
are valid in .7 . Letting a be the tuple (r()*(u, v,Z),...,rA (u,v,Z)) and

b the corresponding tuple formed by the evaluations of the s; in A, we have
that a;0b; for 0 < i < m since (r;, s;) € 6; and we have

pMu,v,a,b,u,v,z)=qMu,v,a,b,u,v, 2)

for all j as desired. O

6. THE LATTICE OF RELATIVELY MODULAR QUASIVARIETIES

The lattice of subvarieties of a modular variety is a modular lattice. The
lattice of subvarieties of a distributive variety is a distributive lattice. Indeed,
the lattice of subvarieties of any variety is dually isomorphic to a sublattice of
the congruence lattice of a free algebra in the variety; so if a variety satisfies a
lattice equation as a congruence identity, then the lattice of subvarieties satisfies
the dual equation. In this section, we prove that the relatively modular subqua-
sivarieties of a given relatively modular quasivariety constitute a lattice; and we
study that lattice. We shall find that it is not possible to identify this lattice
with a sublattice of the dual of a relative congruence lattice of any member of
the quasivariety.

Lemma 6.1. If % (i € I) are quasivarieties satisfying the extension principle,
then (\,c; % satisfies the extension principle. If % and . satisfy the exten-
sion principle and H(Z') = H(Z), then the quasivariety join Z NV .£ satisfies
the extension principle.

Proof. Let Z = (),¢; % and choose A € Z . Note that for any quasivariety
<, since Cgy is an algebraic closure operator on 42, CongA is closed under
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unions of up-directed sets of congruences. Now suppose that A € ¥ N_# and
both Cgy and Cg, are meet-preserving maps on ConA. We shall show that
Cgyn s 1s meet-preserving likewise. For 6 € ConA and n < w define

0 ifn=0,
0,=< Cgy(0,-1) ifnisodd,
Cgy(0,-1) otherwise.

Then V/,_, 60, belongs to both ConA and Con A (since both sets are closed
under up-directed unions); so clearly,

V 6n = Ceonp(6).

n<w

If y, d € ConA, then for every n < w we have y,-d, = (y-9),, since both
Cgy, and Cg, preserve meets. By upper continuity, this entails that

(vy,,).(\/an)=\/<y.a>,,,

n<w n<w n<w
or that
Ceong(v+0) =Coons(?) Coyns(9).
y and & were arbitrary, so we have shown that Cgy , preserves meets.
Take I" to be the set of all maps Cg, , where % ranges over intersections
of finite subfamilies of {%;:i € I} and Cgy is construed as a function from

Con A into ConA. From the previous paragraph, we have that each member
of T' is a meet-preserving function. We claim that for 6 € ConA,

Cex(0) = \/ C0) = |J C(6).

cer’ Ccer

The second equality holds because {C(6) : C € I'} is an up-directed set of
congruences. Also, it is clear that Cgg () > C(6) when C € T', since C =
Cgy , where & D % . The first equality in the displayed formula can thus be
demonstrated by showing that \/{C(6) : C € I'} belongs to ConyA. To do
this, let i € I, and note that since Cg(0) < Cg 44 (0), then

\V{C(®6):CeT}=\/{C(6):CeT and C(6) € ConzA}.

This displays the join as equal to the join of an up-directed subset of CongzA ;
consequently, the join belongs to ConyzA. Since this holds for every i, we
conclude that \/{C(0): 6 € C} belongs to ConzA, as desired.

Now if (x,y) € Cg4(0)Cgs (), where 6, y € ConA, then, as we have
shown above, (x,y) € Cg,(0) N Cg,(y) for some ¥ and # which are
intersections of finitely many of the .%Z;. So we have

(x,y) € Cgypi(0)Cgyp(w) =Cgp(0w) CCgy(0y),

where &' = &£ N _#, since Cg,, is meet-preserving, as was shown in the
first paragraph of the proof. This concludes the proof of the first statement in
Lemma 6.1.
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To prove the second statement, first notice that .#' V. = SPP,(% U.Z)
= P(Z U.Z). This implies that for A € Z N.Z and 6 € ConA we have the
formula

Ceyvr(0) =Cgy(0) - Cg(0).
Now, # and . satisfy the extension principle iff their free members do.
Further, H(%Z') = H(Y) holds iff .#", and & have the same free algebras.
Thus 7, . and % V.Z have the same free algebras. Hence it suffices to
consider an arbitrary free algebra F € Z N.% and show that for congruences
on F we have Cgy, »(a-f) = Cgyy(a)-Cgyy (). By the last displayed
formula,

Ceyrvyla-B)=Cgyla-f)-Cgpla-pf)
=Cgy(a)-Cgz(B)-Cgrla)-Cex(B)
=Cggyr(a) - Ceyyr(B).

This proves the second statement of the lemma. O

Lemma 6.1 and Theorem 4.8 show that the family of all relatively modular
subquasivarieties of a given relatively modular quasivariety is closed under ar-
bitrary intersections. This implies that the inclusion ordering for this family is a
lattice ordering. If % is relatively modular, let L(Z) and Ly(.%Z") denote the
lattices of subquasivarieties of %, and of relatively modular subquasivarieties
of % , respectively.

We observed above that two quasivarieties which generate the same variety
must possess the same free algebras. Consequently, the family of quasivarieties
generating a given variety is closed under arbitrary intersections.

Corollary 6.2. If 77 is a variety, then the lattice of all quasivarieties which gener-
ate 77 and satisfy the extension principle is a distributive sublattice of the lattice
of subquasivarieties of 7" .

Proof. Lemma 6.1 insures that the quasivarieties which generate 7” and satisfy
the extension principle do indeed form a sublattice of the lattice of subquasi-
varieties of 7. Suppose that ¢, %, and .¥ are three members of this
sublattice and that /# = # N (% V.¥). Then

Mrst = Frst N (Frsi U Zsi)

= (st N Frs1) U (Frst N Zrs1) C (£ NA)U (S NZ).

But .# satisfies the extension principle, so .Zrs; C .#gs; which implies that
M = Py(Mrs1). Hence, # C (fﬁ%)V(fﬂg) g

Every quasivariety £ is contained in a quasivariety that satisfies the exten-
sion principle: the variety generated by _# , for example. Lemma 6.1 implies
that there is a least quasivariety _# containing _¢ that satisfies the extension
principle. Observe that if £ is contained in any relatively modular quasi-
variety then, by Theorem 4.8, # is the least relatively modular quasivariety
containing _# . It may be that _# may be described as the least quasivariety
containing _# which can be axiomatized by special sorts of axioms; axioms
more special than quasi-equations but less special than equations. Or it may be
that _# can be described as the closure of _# under some class operator; closing
# under a limited kind of homomorphism. We do not know if either of these
guesses is true or not, but we will digress a little from the examination of the
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lattice Ly (%) and show that quasivarieties satisfying the extension principle
are closed under a kind of “factorization” of algebras.

Definition 6.1. If f: B — D and g: C — D are onto homomorphisms, then
we will write B xp C to denote the subalgebra of B x C consisting of all pairs
(b, ¢) for which f(b) = g(c).

Theorem 6.3 (Factorization Theorem). If % satisfies the extension principle,
BxpC e X, and D € %, then both B and C are members of % . In
particular, if B x C belongs to % , then both B and C also do.

Proof. Let ny and 7, denote the congruences on B xp C that are the kernels
of the projections onto B and C respectively. Now if a is the kernel of f
and f is the kernel of g, then ag = B, = 5o+, which is a % -congruence
since D € Z. Further, non; = 0 is a Z -congruence since B xp C is in
Z . Our goal is to prove that both 79 and #, are % -congruences. We have
no < My < Mo+ ni. Assume that ((b,c), (d,e)) € ny—no. Then b # d,
but f(b) = f(d) = g(c) = g(e). This implies that ((b, c), (d, c)) € myny ,
which contradicts the fact that 77; = 0. We must conclude that ny = 7, and
similarly that n, = 7n].

The second statement follows from the first statement and the fact that BxC
is just B xp C for D equal to the one-element algebra, which is a member of
Z . 0O

The quasivariety of all cancellation semigroups is closed under the kind of
factorization described here, but this quasivariety does not satisfy the extension
principle, as we pointed out after Theorem 5.1.

The next result is the quasivariety analogue of a well-known result of J. Hage-
mann and C. Herrmann (cf. Exercise 8.2 in [FM]).

Theorem 6.4. The quasivariety join of two relatively distributive subquasivarieties
of a relatively modular quasivariety is relatively distributive.

Proof. Let Z be relatively modular and assume that ¥ and & are relatively
distributive subquasivarieties of # . Let .Z be the quasivariety join £ V.&.
We will prove that .#Z is relatively distributive by using the criteria mentioned
after Theorem 4.8; that is, by showing that .Zzs; C .#Fs; and that .# satisfies
the commutator implication [x, x]y =0—x=0.

From #V.Z = P(fUY) we find that Mg C FsiU-Zkst € Frs1U-Zfsi
= Mrs1. To see that .# satisfies [x, xX]y =0—-x=0,let Ac .#Z and 6 €
Con A with [0, 8]y =04. Since # V.¥ = P;(_¥ UZ), there are congruences
a € Con #A and B € Con »~A such that af =0,. Now

[@a+0, a+0ly <a+x[0,0ly =a,

implying that (a+ 60)/a = «a since A/a € # and # satisfies the commutator
implication. This means that 8 < «. Similarly, 6§ < . So 8 < aff =0,4.
We conclude that .# satisfies the commutator implication, which finishes the
proof. O

The last result shows that the relatively distributive subquasivarieties of a
relatively modular quasivariety .2 form a lattice. We will denote this lattice
by LD(% ) .
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Theorem 6.5. Let Z be a relatively modular quasivariety. Lp(%) is a dis-
tributive sublattice of both L(%') and Ly (%).

Proof. Lemma 6.1 and Theorem 6.4 show that the relatively distributive sub-
quasivarieties of .Z form a sublattice of both L(:#) and Ly (7). We only
need to show that Lp(Z") is distributive. For this it will suffice to show that if
F, % ,and A are relatively distributive subquasivarieties of % , then

(A N(FVL)rs1 C (A NF)U(HND).
Now just notice that

(A N(FVL)rst C (A N(EVL))Est
= (Mes1 N Fs1) U (Mpsi N Zst). O

It is not true that Ly (%) is always modular, nor is it always a sublattice of
L(%Z), as the following example shows. In this example, we produce a finitely
generated modular variety that has nine relatively modular subquasivarieties,
all but one of which are subvarieties.

Example 6.6. Our algebras will be groups with two nullary operations, a and
b, in addition to the identity element, 1 (i.e., they are doubly-pointed groups).
A will be the symmetric group on five letters with a? interpreted as some
transposition and bA as some element of order five. A is generated by a* and
bA so A has no proper subalgebras. Now there are exactly four two-element
groups of the type we are interested in, corresponding to the four ways of as-
signing the values of a and b. We will write B, B,, B,, and B, using
subscripts to denote which constants are different from the identity element.
Notice that A has a unique nontrivial congruence 6 and that A/ = B, . Let
Z = V(A, B). We claim that the nonmodular lattice in Figure 5 is Ly (7).
Of course, the varieties listed in the figure are relatively modular. Further,

V(A,By)
V(B,,Bs) o/ OQ?’)
Vo </) > AN

V(B

[}

FIGURE 5
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SP(A) is relatively distributive by the criteria in Theorem 4.6. What we need
to verify is that Ly (%) contains no other members.

Locally finite, relatively modular quasivarieties are determined by their finite
subdirectly irreducible members and “Z° only contains five subdirectly irre-
ducible algebras: A, B, B,, B,, and B,, . Notice that ¥(B,, B,) is a locally
finite, semisimple modular variety so, by Theorem 1.2, the relatively modular
subquasivarieties of this variety are just its subvarieties. Any relatively modular
subquasivariety different from one of these must contain A. The quasivariety
generated by A appears in our figure. If a member of Ly (%) contains A and
a subdirectly irreducible algebra different from A, it must contain B. Since
B, e H(A) and B, ~5 B, such a quasivariety would also have to contain B, .
But the quasivariety generated by A, B, and B, is ¥ (A, B) and we have listed
it. Any other member of Ly (%) must contain all five subdirectly irreducible
algebras. From these arguments it follows that Ly (%) is the lattice in Figure
5.

This example shows that Ly (-#Z) need not be modular, and also that it need
not be a sublattice of L(.Z), since the quasivariety join V(B,;) V ¥(B,) does
not contain By, .

7. EXAMPLES

In this section, we present examples of relatively modular quasivarieties, fo-
cussing on characterizing the relatively modular quasivarieties of semigroups.
The arguments used and the intuition developed make it possible to produce
several other examples.

We begin by examining the quasivariety, -Z', of torsion-free Z-modules,
where Z is the ring of integers. (We call a Z-module torsion-free if it satis-
fies nx = 0 — x = 0 for each nonzero n € Z.) % is a relatively modular
subquasivariety of the modular variety of all Z-modules, as one may verify by
using the criteria of Theorem 4.8. We will discover this fact a different way.
If Ae % then Q®z A is a Q-module, where Q denotes the ring of rational
numbers. Further, the Z-linear map,

nmA—-Q®A:a~1®a

is 1-1. Thus, A is just a Z-submodule of Q ® A considered as a Z-module.
Indeed, .7 is precisely the class of all Z-submodules of Q-modules (where the
Z-action is determined by restriction of scalars). Let 77 be the variety of all
Q-modules. It can be shown that the restriction map is an isomorphism from
Cony QR A to Cony A forany A €.% . As 7 is congruence-modular, .7 is
relatively modular.

In the example of the previous paragraph we identified A with a certain
natural subreduct of Q ® A. By extending scalars from Z to Q we essentially
brought in extra operations which were compatible with the .Z-congruences
of A but which destroyed all other congruences. This process also introduced
new elements. We could not extend scalars too far or else we would not have
been able to show that the restriction map from Conz»Q ® A to CongyzA was
an isomorphism; mainly because too many new elements would be introduced.
Using abstract nonsense we can frame these ideas more generally. We will be
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able to show that certain quasivarieties are relatively modular by identifying
them as special quasivarieties of subreducts of algebras from modular varieties.

In order to formalize the remarks above, let us suppose that we have an
interpretation of a variety 7" into a congruence-modular variety 7. That is,
we have a clone homomorphism ¢: Clo " — Clo 7°. Considering 77 and
7" as categories in the obvious way, there is a forgetful functor G: 77 - 7~
which takes any 7 -algebra, A, to its reduct to the operations in the image of
¢. Via ¢, a # -algebra structure on G(A) is determined. Now G has a left
adjoint F. If B € 77, we say that F(B) is the (universal) 7 -envelope of
B. A presentation of F(B) is obtained by taking a 7 -presentation of B and
using ¢ to interpret it as a 7 -presentation. If B € 77", A € 77, and there
is a one-to-one 7 -homomorphism f: B — G(A), then we will call A a 7 -
extension of B. There is a natural 77"-homomorphism ng: B — GF(B). It is
easy to see that B has a 7 -extension iff #np is injective.

Let % be the class of algebras B € 77" for which np is injective. It is easy
to verify that 7 is closed under I, §, P, and P,, although not necessarily
under H. We call % the derived quasivariety of the adjunction (F|G). #Z
is precisely the class of members of 7 that have a 7 -extension.

Both F(B) and GF(B) have the same underlying sets; and congruences
on F(B) are at the same time congruences on GF(B). The homomorphism
ng: B — GF(B) gives us a way of converting congruences on F(B) into con-
gruences on B. In fact, the restriction map

ny: ConF(B) — ConyzB : 60— n~1(6)
is a meet-semilattice homomorphism. It is not hard to show that 53 is onto;
this follows from the universality of F(B). So if nj; preserves joins, then
the lattice Cony B is a homomorphic image of the modular lattice Con F(B).
This would imply that Cony B is modular. Unfortunately, #* usually does not
preserve joins.

We will say that 7' has unique 7 -extensions if for every B € %', when
f: B— G(A) is one-to-one, then the natural map f: F(B) — A is one-to-one.
Saying that % has unique 7 -extensions is equivalent to saying that for every
B € %, the restriction map 7j;: Con F(B) — ConyB is injective. When nj
is injective, it does preserve joins since any one-to-one, onto, meet-preserving
map between lattices preserves joins. Hence, if Z is the derived quasivariety
of an adjunction between 7" and the modular variety 7, and #Z has unique
7 -extensions, then % is relatively modular.

In the example described at the beginning of this section the variety 7~
is the variety of all Z-modules, 7" is the variety of all Q-modules, and the
interpretation ¢ is the one determined by the ring embedding of Z into Q. The
derived quasivariety is just 7 : the quasivariety of all torsion-free Z-modules.
One verifies that # has unique Q-module extensions, so this example is a
special case of the scenario just described.

The next theorem and its proof show that every relatively modular quasiva-
riety of semigroups is contained in a relatively modular quasivariety derived as
above from the standard interpretation of some proper variety of semigroups
into the variety of groups. Corresponding to each variety 7" of semigroups
other than the variety of all semigroups, there is a relatively modular quasiva-
riety # consisting of the group-embeddable members of 77°. Z has unique
group extensions.
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Theorem 7.1. Every relatively modular quasivariety of semigroups satisfies the
cancellation laws:

Xyx~XxXz-oy=z, PXRZIX DO YRZ

and a nontrivial equation. Conversely, any quasivariety axiomatized by the can-
cellation laws and a nontrivial equation is relatively modular.

Proof. Assume that % is a relatively modular quasivariety of semigroups. We
begin by showing that 7 satisfies the cancellation laws. First, let A = (x) be
a l-generated semigroup in % . If A is infinite, then A is the free 1-generated
semigroup and this semigroup satisfies the cancellation laws. Otherwise, A is
finite and x™ = x" for some m < n; we may assume that m is the smallest
number for which such a relation holds. If m > 1, then a = Cg(x™"!, x"1)
is a minimal congruence on A and typ(O4, @) = 1. This contradicts Lemma
4.4. Hence m = 1. A is a cyclic group; so A satisfies the cancellation laws.

Now suppose that % fails the bi-implication xy ~ xz < yx =~ zx. Then
there is a B € .% that has elements a, b, ¢, where, say, ab = ac but ba #
ca. Let S be the subsemigroup of B that is generated by ¢ = ba and f
= ca. Notice that ¢2 = ef and f?> = fe. If e = e™ for some m > 1,
then f2 = fe = fe™ = fm+! By the result of the last paragraph, f = f™.
In this case, S is isomorphic to the direct product of a two-element left-zero
semigroup U and an m-element cyclic group. By the factorization theorem
(Theorem 6.3), U € Z . But U is a finite simple semigroup of type 1. This
contradicts Lemma 4.4; thus this case cannot occur. Hence, there is no m > 1
for which e = e™ or f = f™. If, in addition, there are no positive integers
m, n such that e” = f", then S = U x V, the product of the two-element
left-zero semigroup and the free semigroup V on one generator. This gives a
contradiction, just as above. Hence there are positive m, n satisfying e” =
/™. This means that e”t! = ee™ = ef" = ™! so e™ "+l =¢. Hence, m
= n. Let k be the least number m for which e¢” = f™ . To briefly summarize
our progress, we have gathered enough information to show that, for some k&,
S is the semigroup presented by

(e, fle*=ef, f* = fe, e =f%).
One can check that Cg(e, f) N Cg(e*, e¥*') = 0. Hence,
Cgle, f) NCgle*, ') =0.

But
Ce(er, e 1) 2 Cgll ek, 1) = 1y,

Similarly, since e¥ = f* and ekt! = fk+1
CgS(ek, ek+ly 2 Cg P (f*, fL41Y = 1.
The pairs (e, e¥) and (f*, f) belong to CgS(ek, ek*!') and ek = f* ;50
(e, f) € C&(e, /) NCg(e", e 1)

This is a contradiction.
We are to the point where we can conclude that

FEVX,y,z(Xyr Xz o yxXx=zX).
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If Z does not satisfy the cancellation laws, then there is a C € Z generated
by distinct elements u, v, and w such that uv = uw. Let I={teC:tv =
tw} . Because of the bi-implication satisfied by .7, that we proved above, I is
a two-sided ideal in C which contains (#). Let 6; denote the congruence on
C whose only nontrivial block is the set 1.

We claim that 6; N Cg(v, w) = Oc. To prove it, note that if r € I and

(x,y) € Cg(v,w) then rx =ry. Hence if (r,s) € ;N Cg(v, w), then

rr=rs=s*=sr.

Assume that these equations hold and r # s. On the basis of what we proved
about 1-generated semigroups in %, it is easy to see that (r, s) is an infinite
semigroup consisting of r, s, r>, r3, ... (all of these elements distinct). Let
X, be the set satisfying the relative shifting lemma for .Z". Choose (p, q) € %
so that pC(r,s,s,s) # q%(r,s,s,s). Since pC(r,r,r,r)=q%r,r,r,r),
each of the terms p and g, expressed as a product of variables, must have the
same length. Since pC(r, s, s, s) # q(r, s, s, s), this length must be 1. Thus
we have, say, pC(r,s,s,s) =r and ¢%(r,s,s,s) =s and each of pC, ¢€
depends on only one variable; but this leads immediately to a contradiction, in
view of the equations satisfied by pC and ¢€. Thus, indeed, 6; N Cg(v, w) =
Oc, as claimed.

Extending to % -congruences, we have 6; N Cg(v, w) = Oc. Let D =
C/0;. D is generated by (#, v, w) and # is an absorbing element for D.
Since ¥ # w, at least one of © or w is different from @&, say ¥ # . Now
there is a pair of terms (p, q) € Z; such that

pP(v,a,a,a)#q°0,a,a,n).
One of these elements, say pP(v, @, @, @), is not equal to #. Hence the term
p, expressed as a product of variables, contains only its first variable, and pP®
does not depend on its last three variables. This means that

q°( P(
So ¢P does not depend on its middle two variables. This yields the contradic-
tion that

o,u,u,0)=pP0,a,u,0)=p°0,a,n,n)#a.

pPw,v,u,u)=p°w,a,u,n)#£q°0,a,a,a)=q°0, 0, a,n.
This concludes our proof that .7 satisfies the cancellation laws.

To show that # must satisfy a nontrivial semigroup equation is not hard
now. The equations satisfied by the terms in X; cannot all be trivial, for ex-
ample. To show this, let (p, gq) € I, be a pair such that pA(a, b, b, b) #
q*(a,b,b,b) insome A €. % with a, b € A. Using the associative law and
the cancellation laws, we may assume that the leftmost variable of p is differ-
ent from the leftmost variable of ¢g. Now assume that both p(x, x,y,y) =
qg(x,x,y,y) and p(x,y,y,x)=~q(x,y,y,x) are trivial semigroup equa-
tions; that is, that these equations hold in every semigroup. Assume also
that the leftmost variable of p(x,y, z,u) is x. Then the leftmost vari-
able of p(x,x,y,y) = q(x,x,y,y) is also x. Thus the leftmost vari-
able of g(x,y, z,u) is either x or y. Applying the same reasoning to the
equation p(x,y,y,Xx) = q(x,y,y,x) shows that the leftmost variable of
q(x,y,z,u) isnot y. Since p and g have different leftmost variables, we
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have a contradiction to the assumption that the leftmost variable of p is x.
Similar arguments rule out the possibility that the leftmost variable of p is
y, z,or u. This is a contradiction to the assumption that 7 satisfies no
nontrivial equation. It proves the first statement of the theorem.

Now we prove that if 7 is axiomatized by the cancellation laws and one
nontrivial semigroup equation, then .# is relatively modular. Because of the
cancellation laws, we may assume that the nontrivial equation is of the form

xpo(x,y, Z)=ypi(x, ¥, 2)

for certain semigroup terms po(x, y, z) and p|(x, y, z). Now, if A € Z and
b, c € A, then there exists u, v € A such that bu = cv; we say that A is
directed by left divisibility. In fact, we may choose u = po(b,c,c,... ,c) and
v =p(b,c,c,...,c). Itisknown, and this is Proposition 3.5 of [C], that any
cancellation semigroup which is directed by left divisibility is embeddable in a
group in which every element is expressible as a fraction, ab~!, where a, b €
A, and that this group of fractions is uniquely determined by A . Further, it is
clear that if A is a subsemigroup of any group G, then the set of fractions of
elements of 4 forms a subgroup of G. (To show that this set of fractions is
closed under multiplication notice that

(@b (cd™ ) =ab 'e)d™! = a(uv")d™! = (au)(dv)~!,

where bu = cv.) Hence, if A is a subsemigroup of any group H which is
generated by A4 (as a group), then H is the unique group of fractions of A. In
particular, such an H can only be the universal group of A. The restriction map
of § € ConH to 0|4 € ConA is one-to-one, since 8 is determined by the set of
pairs (ab~!',1)€ 6,and (ab~', 1) € 6 < (a, b) € 0],. It follows that Z has
unique group extensions, in the technical sense defined before this theorem. We
have that ConzA = Con H via restriction, and this lattice is modular. Since
A was an arbitrary member of %7, this quasivariety is relatively modular. O

Corollary 7.2. If % is a finitely generated, relatively modular quasivariety of
semigroups, then % s finitely axiomatizable.

Proof. This is immediate from Theorem 7.1 and Corollary 3.2. O

The approach that we used in Theorem 7.1 can be used to show that the
quasivariety of additively cancellative semirings is relatively modular, by con-
sidering the obvious adjunction with the variety of rings. One can show that
the quasivariety of additively cancellative semimodules over a given semiring
is relatively modular by considering the obvious adjunction with a variety of
modules. One can show that the quasivariety of (unital) rings of characteristic
0 is relatively modular by considering the obvious adjunction with the vari-
ety of Q-algebras, where Q denotes the rational numbers. Some readers may
be able to conjure up a long list of their own examples of relatively modular
quasivarieties in this way.

In our discussion of the adjunction between 7 and 7~ before Theorem
7.1, we made the unnecessary assumption that 77~ and 77 are varieties. It is
only necessary that they be quasivarieties. For example, if 77 is the quasiva-
riety of torsion-free Abelian groups and 7 is the quasivariety of cancellation
semigroups, and if we use the usual adjunction between semigroups and groups,
then we obtain that the quasivariety of commutative, torsion-free semigroups
with cancellation is relatively modular.




502 KEITH KEARNES AND RALPH McKENZIE

Another unnecessary assumption that we made is that 7~ is congruence-
modular. This technique of producing examples by adjunction shows that any
sentence expressible in the language of lattice theory which holds in the con-
gruence lattices of algebras in 77 holds as a relative congruence condition for
the algebras in the derived quasivariety % , when the algebras in .Z have
unique 7 -extensions. This is because we end up showing that for each B € .7,
ConyzB = Con F(B), where F(B) € 7.

BIBLIOGRAPHY

[C] P. M. Cohn, Universal algebra, Reidel, 1965.

[CzDz] J. Czelakowski and W. Dziobiak, Congruence distributive quasivarieties whose finitely subdi-
rectly irreducible members form a universal class, Algebra Universalis 27 (1990), 128-149.

[D] B. Davey, Monotone clones and congruence-modularity, preprint.

[DQS] B. Davey, R. W. Quackenbush, and D. Schweigert, Monotone clones and the varieties they
determine, preprint.

[Dz1] W. Dziobiak, On infinite subdirectly irreducible algebras in locally finite equational classes,
Algebra Universalis 13 (1981), 393-394.

[Dz2] __, Finitely generated congruence-distributive quasivarieties of algebras, Fund. Math. 133
(1989), 47-57.

, Relative congruence-distributivity within quasivarieties of nearly associative ¢-algebras,
Fund. Math. 135 (1990), 77-95.

[FM] R. Freese and R. McKenzie, Commutator theory for congruence modular varieties, London
Math. Soc. Lecture Note Ser., No. 125, Cambridge Univ. Press, 1987.

[GL] G. Griatzer and H. Lakser, The lattice of quasivarieties of lattices, Algebra Universalis 9
(1979), 102-115.

[HM] D. Hobby and R. McKenzie, The structure of finite algebras, Contemp. Math., Amer. Math.
Soc., Providence, R.1., 1988.

[K1] K. Kearnes, Natural examples of quasivarieties with EDPM, preprint.
[K2]

[Dz3]

, Relatively congruence distributive subquasivarieties of a congruence modular variety,
Bull. Austral. Math. Soc. 41 (1990), 87-96.

[M] R. McKenzie, Finite equational bases for congruence modular varieties, Algebra Universalis
24 (1987), 224-250.

[O] A. Yu. Ol'shanskii, Conditional identities in finite groups, Sibirsk. Mat. Zh. 15 (1974),
1409-1413, 1432; English transl. in Siberian Math. J. (1975).

[P] D. Pigozzi, Finite basis theorems for relatively congruence-distributive quasivarieties, Trans.
Amer. Math. Soc. 310 (1988), 499-533.

DEPARTMENT OF MATHEMATICS, VANDERBILT UNIVERSITY, NASHVILLE, TENNESSEE 37240

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720




