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COMMUTATOR THEORY
FOR RELATIVELY MODULAR QUASIVARIETIES

KEITH KEARNES AND RALPH MCKENZIE

Abstract. We develop a commutator theory for relatively modular quasivari-

eties that extends the theory for modular varieties. We characterize relatively

modular quasivarieties, prove that they have an almost-equational axiomatiza-

tion and we investigate the lattice of subquasivarieties. We derive the result

that every finitely generated, relatively modular quasivariety of semigroups is

finitely based.

1. Introduction

A quasivariety is a class of similar algebras closed under the formation of

subalgebras, products, and ultraproducts; equivalently, a class defined by a set

of quasi-equations. For a quasivariety 317 and any algebra A similar to the

algebras in X, we define Con A to be the lattice of all congruence relations

of A and Con^A to be the lattice consisting of all 6 £ Con A such that

A/6 £ X. The meet in Con^A is the same as in Con A, but the join is

different. The members of Con^A will be called ^-congruences of A. The

least ^-congruence of A containing a set T ç A2 will be denoted Cg^(T) ;

then Cg^ is an algebraic closure operator on A2 and Con^A is the lattice of

closed sets for this operator.

A quasivariety X will be said to be relatively modular (relatively distributive)

iff for every A £ X the lattice Con^A is a modular (respectively, distribu-
tive) lattice. Our route to a commutator theory for relatively modular quasi-

varieties will parallel the way taken in [FM] to develop the commutator theory

for congruence-modular varieties. For a relatively modular quasivariety that

happens to be a variety, our commutator will be the same as the old one. Our

motivation to seek a commutator theory for quasivarieties sprang from two re-

cent results. In [M], R. McKenzie proved that a variety of finite type generated

by a finite algebra is finitely axiomatizable provided the variety is congruence-

modular and residually small. In [P], D. Pigozzi proved that every relatively

distributive quasivariety generated as a quasivariety by a finite set of finite sim-

ilar algebras of finite type is finitely axiomatizable. These two theorems have a

natural join, every relatively modular quasivariety of finite type generated by a

finite set of finite algebras is finitely axiomatizable. The italicized statement is
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still a conjecture; but we believe that the commutator theory developed in this

paper will lead to a proof of it.

The first theorem gives a rather surprising result that is quite useful.

Theorem 1.1. Suppose that the quasivariety X is relatively modular. For every

A in X, the operator C%w restricted to Con A is a lattice homomorphism of
Con A onto Con^A.

Proof. Assume that X is relatively modular and that A £ X. For any

quasivariety, Cg^ is a complete join homomorphism. We must prove that

for a, ß £ Con A, we have Cg^(a • ß) = Cg^(a) • Cg^(ß). To do so, we

consider the algebra C consisting of all ordered triples (x, y, z) £ A3 such

that (x, y) £ a and (y, z) £ ß (a subalgebra of A3 ). Since Ce J, Con^C

is modular. We consider three members of this modular lattice, namely the

kernels n0, nx, n2 of the three coordinate projections Po, px, p2 of C onto

A.
For congruences ip, 8 of an algebra, we shall write 6' in place of Cg^(ö)

and 6 +' y/ in place of Cg^(8 + y/). For i £ {0, 1,2} and for 6 £ Con A, we

shall write 0, for p~x(0), a congruence of C. Note that 0¡ £ Con^C iff 6 £

Conjf A, since p¡ maps C homomorpnically onto A. From this observation,

it easily follows that (0'), = (0,)'.
Our first calculations, involving congruences of C and their ^-extensions,

will show that (aß1)' = a'ß'. Note that n0 < ax , and that

m + fli =a0 = ax,     n0 +' rjx = a'0 = a\,     nx +' n2 = ß\.

In the calculation that follows, the third equality is a consequence of the mod-

ularity of ConjfC, and the final equality becomes obvious by working with the

elements.

(a'ß')x = (ax)'(ßx)' = (no+'rlx)(m+'r,2)

= m +' m(m +' m) = m +' (m • ax • ß'x)
= nx+'n0.(aß')x = (aß')'x.

Thus (aß')' = a'ß'.

The formula we have just proved will hold of course for congruences of C.

Substituting ax for a and n2 for ß, and using that n'1 = n2, we derive

(axn2)' = (axt]'2)' = (ax)'(rj2)' = (n0 +' nx)n2.

Now axn2 < (aß)x , hence (aß)\ > (170 +' »7i)>/2 • Thus

(aß)\ > (m +' m)m +' n\ = (m +' m)(m +'m) = (<*'ß')i.
Since it is clear that a'ß' > (aß)', we obtain that a'ß' = (aß)' as desired.   G

The property that the operator  Cg^   is a lattice homomorphism from

Con A onto Con^A for each A £ X will be called the extension principle.

To indicate that  X   satisfies the extension principle, we write  X  |=con

Cgjr(a • ß) = Cgjr(a) • Cgjr(/?).
Henceforth, when working with a single quasivariety X, we shall use a' to

denote the ^-congruence generated by a (or ^-extension of a ). We shall

also use 9 +' y/ to denote the ^-congruence join of 6 and ip . If more than

one quasivariety is under discussion, we will revert back to Cg^(a) to denote

the ^-extension of a and use +.w to denote the ^-join.
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Theorem 1.2. If X is a locally finite, relatively modular subquasivariety of a

semisimple, congruence-modular variety 'V, then X is a variety.

Proof. Assume that X ^ H(X). Then there is a simple algebra A £ H(X) -

X. Now W. Dziobiak proved in [Dzl] that every subdirectly irreducible al-

gebra X is embeddable into an ultraproduct of finitely generated subdirectly

irreducible algebras belonging to HS(X). This allows us to assume that A is

finitely generated. H(X) is a locally finite variety so A is finite. Choose a

finite algebra B £ X of least cardinality that has a congruence y/ with the

property that B/y/ = A. Our assumptions insure that y/ is a maximal proper

congruence on B and that y/ is not a ^-congruence. Notice that if 0 is any

completely meet-irreducible member of Con^B then, by Theorem 1.1, 0 is

at least meet-irreducible in ConB; since B is finite and lies in a semisimple

variety, this means that 0 is a maximal proper congruence. Let {0, | / < « + 1}

be an irredundant set of completely meet-irreducible ^-congruences that sep-

arate the points of B. Let y/ = f\i<n 0¡. y/ is a ^-congruence since it is

a meet of ^-congruences. By the irredundancy of the 0, and the modular-

ity of 'V, 0 -< y/. Further, y/ {. y/ by the minimality of \B\. Hence, 0

= Cgjr(0) = C%x{\p • y/) ¿ C%x(v) • CgjrW = l-yi = y> ■ This is a
contradiction.    D

An analogue of Theorem 1.2 for relatively distributive quasivarieties can be

found in [Dz2].
Example 1.3. The lattice M'33 generates, of course, a semisimple, congruence-

distributive variety. We will show that the quasivariety generated by M'33 can-

not be relatively modular. Let X be that quasivariety. Now X is a locally

finite subquasivariety of the (semisimple) variety generated by M33. We have

that X =SPPU(M'33) = 5P(M'33). Since M33 is simple and not embeddable

into M'33, then M33 £ X. However, M33 £ H(M'33), showing that X is

not a variety. By Theorem 1.2, X cannot be relatively modular. From the

proofs of Theorems 1.1 and 1.2, we can conclude that some subdirect power of

nine copies of M'33 has a nonmodular lattice of ^-congruences. In fact, the
lattice L in Figure 2 is a subdirect product of only two copies of M'33 and has

a nonmodular ^-congruence lattice.

In [GL], it is proved that F(M33) has 2K° subquasivarieties that are distinct

from varieties. By Theorem 1.2, none of them are relatively modular.

M33 M33

Figure 1
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L Con^L

Figure 2

2. Commutator theory

Theorem 2.1 (Relative shifting lemma). Let X be a relatively modular quasi-

variety.

(I) Suppose that A £ X, that 6q, 6X, y/ £ Con^A, and that a, b, c, d £
A satisfy (a, b), (c, d) £ 6X, (a, d), (b, c) £ 0O, and (b, c) £ y/. Then
(a,d) £ y/ +' 0001. (This statement is expressed pictorially in Figure 3. In

diagrams like this, lines are assumed to be labeled by any label appearing on a

parallel line.)

V>       implies       i> +' oof?)

Figure 3

(2) There exist a finite set  "Ls  of pairs of terms in the language of X,

(p(x, y, z, u), q(x, y, z, u)), such that: (i) if (p, q) £ ~LS then the equations

p(x,y,y,x)^q(x,y,y,x)   and  p(x, x, y ,y) « q(x, x, y, y)

are valid in X ; and (ii) if a, b, d belong to an algebra A in X and

pA(a,b,b,d) = qA(a,b,b,d)

for all pairs (p, q) els, then a = d.

Proof. The first assertion follows immediately from the modularity of Con^A.

To prove the second assertion, let F be the free algebra in the variety generated

by X, freely generated by x, y, z, u . Then F is in X, and every congruence

of F generated by some equivalence relation on the four-element set of free

generators is a ^-congruence (since it is the kernel of an endomorphism of

F). Let 0o be the congruence of F generated by {(x, u), (y, z)}, 01 be the

congruence generated by {(x, y), (z, u)}, and y/ be the congruence generated
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by {(y, z)} . Applying part (1) to this situation, we have that

(x,u) £ y/+' d08x.

This means that (x, u) belongs to Cg^({(v, z)} li 6q6x) , and since Cg^ is

algebraic, there exists a finite set T of ordered pairs contained in 0o0i such
that (x, u) belongs to Cg^({(v, z)} U T). We can write

T={(p¥(x,y, z, u),qF(x,y, z,u)):(p,q) £ Is}

for a finite set Zs of pairs of terms.

The equations in (2)(i) hold in X because T is a subset of 0o0i. The
condition (2)(ii) holds because (x, u) is in the ^-congruence of F generated

by T together with the pair (y, z).     D
The two assertions of this theorem will be valid if X is a quasivariety that ex-

tends to some modular variety. Hence Example 1.3 shows that the assertions of

the theorem do not characterize the family of relatively modular quasivarieties,

and shows, in fact, that no set of assertions similar to these can characterize

this family. (Compare this statement to Theorem 4.1.)

Theorem 2.2 (Relative cube lemma). Let X be a relatively modular quasivari-

ety.

( 1 ) Suppose that A e X, that 0o, 0i, y/ £ Con%A, and that ao, ... , a3,
b0, ... ,h are elements of A satisfying (a0, ax ), (a2, a3), (b0, bx ), (b2 ,h)£

0o and (a¡, b¡) £ dx for i £ {0, 1, 2, 3} . If (ax, a2), (bx, b2), (b0,h)£y/
then (a0, a3) £ y/ +' 0q0i •

o-

ao o- -o4o

»2,o-

«3

6,
-o

0

¿ 62

9o.

ai     Q\     b\
o-a

«o ,0-

impiies
ip+'OoOi

a.-i

"20-

X

-o

,0 ¿2

(2) There exists a finite set Zc ofi ordered pairs of terms

(p(xQ, ... , x}, yo, ... , v3), q(x0, ... ,x3,y0,... , y3))

in the language of X such that: (i) for each (p, q) £ £c the equations

p(x,y,y,x,z,u,u,z)»q(x,y,y,x,z,u,u,z),

p(x, x, y, y, z, z, u, u) « q(x, x, y, y, z, z, u, u),

p(x, y, z, u, x, y, z, u) « q(x, y, z, u, x, y, z, u)

hold in X ; and (ii) i/AeJ and a, d, ux, u2, w3 £ A and if

pA(a ,ux,u2,u3,d,ux,u2,u3) = qA(a, ux, u2, u3, d, ux, u2, w3)

for ail (p, q) e Ic, then a = d.
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Proof. Suppose that A, 00, 8X, y/ , and ao, ... ,b3 satisfy the hypotheses of
(1). Choose any pair of terms (p, q) in Xs. Define elements

a = p(a0, ax,a2, a3),        b= p(b0 ,bx,b2, Z>3),

d = q(a0,ax,a2,ai),        c = q(b0,bx,b2, b3).

Then the hypotheses of Theorem 2.1(1) are satisfied, and so (a, d) £ y/+' 6q6x .

Also (ai, a2) £ y/+'8odx . Now applying Theorem 2.1(2)(ii) in the algebra A/y,
where y = y/ +' 6q6x , it follows that (a0, a3) £ y as desired.

Except for one small detail, statement (2) is a consequence of (1) in the

same way that (2) followed from (1) in Theorem 2.1. The variation in the

argument goes as follows. We will work in the free algebra F £ X generated

by Xo, ... , Xi, y0, ... , y3. Let y/ be the congruence generated by {(xx, yx ),

(x2,y2), (x3,y3)} and let 62 be the congruence generated by y/ö{(x0, y0)} .

Let 0o be the congruence generated by the pairs {(xo, x3), (xi, x2), (yo, j^),

(vi, y2)} and 0i be the congruence generated by {(x0, xx ), (x2, x3), (y0, yx ),

(V2, v3)}. All of these congruences are ^-congruences. Until this point the

proof has been like that of Theorem 2.1. Now, an application of part ( 1 ) of this

theorem shows that (xo, yo) £ y/ +' 0o0i • Further, (xo, yo) £ d2 and yi <Q2.

The relative modularity of X implies that (xo, yo) £ y/ +' 6q6x62 . From this

point on the proof is exactly like the proof of Theorem 2.1.   D

Definition 2.1. Given elements a,b,c,d in an algebra A, we define

Z(a ,b;c,d) to mean that for all polynomial operations f(x, y) and g(x, y)

of A, if

f(a,c) = g(a,c),    f(a,d) = g(a,d),    f(b,c) = g(b,c)

then f(b, d) = g(b, d). The relation Z(a,b; c, d) can be rendered as (a, b)

centralizes (c, d) relative to the two-term condition.

Using the terms Ss from the relative shifting lemma, we now show that in a

relatively modular quasivariety the relation just defined is very well behaved.

Lemma 2.3. Suppose that X is relatively modular and Ae J.

(a) For any a, b , c, d £ A we have

Z(a, b ; c, d) <-» Z(c, d ; a, b) <-» Z(a, b ; d, c).

(b) For any (a, b) £ A2 the relation

Z(a, b) = {(c, d) : Z(a, b; c, d)}

is a congruence of A.

(c) Suppose that Z(a,, b, ; c¡, d¡) for 0 < i < m and 0 < j < n.  Then if
f(x, y) and g(x, y) are any (m+n)-ary polynomials of A such that fi(a, c) =

g(q, c), f(a, d) = g(a, d), and f(b, c) = g(b, c), it follows that fi(b, d) =
g(b,d).

Proof. Let Z5 be the finite set of pairs of terms supplied by Theorem 2.1. To

prove statement (a), suppose that Z(a, b;c,d). It should be clear that this

implies Z(c, d; a, b). To see that Z(a, b; d, c), let f(x,y) and g(x, y)
be any two binary polynomial operations of A and suppose that f(a, c) =
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g(a, c), f(a, d) = g(a, d), and f(b, d) = g(b, d). In order to prove that
fi(b, c) = g(b, c), note that by Theorem 2.1 it will suffice to prove that for any

(p, q) £ "Ls we have

p(f(b,c),fi(b,d),g(b,d),g(b,c))

= q(f(b,c),f(b,d),g(b,d),g(b,c)).

Given such a p and q , define

f'(x, y) = p(f(x, c), f(x, y), g(x, y), g(x, c))

and

g'(x, y) = q(f(x, c), f(x, y), g(x, y), g(x, c)).

From the equations satisfied by p and q in X, it follows that we have

f'(a, c) = g'(a, c), f'(a, d) = g'(a, d), and f'(b, c) = g'(b, c). Thus from
Z(a,b; c, d) we conclude that f'(b, d) = g'(b, d) ; and this is just what we

had to prove.

To prove (b), let us first show that Z(a, b) is transitive. (The relation

is obviously reflexive, and by statement (a) it is symmetric.) Suppose that

(u, v), (v , w) £ Z(a, b) ; i.e., that Z(a, b; u,v) and Z(a, b;v,w). To

see that Z(a, b ; u, w), let f(x, y) and g(x, y) be polynomials such that /

and g are equal at (x, y) = (a, u), (a, w), (b, u). We prove that f(b, w)

= g(b, w) by showing that for each (p, q) £ Es, p and q are equal at

(f(b, w), f(a, w), g(a, w), g(b, w)), then applying Theorem 2.1.
To do this consider the polynomials

f'(x, y) = p(f(x, y), f(a, y), g(a, y), g(x, y)) ,

g'(x, y) = q(f(x, y), f(a, y), g(a, y), g(x, y)).

Now f'(a, u) = g'(a, u), f'(a, v) = g'(a, v), and f'(b, u) = g'(b, u) from

the equations valid for p, q ; hence f'(b, v) = g'(b, v) since Z(a, b; u,v).

Now obviously, f'(a, y) = g'(a, y) for any y ; thus f'(b, v) = g'(b, v) and
Z(a, b; v , w) imply f'(b, w) = g'(b, w). This is the equation claimed in

the last paragraph. It completes the proof that Z(a, b) is transitive.

Since Z(a, b) is seen to be an equivalence relation, all that remains in order

to conclude that Z(a, b) is a congruence is to observe that it follows trivially

from our definition that whenever Z(a,b; c, d) and h(x) is a unary polyno-

mial operation of A then Z(a, b; h(c), h(d)). This means that Z(a, b) is

closed under unary polynomials; so it is a congruence.

Statement (c) can be proved by induction on m for n = 1, and then by

induction on n. The case m = n = 1 is a tautology. Now suppose the

statement is true for a certain m when n = 1. Let a, b be (m + l)-tuples,

c, d be elements, f(x, y), g(x, y) be polynomials such that Z(a¡ ,b,;c,d)

holds for all i < m , and f(ä, c) = g(ä, c), f(ä, d) = g(a, d), f(b, c) =
g(b, c). As usual, letting (p, q) £ I.s, we need to prove that p and q agree at

(f(b, d), f(b, c), g(b, c), g(b, d)). We do this in two stages. Consider first
the (m + l)-ary polynomials

f'(x, y) = p(f(x, am , y), f(x ,am,c), g(x, a,„ , c), g(x, am , y)) ,

g'(x, y) = q(f(x, am , y), f(x ,am,c), g(x ,am,c), g(x, am, y)).
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Let a! = (oq, ... , am-X), b' = (bo, ... , bm-X). From our assumptions, we see

that /' and g' agree at (a', c), (a', d), and (b', c). Thus, by the induction

assumption, we have /' and g' agreeing at (bo, ... , bm-X, d). This means

that where we define

f"(x,y)=p(f(b',x,y),f(b',x,c),g(b',x,c),g(b',x,y)),

g"(x, y) = q(f(b',x,y), f(b', x, c), g(b', x, c), g(b',x,y)),

we have f"(am, d) = g"(am, d). Since it also follows directly from our as-

sumptions that f'(am , c) = g"(am , c) and f"(bm , c) = g"(bm , c), then from

the fact that Z(am , bm; c, d) we derive f"(bm, d) = g"(bm , d). This is ex-

actly the equation we were after. The inductive proof that (c) holds for n = 1

and for any positive value of m is now complete.

We complete the proof of (c) by assuming that the statement holds for a

certain value of n and for all positive m. Then let a, b be m-tuples (for

some m > 0), let c,d be (n + 1)-tuples, and suppose that / and g are

(m + n + l)-ary polynomials and the hypotheses in (c) are fulfilled. Thus /

and g agree at (x, y) = (a, c), (a, d), (b, c). As usual, (p, q) denotes an

arbitrary pair in X5. Our reasoning parallels that of the last paragraph. We

define (m + «)-ary polynomials /' and g' by

f'(x,y) =p(f(x;y,cn), f(a;y, c„), g(a;y, c„), g(x;y, c„)) ,

g'(x, y) = q(f(x ;y,c„), f(a ; y, cn), g(â; y, c„), g(x;y, c„)).

We note that /' and g' agree at (a, c'), (a, d'), and (b, c'), where c' and

d' are c and d truncated by removing the last term of these (n + l)-tuples.

Using the inductive assumption, we conclude that where

f"(x, y) = p(f(x ; d', y), f(a ; d', y), g(a, d', y), g(x, d', y)) ,

g"(*, y) = q{f{* ; d', y), f(a ; d', y), g (a, d', y), g(x, d', y)),
we have f"(b, c„) = g"(b, c„). Since it is obvious that /" and g" agree at

arguments of the form (ä, y), it follows from statement (c) in the case n = 1

(which we have already proved) that f"(b,dn) = g"(b, d„). In other words,

we have proved that p and q agree at (fi(b, d), f(a, d), g(a, d), g(b, d)).

As usual, since this holds for all (p, q) els we can conclude that f(b, d) =

g(b, d), as desired.   D
Definition 2.2. Let a, ß, p be congruences of an algebra A. We write

Z(a, ß; p) to denote that for all (a, b) £ a and (c,d) £ ß and for all

binary polynomial operations f(x, y) and g(x, y) of A, if f(a, c)pg(a, c),

f(a, d)pg(a, d), and f(b, c)pg(b, c) then f(b, d)pg(b, d). If this relation
holds, then we say that a centralizes ß modulo p (in the sense of the two-term

condition). The relation Z(a, ß ;0A) will be abbreviated to Z(a, ß).

Lemma 2.4. Let X be a relatively modular quasivariety, A £ X, a, ß £

Con A, and p £ Con,^ A.

(1) If Z(a, ß; p) then a centralizes ß modulo p in the sense of the clas-

sical one-term condition.

(2) We have Z(a, ß) iffZ(a,b; c, d) holds for all (a, b) £ a and (c, d)
eß-

(3) The conditions Z(a, ß; p) and Z(a + p, ß + p; p) are equivalent

and equivalent to Z(ä, ß) holding in A/p, where a = (a + p)/p and

ß = (ß + p)/p.
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Proof. All parts are straightforward, using Lemma 2.3, except (1). To prove (1),

suppose that Z(a, ß; p), that f(x, y) is a polynomial operation of A, and

that a, b, c, d are elements and tuples of elements of A such that (a, b) £ a

and (c¡, di) e ß for all i. Assume also that f(a, c) = f(a, d) (mod p ). We

must prove that this equivalence modulo p remains true after exchanging a

for b . To do it, let (p, q) be any member of I5, and define

f'(x, y) = p(f(x, c), f(a, c), f(a, y), f(x, y)) ,

g'(x, y) = q(f(x, c), f(a, c), f(a, y), f(x, y)).

Then /' and g' give a pair of //-congruent values when applied to each of the

tuples (a, c), (a, d), (b, c). Hence by Lemma 2.3(c) applied in the algebra

A/p, we deduce that f'(b, d) = g'(b, d) (mod p). This means that

p(f(b,c),f(a,c),f(a,d),f(b,d))

= q(f(b,c),f(a,c),f(a,d),f(b,d))  (mod p).

Since f(a, c) and fi(a, d) represent the same element of A/p, applying

Theorem 2.1 to the algebra A/p gives us that f(b, c) and f(b, d) are p-

equivalent.   D

Henceforth, X denotes a fixed relatively modular quasivariety, and all al-

gebras entering the discussion belong to X . Our stroke notation for denoting

the ^-extension of a congruence has been explained earlier. We reintroduce

the convention of denoting the kernels of the coordinate projections from a

subdirect product of two algebras by t]o and nx.

Definition 2.3. Suppose that Ae J and a, ß £ Con A. By A(a) we denote

the subalgebra of A2 whose universe is a. By Aaß we denote the congruence

on A(a) generated by identifying (x,x) and (y, y) whenever (x,y) £ ß

(i.e., the congruence on A(q) generated by the ^-diagonal). We define [a, ß]

to consist of the ordered pairs (x, y) such that (x, y) is A^„-congruent to

(x, x). Notice that the set of congruences

{6 £ Con A : 0oAQjS = 0iAq/?  holds in Con A(a)}

is closed under arbitrary intersection. We let K(a, ß) denote the least member

of this set.

Lemma 2.5. We have A'a„ = A'afil < ß' x ß'. Moreover, the following are equiv-

alent for any a, b £ A, and they imply (a, b) £ aß'.

(1) (a,b)£[a,ß].

(2) (a, b)A'aß(c, c) for some c.

(3) (a, c)A'aß(b, c) for some c.

(4) (c, a)A'aß(c, b) for some c.

Proof. Clearly A'ag < ß' x /?' (so [a, ß] ç aß' ), and A'aß is invariant under

the canonical automorphism of A(a), i.e.,

(x, y)A'aß(u, v)   iff   (y,x)Aaß(v,u).

It is easy to show that Aaß contains the ß' diagonal on A(a) ; from this it

follows that A'aß = A'aß, . These facts easily imply that (3) and (4) are equiva-

lent, and that (1) and (2) are equivalent. It is easy to show that (1) implies (4).
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Finally, to see that (3) implies (2), suppose that (a, c)A'aß(b, c). Then a, c,

and b are all a-related. We have

By the relative shifting lemma, (a, b)A'aß(b, b).   O

Lemma 2.6. Let AeJ and a, ß £ Con A.

(1) [a, ß] is a congruence.   If a £ Con^A, then [a, ß] £ Con^A.   If

ß £ Conjr A, then [a, ß] < aß .

(2) In ConA(a), [a, ß]0nx = A'aßnx, [a, ß]xt]0  =  A'aßn0,and

[a,ß]oA'aß = [a,ß]xA'nß = [a,ß]0[a,ß]x.

(3) Any p £ Con^A satisfies p0A'aß = pxA'aß iff p > K(a, ß) iff p >

[<*,ß].

Proof, [a, ß] is clearly reflexive and it is symmetric by (3) of Lemma 2.5. One

can also use Lemma 2.5(3) to show that [a, ß] has the substitution property.

To see that it is transitive, suppose that a[a, ß]b[a, ß]c. Then

(a,b)A'aß(b,b)A'aß(c,b);

hence (a, c) £ [a, ß] by Lemma 2.5. Thus the relation is a congruence. If ß

= ß' then, by Lemma 2.5, [a, ß] < aß' = aß . Before proving that it is a

^-congruence if a is, we prove (2).

We have seen in Lemma 2.5 that A'aßnx < [a, ß]ot]\ ■ On the other hand, if

(a, b) £ [a, ß] and (a, c), (b, c) £ A(a) then we have the rectangle

(a.b)

>°ß

which yields, via the relative shifting lemma, that (a, c)A'aß(b, c). Thus

[a, ß]ot]x = A'aßnx . The similar equation with the subscripts 0 and 1 in-

terchanged must of course also be true.

To see that [a, ß]o and [a, ß]x have the same intersection with A'aß , we

apply the cube lemma. Suppose that (a, b)A'nß(c, d) and (a, c) £ [a, ß]. We

have a cube in A(a) :
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(a,b)      rjo      (a,c)

(a,d) (a,c)

The cube lemma asserts that (a, b) and (a, d) must be congruent modulo

A'aß +' t]onx , i.e., modulo A'aß. Hence (b, d) £ [a, ß]. This shows that

[a, ß]0A'aß < [a, ß]x . We thus conclude that [a, ß]0A'aß = [a, ß]xA'aß . These

equal congruences are obviously contained in [a, ß]o[oi, ß]x . For the reverse

inclusion, we simply note (by examining elements) that

[a, ß]0[a, ß]x =[a, ß\oV\ +[a, ß]xrj0

= A'aßnx + A'aßr]o < A'aß[a, ß]x + A'aß[a, ß]0.

Now we return to the second statement in (1). By (2), we have [a, ß]onx =

A'aßnx . Applying the prime homomorphism (see Theorem 1.1) we get that

[a, ß]'Qnx = A'aßnx . Hence, [a, ß]0nx = A'aßnx = [a, ß]'0nx . Forming meets

on both sides with a0, we find that (a[a, /?])o>?i = (a[a, ß]')o1x . But in

ConA(a), whenever 0O < 0o < Qo and 0o?/i = öo^i holds, one always has

9 = 6. Hence, in Con A we have a[a,/?]' = a[a, ß] = [a,ß]. Now

[a, ß] < a, so [a, ß]' < a'. If a = a', then [a, ß] = a[a, ß]' = a'[a, ß]'

= [a,ß]'.

To prove (3), notice that if p £ Con^A, then PoA'aß = PiA'aß implies

Po^aß = ß\^aß since the latter equation is obtained from the former by taking

meets with Anß on both sides. Conversely, we have that poAaß = pxAaß implies

PoA'aß = ß\A'aß by applying the prime homomorphism. Thus, PoA'aß = P\A'aß

holds iff poAaß = pxAaß holds, and these equations obviously imply that

K(a, ß) < p holds.   The latter inclusion implies that p > [a, ß], since by

(2),
PoKß > K(a, )S)0A^ - K(a, ß)xA'aß > nxA'nß = [a, ß]0nx .

Now assume that p £ Con^A and p > [a, ß]. Suppose (a, b)p0A'aß(c, d).

Then we have a rectangle

(6,6) T/! (a,b)
.-.

Kp J po

(d°d) (c°d)
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from which we get that (b, b) and (d, d) are congruent modulo

Kß{n\ +' ßoKß) = Kßii +' voKß = [a. ßhm +' ßoKß < vo-

This implies that (b, d) £ p , and hence (a, b) = (c, d) (mod px ). Obviously,

it follows that po^'aß =PiA'aß.   □

Example 2.7. We examine the ^-commutator in a relatively distributive qua-

sivariety X . Since A'aß = A'aß, < ß' x ß', it follows that in Con A(a) we have

ß'i = 1i+A'aß = m+'Kß for » =0, 1. Hence,

ß'oß'x = (m +' A'aß)(nx +' A'aß) = nom +' Kß = Kß-

Thus, [a, ß] consists of the set of pairs (x, y) for which (x, y) is ßoß'x-
related to (x, x). This set of pairs is precisely aß'. Hence, [a, ß] = aß'

is a commutator equation holding in X. Now suppose that some algebra in

X has a congruence a that is not a ^-congruence. Then [a, a'] = a ^

a' = [a', a], so the ^-commutator of ordinary congruences is not always

symmetric. Further, [a', a] = a' ■£ ot = oía, so the Jf-commutator of

ordinary congruences is not always sub-multiplicative. Also, since [a, a'] = a,

the ^-commutator of two ordinary congruences need not be a ^-congruence.

Even if a, ß £ Conjf A, we may have Aaß ^ A'aß . In fact, the set of pairs

AQy?-related to the diagonal in A(a) may be different than the set of pairs A'aß-

related to the diagonal. Let X be the class of all commutative rings R such that

in R, x2 = 0 implies x = 0. This class is a relatively distributive quasivariety.

ConjfR consists of the congruences corresponding to the radical ideals of R.
For any F e X we also have F[x] £ X. Let a = ß be the congruence on

F[x] corresponding to the radical ideal generated by the element x . One can

check that, in this example, ((x, 0), (0,0)) e A^ - Aaß . Our claims follow

from this.

Lemma 2.8. Suppose that a < ô and ß < y. Then Aaß C A¿7, A'aß ç A'Sy, and

[a,ß]<[S,y].

Proof. Straightforward.    D
We have proved that [a, ß], as a binary operation on Con^A, is sub-

multiplicative and monotone. Our next goal is to prove that this operation

on Conjf A is symmetric and completely additive in each variable. In order to

do so, we proceed to establish a connection between the commutator and the

"centralizer" notion defined in Definitions 2.1 and 2.2.

Lemma 2.9. Suppose that a, ß £ Con A and p £ Con^A. Then Z(a, ß ; p)

iff ß>[a,ß).

Proof. Assume first that p > [a, ß], so that poA'aß = P\A'aß (by Lemma

2.6(3)). In order to prove that Z(a, ß ; p) holds, let f(x,y) and g(x, y)

be polynomials of A, let  (a,b) £ a and  (c, d) £ ß, and suppose that

f(x, y) = g(x, y) (mod p ) for (x, y) = (a, c), (a, d), (b, c). Note that

the pairs

x0 = (f(a, d), f(b, d)),        xx = (f(a, c), f(b, c)),

x2 = (g(a, c), g(b, c)),       x3 = (g(a, d), g(b, d))
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belong to A(a) and that xoA^xi and X2A^„x3. Moreover, (xx, X2) e poP\

and (x0, x3) £ p0 ■ Therefore,

(X0 , X3) £ p0(Kß +' /*0jKl) = ßoKß +' ßoPl < ß\ ,

since PoKß - A*i ■ This simply means that f(b,d) = g(b,d) (mod p ), which

completes the proof that Z(a, ß ; p).

Now suppose, conversely, that Z(a, ß; p). To see that p > [a, ß] will

require our first (rather nontrivial) use of the terms supplied by the relative

cube lemma (Theorem 2.2). Using those terms, we shall show that PoAaß < px .

Then applying primes we shall have that PoKß - Ái > and an application of

Lemma 2.6 then completes the proof. To simplify matters, we write A for Aaß .

First we prove

(10.1) Let (a, a')A(b, b') and let f(x,y) and g(x, y) be polynomi-
als. If f(a, a) p g(a, a) , f(a', a') p g(a', a'), and f(a, b) p
g(a,b), then f(a',b')pg(a',b').

To prove (10.1), assume its hypotheses. Since (a, a')A(b, b'), we can choose

elements

a = x0,xx, ... ,xn = b,    a' = yo,yx, ... ,yn = b',

pairs (ci, d¡) £ ß for i < n , pairs of tuples (ü¡, V¡) £ am for i < n (and for

a sufficiently large integer m ), and polynomials F¡ so that, for each i < n ,

(xí , y,) = (Fi(üi, ci), Fí(ví , a)),

(xi+x, yi+x) = (Fi(üi ,d¡), F¡(Vi ,di)).

In proving that f(a', b') p g(a', b') we shall apply Theorem 2.2(2) in the alge-

bra A/p . To that end, let (p, q) be any member of Zc. Define, for i < n ,

z, = p(f(a', y¡), f(a, x¡), f(a!, a1), f(a, a),

g(a', yd, g (a, x,), g (a', a'), g (a, a)),

Wi = q{f(a', y,), f(a, x,), f(a', a'), f(a, a),

g(a', y¡), g (a, x¡), g(a', a'), g (a, a)).

We will show that

zoßWo; moreover, for each i<n, z¡pWi iff zi+x pw¡+x .

That z0 p wo follows from the third of the three equations in 2(i) of Theorem

2.2 satisfied by p and q in X, since

f(a', a') p g(a', a')   and   fi(a, a) p g (a, a).

To show that (z, ,w¡)£p iff (zi+1, wi+x) £ p we define two new polynomials.

Put

f'(x,y,z)= p(fi(x, Fi(y, z)), f(a, F/(0<, z)), f(x, x), f(a, a),

g(x, Fi(y, z)), g (a, F/(fl/, z)), g(x, x), g (a, a)),

g'(x,y,z) = q(f(x, Fi(y, z)), f(a, JF/(fl,-, z)), fi(x, x), f(a, a),

g(x, Fi(y, z)), g (a, F,(m¿ , z)), g(x, x), g (a, a)).
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Now f'(a, üi, z) = g'(a, ü¡, z) for every z, by the second of the three equa-

tions for p and q . Hence by Lemma 2.3(c), applied in A/p , and using that

Z(a, ß; p), we must have

f'(a', Vi, ci) p g'(a', v,, c¡) <-> fi'(a', v¡, d¡) p g'(a', v¡, d¡).

This equivalence can also be written as

ZipWj <-> zi+xpwi+x,

which finishes our proof of (10.2).
Now (10.2) implies that znpwn. Since

zn = p(f(a', b'), f(a, b), f(a', a'), f(a, a),

g(a', b'), g(a, b), g(a', a'), g(a, a))

w„ = q(f(a', b'), f(a, b), f(a', a'), f(a, a),

g(a',b'),g(a,b),g(a',a'),g(a,a)),

and since (p, q) £ ~LC is arbitrary, it now follows by Theorem 2.2(2)(ii) that

f(a', b') pg(a', b'), finishing our proof of (10.1).
To finish our proof that poAaß < px, let (a, a')Aaß(b, b') and apb . Let

(p, q) be any member of I.s. Put f(x, y) = p(x, a, b, y) and g(x, y) =

q(x, a, b, y). Then for any x we have

f(x, x)pp(x, a, a, x) = q(x, a, a, x)pg(x, x).

Thus, fi(a, a)pg(a, a) and f(a', a')pg(a', a') holds. Moreover, f(a, b) =

g(a,b). Thus, by (10.1), f(a', b')pg(a', b'); i.e.,

p(a',a,a,b')p f(a', b')pg(a', b')pq(a',a,a, b').

Since this holds for all (p, q) £ Zs, we conclude by Theorem 2.2(2)(ii) that
a'pb'.   a

Lemma 2.10. Let a, ß £ Con A and p £ Con^A. Then [a, ß]' = [a', ß'\ ; in
fact, the following are equivalent.

(1) Z(a,ß;p).

(2) Z(a',ß';p).

(3) [a',ß']<p.

Proof. By Lemma 2.9, (2) and (3) are equivalent, and obviously (2) implies (1).

Now suppose that (1) holds. By Lemmas 2.9 and 2.6(3), we have

PoA'aß = pxA'aß.

Since A'aß = A'aß,, the displayed formula implies that Z(a, ß' ; p), again by

Lemmas 2.9 and 2.6(3). Then by Lemma 2.3(a), we also have Z(ß', a; p).

Now just as above, this implies Z(ß', a' ; p) and then Z(a', ß' ; p).    D

Corollary 2.11. For any a, b £ A the congruence Z(a, b) of Definition 2.1
belongs to ConjrA. In fact, the following are equivalent for any a, b, c, d

and, for 9(a, b) and 9(c, d), the ordinary congruences generated by the pairs

(a, b) and (c, d).

(1) Z(a,b;c,d).
(2) Z(6(a,b)', 9(c,d)').
(3) [9(a,b)',6(c,d)'] = 0A.
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Proof. Straightforward, from the preceding results.   D

Notice that the commutator operation (on Con A and on Con^-A) that

we have introduced seems to be dependent upon the specific relatively mod-

ular quasivariety containing A that is under consideration. This is because

the passage from Aaß to A^ depends upon X. Thus we should call it the

Jf-commutator. Although the value of the ^-commutator of a, ß £ Con A

depends on X, this value is closely related to K(a, ß) which is independent

of X. For example, we know from Lemma 2.6 that K(a, ß) < [a, ß] and

that K(a, ß)' = [a, ß]'. These relations imply a certain stability in the values

of the relative commutator, which is emphasized in the next result.

Theorem 2.12. If Jz? c X are relatively modular quasivarieties and A £ J¿?,

then Cg_^ : Con^A —> Con^A is a commutator-preserving lattice homomor-

phism.

Proof. The fact that this homomorphism is a (join-complete) lattice homomor-

phism follows from Theorem 1.1. We only need to show that if a, ß £ Con^A,

then Cg_^([a, ß]j?) = [Cg_^(a), C%s?(ß)]& ■ In fact, for any a, ß £ Con A

we have

Cg^([a, ß]*) = Cg^(Cgjr(K(Q, /?))) = Cg^(K(a, /?))

= Cg^([a, ß]#) = [Cg^(a), Cte(ß)],?.    D

Theorem 2.13. Let X be a relatively modular quasivariety and let A, B e X.

For a, ß, ßi (i £ I), p in Con^A, and ô, 9 in Con^B the X-commutator

satisfies the following.

(1) [a,ß] = [ß,a]<aß.

(2) [a,V{ßr.i£l}] = V{[a,ßi]:i£l}.
(3) [a, ß]< p iff a centralizes ß modulo p in the sense of the two-term

condition.
(4) ///: A^B is onto, then f~x([ô, 9]) = kerfi +' [f~x(Ô), f~x(9)].

Proof. Parts (1) and (3) have already been proved. Part (4) follows directly

from Lemmas 2.4 and 2.9. The only part of this theorem remaining to be proved

is (2). Since the commutator is monotone, it is clear that the ^-congruence

represented by the right-hand side of (2) is contained in the one represented by

the left-hand side. To demonstrate the other inclusion, let p be the smaller of
these two congruences. By Lemma 2.10, we have that Z(a, ßi ; p) for all i.

It follows easily from Lemmas 2.3 and 2.4 that the set of all pairs (c, d) such

that Z(a/p, b/p; c/p, d/p) holds for all (a, b) £ a is a congruence ô of A
and we have Z(a,S; p) and fi¿ < ô for all i. Then S = ô' follows from

Lemma 2.10, and so V'{# : i £ 1} < ô and Z(a, \]'{ßi : i £ I};p). Thus

/i>[a, y'{ßi '■ i £ L}], which is precisely what we had to prove.    D

This ends our development of a basic commutator theory for relatively mod-

ular quasivarieties. Many of the results of commutator theory for modular

varieties extend immediately to relatively modular quasivarieties. In the cases

where this can be done, Theorem 1.1 and Theorem 2.13 are the tools needed to
convert the proofs. On the other hand, there are some very important results

in varietal commutator theory that we have not been able to extend to quasi-

varieties. Most importantly, we do not have a structure theorem for Abelian

algebras. For modular varieties, it is known that an Abelian algebra is affine;
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that is, it is polynomially equivalent to a module over some ring. It can be shown

that any quasivariety of cancellative, commutative semigroups with operators,

which are endomorphisms for the semigroup structure, is relatively modular

and consists of Abelian algebras. These algebras need not be affine, but they

are quasi-affine. Another important problem that we have not solved is whether

there is a connection between solvability and permuting congruences analogous

to the results discovered by H. P. Gumm for modular varieties. These are

probably the most important problems in the theory that need to be solved.

3. An application

We mention one result of varietal commutator theory that does extend to

quasivarieties.

Theorem 3.1. If X is relatively modular and there is a bound on the size of

the relatively subdirectly irreducible algebras in X, then X (=^.con [aß, ß] =

a[ß, ß]. In particular, this will be true if X is finitely generated.

An algebra in X is relatively subdirectly irreducible if its ^-congruence

lattice is monolithic (i.e., has a smallest nonzero member, which is called the

monolith). We use X\\s\ to denote the class of algebras in X that are relatively

subdirectly irreducible (relative to X). If A e <^rsi then the full congruence

lattice of A need not be monolithic, but, if X satisfies the extension principle,

then the zero element of this lattice must be at least meet-irreducible. We say

that such an algebra (whose zero congruence is a meet-irreducible element of the

congruence lattice) is finitely subdirectly irreducible; and we write X^i for the

class of algebras in X that are finitely subdirectly irreducible. Thus, we have

-^rsi Q Xs\ whenever X is a quasivariety satisfying the extension principle.

We use X%\ for the class of algebras in X that are subdirectly irreducible in

the absolute sense (i.e., whose full congruence lattice is monolithic).

The first statement of Theorem 3.1 can be proved in essentially the same way

as Theorem 10.14 in [FM], which is the corresponding statement for modular

varieties. The second statement follows from the the first statement and the fact

that when X is generated by the class of algebras M, then Xf%x ç SPU(M) ;

hence, if X is relatively modular and if M is a finite set of finite algebras,

then JTrsi Q XFSl ç S(M).
Notice that the relative commutator equation in Theorem 3.1 may be writ-

ten as an implication that holds for all congruences, not just ^-congruences.

Indeed, the following are easily seen to be equivalent:

(a) X \=jr«ml<xß, ß] = <*[ß, ß],

(b) X\=con[aß,ß] = 0 - a[ß,ß] = 0,

(c) X\=conK(aß,ß) = 0 ^ a-K(ß,ß) = 0,

(d) X hon [aß, ß]<? = 0 -> a[ß, ß]<? = 0.

In (d), 5C can be any relatively modular quasivariety containing X . Condition

(c) is especially interesting. It shows that, for any algebra A, there is an intrinsic

condition that A must satisfy in order for A to belong to any relatively modular

quasivariety which satisfies the relative commutator equation in (a).

Corollary 3.2. If X is a finitely generated, relatively modular quasivariety of

groups, then X contains no non-Abelian nilpotent groups. Hence X is finitely

axiomatizable.
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Proof. The hypotheses guarantee that X satisfies the above equivalent condi-

tions (a)-(d). In condition (d) we may choose Js? to be the variety of groups.

Then the Jz^-commutator is the usual commutator of group theory, so it fol-

lows that X contains no non-Abelian nilpotent groups. This establishes the

first statement. The second statement follows from a result of Ol'shanskii. In

[O], one finds the result that the quasivariety generated by a finite group G is

finitely axiomatizable iff all the Sylow subgroups of G are Abelian. (This con-

dition is equivalent to the requirement that all nilpotent groups in the variety

generated by G be Abelian.)     D

4. Characterizations of relatively modular and

relatively distributive quasivarieties

In §2, we developed a commutator theory for relatively modular quasivari-

eties. Unfortunately, very little is known about these quasivarieties. Several

papers written in the past few years contain examples or results concerning the

characterization of relatively distributive quasivarieties; for example, [CzDz,

D, DQS, Dz2, Dz3, Kl, K2, P]. But none of these papers contains a complete

characterization. We can find in the literature no example of a quasivariety

which is claimed to be relatively modular that is not relatively distributive, or

is not contained in a modular variety. In fact, only a very few known examples

fail to be either a modular variety or a relatively distributive subquasivariety

of a modular variety. The purpose of this section is to characterize relatively

modular and relatively distributive quasivarieties. We will exhibit, in §7, nat-

ural examples of relatively modular quasivarieties which are not contained in

any modular variety nor in any relatively distributive quasivariety.

Our first theorem may be viewed as a quasivariety analogue of Day's Theorem

which characterizes congruence-modular varieties.

Theorem 4.1. A quasivariety X is relatively modular if and only if X satisfies

the extension principle and the relative shifting lemma (Theorem 2.1(2)).

Proof. Theorems 1.1 and 2.1 already show that if X is relatively modular then

the conditions listed must hold. We must show that if the conditions hold, then

X is relatively modular. We will argue by contradiction.

Assume that X satisfies the extension principle, and possesses a finite set

of pairs of terms ~LS fulfilling Theorem 2.1(2), but that X is not relatively

modular. Then there is an A e X and a, ß, y £ Con^A such that a < ß,

ay = ßy , and a +' y = ß +' y . Let S = (a + y)ß . Of course, a < ô < ß so

ay = ôy. By the extension principle, ô' = (a +' y)ß = ß so a < ô.

The definition of 6 is such that a < ô < a + y , so there is an n such that

(yoa)"oynßg a.

Let k be the least n with this property, k is greater than 0 since yß =

ya Ç a . By the minimality of k ,

(yoa)k~x oy n ß Ç a,

so

(yoa)k n ß = (yoa)k~x oyoa (1 ß Ça.
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Choose a pair (a, b) £ ((y o a)k o y n ß) - a and a sequence of elements a =

Xq, Xi, ... , x2/c+x = b such that (x,, x,+i) is a member of y when i is even

and a member of a if i is odd. To reach a contradiction, we will consider two

separate cases depending on whether k is odd or even.

If k is odd, then k = 2r + 1 for some r. In this case, the "middle link" in
the chain of elements connecting a to b , (xk , xk+x), is a member of a . For

any (p, q) £l.s we have

pA(a, xk , xk+i ,b)(yo a)r o y pA(a,a,b,b)

= qA(a,a,b,b) (y o a)r o y qA(a, xk , xk+x, b).

Further,

pA(a, xk, xk+x, b) ß pA(a,xk,xk,a)

= qA(a ,xk,xk,a) ß qA(a, xk , xk+x, b).

Now, (yoa)royo(yoa)roy = (yoa)2roy Ç (yoa)k and (yoa)kDß Ç a. Hence,

pA(a, xk , xk+x, b) a qA(a, xk , xk+x, b) holds. The pair (p, q) was arbitrary

and a is a Jf-congruence, so the quasi-equation in Theorem 2.1(2)(ii) implies

that (a, b) £ a.
Now assume that k is positive and even and that k = 2r. Then (xk_x, xk)

is a member of a . As before,

pA(a ,xk_x,xk, b) (y o a)r pA(a, a, x2k_x, x2k-i)

= qA(a,a,x2k_x,x2k_x) a°(yoa)r qA(a, xk_x,xk, b),

so pA(a, xfc_i, xk,b) (y o a)2r qA(a, xk_x, xk,b). We also have that

pA(a, xk_x, xk,b) ß qA(a, xk_x, xk , b) holds by the same argument that
we used above. Since

(y o a)2r n ß = (y°a)knßCa,

we again obtain that pA(a, xk_x, xk, b)aqA(a, x,t_i, xk,b) holds. Since

(xk_x, xk) £ a, this provides the same contradiction that we reached in the

last paragraph.

The two cases we have argued are exhaustive, so the proof is finished. D

It is worth pointing out exactly where the extension principle was used in the

proof of Theorem 4.1. The only time it was used was in the second paragraph of

the proof where we proved that a < S by observing that a < ó and a' = a <

ß = 6'. We could have proved this with a condition weaker than the extension

principle:

X hcon y/'9 = 0^ yy'9' = 0.

To see this, let 9 = (a + y)/a £ Con A/a and let y/ = y/' = /J/aeConA/a.

Then yi'9 = (ß(a + y))/a = S/a. If a = ô then, since A/a £ X and

X |=con y/'9 = 0 -> y/'9' = 0, we get that 0 = yi'9' = ß/a. This is false
since a < ß ; hence a < ô. Thus, in the presence of the terms given by the

relative shifting lemma, the extension principle is equivalent to the condition

that X hon y/'9 = 0^ y/'9' = 0.
We will call the terms involved in the set Zs, which fulfill Theorem 2.1 (2) for

X, quasi-Day terms for X . More generally, we will call a condition postulating
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the existence of a finite set of terms satisfying certain quasi-equations a quasi-

Mal'cev condition. The existence of a congruence-modular variety with a sub-

quasivariety that fails to be relatively modular (Example 1.3) demonstrates the

impossibility of characterizing relative modularity by any set of quasi-Mal'cev

conditions. Nevertheless, the previous theorem shows that relative modular-

ity is the join of a quasi-Mal'cev condition and the extension principle. If X

is a congruence-modular variety with Day terms mo(x, y, z, u), ... ,

mn(x, y, z, u) satisfying the usual equations, then we may choose ~LS to be

the set of pairs {(m¡(x, y, z, u), ml+x(x, y, z, u)) : i < n, i even } . It is an

easy exercise to check that this (finite) set of pairs of terms satisfies the relative

shifting lemma for X .
It is also easy to show that a quasivariety satisfies the extension principle iff its

finitely generated algebras do. Further, the proof of Theorem 2.1 shows that a

quasivariety has quasi-Day terms if its 4-generated free algebra has a relatively

modular congruence lattice. Together, these facts imply that a locally finite

quasivariety is relatively modular iff its finite algebras have modular relative

congruence lattices.

The next theorem is an easily stated (and easily proven) characterization of

relatively distributive quasivarieties.

Theorem 4.2. A quasivariety X is relatively distributive iff for every A e X,

every completely meet-irreducible member of Con^A is a meet-prime member

of Con A.

Proof. The necessity follows easily from the extension principle; the sufficiency

is also a quite straightforward argument.    D

The next theorem combines quasivariety analogues of Jónsson's Theorem

characterizing congruence-distributive varieties with analogues of the com

mutator-theoretic characterization of congruence-distributive varieties found in

[FM].

Theorem 4.3. The following conditions are equivalent for a quasivariety X :

(1) X is relatively distributive.

(2) X is relatively modular and satisfies the commutator equation [a,ß] =

a-ß'.

(3) X is relatively modular and satisfies [a, a] = 0 —> a = 0.

(4) X satisfies the extension principle, and there exist a finite set "L^ of

triples of terms (r(x, y, z), s(x, y, z), t(x, y, z)) in the language of

X such that: (i) if (r, s, t) e X¿ then the equations

r(x, y, x) « s(x, y, x) « t(x, y, x),

r(x, x, y) « s(x, x, y),       s(x, y, y) « t(x, y, y)

are valid in X ; (ii) the quasi-equation

l\     (r(x, y, z) « s(x, y, z) &s(x, y, z) « t(x ,y, z)) -» x « z

(r,i,í)6S¿

is valid in X .
(5) X satisfies the extension principle, and there exist a finite set Ud of

quadruples of terms (r(x, y, z), s(x, y, z), s'(x, y, z), t(x, y, z)) in

the language of X such that: (i) If (r, s, s', t) £l!d then the equations

r(x, y, x) « s(x, y, x),       s'(x, y, x) « r(x, y, x),
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r(x, x, y) « s(x, x, y),       s'(x, y, y) « t(x, y, y)

are valid in X ; (ii) the quasi-equation

f\      (r(x ,y,z)Ks(x,y,z) &s'(x, y, z) « t(x,y, z)) -> x « z

is valid in X.

Proof. It was shown that (1) implies (2) in Example 2.7. Conversely, the addi-

tivity of the commutator (property (2) in Theorem 2.13) shows that (2) implies

(1). The proofs that (2) implies (3) and that (4) implies (5) are obvious. To

show that (3) implies (1), we will argue by contradiction. If (3) holds but (1)

fails, then X is relatively modular, but not relatively distributive. There must

be an algebra A £ X with distinct congruences a, ß, y £ Con^A such that

aß = ay = ßy and a +' ß = a +' y = ß +' y = ó. Necessarily, a < S.

This means that

[S , S] = [a +' ß , a +' y] < a +' [ß , y] < a.

Hence, in B = A/a we have a congruence 9 = S/a for which [0,0] = 0

even though 0^0. This is a contradiction. This shows that the first three

conditions are equivalent.

The argument that produces the terms in (4) is very similar to the argument

we used in Theorem 2.1. To show that (1) implies (4), let F = F^(x, y, z)

be a 3-generated free algebra in X. Consider the ^-congruences a, ß,

and y generated by {(x, z)}, {(x, y)}, and {(y, z)}, respectively. If tr(X)

denotes the transitive closure of the relation X ç F2 then, since X is relatively

distributive,

(x , z) £ a(ß +' y) = aß +' ay = [tr(aß o ay)]'.

Hence, there is a finite subset T of aßoay suchthat [tr(T)]' contains (x, z).

For each (rF, tF) £ T, where r and t are terms, there is a ternary term

s(x, y, z) such that rF aß sF ay tF. If we let I¿ be a set of such triples

of terms {(r, s, t) : {r¥, tr) £ T}, then it is straightforward to verify that the

quasi-equations listed in (4) hold. Of course, ( 1 ) implies that X satisfies the

extension principle by Theorem 1.1. This finishes the proof that (1) implies (4).

We can finish the proof by showing that (5) implies (3). Assume that (5)

holds. For each (r, s, s', t) £ Ud we define two pairs (px, qx ) and (p2, q2) by

px(x,y, z, u) = r(x, y, u),        qx(x, y, z, u) = s(x, y, u),

p2(x,y,z,u) = s'(x,z,u),        q2(x, y, z, u) = t(x, z, u).

If we let X, be the (finite) collection of all pairs of the form {px, qx) and

(P2, qi) that arise this way, one finds that this set satisfies Theorem 2.1(2) for

X . Hence, condition (5) implies that X satisfies the extension principle and

has quasi-Day terms. By Theorem 4.1, X is relatively modular. Now suppose

that A £ X and a £ Con A satisfies [a, a] = 0. In other words, suppose that

Z(a, a) holds. Choose (a, b) £ a and assume for the moment that a ^ b.

It is not true that rA(a, b, b) = sA(a, b, b) and s'A(a, b, b) = tA(a, b, b)

for all (r,s,s',t) eZ'd by 5(ii), but at least s'A(a, b, b) = tA(a, b, b) does

hold. Hence, we can find a tuple in 17d for which rA(a, b, b) / sA(a, b, b).
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Let f(x,y) = rA(x,b,y) and let g(x, y) = sA(x,b,y). The equations

listed in (5) imply that f(a, a) = g (a, a), f(b, a) = g(b, a), and f(b, b)
= g(b, b), but we have chosen these polynomials so that f(a, b) ^ g(a, b).

This contradicts the fact that Z(a, a) holds unless our assumption that a ^ b

is false. Since (a, b) £ a was arbitrary, a = 0. This shows that (3) holds,

finishing the proof of Theorem 4.3.   D
(After the first draft of this paper was written we learned that A. M. Nu-

rakunov had discovered a proof that a quasivariety X is relatively distributive

iff ^rfsi QXs\ and X satisfies quasi-equations listed in Theorem 4.3(5). The

condition ^rfsi Q X%\ > that every relatively finitely subdirectly irreducible
member of X is finitely subdirectly irreducible, is weaker than the extension

principle, so Nurakunov's result is a better characterization of relatively dis-

tributive quasivarieties than condition (5) of Theorem 4.3. Condition (4) of

Theorem 4.3 can be improved similarly. In [Dz3], W. Dziobiak proved Nu-

rakunov's result for subquasivarieties of a congruence permutable variety.)

We will call the terms in condition (4) quasi-Jónsson terms.

The next few results concern locally finite quasivarieties. We will use the

terminology and methods of tame congruence theory. The reader not familiar

with the theory is referred to [HM].

Lemma 4.4. Assume that A £ X is finite and that a £ Con A ¿s a minimal

nonzero congruence. If X is relatively modular, then typ(0, a) £ {2, 3, 4}. If

X is relatively distributive, then typ(0, a) £ {3, 4}.

Proof. Assume first that X is relatively modular. Let l.s be a set of pairs of

terms satisfying the shifting lemma for X . We need to eliminate the possibility

that typ(0, a) £ {1, 5} . Choose U £ MA(0, a) and let T be a (0, a)-trace in

U. Pick distinct elements a, b £ T. Since a ^ b, there is a pair (p, q) £l.s

such that pA(a ,b,b,b)^ qA(a ,b,b,b). However,

pA(a ,b,b,b) a pA(b ,b,b,b) = qA(b ,b,b,b) a qA(a, b, b, b),

so pA(a, b, b, b) (a - 0a) qA(a, b, b, b). There is a unary polynomial of

A, /, such that f(A) = U and fpA(a, b, b, b) (a - 0A) fqA(a,b, b, b).
By suitably altering / if necessary, we may assume that fpA(a, b, b, b) and

fiqA(a ,b,b,b) are distinct elements of T. Now U is closed under fpA and

under fqA, and T is an a|ry-class of U ; so T is closed under fpA and under

fqA. We are now in a position to show that typ(0, a) £ {1, 5} .

For our first case, assume that typ(0, a) = 1. Then AI7- is essentially unary,

so fipA(x, y, z, u) and fqA(x, y, z, u), restricted to T, depend on at most

one variable. But fpA(a, b, b, b) / fqA(a, b, b, b) and fipA(b, b, b, b)
= fqA(b, b, b, b), so at least one of these polynomials depends on the first

variable. By a similar argument, fpA(a, a, b, b) = fqA(a, a, b, b) shows

that one of them depends on the second variable and fpA(a, b, b, a) =

fqA(a, b, b, a) shows that one of them depends on the last variable. This

forces one of them to depend on at least two variables (when restricted to T),

which is impossible. Hence, typ(0, a) is not 1.
Now assume that typ(0, a) = 5. Then \T\ = 2 and Air is polynomially

equivalent to a semilattice. Since a and b were chosen arbitrarily, we may

assume that b is the label that we gave to the element of T that is the absorbing

element for all polynomials. Since fpA(a, b, b, b) and fqA(a, b, b, b) are
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different, we may assume that fpA(a, b, b, b) = a and fqA(a, b, b, b) =
b . This forces the conclusion that fpA , restricted to T, does not depend on its

last three variables. Hence, fqA(a, a, b,b) = fpA(a, a,b, b) = a, which

implies that fqA, restricted to T, does not depend on its last two variables.

This gives us the contradiction that

a = fpA(a, b, b, b) = fpA(a, b, b, a)

= fqA(a,b,b,a) = fqA(a,b,b,b) = b.

Thus typ(0, a) is not 5.

To finish the proof we need to show that under the stronger assumption

that X is relatively distributive, we can rule out the possibility that

typ(0, a) is 2. With an argument similar to that in the first paragraph, using

quasi-Jónsson terms instead of quasi-Day terms, we can arrange it so that

rA(a, b, b) (a - 0A) sA(a, b, b), where r and s are components of a triple

(r,s,í) el¿. There is a unary polynomial of A, g, such that grA(a, b, b)

and gsA(a, b, b) are distinct elements of T. Further, T is closed under grA

and gsA . If we assume that typ(0, a) = 2 , the algebra AI7- is polynomially

equivalent to a module. Choosing b as zero element for this module, set

h(x, y, z) = grA(x, y, z) - gsA(x ,y,z).

One can quickly verify that h(x, y, x) = h(x, x, y) = b for all x, y e T,

but that h(a, b, b) ^ b . That is, h(a, a, a) = h (a, a, b), but h(a, b, a) =
b t¿ h(a, b, b). This is a failure of the (one-) term condition in AI7-, which is

impossible. Hence, typ(0, a) is not 2. This finishes the proof.   D

The next theorem is weaker than Theorem 4.1 in that it is not a complete

characterization of relative modularity for locally finite quasivarieties. Never-

theless, it may be easier to apply than Theorem 4.1. The monolith of a subdi-

rectly irreducible algebra is the smallest nonzero congruence of the algebra.

Theorem 4.5. Let X be a locally finite quasivariety. The following conditions

imply that X is relatively modular:

(1) X satisfies the extension principle.

(2) Every finite A £ X%x has monolith of type 2, 3, or 4.
(3) Where p\ is the monolith of A, each U £ MA(0, pA) has empty tail.

Conversely, if X is relatively modular, then (1) and (2) must hold.

Proof. The converse is by Theorem 1.1 and Lemma 4.4. We need to prove the

forward direction.

Assume that (1), (2), and (3) hold for X. We will assume that X is not

relatively modular and argue to a contradiction. Since X is locally finite, we

can find a finite algebra A £ X which has a nonmodular relative congruence

lattice. Say that a, ß, y £ Con.j'A and that a < ß, ay = ßy, and a +' y

= ß +' y . Set â = (a + y)ß . By (1), S' = ß so a < ô . There must exist a

congruence y/ £ Con.^A which is completely meet-irreducible in Con^A such

that a < yi and à ■£ y/ . By condition ( 1 ) and the fact that A is finite, y/ is

completely meet-irreducible in Con A as well. Let y/* denote the unique upper

cover of y/ . Now, pick U £ MA(y/, y/*). Since the restriction map is a lattice

homomorphism from Con A to ConAIt , we have

a\u < w\v < ¥*\u <(S + y/)\u = S\v + y/\v.
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Hence, a\u<ô\u. Since ay = ôy and a + y = ô + y, we also have a\uy\u -

S\uy\u and a\u + y\u = à~\u + y\u- This shows that ConAI¡y is nonmodular.
However, conditions (2) and (3) imply that Air/ is (y/\u, ¥*\u)-minimal of

type 2, 3, or 4 and that Air/ has no tail, therefore Air/ is E-minimal. This

implies that either U has only two elements or that Air/ is Mal'cev. In either

case, Air/ has permuting congruences which implies that Con Air/ is modular.

This is the contradiction that we sought.   D

An analogous but stronger result is true for relatively distributive quasivari-

eties.

Theorem 4.6. Let X be a locally finite quasivariety. The following conditions

imply that X is relatively distributive:

(1) The finite algebras in XRSi are subdirectly irreducible.

(2) Every finite A £ Xsl has monolith of type 3 or 4.
(3) Where /¿A is the monolith, each U £ MA(0, /iA) has empty tail.

Conversely, if X is relatively distributive, then (1) and (2) must hold.

Proof. The extension principle implies that the zero congruence of a relatively

subdirectly irreducible algebra is at least meet-irreducible as an ordinary con-

gruence; for a finite algebra it must be even completely meet-irreducible. Hence,

condition ( 1 ) is implied by the extension principle. If X is relatively distribu-

tive then (1) must hold. Further, Lemma 4.4 shows that (2) holds, in this case.

This proves the converse.

To prove the sufficiency of the conditions, we are going to argue by contradic-

tion again. Suppose that (1), (2), and (3) hold and that X fails to be relatively

distributive. The remarks that we made after Theorem 4.1, which apply equally

well to Theorem 4.3, show that we can find a finite algebra A e X which fails

to have a distributive relative congruence lattice. Say that a, ß, y £ Con^A

and

9 = a(ß +' y) > aß +' ay = ô.

There is a congruence y/ which is completely meet-irreducible in Con^ A such
that ô < y/ and 0 ■£ y/ . Condition ( 1 ) guarantees that y/ is completely meet-

irreducible as an ordinary congruence. Let y/* denote the unique upper cover of

y/ . Now, if ß < y/ and y < y/ then 9 < ß +' y < y/, which is false. Therefore,

we may assume that ß ¿ y/. Further, a j< y/. Now pick U £ MA((//, y/*).

Conditions (2) and (3) imply that |C| =2. Hence, Alu is an algebra with

exactly two congruences: Or/ and lr/. Since y/\u < y/*\u , it must be that y/\v

= 0(/ and y/*\u = ly ■ Restriction of congruences is a lattice homomorphism

from Con A to ConAI?/ and this homomorphism could only be the map

Í Or/    if£<^,

\ If/   otherwise.

Hence, a\v = lu and ß\y = lu and this should force (aß)\u = (a\u)(ß\u)

= 1(/. But aß < y/, so (aß)\u = Oy ■ This contradiction finishes the

proof.   D
If X is generated by a finite set M of finite algebras, then <^rSi Ç S(M).

This allows us to rewrite condition (1) in Theorem 4.6, for finitely generated

quasivarieties, as Xr$x ç X$x . As we mentioned, the hypothesis that XR$X ç

XsX is much weaker than the extension principle. Indeed, showing that every
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relatively subdirectly irreducible algebra in a finitely generated quasivariety X

is subdirectly irreducible can be accomplished by examining the algebras in

S(M) and the homomorphisms between them. One may now ask if Theorem

4.5 remains valid if we weaken its condition (1) to the condition X^si Q X$x.

The answer is no. If we let H be the quaternion group and X = SP(H), then

-^rsi Q X$\ and conditions (2) and (3) of Theorem 4.5 hold. However, X is

not relatively modular. (That this is so can be deduced from Theorem 3.1 or

Theorem 4.8(3)(ii).)
One of the appealing aspects of Theorem 4.6 is that it allows us to prove that

a finite set of finite algebras generates a relatively distributive quasivariety just

by checking that the generating algebras satisfy certain conditions. The other

theorems that we have given require us to verify that the generated quasivariety

satisfies the extension principle; and we do not know a general test to check

that the extension principle holds. However, this problem can be avoided if

one knows merely that the generated quasivariety is contained in some rela-

tively modular quasivariety. This will become apparent after we characterize

the relatively modular subquasivarieties of a given relatively modular quasiva-

riety.

In characterizing relative modularity for the subquasivarieties of a given rel-

atively modular quasivariety, we will require an extension of Ralph Freese's

notion of similarity of two subdirectly irreducible algebras in a congruence-

modular variety. Suppose that 'V is a congruence-modular variety. Two sub-

directly irreducible algebras A and B in ^ are said to be similar in ^ iff

there is an algebra C e7 and congruences a, a*, ß, ß*, S, y of C such

that C/a = A, C/ß = B, a* and ß* are the unique covers of a and ß , and

a*/a \ y/S / ß*/ß. (By a* ¡a \ y ¡à, we mean that a* = a + y and ô

= ay. Similarly, y/S / ß*/ß means that ß* = y + ß and ó = yß 7) The
relation of similarity is an equivalence relation on the class of subdirectly irre-

ducible algebras in W ; when A, B, C are related as above, we can always take

â = aß , and thus we can always arrange that aß = Oc and C is a subdirect

product of A and B.
Now if X is a quasivariety, then we say that finitely subdirectly irreducible

algebras A and B are similar in X iff they are members of X and there exist

C £ X and ^-congruences a, ß, a*, ß*, ô, y of C such that C/a = A,

C/ß SB, a < a* and ß < ß* ; and a*/a \ y/5 / ß*/ß in the lattice
ConjfC. We will write this as A ~^ B.

Suppose that 777? ç X , where X and 77? are quasivarieties and X is rela-

tively modular. We say that 3fsi is closed under similarity in X if whenever

we have finitely subdirectly irreducible algebras A and B such that A ~,^ B,

Ae^, and B e H(S?), then we necessarily have Bei". Note that, as in the

definition of similarity for subdirectly irreducible algebras in a modular variety,

we can always take C (in the definition of similar algebras) to be a subdirect

product of A and B (so long as X is relatively modular). Note also that if

A,Bey and both X and 2C are relatively modular (and J? ç X ) then

A ~jr B is equivalent to A ~^ B. Observe, finally, that if A and B are finitely

subdirectly irreducible algebras and are similar in X, then A is relatively sub-

directly irreducible in X iff B is, and if they are subdirectly irreducible and

X is a variety, then they are similar in the sense of Freese's definition.

Now assume that A ~^ B, where X is a relatively modular quasivariety.
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Assuming also that A S B, we can show that A (as well as B ) has a nonzero

Abelian congruence. Thus if X is relatively distributive then the relation of

Jf-similarity is not very interesting—it is just the same as isomorphism. To see

this, assume that A S B. Using the notation of the last paragraph, it follows

that a t¿ ß, and hence that ß ■£ a, since ay = ßy and Con^C is modular.

Hence p > a, where p = (a +' ß)(a +' y). The argument concludes with the

calculation

[p, p]<[a+' ß , a+' y]<a+'[ß,y]<a+' ßy = a ,

showing that [p, p] < a, and thus p/a is a nonzero Abelian congruence of

C/a (SA).

Lemma 4.7. If J? and X are relatively modular quasivarieties and 7? ç X,

then .Sfsi is closed under similarity in X.

Proof. Assume that A e ¿fsi , B e XFSX nH(5?), and C, a, a*, ß , ß*, ô ,
y witness that A ~^ B. As noted earlier, we can choose C so that aß = 0c ,

hence C belongs to the variety H(JC). Then making another choice of C,

we can assume that C € 77?. Now a e Con^C; i.e., a = Cg_^(a). We

need to show that ß = C%^(ß). To get a contradiction, suppose that ß <

Cg&{ß). Then of course C%^(ß)ß* > ß. Replacing ß* by Cg^(ß)ß*, y
by Cgj?(ß)yß*, and a* by a +x Cg^(ß)yß*, we can change notation and

assume that Cg^(ß) > ß* > y . By the extension principle, we now have

Cgy(S) = Cg^(yß) = Cg^(y)Cg^(ß) = Cg^(y) ;

then

Cg^K) = Cg_^(a +jr y) = Cg^(a) +<? Cg^(y)

= Cg^(a) +$> Cg&(S) = Cg^(a + S) = Cg^(a) = a.

This is a contradiction, since a < a* < Cg¿>(a*).    D

Theorem 4.8. Assume that X is a relatively modular quasivariety and that 77? ç

X is a subquasivariety. Then the following conditions are equivalent:

( 1 )   77? is relatively modular.

(2) 777? satisfies the extension principle.

(3) (i) .Srsi Q =2fsi and(ii) -S|si is closed under similarity in X.

Proof. Theorem 4.1 easily implies that conditions (1) and (2) are equivalent.

Further, from Lemma 4.7 and earlier work, we already know that conditions

(3)(i) and (3)(ii) are necessary conditions for J? to be relatively modular.

Suppose that these conditions hold. We shall prove that (2) holds.

Arguing by contradiction, we suppose instead that (2) fails. We have Ae^

and congruences a and ß of A such that Cg^(aß) < Cg^(a)Cg^(ß). Since

X satisfies the extension principle,

Cg^(Cgjr(a)Cgjr(/?)) = Cg^(aß) < Cg^(Cg^(a))Cg^(Cg^()S)).

Replacing a and ß by their ^-extensions if necessary, we may assume that

they are ^-congruences.

There is a congruence p £ Con^A which is completely meet-irreducible in

Con_^A such that p > aß and p 2 Cg^(a)Cg^(ß). We can assume that

a and ß  are maximal with respect to being ^-congruences and satisfying
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aß < p, i.e., that if a* is a ^-congruence and a* > a then a*ß £ p, and

similarly, if ß* is a ^-congruence and ß* > ß then aß* ■£ p . Clearly, neither

a nor ß is contained in p. (If a < p then Cg^(a) < Cg^(p) = p which is

false.)

Since a(pa +¿? ß) = pa +,%■ aß < p holds by modularity, it follows from

the maximality of ß that pa < ß . Similar arguments give that

aß = ap = ßp.

Now p is meet-irreducible, by (3)(i). Hence

A= (ß+.3? a)(p+.%■ ß) > p.

We have k/p \ y ¡aß in Con^A, where y = (p +.%■ a)ß . Moreover, we have

a*/a \ y /aß , where a* = a +jf y . Thus a*/a \ y /aß / k/p in Con^A.

We can now show that a is meet-irreducible as an ordinary congruence.

For this, it will suffice to show that a is meet-irreducible in Con^A, since

X satisfies the extension principle. From (3)(i), p is meet-irreducible as an

ordinary congruence and therefore as a ^-congruence. This fact and the X-

isotopy shown in the last displayed formula show that a is meet-irreducible in

the interval a*/a of Conjf A. Thus we need only show that if x G Con^A

and x > a then xa* > a. Assume that X > a • By the maximality of a, we

have that xß £ P ■ Hence xß +jt P> P , and it follows that k(xß +¿r p) > p .
Working back through the isotopies, we have that

a +jr yKxß +Jtr P) > a.

Since k> p , kß = y , and yp = aß , the displayed inequality can be rewritten

(using the modular law) as yx '¿a . This implies a*x ^ a, since a* > y . Thus

a is meet-irreducible as a ^-congruence and also as an ordinary congruence.

Now the displayed isotopies show that the finitely subdirectly irreducible

algebras A/a and A/p are ^-similar; hence we conclude by (3)(ii) that A/a £
J? , and so a = Cgy(a). A similar argument gives that ß = Cgc^(ß). This

of courses contradicts our assumptions that aß < p while Cg^(a)Cg^>(/?) £

p.    D
One can use Theorem 4.8(3)(ii) and the remarks preceding Lemma 4.7 to

show that, in Theorem 4.8, 77? is a relatively distributive subquasivariety of

X iff -2rsi Ç -2fsi and 77? t=con [x, x]jr = 0 —» x = 0. This was proved
in [K2] under the assumption that X is a variety. If, in Theorem 4.8, X is

relatively distributive, then 77? is relatively modular iff it is relatively distribu-

tive iff =2rsi ç 3y%\ ■ This extends the result that 77? isa relatively distributive

subquasivariety of a congruence distributive variety iff =Srsi Q -^fsi , which was

proved in [Dz2].

5. An almost-equational axiomatization

By a A-axiom we mean a first order sentence of the form "for all x, ... , z

we have p¡(x, x, ü, ü, z) = q¡(x, x, ü,ü, z) for all i £ {0, ... ,n — 1} ,

and if Pi(x, y, ü, ü, z) = q,(x, y, ü, ü, z) for ail i £ {0, ... , n — 1} then
x = y," for some finite system of terms p¡(x, y, ü, v , z), q¡(x, y, ü,v , z).

We write this axiom as A(p¡, q,■ ; 0 </<«), or simply A(p, q). If we have a

quasi-equation

A   rj{2) is Sj{2)-> r{2) ¡v s{2)

0<j<m
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and a A-axiom A(p, q), where p = p(x, y, ü, v , z) and ü, v are w-tuples

of variables, then obviously this quasi-equation is implied by A(p, q) together

with the system of equations

Pi(r(z), s(z), r0(z), ... , rm_x(z), sQ(z), ... ,sm-i(z), z)

« q¡(r(z), s(z), r0(z), ... , rm_x(z), s0(z), ... , sm-X(z), 2).

This observation leads to the next theorem.

Theorem 5.1. Let X be a relatively modular quasivariety. X is axiomatized

by a set of A-axioms combined with a set of equations.

Proof. Suppose that f\J<m r¡ « s¡ —► r k s is one of the A:-variable axioms

of X. Let F be the J^-free algebra generated by z¡ (j<k) together with

x, y, «o, • • • , um-i, Vo, ... ,vm-X. Consider the congruences y generated by

all pairs (x, y), (Uj, Vj) ; a generated by all pairs (u¡ ,vj); and ß generated

by all pairs (x, r(z)), (y, s(z)), (Uj, rj(z)), and (Vj, Sj(z)). Then (x,y)

belongs to

y'(a' +' ß>) = (a + yß)'

by the modularity and the extension principle. So we get finitely many pairs

(Pi, q,) of elements of yß such that (x, y) is in every ^-congruence contain-

ing these pairs and a . This just means that

X \=pi(r(z), s(z), r0(z), ... , sm-i(z), z)

« q¡(r(z), s(z), r0(z), ... ,sm-X(z), z)

and

X \= Pi(x, x, 0, 8, z) « q¡(x, x, a, ü, 2)

for all i ; and

X \= ¡f\Pi(x, y,tt,ü,z) Kqi(x,y, ü, ü, z) ) -> x « y.

Thus the A-axiom A(p, q) holds in X ; and, combined with the first set of

equations displayed above, it implies the given quasi-equation. This establishes

the theorem.   D
(The referee informs us that Theorem 5.1 for relatively distributive quasivari-

eties is Theorem 4.1 in The deduction-like theorem for quasivarieties of algebras

and its applications, by J. Czelakowski and W. Dziobiak which will appear in

Algebraic Logic (Proc. Conf. Budapest, 1988): (H. Andréka, J.D. Monk, and I.

Németi, eds.), Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam.)

The quasivariety of all cancellation semigroups, W, is axiomatized by the

quasi-equations

xy x xz —> y « z   and   yx « zx —> y « z.

Each of these quasi-equations can easily be written as a A-axiom. However, the

quasivariety of all cancellation semigroups is not relatively modular; it does not

even satisfy the extension principle. For example, in F^(x, y, z, u) we have

Cg(xz, xu) n Cg(yz, yu) = 0, but (z, u) £ CgK(xz, xu) n Cg^(yz, yu).
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Theorem 5.2. Let X be a relatively modular quasivariety. Let A e X, 9 £

Con A, and u,v £ A. Then (u, v) belongs to the X-extension of 9 iff there is
some A-axiom A(p, q) valid in X, some pairs (a¡, b¿) e 0, and some elements

c £ A such that pA(u ,v,a,b,c) = qf(u, v , a, b, c) for all i.

Proof. It is obvious that the condition implies that (u, v) belongs to the X-

extension of 0. Conversely, suppose that (u,v) £ CgT(9). Let X = A

and F = F^-(X). Let 0 = <p~x(9), where q> is the obvious homomorphism

from F onto A (that extends the identity map on X). Then Cgx(9) =

y?_1(Cg^(0)), and so (u, v) e Cg^(0). This means that there exist finitely

many pairs (r¡, s¡) £ 9 , 0 < i < m , such that

X\= ÍAr/wi/J -r«í,

where, for a certain finite system 2 of free generators of F excluding u and

v, we have

r¡ = r¡(u,v , z),    Si = s¡(u, v , z),    r = u,    s = v.

Now the proof of Theorem 5.1 produces a A-axiom A(p, q) satisfied by X

such that the equations

Pj(u, v, r0(u, v, 2),... ,sm-i(u, v, z),u,v, z)

&qj(u, v, r0(u, v, 2), ... , sm-X(u, v, z), u, v, z)

are valid in X . Letting a be the tuple (rA(u, v , z), ... , rA_{(u, v , z)) and

b the corresponding tuple formed by the evaluations of the s¡ in A, we have

that a¡9b¡ for 0 < i < m since (r¡, s¡) e 0 ; and we have

pf(u ,v,a,b,u,v,z) = qf(u ,v,a,b,u,v,z)

for all j as desired.   D

6. The lattice of relatively modular quasivarieties

The lattice of subvarieties of a modular variety is a modular lattice. The

lattice of subvarieties of a distributive variety is a distributive lattice. Indeed,

the lattice of subvarieties of any variety is dually isomorphic to a sublattice of

the congruence lattice of a free algebra in the variety; so if a variety satisfies a

lattice equation as a congruence identity, then the lattice of subvarieties satisfies

the dual equation. In this section, we prove that the relatively modular subqua-

sivarieties of a given relatively modular quasivariety constitute a lattice; and we

study that lattice. We shall find that it is not possible to identify this lattice

with a sublattice of the dual of a relative congruence lattice of any member of

the quasivariety.

Lemma 6.1. If X¡ (i £ I) are quasivarieties satisfying the extension principle,

then fi/g/ X satisfies the extension principle. If X and 77? satisfy the exten-

sion principle and H(X) = H(Sf), then the quasivariety join X \l S? satisfies

the extension principle.

Proof. Let X = f)/e/ X¡ and choose A£X. Note that for any quasivariety

72?, since Cg_^ is an algebraic closure operator on A2 , Con^A is closed under
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unions of up-directed sets of congruences. Now suppose that Ae^n/ and

both Cg^ and Cg^ are meet-preserving maps on Con A. We shall show that

Qs-^rv *s meet-preserving likewise. For 0 e Con A and n < co define

'9 ifn = 0,

9n = { Cg_^(0„_i)    if n is odd,

Cgjr(0„_i)     otherwise.

Then \ln<(a9n belongs to both Con^A and Con^A (since both sets are closed

under up-directed unions); so clearly,

V0„ = Cgw(0).
n«a

If y, à £ Con A, then for every n < co we have yn • Sn = (y • a)n , since both

Cg_g* and Cg^r preserve meets. By upper continuity, this entails that

v4(vm = vo"«5)«'
n<a>      )      \n<(0      )        n<co

or that

Cg^nj(7 • S) = Cg^nf(y) • Cg<?nf(6).

y and ô were arbitrary, so we have shown that Cg^>n^ preserves meets.

Take T to be the set of all maps Cgj^ , where Sf ranges over intersections

of finite subfamilies of {X¡ : i £ 1} and Cg_^ is construed as a function from

Con A into Con A. From the previous paragraph, we have that each member

of T is a meet-preserving function. We claim that for 0 e Con A,

Cgw(9) = \l C(9)= \JC(9).
cer cer

The second equality holds because {C(6) : C e T} is an up-directed set of

congruences. Also, it is clear that Cg3i(9) > C(0) when C e T, since C =

Cg^ , where ¿? ¡2 X . The first equality in the displayed formula can thus be

demonstrated by showing that \J{C(9) : C e T} belongs to Con^A. To do

this, let i £ I, and note that since Cg_^(0) < Cg^nW¡(9), then

\/{C(0) : C e T} = \J{C(9) : C e Y and C(0) e Con.^A}.

This displays the join as equal to the join of an up-directed subset of Con^A ;

consequently, the join belongs to Con^A. Since this holds for every i, we

conclude that \J{C(9) : 9 £ C} belongs to Con^A, as desired.

Now if (x, y) e Cgr(9)Cgcr(y/), where 0, y/ e Con A, then, as we have

shown above, (x,y) e Cg^(0) n Cgjr(yz) for some 7? and f which are

intersections of finitely many of the X. So we have

(x, y) e Cg^,(0)Cg^,(^) = Cg^,(9y/) ç Cg^(9y/),

where 2" = JC n J", since Cg^, is meet-preserving, as was shown in the

first paragraph of the proof. This concludes the proof of the first statement in

Lemma 6.1.
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To prove the second statement, first notice that X M 2 = SPPU(X U i?)

= PS(X UJ?). This implies that for Aelni7 and 0 e Con A we have the

formula

Cgjr^(9) = Cgjr(0) • Cg^(0).

Now, X and J? satisfy the extension principle iff their free members do.

Further, H(X) = H(J?) holds iff X, and 2? have the same free algebras.
Thus X, J? and X V J? have the same free algebras. Hence it suffices to

consider an arbitrary free algebra FeJny and show that for congruences

on F we have CgTvi?(a- ß) = Cgjrv^(a)-Cg^y^(ß). By the last displayed

formula,

Cgjrv^(a • ß) = Cgjr(a • ß) ■ Cg^(a ■ ß)

= Cgjr(a) • Cgjr(ß) • Cg^(a) - Cg<?(ß)

= Cgjrv^a) • C%Xy3-(ß).

This proves the second statement of the lemma.   D

Lemma 6.1 and Theorem 4.8 show that the family of all relatively modular

subquasivarieties of a given relatively modular quasivariety is closed under ar-

bitrary intersections. This implies that the inclusion ordering for this family is a

lattice ordering. If X is relatively modular, let L(X) and ~Lm(X) denote the

lattices of subquasivarieties of X, and of relatively modular subquasivarieties

of X, respectively.
We observed above that two quasivarieties which generate the same variety

must possess the same free algebras. Consequently, the family of quasivarieties

generating a given variety is closed under arbitrary intersections.

Corollary 6.2. If 'V is a variety, then the lattice of all quasivarieties which gener-

ate 'V and satisfy the extension principle is a distributive sublattice of the lattice

of subquasivarieties of "V.

Proof. Lemma 6.1 insures that the quasivarieties which generate 'V and satisfy

the extension principle do indeed form a sublattice of the lattice of subquasi-

varieties of f". Suppose that J", X, and 77? are three members of this

sublattice and that .# = f 7\(X\I JC). Then

■^FSI = ßfS\ n (Xy%\ u -Sfsi)

= Ufsi n JTfsi) u (Mi n -2fsi) c(/nJ)u(/ny).

But Ji satisfies the extension principle, so ^si Q -^fsi which implies that

Jt = Ps(^vs\) ■ Hence, Jt ç  (f n X) v (f n -2").    D
Every quasivariety f is contained in a quasivariety that satisfies the exten-

sion principle: the variety generated by ß~, for example. Lemma 6.1 implies

that there is a least quasivariety ^ containing ^ that satisfies the extension

principle. Observe that if J^ is contained in any relatively modular quasi-

variety then, by Theorem 4.8, JF_ is the least relatively modular quasivariety

containing ^ . It may be that ^ may be described as the least quasivariety

containing ^ which can be axiomatized by special sorts of axioms; axioms

more special than quasi-equations but less special than equations. Or it may be

that ^ can be described as the closure of ^ under some class operator; closing

^ under a limited kind of homomorphism. We do not know if either of these

guesses is true or not, but we will digress a little from the examination of the
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lattice Lm(X) and show that quasivarieties satisfying the extension principle

are closed under a kind of "factorization" of algebras.

Definition 6.1. If /: B —> D and g: C —> D are onto homomorphisms, then

we will write B xD C to denote the subalgebra of B x C consisting of all pairs

(b, c) for which f(b) = g(c).

Theorem 6.3 (Factorization Theorem). If X satisfies the extension principle,

B xD C e X, and D e X, then both B and C are members of X. In
particular, i/BxC belongs to X, then both B and C also do.

Proof. Let r/o and nx denote the congruences on B xD C that are the kernels

of the projections onto B and C respectively. Now if a is the kernel of /

and ß is the kernel of g, then ao = ßx = f/o + nx , which is a ^-congruence

since D e X. Further, r]onx = 0 is a X-congruence since B xD C is in

X. Our goal is to prove that both r]0 and nx are ^-congruences. We have

% < v'o 2i >7o + >7i • Assume that {(b, c), (d, e)) £ n'0 - t]o. Then b / d,
but f(b) = f(d) = g(c) = g(e). This implies that {(b,c), (d, c)) £ n'0n[,
which contradicts the fact that r]'0r][ = 0. We must conclude that r/o = n'0 and

similarly that nx = n[ .

The second statement follows from the first statement and the fact that B x C

is just B xD C for D equal to the one-element algebra, which is a member of

X.   D
The quasivariety of all cancellation semigroups is closed under the kind of

factorization described here, but this quasivariety does not satisfy the extension

principle, as we pointed out after Theorem 5.1.

The next result is the quasivariety analogue of a well-known result of J. Hage-

mann and C. Herrmann (cf. Exercise 8.2 in [FM]).

Theorem 6.4. The quasivariety join of two relatively distributive subquasivarieties

of a relatively modular quasivariety is relatively distributive.

Proof. Let X be relatively modular and assume that ^ and 77? are relatively

distributive subquasivarieties of X . Let Jf be the quasivariety join J" V 77? .

We will prove that ^# is relatively distributive by using the criteria mentioned

after Theorem 4.8; that is, by showing that ^#rsi ç ^fFSI and that JÍ satisfies

the commutator implication [x,x]jr = 0—>x = 0.

From fvS?= Ps(fuS?) we find that ^RSi ç AsiU-2rsi ç^siU-^fsi
= ^#fsi • To see that ^# satisfies [x, x\^ = 0 —> x = 0, let Ae/ and 0 e

Con A with [0, 9\x = 0A . Since Jf' vJ?= Ps^uJ?), there are congruences

a £ Con^A and ß £ Con^A such that aß = 0A. Now

[a + 0 , a + 9]x<a+x[9, 9\% = a ,

implying that (a + 9)/a = a since A/a e ^f and ^ satisfies the commutator

implication. This means that 9 < a. Similarly, 9 < ß. So 0 < aß = 0¿.

We conclude that ^# satisfies the commutator implication, which finishes the

proof.   D
The last result shows that the relatively distributive subquasivarieties of a

relatively modular quasivariety X form a lattice. We will denote this lattice

by LD(X).
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Theorem 6.5. Let X be a relatively modular quasivariety. Ld(X) is a dis-

tributive sublattice of both h(X) and \-,m(X) .

Proof. Lemma 6.1 and Theorem 6.4 show that the relatively distributive sub-

quasivarieties of X form a sublattice of both L(X) and ~LM(X). We only

need to show that LD(X) is distributive. For this it will suffice to show that if

f, J? , and ./# are relatively distributive subquasivarieties of X, then

(jfn(/v ^))rSi Ç Of n f) u (Jg n &).

Now just notice that

Of n (f v ̂ ))rs, ç of n (f v ̂ ))FS,

= (^fsi n fvs\ ) u (^fsi n -Sf si ) •   □

It is not true that L,M(X) is always modular, nor is it always a sublattice of

L(X), as the following example shows. In this example, we produce a finitely

generated modular variety that has nine relatively modular subquasivarieties,

all but one of which are subvarieties.

Example 6.6. Our algebras will be groups with two nullary operations, a and

b, in addition to the identity element, 1 (i.e., they are doubly-pointed groups).

A will be the symmetric group on five letters with aA interpreted as some

transposition and bA as some element of order five. A is generated by aA and

bA so A has no proper subalgebras. Now there are exactly four two-element

groups of the type we are interested in, corresponding to the four ways of as-

signing the values of a and b. We will write B, Ba, Bb, and Bab using

subscripts to denote which constants are different from the identity element.

Notice that A has a unique nontrivial congruence 0 and that A/0 = Ba . Let

X = V(A, Bb). We claim that the nonmodular lattice in Figure 5 is LM(X).
Of course, the varieties listed in the figure are relatively modular.   Further,

V(Ba,B6)o;

V(Bab) SV{Bb) ¿

V(A,Bt)

SP(A)

Figure 5
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iSP(A) is relatively distributive by the criteria in Theorem 4.6. What we need

to verify is that ~Lm(X) contains no other members.

Locally finite, relatively modular quasivarieties are determined by their finite

subdirectly irreducible members and X only contains five subdirectly irre-

ducible algebras: A, B, Ba , Bb , and Bab . Notice that V(Ba ,Bb) is a locally
finite, semisimple modular variety so, by Theorem 1.2, the relatively modular

subquasivarieties of this variety are just its subvarieties. Any relatively modular

subquasivariety different from one of these must contain A. The quasivariety

generated by A appears in our figure. If a member of lu^(X) contains A and

a subdirectly irreducible algebra different from A, it must contain B. Since

Ba e H(A) and Ba ~j? B, such a quasivariety would also have to contain Ba .

But the quasivariety generated by A, B, and Ba is V(A, B) and we have listed

it. Any other member of 1¡m(X) must contain all five subdirectly irreducible

algebras. From these arguments it follows that \j^(X) is the lattice in Figure

5.

This example shows that ~Lu(X) need not be modular, and also that it need

not be a sublattice of L(X), since the quasivariety join V(Ba) V V(Bb) does

not contain Bab.

7. Examples

In this section, we present examples of relatively modular quasivarieties, fo-

cussing on characterizing the relatively modular quasivarieties of semigroups.

The arguments used and the intuition developed make it possible to produce

several other examples.

We begin by examining the quasivariety, X, of torsion-free Z-modules,

where Z is the ring of integers. (We call a Z-module torsion-free if it satis-

fies nx = 0 —► x = 0 for each nonzero n e Z.) X is a relatively modular

subquasivariety of the modular variety of all Z-modules, as one may verify by

using the criteria of Theorem 4.8. We will discover this fact a different way.

If A e X then Q®ZA is a Q-module, where Q denotes the ring of rational

numbers. Further, the Z-linear map,

n: A—> Q® A : a h-> I ® a

is 1-1. Thus, A is just a Z-submodule of Q ® A considered as a Z-module.

Indeed, X is precisely the class of all Z-submodules of Q-modules (where the

Z-action is determined by restriction of scalars). Let "V be the variety of all

Q-modules. It can be shown that the restriction map is an isomorphism from

Con^Q®A to ConjfA for any A e X. As "V is congruence-modular, X is

relatively modular.

In the example of the previous paragraph we identified A with a certain

natural subreduct of Q ® A. By extending scalars from Z to Q we essentially

brought in extra operations which were compatible with the ^-congruences

of A but which destroyed all other congruences. This process also introduced

new elements. We could not extend scalars too far or else we would not have

been able to show that the restriction map from Con^ Q ® A to Con^A was

an isomorphism; mainly because too many new elements would be introduced.

Using abstract nonsense we can frame these ideas more generally. We will be
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able to show that certain quasivarieties are relatively modular by identifying

them as special quasivarieties of subreducts of algebras from modular varieties.

In order to formalize the remarks above, let us suppose that we have an

interpretation of a variety W into a congruence-modular variety ^. That is,

we have a clone homomorphism (¡> : Clo W —> Clo "V. Considering W and

y as categories in the obvious way, there is a forgetful functor G: W -^W

which takes any ^-algebra, A, to its reduct to the operations in the image of

0. Via 4>> a ^"-algebra structure on G (A) is determined. Now G has a left

adjoint F. If B e W, we say that F(B) is the (universal) 'V-envelope of
B. A presentation of F(B) is obtained by taking a ^-presentation of B and

using (j) to interpret it as a ^-presentation. If B e W, A £rV, and there

is a one-to-one ^"-homomorphism /: B —> (7(A), then we will call A a <V-

extension of B. There is a natural ^"-homomorphism nB : B —> GF(B). It is

easy to see that B has a ^-extension iff y\b is injective.

Let X be the class of algebras Bef for which t]b is injective. It is easy

to verify that X is closed under I, S, P, and Pu, although not necessarily

under H. We call X the derived quasivariety of the adjunction (F \ G). X

is precisely the class of members of W that have a 2^-extension.

Both F(B) and GF(B) have the same underlying sets; and congruences

on F(B) are at the same time congruences on GF(B). The homomorphism

t]b'- B —► GF(B) gives us a way of converting congruences on F(B) into con-

gruences on B. In fact, the restriction map

nB: ConF(B) -> Con^B : 9^n~x(9)

is a meet-semilattice homomorphism. It is not hard to show that n*B is onto;

this follows from the universality of F(B). So if nB preserves joins, then

the lattice Con^B is a homomorphic image of the modular lattice ConF(B).

This would imply that Con^B is modular. Unfortunately, n* usually does not
preserve joins.

We will say that X has unique ^-extensions if for every B £ X, when

/: B —> G(A) is one-to-one, then the natural map /: F(B) —> A is one-to-one.

Saying that X has unique ^-extensions is equivalent to saying that for every

B £ X, the restriction map nB: ConF(B) —* Con^B is injective. When n*B

is injective, it does preserve joins since any one-to-one, onto, meet-preserving

map between lattices preserves joins. Hence, if X is the derived quasivariety

of an adjunction between W and the modular variety W , and X has unique

^-extensions, then X is relatively modular.

In the example described at the beginning of this section the variety W

is the variety of all Z-modules, "V is the variety of all Q-modules, and the

interpretation 0 is the one determined by the ring embedding of Z into Q. The

derived quasivariety is just X : the quasivariety of all torsion-free Z-modules.

One verifies that X has unique Q-module extensions, so this example is a

special case of the scenario just described.

The next theorem and its proof show that every relatively modular quasiva-

riety of semigroups is contained in a relatively modular quasivariety derived as

above from the standard interpretation of some proper variety of semigroups

into the variety of groups. Corresponding to each variety W of semigroups

other than the variety of all semigroups, there is a relatively modular quasiva-

riety X consisting of the group-embeddable members of W . X has unique

group extensions.
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Theorem 7.1. Every relatively modular quasivariety of semigroups satisfies the

cancellation laws:

xyKXZ-^y&z,       yx « zx —> y « z

and a nontrivial equation. Conversely, any quasivariety axiomatized by the can-

cellation laws and a nontrivial equation is relatively modular.

Proof. Assume that X is a relatively modular quasivariety of semigroups. We

begin by showing that X satisfies the cancellation laws. First, let A = (x) be

a 1-generated semigroup in X. If A is infinite, then A is the free 1-generated

semigroup and this semigroup satisfies the cancellation laws. Otherwise, A is

finite and xm = x" for some m < n ; we may assume that m is the smallest

number for which such a relation holds. If m > 1, then a = Cg(xw-1, x"~x)

is a minimal congruence on A and typ (0,4, a) = 1. This contradicts Lemma

4.4. Hence m = 1. A is a cyclic group; so A satisfies the cancellation laws.

Now suppose that X fails the bi-implication xy m xz ^ yx ^ zx . Then

there is a Be J that has elements a, b, c, where, say, ab = ac but ba ^

ca. Let S be the subsemigroup of B that is generated by e = ba and /

= ca. Notice that e2 = ef and fi2 = fie. If e = em for some m > 1,

then f2 = fie = fiem = fm+x. By the result of the last paragraph, f = fm .

In this case, S is isomorphic to the direct product of a two-element left-zero

semigroup U and an w-element cyclic group. By the factorization theorem

(Theorem 6.3), U £ X. But U is a finite simple semigroup of type 1. This

contradicts Lemma 4.4; thus this case cannot occur. Hence, there is no m > 1

for which e = em or fi = fm . If, in addition, there are no positive integers

m, n such that em = f" , then S = U x V, the product of the two-element

left-zero semigroup and the free semigroup V on one generator. This gives a

contradiction, just as above. Hence there are positive m, n satisfying em =
f". This means that em+x = eem = ef" = en+x , so em~n+x =e. Hence, m

= n . Let k be the least number m for which em = fm . To briefly summarize

our progress, we have gathered enough information to show that, for some k ,

S is the semigroup presented by

(e, fi\e2 = ef, fi2 = fie, ek = fk).

One can check that Cg(e, /) n Cg(ek , ek+x) = 0. Hence,

Cg(e,/)'nCg(^,^+1)' = 0.

But
Cgs(^ , ek+x)' D Cg(<,V , ek+x)' =l{e).

Similarly, since ek = fk and ek+x = fk+x ,

Cgs(ek , ek+x)' DCg{f>(fk , fk+x)' = I{f).

The pairs (e, ek) and (fik , fi) belong to Cgs(ek , ek+x)' and ek = fk ; so

(^/)eCgs(^/)'nCgV,c*+1)'-

This is a contradiction.
We are to the point where we can conclude that

X \= Vx, y, z (xy « xz <-> yx « zx) .
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If X does not satisfy the cancellation laws, then there is a Ce J generated

by distinct elements u, v , and w such that uv = uw . Let I = {t £ C : tv =

tw} . Because of the bi-implication satisfied by X, that we proved above, / is

a two-sided ideal in C which contains (u). Let 9¡ denote the congruence on

C whose only nontrivial block is the set /.

We claim that 9¡ n Cg(i> ,w) = 0q. To prove it, note that if r £ I and

(x, y) e Cg(v, w) then rx = ry . Hence if (r, s) £ 9¡ n Cg(w, w), then

2 2rz = rs = s   = sr.

Assume that these equations hold and r ^ s . On the basis of what we proved

about 1-generated semigroups in X , it is easy to see that (r, s) is an infinite

semigroup consisting of r, s, r2, r3, ... (all of these elements distinct). Let

~LS be the set satisfying the relative shifting lemma for X . Choose (p, q) eZs

so that pc(r, s, s, s) / qc(r, s, s, s). Since pc(r, r, r, r) = qc(r, r, r, r),

each of the terms p and q , expressed as a product of variables, must have the

same length. Since pc(r, s, s, s) ^ qc(r, s, s, s), this length must be 1 . Thus

we have, say, pc(r, s, s, s) = r and qc(r, s, s, s) = s and each of pc, qc

depends on only one variable; but this leads immediately to a contradiction, in

view of the equations satisfied by pc and qc . Thus, indeed, 0/ n Cg(v , w ) =

0c, as claimed.
Extending to ^-congruences, we have 9\ <7\Cg(v,w)' = 0c. Let D =

C/0/. D is generated by (ü, v, w) and ü is an absorbing element for D.

Since v / w , at least one of v or w is different from u, say v ^ ü. Now

there is a pair of terms (p, q) e "Ls such that

pD(v, ü, a, ü) t¿ qD(v , u, u, u).

One of these elements, say p°(v , u, ü, ü), is not equal to ü . Hence the term

p, expressed as a product of variables, contains only its first variable, and pD

does not depend on its last three variables. This means that

qD(v , u, u, v) = pD(v , ü, ü, v) = pD(v , ü, a, ü) t¿ ü.

So qD does not depend on its middle two variables. This yields the contradic-

tion that

pD(v , v , u, a) = pD(v , ü, ü, ü) t¿ qD(v , ü, a, u) = qD(v , v , ü, U).

This concludes our proof that X satisfies the cancellation laws.

To show that X must satisfy a nontrivial semigroup equation is not hard

now. The equations satisfied by the terms in Lf cannot all be trivial, for ex-

ample. To show this, let (p, q) £ E5 be a pair such that pA(a, b, b, b) ^

qA(a, b, b, b) in some A e X with a, b e A. Using the associative law and

the cancellation laws, we may assume that the leftmost variable of p is differ-

ent from the leftmost variable of q . Now assume that both p(x, x, y, y) w

q(x, x, y, y) and p(x, y,y, x) « q(x, y, y, x) are trivial semigroup equa-

tions; that is, that these equations hold in every semigroup. Assume also

that the leftmost variable of p(x, y, z, u) is x. Then the leftmost vari-

able of p(x, x, y, y) = q(x, x, y, y) is also x . Thus the leftmost vari-

able of q(x, y, z, u) is either x or y . Applying the same reasoning to the

equation p(x, y, y, x) « q(x, y, y, x) shows that the leftmost variable of

q(x, y, z, u) is not y . Since p and q have different leftmost variables, we
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have a contradiction to the assumption that the leftmost variable of p is x.

Similar arguments rule out the possibility that the leftmost variable of p is

y, z, or u. This is a contradiction to the assumption that X satisfies no

nontrivial equation. It proves the first statement of the theorem.

Now we prove that if X is axiomatized by the cancellation laws and one

nontrivial semigroup equation, then X is relatively modular. Because of the

cancellation laws, we may assume that the nontrivial equation is of the form

xpo(x,y, z)mypx(x,y, 2)

for certain semigroup terms po(x, y, z) and px(x, y, z). Now, if A e X and

b, c £ A, then there exists u, v e A such that bu = cv ; we say that A is

directed by left divisibility. In fact, we may choose u = po(b, c, c, ... , c) and

v = pi(b, c, c, ... , c). It is known, and this is Proposition 3.5 of [C], that any

cancellation semigroup which is directed by left divisibility is embeddable in a

group in which every element is expressible as a fraction, ab~x, where a, b e

A, and that this group of fractions is uniquely determined by A. Further, it is

clear that if A is a subsemigroup of any group G, then the set of fractions of

elements of A forms a subgroup of G. (To show that this set of fractions is

closed under multiplication notice that

(ab-x)(cd~x) = a(b-xc)d~x = a(uv'x)d~x = (au)(dv)~x,

where bu = cv .) Hence, if A is a subsemigroup of any group H which is

generated by A (as a group), then H is the unique group of fractions of A. In

particular, such an H can only be the universal group of A. The restriction map

of 0 e Con H to 9\A £ Con A is one-to-one, since 9 is determined by the set of

pairs (ab~x, 1) e 0 , and (ab~x, 1) e 0 <-> (a, b) £ 9\A . It follows that X has
unique group extensions, in the technical sense defined before this theorem. We

have that Con^A = Con H via restriction, and this lattice is modular. Since

A was an arbitrary member of X , this quasivariety is relatively modular.   D

Corollary 7.2. If X is a finitely generated, relatively modular quasivariety of

semigroups, then X is finitely axiomatizable.

Proof. This is immediate from Theorem 7.1 and Corollary 3.2.   D
The approach that we used in Theorem 7.1 can be used to show that the

quasivariety of additively cancellative semirings is relatively modular, by con-

sidering the obvious adjunction with the variety of rings. One can show that

the quasivariety of additively cancellative semimodules over a given semiring

is relatively modular by considering the obvious adjunction with a variety of

modules. One can show that the quasivariety of (unital) rings of characteristic

0 is relatively modular by considering the obvious adjunction with the vari-

ety of Q-algebras, where Q denotes the rational numbers. Some readers may

be able to conjure up a long list of their own examples of relatively modular

quasivarieties in this way.

In our discussion of the adjunction between W and "V before Theorem

7.1, we made the unnecessary assumption that W and 3^ are varieties. It is

only necessary that they be quasivarieties. For example, if W is the quasiva-

riety of torsion-free Abelian groups and W is the quasivariety of cancellation

semigroups, and if we use the usual adjunction between semigroups and groups,

then we obtain that the quasivariety of commutative, torsion-free semigroups

with cancellation is relatively modular.
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Another unnecessary assumption that we made is that 'V is congruence-

modular. This technique of producing examples by adjunction shows that any

sentence expressible in the language of lattice theory which holds in the con-

gruence lattices of algebras in "V holds as a relative congruence condition for

the algebras in the derived quasivariety X, when the algebras in X have

unique 2^-extensions. This is because we end up showing that for each B £X,

ConjrB s ConF(B), where F(B) e T.
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