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INVARIANT AFFINE CONNECTIONS ON LIE GROUPS

H. TURNER LAQUER

ABSTRACT. The space of bi-invariant affine connections is determined for ar-
bitrary compact Lie groups. In particular, there is a surprising new family of
such connections on SU(n) .

INTRODUCTION

Invariant connections on homogeneous spaces have been well understood
for years but much of the interest ceased after consideration of the canonical
connection in general and the Levi-Civita connection in the case of the frame
bundle [5]. The main objective of 1his paper is to give a complete description of
the bi-invariant affine connections on compact Lie groups, i.e., those connections
in the frame bundle which are invariant under both left and right translations.
A sequel to this paper will extend these results to arbitrary compact irreducible
Riemannian symmetric spaces [8].

The first five sections of this paper describe invariant connections in general
and affine connections in particular from the point of view of homogeneous
principal bundles. These are essentially those principal bundles over homoge-
neous spaces which admit a lifting of the group action on the base manifold
to give a fiber transitive action on the total space. This categorical viewpoint
is quite useful for dealing with different descriptions of isomorphic objects. It
helps separate the ideas of homogeneity from actual constructions involving Lie
groups. The main result in these sections is Theorem 5.1 which gives several
equivalent descriptions of the set of invariant affine connections on a homoge-
neous space.

Sections 6 through 10 deal with the determination of all bi-invariant affine
connections on compact Lie groups. Theorem 8.1 gives a complete classification
of such connections in the compact simple case. This theorem was essentially
the result of a case by case computation using representation theory. The sur-
prising result is that while in most cases the only such connections are from a
well-known one-dimensional family (containing the canonical, (+)-, and (—)-
connections), in the case of SU(n) there is a second family of such connections.
These results are then extended in Theorem 9.1, where the dimension of the
space of bi-invariant affine connections is determined for arbitrary compact Lie
groups. Finally, §10 includes a more detailed description of these connections
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in the cases of SU(n) and U(n). The six-dimensional space of such connec-
tions on U(n) is also quite interesting. In both cases, the extra connections are
related to the bilinear operation #(x, y)=1i-(x-y+y-x) on the Lie algebra
u(n).

1. HOMOGENEOUS PRINCIPAL BUNDLES

A homogeneous principal bundle is a triple (G, P(M, U, n), a), where G
is a Lie group, n: P — M is a principal U-bundle over a homogeneous space
M , and « is a homogeneous G-action on P, i.e., there must be smooth group
actions ap: Gx P — P and ap: G x M — M, written multiplicatively, with
ayy transitive and such that the compatibility condition n(g-p) = g-n(p) holds.
In addition, the left G-action and the right U-action on P must commute, i.e.,
(&-p) u=g-(p-u.

The homogeneous principal bundles form a category, denoted HPB, by letting
a morphism ¢: (Gl > Pl (Ml 5 Ul ’ nl)a al) - (G2 5 PZ(MZ, UZ’ nZ) s a2) consist
of differentiable maps ¢p: P, — P, and ¢u: M; — M, and Lie group homo-
morphisms ¢g: G; — G, and ¢y: Uy — U, satisfying the following condi-
tions:

(1) myopp=odpyomy,
(ii) ¢p(p-u) = ¢p(p)-du(u),

(ii)) @p(g-p) = dc(g) - op(p).
Note, it then follows that

(iv) dm(g-m)=ds(g) - dm(m).

Let HPB, denote the category whose objects are homogeneous principal bun-
dles with base points— (G, P(M, U, &), a, py), where py is some point in
the total space P —and in which morphisms must preserve base points. Let
HS and HS; be the related categories of homogeneous spaces — with objects
(G, M, a) and (G, M, a, mg) and in which morphisms ¢ = (¢, ¢a) must
satisfy condition (iv).

As with homogeneous spaces where the choice of base point gives a correspon-
dence to quotient manifolds, it is the category HPB, which is more closely re-
lated to standard constructions involving Lie groups. Given (G, P(M, U, &),
a, po) € HPBg, let H be the isotropy subgroup at mg = 7n(pg). Define a ho-
momorphism A: H — U by letting 4-py = pg-A(h) and let P; be the principal
bundle (cf. [5, 6, 7])

Pi=GxygU=GxU/(gh,u) ~ (g, Ah)u).
This principal U-bundle over G/H has a standard homogeneous G-action de-
fined by g, -[g,u] = [g1 - &, u] and the original bundle is isomorphic in
HPB; to the bundle (G, P,(G/H, U, ), a, [e, e]). So up to isomorphism
in HPBg, it is the “structure homomorphism” A which really determines the
homogeneous principal bundle.

2. THE FRAME BUNDLE AS A HOMOGENEOUS PRINCIPAL BUNDLE

The frame bundle of a homogeneous space (G, M, a, my) can be viewed
as a homogeneous principal bundle in a variety of ways. Clearly, it is the differ-
ential of left translation (TL,) which provides the left G-action on the total
space. However, the structure group can change, depending on what is meant
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by a “frame”, and in addition, different base points give different structure ho-
momorphisms.

A frame p at a point m € M can be viewed as a real linear isomorphism
p:V — T,M, where V is some “model” vector space. The set of such frames
becomes a homogeneous principal Aut(})-bundle by letting

g-p-u=TLgopou.

Clearly this action is compatible with the given action on the homogeneous
space M . A base point is then some fixed isomorphism 4: V — T, M. If W
is some other model and if B: W — T,, M is a base point in the corresponding
homogeneous principal bundle, then the two bundles are naturally isomorphic
in HPBy . Indeed, the mappings ¢g(g) = g, du(m) =m, ¢p(p) = poAd~'oB,
and ¢y(u) = B 'oAdouoA~'oB give an explicit HPBy-isomorphism between
them.

There are three models which arise naturally in this context. The model V =
R” (where n is the dimension of M) corresponds to the ordered basis view-
point of frames (by looking at the image under p of the standard basis of R").
In this case, a base point is the choice of a distinguished basis (Ey, ..., E,)
for T,,,M . The resulting structure homomorphism A: H — GL(n, R) is the
isotropy representation '

TLy(E)) = E; - (A(h))] .

1

A second model is given by V = T,, M . In this case the natural base point is
the identity isomorphism V' — T,, M . The resulting structure homomorphism
is the differential of left translation TL: H — Aut(7,,,M). Finally, if the
homogeneous space is reductive, i.e., if the Lie algebra g can be expressed as
a direct sum h @& m with Ad(H)m C m, then the subspace m can serve as the
model. In this case the differential at the identity of the mapping g — g - myg
restricts to give an isomorphism m C g = 7,G — T,, M . This is the natural
choice of base point for this version of the frame bundle. The corresponding
structure homomorphism is then given by Ad: H — Aut(m).

3. INVARIANT CONNECTIONS AND WANG’S THEOREM

By definition, a connection A in a principal bundle P(M, U, n) is a smooth-
ly varying choice of horizontal subspaces %”‘ C T,P. These subspaces must
be complementary to the vertical subspaces 7, = kernel(7Tn) and they must be
invariant under the right action of U on P, i.e. Zf,f‘u = TRqu,A. Homoge-
neous principal bundles can have homogeneous or G-invariant connections in
which the horizontal subspaces are also left G-invariant, i.e. f?’;f.“p = TLgZ,A .
The set of such G-invariant connections will be denoted .%;(P).

Wang’s theorem [11] describes the set of G-invariant connections in the bun-
dle P;. Let g, b, and u be the Lie algebras of G, H, and U respectively
and let TA: h — u be the differential of A. Then the invariant connections in
P; are in one-to-one correspondence with linear mappings &¢: g — u satisfying
the following two conditions:

(1) ¢(x)=TA(x)Vx€bh,

(ll) E(Ad, x) = Adl(h)é(X) Vx €g, heH.
In this description, the set of all vectors of the form x & —&(x) € gdu gives the
horizontal subspace at (e, e) of the connection pulled back to the trivial bundle
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G x U — G. Equivalently, if p: G x U — P, is the mapping (g, u) — [g, u]
then y = —¢(x) if and only if Tp(x ®y) € Z?f ¢ - Note that this description
of invariant connections in terms of linear maps ¢: g — u remains valid for
arbitrary bundles in HPBy—recall that the choice of base point defines the

subgroup H and the homomorphism A: H — U canonically.

4. PULLBACK AND ASSOCIATION IN THE CATEGORY HPB

Two standard constructions involving principal bundles (pullback and
association) carry over to the category of homogeneous principal bundles. If
(Gz, Pz(Mz, U, 7t2), az) € HPB and if ¢: (G1 , My, al) — (Gz, M, , az) is
an HS-morphism then the pullback bundle

¢*(Py) = {(m, p) € My x P,| ¢y (m) = my(p)}

has a homogeneous G-action given by g-(m, p) =(g-m, ¢g(g)-p). In addi-
tion, ¢ extends to give an HPB-morphism ¢*(P,) — P, by letting ¢p(m, p) =
p and ¢y(u) = u. More generally, if

¢: (GI,PI(M15 Ul, nl)) al)_)(G2>P2(M2’ U2a nZ)aaz)

is an HPB-morphism with ¢y an isomorphism then P, and ¢*(P,) are iso-
morphic in HPB. In addition, the following proposition shows that invariant
connections can be pulled back under such mappings.

Proposition 4.1. If
¢: (G, AM,y, Uy, my), a1, p1) = (Ga, PA(My, Uy, m3), az, p2)

is an HPB-morphism with ¢y an isomorphism then there is an induced mapping
¢*: A, (Py) — g, (Py) defined by

ZW = (x e T,P | Top(x) € Zyro)} -

The mapping ¢* is injective if the tangent mapping Tog: g1 — g2 of Lie alge-
bras is surjective. If the morphism ¢ is HPB, then ¢* is also given by

¢* (&) =Toy' 0oloTohg: g1 — .
Proof. The fact that this gives a well-defined connection in P; follows from
Proposition I1.6.2 in [5]. What needs to be proven is that the induced connection
is Gi-invariant and for that it suffices to show TLgZ{,‘V(A) C %‘f;(’”. Let

X € %d’.(’” . Then by property (iii) for HPB-morphisms, it follows that
T¢pTLg(x) = TLyyg)Thr(x) € TLyo) %40 ) = Zinigop)

and thus the connection ¢*(4) € %%, (P;). If T¢g is surjective then the
mapping T¢p: T,P, — T4, P, is surjective for all p € P;. This is clear
because ¢y is an isomorphism and because the combination of the left G-
action and the right U-action on a homogeneous principal bundle is transi-
tive. So the horizontal subspaces of the original connection 4 can be re-
covered from the horizontal subspaces of the induced connection ¢*(A4) and
the mapping ¢* is injective. As for the description of ¢* in terms of the
linear maps &:g — u, let pi: Gix U — P; for i = 1,2 be defined by
pi(g,u) = g-pi-u and let ¢(g, u) = (d6(g), du(u)): Gy x Uy — G2 x U5.
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Now y = —(¢*(¢))(x) if and only if Tp;(x ®y) € #£*©, ie., if and only
if TopTpi(xdy) € Z{,f Since ¢p o p, = po @, this is true if and only if
TH(x ®y) = z @ —&(z) for some z € g;. This implies —&(Tdg(x)) = Todu(y)
or equivalently ¢*(¢) = T¢y' 0o E0Tgg. O

The process of forming associated principal bundles also carries over to the
homogeneous category. If (G,, P(M;, Uy, m;), ;) € HPB and if u: U, —
U, is a Lie group homomorphism then the associated principal U,-bundle

Pixy Uy=Pr x Upf(p-ur, uz) ~ (p, u(ur) - )

has a homogeneous G,-action given by g-[p, u] =[g-p, u]. In addition, the
mappings ¢p(p) = [p, €], du(m) =m, dG(g) = g, and ¢y(u) = u(u) define
an HPB-morphism P; — P, xy, U, . More generally, if ¢: (G, Pi(M;, U;, my),
ay) = (Gy, P,(M,, Uy, m3), a3) is an HPB-morphism for which the induced
map (¢g, ¢») on the base manifolds is an HS-isomorphism then the bundle P,
is isomorphic in HPB to the associated bundle defined by the homomorphism
U= ¢y: Uy — U,. In addition, the following proposition shows that invariant
connections move forward under such mappings.

Proposition 4.2. If
¢: (G] 5 Pl(Ml 5 Ul 5 nl)a ) apl) - (GZa PZ(M2, UZ, nZ), 012,.”2)

is an HPB-morphism for which the induced map (¢, ¢p) of base manifolds
is an HS-isomorphism then there is an induced map ¢.: ;,(P\) — G,(P2)
defined by

u(4) _ A
Zrvigru = TR 627",

The mapping ¢, is injective if the tangent mapping Toy: u; — uy of Lie alge-
bras is injective. If the morphism ¢ is HPBq then . is also given by

$.(&) =TpyoloTog': gy — uy.
Proof. The fact that this gives a well-defined connection in P, follows from
Proposition I1.6.1 in [5]. What needs to be proven is that the induced connection
is G-invariant. Property (iii) for HPB-morphisms implies L,z o Ry o ¢p =
R, o ¢po Lg. This gives
- A
TLyg( g>%f<x)u TR T¢rTLe " %f(é 13 = %ﬁ(; “¢p(p)u

Since the ¢ in an HS-isomorphism (¢g, ¢a) must be a Lie group isomor-
phism, it follows that the connection ¢.(A4) € &, (P;) . If T¢y is injective then
TR,oT¢p: T,P, — Ty4,;)-uP2 is injective for all p € P, and u € U, and thus
¢. is injective. This uses the assumption that (¢, ¢a) is an HS-isomorphism
so that tangent vectors corresponding to the action of G are not annihilated
by T¢p. As for the description of ¢, in terms of the linear maps &: g — u,
let p, and p, be as in the proof of Proposition 4.1. Then

) = TopTpi{x & ~£(x)} = Tpo{T6(x) & ~Tu(E(x))} -
Since T¢g is an isomorphism, this implies @.(&) = Toy oo T¢'G" . 0

5. INVARIANT AFFINE CONNECTIONS

An invariant affine connection on a homogeneous space (G, M, a) is a con-
nection in the frame bundle which is also G-invariant. By applying the results
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in §3 to the different models of the frame bundle in §2, several descriptions of
the space of invariant affine connections can be obtained. Specifically, there is
the following (cf. [10]).

Theorem 5.1. Let (G, M, a, my) be a reductive homogeneous space with reduc-
tive decomposition g = h ® m, where Ad(H)m C m. Then the set ;(Fr(M))
of invariant affine connections is given by any of the following six equivalent
descriptions:

(i) {€: 9 — gl(n, R)|& linear, &ly = TA, E(Ad), x) = A(R)E(x)A(h) ™'},

(i1) {¢ : g — End(m)| & linear, &|y = ad, &(Ady x) = Adj 0&(x) 0 Ady-1},
(iii) {¢ : m — End(m)|¢& linear, £(Ad, x) = Ady 0&(x) o Ady-1},
(iv) {n : m x m — m|n bilinear, n(Ad, x, Ad, y) = Ad, n(x, y)},

) {n: Ty X Tiny — Tyl n bilinear, n(TLyx, TLyy) = TLyn(x, y)},

(vi) Hom}R;(m ®m, m).
Proof. Descriptions (i) and (ii) are immediate applications of Wang’s theorem
to the frame bundle — modeled on R” in (i) and on m in (ii). Note, in (i), that
A is the isotropy representation described in §2. The & in (ii1) is just the restric-
tion to m of the ¢ in (ii). Conversely, any £: m — End(m) satisfying the condi-
tions in (iii) can be extended to all of g by linearity and by requiring |, = ad.
The correspondence between (iii) and (iv) is given by &(x)(y) = n(x, y). Itis
easy to see that the conditions in (iii) and (iv) are equivalent. Next, the equiv-
alence between (iv) and (v) comes from the canonical isomorphism between m
and T,,,M given by the differential at the identity of the mapping g — g-my.
Finally, description (vi) comes from (iv) and the universal mapping property
for tensor product. Any bilinear map #: mxm — m defines a unique linear map
fi: m@m — m satisfying (x®y) =n(x, y) Vx,y € m. The condition that n
define an invariant affine connection on G/H is equivalent to the requirement
that 7 intertwine the actions of H on m®m and m. O

(v

The frame bundle of a homogeneous space (G, M, a, mg) is associated to
the canonical bundle (G, G(M , H, &), a, ¢) by the HPBy-morphism ¢p(g) =
TLgoTm:m— TgeyeM , opp(m) =m, ¢g(g) = g, ¢u(h) = Ad,. By Wang’s
theorem invariant connections in the canonical bundle are given by linear map-
pings {: m — b satisfying {(Ad, x) = Ad, {(x). By Proposition 4.2, any such
¢ gives an invariant affine connection & = ¢.({) = ado{. Alternatively, this
invariant affine connection is given by 7n(x, y) = [{(x), y]. This mapping of
connections is injective if the representation ad: h — End(m) is faithful. In
the reductive case, as is being assumed here, this will be true if the action of G
on M is almost effective.

6. INVARIANT AFFINE CONNECTIONS ON LIE GROUPS

The group action of a Lie group G allows the group to be viewed as a homo-
geneous space in several ways. If the action under consideration is left trans-
lation, then the isotropy subgroup is trivial and the corresponding “left invari-
ant” affine connections are given by arbitrary bilinear maps n:gx g — g—
Theorem 5.1 gives no restriction in this case. A more interesting action is
given by a combination of left and right translation. This amounts to view-
ing G as a homogeneous space for the group G x G, the precise action being
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am((£1,8),8) =888 !'. The resulting invariant affine connections will
then be “bi-invariant,” i.e., invariant under both the left and right actions of
the Lie group G.

Theorem 6.1. The space of bi-invariant affine connections on a Lie group G is
given by

{n:gxg— g|n bilinear, n(Adg x, Adgy) = Adgn(x, y) Vg € G}

or, equivalently, by the space Homg(g®g, g).

Proof. The isotropy subgroup for the action of G x G is the diagonal subgroup
A ={(g, g)}- The Lie algebra of A is h = {(x, x) € g® g} and the reductive
complement m = {(x, —x) € g® g}. Thus h and m are both isomorphic to
g as A (= G)-modules. The theorem then follows immediately from Theorem
51. O

When the Lie group G is compact and simple the canonical bundle G x
G — G has a one-dimensional family of invariant connections corresponding
to the mappings {(x, —x) = (ux, ux):m — h for u € R. Cases =0, 1,
and —1 correspond to the so-called canonical, (+)-, and (—)-connections on
a Lie group. The corresponding invariant affine connections are then given by
nx,y)=p-[x,y]: gxg— g. In §8 it will be proven that these are the only
invariant affine connections in all cases except for SU(n) for n > 3.

7. CASIMIR OPERATORS AND A COMPUTATIONAL LEMMA

Given a representation p : G — Aut(V), the Casimir operator of V 1is
defined by I'(V) = ¥(Tp(e;))?, where {e;} is an orthonormal basis for the Lie
algebra g. This depends on the choice of an inner product on g but not on the
choice of basis. If G is compact and simple, then a natural inner product on
g is provided by the negative of the Killing form B,(x, y) = trace(ad, ad,),
but in general, any ad -invariant inner product ({[x, y], z) = (x, [y, z])) can
be used. If V' is irreducible then I'(V) will be a negative or zero scalar. The
following lemma will be needed for the computations in §8.

Lemma 7.1. Suppose g is simple and let V C /\2 g be the kernel of the natural
map N’g — g induced by the alternating bilinear map (x, y) — [x, y]: gxg —
g. Then V is a G-module and the Casimir operator of V is exactly twice that
of the adjoint representation g.

Proof. Since Adg[x, y] = [Adg x, Adgy] the natural map /\2 g—gisa G-
module map and thus V is G-invariant. Let {e;} be an orthonormal basis
for g and let [e;, ¢;] = C{‘jek. Because the basis is orthonormal relative to an
ad-invariant inner product, the structure constants C{‘j have a cyclic symmetry
in i, j, and k along with the usual skew-symmetry. In addition, the Jacobi
identity implies

i k _ i k i ok
ijCni - _Cmncji - anCmi .

A general element of /\2 g is given by a’ke; A e, , where the summation goes
over all j and k by assuming a’* = —ak/. Suppose a’ke; Ae € V, ie,
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aka]’fkei =0. Then

> (p(e)a’*e; Aex = a*plei)(lei, el Nex +e; Ales, e])
= a'*le;, [ei, ;]| Aex + a'ke; Nei, [ei, ex]] + 2+ a’¥ e, ej1 A e, ex]
=2-T(g)- (a’*e; ney).
This follows because
[ei, [ei, x]]=T(g)-x forall xeg
and because
a’*le;, eI Alei, e] = a’*ClTCliem N ey
= —a/*(C},CK + CL,Ck Yem N ey
= —a/*C} Ckien Nem

_ ik ~m n —
8. REPRESENTATION THEORY AND BI-INVARIANT AFFINE CONNECTIONS
ON SIMPLE LIE GROUPS

The stage is now set for the main result of this paper.

Theorem 8.1. If G is a compact simple Lie group then the space of bi-invariant
affine connections on G is one-dimensional in all cases except for SU(n) when
n > 3. In the case of SU(n) there is a two-dimensional family of bi-invariant
affine connections. Note that SO(6) behaves the same way as SU(4).

Proof. By Theorem 6.1, the space of bi-invariant affine connections consists of
all intertwining maps g®g — g. Since g is irreducible and of real type, Schur’s
lemma shows that the dimension of the space of such maps is equal to the
multiplicity of g in g®g (see [2]). This multiplicity can also be computed after
complexifying all the representations — a step which makes the representation
theory more convenient. A case by case computation was used to determine the
actual multiplicities.

The space g® g splits into a direct sum S%g® /\2 g of symmetric and skew-
symmetric parts. Table I gives the decomposition of these spaces into irreducible
parts. In the table, representations are specified by maximal weights. These
weights depend on an ordering of simple roots and the ordering which is used is
that which appears in [4]. The results in the table were computed primarily by
means of Young-tableaux [3] and dimension counting [1, 9]. Even in the case
of the orthogonal groups, the tableau approach was reasonably simple because
the adjoint representation is not spinor. The fact that the trivial representation
occurs exactly once (and in S2?g) was needed in the exceptional cases where
dimension counting was used. Finally, Lemma 7.1 was particularly useful for
determining the decomposition of A’g. The space A’g had to include one
copy of g (because the natural map /\2 g — g 1s surjective) and the remaining
part, although possibly reducible, had to have a specific Casimir operator. These
operators could be computed from the techniques in [6] and the tables in [9].
The copy of g in /\2 g corresponds to the affine connections described after
Theorem 6.1. The table shows that the only other bi-invariant affine connections
occuron SU(n) for n>3. 0O
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TaBLE 1. Decompositions of S2g and /\2 g into irreducible G-modules for the
compact simple Lie groups. Representations specified by maximal weights

G 8 Sg As

A (241) (44)) & (0) (24y)

Az (41 +42) (241 +242) & (4 +42) © (0) (341) ® (342) & (41 +42)

Az (A + 43) (241 + 243) ® (242) ® (A1 + 43) ® (0) (241 +42) ® (A2 + 243) ® (A + A3)
An(n>3) (A +4n) (24 +220)® (M2 +An-1) © (A +4n) ®(0) (241 + An—1) ® (A2 + 24n) © (4) + An)

B, (24y) (44) ® (24)) & (1) @ (0) (A1 +242) © (24,)

B (42) (242) ® (243) ® (24)) & (0) (A1 +243) ® (42)

B, (42) (242) @ (244) ® (241) ® (0) (A1 +43) ® (42)
By (n > 4) (42) (242) ® (A4) ® (241) ® (0) (A1 +43) ® (42)
Cn(n>1) (24y) (44)) @ (242) ® (1) ® (0) (24 +4) @ (24))

Dy (A2 +43) (242 + 223) ® (24,) & (A2 + 13) & (0) (A1 +222) © (A + 243) ® (A2 + 43)

Dy (42) (247) & (24)) @ (243) @ (244) & (0) (A1 + 23+ 44) ® (12)

Dy (42) (242) @ (A4 + 45) ® (241) ® (0) (A1 +43) @ (42)
Dn (n>5) (42) (242) ® (A4) ® (24)) & (0) (41 +43) @ (42)

Eg (42) (242) @ (41 + A¢) ® (0) (44) ® (12)

E; (A1) (24)) @ (46) & (0) (3)® (41)

Eg (4s) (243) ® (A1) @ (0) (47) @ (4g)

Fy (4) (241) ® (244) ® (0) (R2) ® (A1)

G, (42) (24)) & (241) @ (0) (34)) ® (42)

9. BI-INVARIANT AFFINE CONNECTIONS ON COMPACT LIE GROUPS

The following theorem extends the results in Theorem 8.1 to arbitrary com-
pact Lie groups.

Theorem 9.1. Suppose G is a compact Lie group and suppose the Lie algebra of
G splitsas g=3®g,®--- gy, where the center 3 has dimension p and where
the g; are the simple ideals in g. Let r be the number of su(n)’s (n > 3) in
g. Then the dimension of the space of bi-invariant affine connections on G is
given by

dim(x6 Fr(G) =p* +3-p-qg+q+r.

Proof. Irreducible representations of g which are trivial on 3 can be expressed
as (0, p1, ..., pg). This represents the tensor product of the trivial represen-
tation of 3 with representations p; of g; for i=1, ..., g. In this notation

g=p-(0,0,...,0)®

1

0,0,...,8i,...,0).

q
=1

Computing g ® g gives
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g®g= pZ‘(O’O,.“,O)

q

@@ 2:p-(0,0,...,8,...,0)
l;l

ea@ (0,0,...,8:®8i,...,0)
i=1

o 2-00,0,....9,...,8,....0).
i<j

The first line of this expression results in p? independent intertwining maps
g®g — g. The second line gives 2:p-q more. The third line gives p+-g maps
to the center part of g and, by Theorem 8.1, ¢ + r more maps to the simple
parts of g. Finally, there are no such maps between the representations in the
fourth line and g. O

10. AFFINE CONNECTIONS ON SU(n) AND U(hn)

Theorem 9.1 shows that the Lie group U(n) has a six-dimensional family of
bi-invariant affine connections. These connections are described more precisely
in the following theorem.

Theorem 10.1. In terms of bilinear maps n: u(n) x u(n) — u(n), a basis for
the six-dimensional space of bi-invariant affine connections on U(n) (n > 3) is
given by

mx,y)=x-y-y-x, m(x,y)=i-(x-y+y-x),
m(x,y)=i-tr(x)-y, na(x,y)=i-tr(y)-x,
ns(x,y)=tr(x-y)-il, ne(x, y) =tr(x) - tr(y) - il.

Here, I is the n x n identity matrix.
Proof. First, it is straightforward to verify that the #; are all bilinear and that
they preserve u(n). In addition, they all satisfy the condition 7(Adg x, Adg y)
= Ad, n(x, y). Since Theorem 9.1 shows that the space of bi-invariant affine
connections is six-dimensional (p = g = r = 1), all that needs to be proven is
that the #n; are linearly independent. Suppose » a;n;(x,y) =0 Vx,y €g.
Let Ej; be the matrix with a 1 in the (j, k)-position and 0’s elsewhere.
Letting x =i-E,, —i-Ey» and y=1i-FE) —i-E3; gives a, = as = 0. Next,
by letting x = i-E,; and y = i-E>, it follows that a3 = a4 = ag = 0. Finally,
the values x = E\, — F,; and y=i-E|;+i-FEy imply a;=0. 0O

Note that U(2) only has a five-dimensional family of bi-invariant affine con-
nections. The linear dependence of the #; in the case n = 2 corresponds to
the following identity in gi(2, C):

(xey+y-x)=tr(x)ey+tr(y) - x +tr(x-y)- I —tr(x)-tr(y)-1.

By Theorem 8.1 the Lie group SU(n) has a two-dimensional family of bi-

invariant affine connections. As with U(n) it is simple to verify that these
connections are given by

ﬂ(x,y)=ﬂ'[x,y]+v-(i-(x-y+y-x)—%~tr(x°y)~i1>

mapping su(n) x su(n) — su(n) for arbitrary real numbers x4 and v.
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