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ROTATION SETS FOR HOMEOMORPHISMS AND HOMOLOGY

MARK POLLICOTT

Abstract. In this article we propose a definition of rotation sets for homeo-

morphisms of arbitrary compact manifolds. This approach is based on taking

the suspended flow and using ideas of Schwartzmann on homology and winding

cycles for flows. Our main application is to give a generalisation of a theorem

of Llibre and MacKay for tori to the context of surfaces of higher genus.

0. Introduction

For homeomorphisms of the unit circle the rotation number is an important

and much studied topological invariant. It is a single number which quantifies

the long term dynamical behaviour of all orbits. There have been attempts to

generalise this idea to other manifolds, most notably annuli and tori [4, 10]. In

these generalisations the rotation number is usually replaced by a more general

"rotation set" which is contained in the line or the plane, respectively. Both the

original definition (for the circle) and these generalisations (to annuli and tori)

are based on lifting the homeomorphism to the appropriate universal covering

space. (Intuitively, the rotation set corresponds to associating some form of

"average displacement" to lifts of points on the covering space.)

In this note we shall consider an alternative definition of rotation sets which

applies equally well to all homeomorphisms of compact manifolds, isotopic

to the identity (but which reduces to the usual definitions for the archtypal

examples of the circle, annulus and torus). We shall introduce the rotation set

to quantify the "drift in homology" of orbits, following Schwartzmann's work

on winding cycles [13].
Our viewpoint is motivated by the following simple example. Let f:Sx^Sx

be an orientation preserving homeomorphism of the circle and assume that it

has rotation number a (in the familiar sense). Let V = S1 x [0, l]/(x, 1) ~

(f(x), 0) be the mapping torus and notice that  V ~ S1 x Sx .  Let ft: V -*

V be the associated suspension flow. Identifying points x £ Sx with points

(x, 0) £ V the orbit {x, f(x), ... , f"(x)} for / can be viewed as part of

the orbit f,(x, 0) for time 0 < t < T, say (where T — n).  This curve in

V approximates the cycle (aT, T) in HX(V, E) = HX(SX, E) x E. After

scaling by T and removing the redundant second coordinate we can read off
a£Hx(Sx ,R) =E.
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In § 1 we shall present a formal definition of the rotation set for quite general

homeomorphisms and in §2 we shall give a more geometric interpretation and

relate it to the more familiar definitions.

In §§3 and 4 we shall present some results using this definition. As a gen-

eral rule it seems that different (and more interesting) results occur for closed

surfaces of higher genus rather than compact manifolds of higher dimension,

with the torus representing the simplest example for both classes. (For example,

of interest is a generalisation of a result of Llibre-MacKay [ 10] for tori to sur-

faces of higher genus (in §3). The proof uses Thurston's classification theorem

for surfaces, for which the homology definition seems particularly well suited.

However, the natural generalisation to manifolds of higher dimensions fails.)

In the final section, §5 we describe some natural problems and related examples.

I am greatly indebted to William Parry for suggesting the connection with

Schwartzmann's work and for several interesting discussions. I would also like

to thank John Franks and Luisa Magalhäes for their interesting comments, and

the referee for his useful advice.

1. Definitions

Let A7 be a compact connected manifold and let f: M -* M be a homeo-

morphism (isotopic and identity). In this section we shall present a fairly formal

definition of the rotation set which emphasizes the connection with Schwartz-

mann's work. In the next section we shall give an equivalent definition which is

somewhat more intuitive and closer to the definitions in the usual cases of the

circle, annulus and torus.

To give a framework in which to formulate our definition of rotation set we

want to describe the first real cohomology and first real homology groups of the

manifold. We can choose to define the cohomology of A7 as follows.
The integer cohomology of A7 is the additive abelian group Hx (M, Z) given

by isotopy classes of continuous maps /: A7 —> S1 from A7 into the unit circle

i.e. HX(M, Z) = C°(A7, S')/~ where /~ g denotes isotopy equivalence. We

can then define the real cohomology of A7 by 771 (A7, E) = 771 (A7, Z) ®z E.
(This corresponds to changing the coefficients from Z to E.)

These definitions can be shown to be equivalent to the usual definitions of the

integer and real first singular cohomology groups, for example, of the manifold

A7.
We define the mapping torus V for f: M —> M Xobe the compact connected

manifold V = M x [0, l]/(x, 1) ~ (fx, 0). Since the homeomorphism / is

isotopic to the identity it is easy to see that V is homeomorphic to A7 x S1 .

There is a trivial relationship between the integer and real cohomologies of

M and those of its mapping torus V .

Lemma 1. HX(V, Z) =■ 771(A7, Z)©Z and HX(V, E) =* T7'(A7, E)©E, where
the isomorphisms are as additive groups.

Proof. Since we have observed that the above definitions correspond to the

usual singular cohomologies it suffices to recall that since V is homeomor-

phic to A7 x S1 then it follows from the familiar theory that 771(K, Z) =■

771 (A7, Z)©77> (S1, Z) 2 771 (A7, Z)eZ and similarly 771 ( V, M) 2 771 ( A7, E)©

771(S1,E)S771(A7,E)©E.

We can denote the dual groups to the cohomology group HX(M, E)  by
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77i(A7, E) (i.e. T7'(A7, E)* = 77, (A7, E), where T7'(A7, E)* represents lin-
ear functionals from HX(M, E), viewed as a real vector space into the real

numbers). We call the additive group HX(M, E) the real homology of A7.

Similarly, the real homology HX(V, E) for V is the dual group to Hl(V,R).

Remark. We observed before that HX(M, E) corresponds to the first singular

cohomology group for the manifold A7 over the real numbers. The notation

we adopted with 77) (A7, E) = HX(M, E)* is consistent with that for the first
singular homology group, for example, for the manifold A7 because of the

Universal Coefficient Theorem.

Using the obvious linear extension we can observe the following lemma.

Lemma 2. T7'(A7, Z)* = HX(M, E) and HX(V, Z)* = HX(V, E), where the
identification is by the natural bijection.

Proof. Clearly T7'(A7, Z) c 77'(A7, E) forms an integer lattice and any linear

functional from HX(M, Z) into the reals defines a unique linear functional on

771(A7,E).

We can use the homeomorphism f: A7 —> A7 to define the suspended flow

f : V —* V by ft(x, u) = (x, u + t), with the appropriate identifications on V

(i.e. if n <u + t <n+ I then ft(x, u) = (f"(x), u + t-n)).

For any v £ V, and  F > 0 we can define a linear functional AVyT 6

C°(V,SXY by

where k: V —> S1 is a continuous function with argument arg[/c] (i.e. k =

£<arg[fc]) where for the purposes of the above integral we choose the argument

so as to be continuous along orbits. These linear functionals are describe by the

following result of Schwartzmann.

Lemma 3. (i) For each v £ V the family of linear functionals {Av,T}Teu+ Ç

C°(V, S1)* is equicontinuous in the weak* topology.

(ii) For each v £ V the limit points % ç C°(V, Sx)* of this family are

constant on ^-equivalence classes (cf. [13]).

In particular, part (ii) of Lemma 3 tells us that each Ae^| gives a well-

defined element in HX(V, Z)*, and so, by using Lemma 2, an element in

HX(V , E). From Lemma 1 we know that HX(V, E) £ T7'(A7, E)©E or at the

level of the dual spaces we can write 77, ( V, E) = 77] ( A7, E) © E. Because of

this decomposition we can write these linear functionals in terms of their com-

ponents as A„ = (Ai1', VJ2)) £ % where AIP £ HX(M,R), A{2) £ E (since
E* = E).

Because of the explicit construction of the functionals {AT.V} and % we

can immediately see that A„ e 1 ef, i.e. the second component of these

linear functionals is independent of all choices. Furthermore, if we write v —

(x, u) then A[2) is independent of the value of u and depends only on the

first coordinate x £ M (in fact, it depends only on the orbit of x).

Henceforth, we need only consider the components A\2) £ Hx (M, E) of the

linear functionals A„ £ % .  We can denote these projections by 9^ , where
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v = (x, u), say (in view of the above comments) and clearly there is a natural

bijection S?~x —> ^ with Ax -> A„ = (Ax, 1 ).

Definitions. We define the rotation set of x £ M (relative to f) to be the

subset of the real homology px(f) Q Hi(M, E) where px(f) = {AX|AX 6
&x). We define the rotation set of f to be the subset of the real homology

p(f) ç 77,(A7, E) such that p(f) = (jx&M px(f).

Remark. In fact the rotation set should be interpreted as being on the Albanese

(or Jacobian) torus Hi(M, R)/HX(M, Z). Henceforth we shall take this as

understood and not refer to this point again.

We shall adopt the convention that if px(f) consists of a single element then

we call this the rotation vector (of /: A7 —> A7).

The following easy observation will be useful later.

Lemma 4. If f"x = x  is a periodic point then  px(f)   is a single point in

77,(A7,E).

Proof. We can observe from the definitions that the families {AVyT}reu+ are

Cauchy in F and thus convergent to a single point in 77, ( M, E).

Example 1.1. Let A7 be a disc with two holes corresponding to two smaller

disjoint discs removed from its interior (i.e. a "pair of pants" with three dis-

tinct boundary components). Since M is contractible to a figure eight the

E-homology is given by HX(M, E) = E2, with the obvious choice of genera-

tors. Given Ax £ SFX ç Hx (M, E) the first coordinate measures the "average

movement" of the orbit of x around the first hole and the second coordinate

the "average movement" of the orbit of x around the second hole.

The three boundary components are homeomorphic to circles invariant under

the homeomorphism / and thus we can associate to the two inner boundary

components rotation numbers px, p2 and to the outer boundary component

the rotation number p3. For any x £ dM we have rotation vectors (px, 0),

(0, p2) or (px , p2) depending on whether x lies on one of the inner two

boundary components or the outer component.

2. Geometric interpretation

In the previous section we gave a formal definition of the rotation set in

terms of the homology of the manifold A7. In this section we want to develop

a better 'geometric' insight into the meaning of the rotation set and compare

this definition with existing definitions in certain special cases.

Assume that A £ px(f) ç p(f) ç HX(M, E) is some element of the rotation

set. By construction it corresponds to the second component of an element

Au = (AÍ,1', A,(2)) £ % , v — (x, u), where .% are the limit points of the

family of linear functionals A„, T £ C°( V, S1 )*, F > 0, defined by

Av>T(k) = jJ   jtaxg[k](ftv)dt.

These linear functionals correspond to elements in the real homology of the

mapping torus V . They can be approximated as follows (cf. [11]). Choose a

convergent subsequence A„_ j-¡ —* Av , F, —> +°° and for each F, consider the

orbit segment f[o,r,](v) contained in V. We can join up the two ends v and
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fr¡(v) by an arbitrary curve of bounded length (the bound being determined

by the diameter of the manifold) and denote the resulting closed curve in V

by y¡. The closed curve y¿ represents a cycle [y¡] in either the integer or real

homology of V. Finally, we scale this cycle by T, to get an element [y,]/F,

in the real homology 77.(F, E) of V. The element A 6 H(V, E) is a limit
point of the elements [y,]/F, •

This gives a slightly more intuitive interpretation of the homological defini-

tion of rotation vector.

The homological definition of the rotation set is (essentially) consistant with

the standard definition of rotation number for homeomorphisms of the circle

using a lift of the homeomorphism to the real line. Furthermore, there also exist

definitions of rotation sets for homeomorphisms of annuli and tori, again using

lifts of the homeomorphism, for which the above definition of a rotation set

reduces to the existing definitions in these special cases. [We should qualify this

statement in two ways: firstly, we should recall these definitions give a rotation

set modulo an appropriate integer lattice; and secondly, there are more than

one alternative definition of the rotation set for tori in common use.]

For definiteness we shall concentrate on the special case of a homeomorphism

/: T —» T on the two-dimensional torus. The torus T has the two-dimensional

plane E2 as its universal covering space and we can choose a lift F : E2 —> E2

for the homeomorphism /. This lift will be defined up to translations by Z2.

Given (x, y) £ T we choose a lift (x, y) £ E2 and consider the sequence

(F"(x,y)-(x,y)\
«>1    c

We define the geometric rotation set of x £ M (relative to /) to be the

subset of the plane pxm(f) ç E2 which are limit points of this sequence.

We define the geometric rotation set of f to be the subset of the plane p(f) ç

E2 suchthat pgm(f) = (jx&MP8xm(f)-

Remark. As in our previous definition of the rotation set the geometric rotation

set should be understood as being defined up to an integer lattice (in this case
Z2).

Proposition 1. For homeomorphisms of the torus we have pgm(f) — p(f).

Proof. For the torus T we know that the real homology corresponds to 77, (T, E)

= E2 and the real homology of its mapping torus V is 77i ( V, E) = E3. By

our previous comments the rotation set can be interpreted as limit points in

the homology of elements constructed out of trajectories of the flow / in V.

In particular, px(f), x £ M, is the projection onto HX(M, E) of the limit

points of [y¡]/Ti £ 77](F, E), where y¡ is some closed curve approximating a

trajectory as described above.

We can lift the flow /on F to a flow F on the covering space V (ob-

serve that V is homeomorphic to E2 x E). Let (x, y ; 0) £ V be a lift of

(x, y ; 0) £ V then it is easy to see that the displacements F"(x, y) - (x, y)

are approximated by the element (a¡, b¡ ; n¡) £ Z3 (in the covering group for V)

which relates the endpoints of a lift y¡ of the curve y¡. Furthermore, because

we are dealing with a torus we notice that [y¡] = (a¡, b¡ ; n¡) £ H(V, E) = E3.

Observe that by construction the first coordinate (in E2) of F„(x, y) corre-

sponds to Fn(x, y), for some appropriate choice of lift F .
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~>-

The projection (a,, b,) onto E2 of the translation (a¡, b¡ ; n¡) associated

to the lift y i approximates the first coordinate of displacement F"(x, y) to

(x, y). It is now clear that the projection onto 77] (A7, E) of the limit points

of [y¡]/T, (or equivalently (a,, b,)/Tj £ E2) are coincident with the limit points

of the sequence

F"(x,y)-(x,y)
n>\(<z

This completes the proof. Similarly, the homology definition of rotation sets can

be shown to be consistant with the geometric definitions for the circle, annulus

and higher dimensional tori.

The following example nicely illustrates these different approaches.

Example 2.1. Let M = S1 and /: S1 - S1 be given by f(z) = z • e2nia,

a £ E, i.e. a rotation through an angle 2na . The mapping torus V is in fact

the usual torus V = E2/Z2. The linear functionals A„ £ HX(V, E) reduce to

the single functional (a, I) and therefore Ax = a, for every point x on the

circle. The number a is the rotation number in the usual sense. (See Figure 1.)

Example 2.2. Let f: M —> M be a homeomorphism of a compact surface

of genus g > 2. The surface A7 has the open unit disc D as its covering

space and the fundamental group 7Ti(A7) is isomorphic to the covering group.

Assume that A £ p(f) is nonzero then it is approximated by the projection onto

77[ (A7, E) of appropriately scaled orbit segments for the flow f: V -* V . Since

these orbits segments are growing in homology the approximating curves y¡ are

growing in word length. The displacement of the end points of the projection

onto D of the lift y, of this curve corresponds to an element of 7Ti(A7) i.e. an

element of the covering group.
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However, in contrast to the case of the torus of genus one (which has abelian

fundamental group) any geometric interpretation of the rotation set becomes

very complicated precisely because we need to abelianise the fundamental group

to get the homology.

All further references to rotation set will be relative to the above homology-

based definition (with the comments in this section borne in mind).

3. Invariant measures

In § 1 we defined the rotation set via linear functionals. The Riesz representa-

tion theorem suggests that measure theory should play a useful role in applying

this definition. In this section we shall develop this viewpoint.

Given v £ V and F > 0 we define a probability measure pr,v on V by

fkdpTtV = ^f   k(fv)dt,        k£C°(V,R).

Since the space of probability measures is weak* compact we can denote the

limit points for a given v £ V, with v = (x, u) by J?xj (clearly the limit

points depend only on x , and in fact only on the /-orbit of x). Such measures

are easily seen to be /-invariant.

The relationship between the rotation set px(f) and the family Jixj is

explained by the following result of Schwartzmann.

Proposition2. px(f) = {¿, ¡(g'/g)(w)dp(w)\p £J?xJ}, where g£C°(V,Sx)

and g' denotes differentiation in the flow direction (since g can always be re-

placed by an element in the same equivalence class which is differentiable in this

way).

This is essentially a reinterpretation of results from [13].

Let J?f denote the union of the measures ¿£x y over all x 6 A7 i.e. Jff =

UxeM^x,f-
Corresponding to Lemma 1 we have the following well-known result on mea-

sures.

Lemma 5. There is a bijection between f-invariant measures p on V and f-

invariant measures v on M, by p = v x I, where I denotes one-dimensional

Lebesgue measure.

Thus we can also interpret ^f/-, JKX ¡ as families of /-invariant measures

on A7 (by considering their projections on to the first coordinate using Lemma

5).
In view of Proposition 2 we can define a map SC-.^f^ p(f) with ^(Jf-^j)

= px(f) ■ We can now use well-known features of the space of invariant mea-

sures to prove less obvious results about the rotation set.

For any set A in an affine vector space let cö(^) = {Xx + ( 1 -X)y \x, y £ A}

denote its closed convex hull i.e. the smallest closed convex set containing A .

For any convex set C in an affine space let Ext(C) = {z £ C | 3x, y £ C,

0<X<l,z = Xx + (l- X)y => X = 0, 1} be the extremal points of C.

Theorem 1. p(f) contains the extremal points of its own closed convex hull i.e.

p(f)DExX[œ(p(f))]-
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Proof. Let p be an /-invariant ergodic probability measure on A7 and let

p x I be the corresponding /-invariant ergodic probability measure on V. By

the Birkhoff ergodic theorem applied to the flow / it follows that there exists

at least one point v £ V (in fact, almost all points) such that pv , T -* p, as

T —> +00 . Therefore we can conclude that Jff contains all ergodic measures

for /: V —* V. By a well-known application of Choquet's theorem the ergodic

measures are precisely Ext(Jy-), the extremal measures in the set of all /-

invariant probability measures (where J/ is a closed convex set), thus we can

write: (i) Ext(Jy-) c Jíf ; and (ii) cö(JTf) = J^.
Since J? : Jtf -» p(f) is linear it has a natural extension / : J^- —► co(p(f))

to the convex hulls of these sets (using (ii)). This extension is surjective since

the map is linear and ^(Jff) — p(f) (using the comments after Lemma 5).

We claim that Ext(^(J/)) c ^(Ext(J^)). This is an easy exercise general

for linear maps and convex sets. From (i) above we know that Ext(Jy-) c J!;

and therefore £?(ExX(Jy)) c S?(Jff) = p(f), and since 2': Jf -* co(p(f)) is
surjective we have SCC^f) = co(p(f)) putting together these three observations

completes the proof.

Although we do not know if p(f) must always be closed, we have the fol-

lowing:

Corollary 1.1.  p(f) cannot be an open set.

Corollary 1.2. Any extremal point o/Ae p(f) is the 5f image of some ergodic

measure p. In particular, for almost all points x £ M (with respect to p) we

have px(f) = A.

Remarks, (i) Clearly, p(f) = (jxeM px(f) contains the smaller set pper(f)

— V}px=x Px(f) ■ F01" generic C1 diffeomorphisms we can see the following

stronger version of the above result is true:

closure[^r(/)] D ExX[co(p(f))].

To see this we recall Mañé's ergodic closing lemma which states that "for Cx

generic diffeomorphisms /: A7 —» A7 those invariant probability measures sup-

ported on periodic /-orbits are dense in the ergodic invariant probability mea-

sures for /" [11]. The above claim then follows in the same way as the previous

theorem.
(ii) It is very easy to construct examples of homeomorphisms for which the

rotation set is not convex. For example, consider the time-one map of a flow on

the torus with parallel attracting and repelling closed orbits, which have different

rotation numbers. The rotation set of the homeomorphism will consist of two

distinct points in E2.

(iii) If we have a C2 surface diffeomorphism /: A7 —> A7 and A is an

extremal point corresponding to an ergodic measure of strictly positive entropy

then we can find periodic points x, with rotation vectors A, —» A. (This is a

consequence of Katok's closing lemma for nonuniformly hyperbolic diffeomor-

phisms [9].)
We can develop this theme further and give other examples of results for

p(f) which follow from results for /-invariant measures (or equivalently, /-

invariant measures, by Lemma 5) transferred by the linear map J? .
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We recall that the nonwandering set for a homeomorphism is defined to

be the set Q. = {x £ A7|V neighbourhoods U of x3n¡ -* +co such that

fn,U n U ^ 0} . This is a compact /-invariant subset of A7. We recall that

any /-invariant measure must be supported on the nonwandering set fi and

so in particular any measure p £ JKxj must be supported on Q. In view of

Proposition 2 we see that in the definition of p(f) it suffices to consider the

union over x e Í2, rather than the whole manifold A7. We summarise this as

follows.

Proposition 3.  p(f) = \Jx€il px(f).

Let J*f denote the family of /-invariant measures in the space 90 of all

probability measures on A7 (with the weak* topology). We recall that the map

/ —> Jy- c & is upper semicontinuous as a function of / £ C°(A7, A7) (cf.

[12]) i.e. V/ £ C°(M, A7), e > 0 3 neighbourhood U c C°(A7, A7) of /
such that Vg£U, J*gC B^f, e).

Proposition 4.  / —► co(p(f)) is upper semicontinuous (i.e. V/ £ C°(M, M),

e > 0  3 neighbourhood U of f s.t. Vg £U, cô(p(g)) ç B(c5(p(f)), e)).

Proof. By Theorem 1 we know that p(f) = 5f(J(f).   Furthermore, by the

above comments we see that the composition /-» J;-» co(p(f)) is also upper

semicontinuous.

4. Periodic points and topological entropy

We shall concentrate in this section on the case where A7 is a compact ori-

ented surface of genus g > 1. For such surfaces we know that 77] (A7, E) = R2g

(from singular homology theory).

We shall denote the topological entropy of the homeomorphism /: A7 —► A7

by h(f) > 0. For tori (i.e. the case g = 1) there is a result of MacKay-Llibre

[10] (cf. also Franks [5]) which gives sufficient conditions for the homeomor-
phism /: A7 —> A7 to have nonzero topological entropy h(f) > 0 in terms of

the rotation set and a finite number of periodic orbits.

In this section we shall present a generalisation of the MacKay-Llibre result

to surfaces of higher genus using the homological definition of the rotation set.

Our approach will be similar to that of MacKay-Llibre in that we shall depend

heavily on the Thurston classification result for surfaces. (However, the further

results of Franks for tori in [5] appear to use techniques which do not appear

to have obvious generalisations to higher genus.)

The foundation of the proof is the Thurston Classification Theorem for iso-

topy classes of homeomorphisms of compact surfaces. We shall briefly sum-

marize the results we need and refer the reader to [15, 3, and 2] for more

information (and [8] for a related methodology).

Assume that h: S -> S is a homeomorphism of a compact manifold (possibly

with boundary). We call h periodic if there exists n > 0 such that h" is the

identity on S. We call h pseudo-Anosov if there exist certain /?-invariant

measurable foliations with a uniformly expanding transverse measure (cf. [15]

for details). These two types of homeomorphism are distinct, and in particular

periodic homeomorphisms have zero topological entropy and pseudo-Anosov



890 MARK POLLICOTT

homeomorphisms have nonzero topological entropy. (Furthermore, the pseudo-

Anosov homeomorphism minimizes the topological entropy within its isotopy

class.)

Proposition 6 (Thurston Classification Theorem). Every homeomorphism h: S

—► S is isotopic to a homeomorphism k: S —> S such that:

(i) k leaves invariant a finite family of disjoint simple closed curves Cx, ... ,

Cn on S ;
(ii) No curve C, is homotopic to a boundary curve of S ;

(iii) We can decompose S = \JdJ=í Sj, where Si,..., Sj are closed surfaces

with disjoint interiors by cutting the surface S along the curves {C., ... , Cm} .

(iv) For each 1 < j < d, the homeomorphism k\$■'■ Sj —> Sj is either periodic

or pseudo-Anosov.

We shall formulate our main result as follows:

Theorem 2. Let f: M —► A7 be a homeomorphism of a compact closed surface

of genus g > 1. Assume that there exist (2g+ l)-periodic points Xi, ... , x2g+i

whose rotation vectors pi, ... , p2g+i £ Hi(M, E) = R2g do not lie on a hyper-

plane then h(f) > 0 and p(f) is uncountable.

Proof. The strategy of the proof is to show that (some suitable modification of)

the homeomorphism is isotopic to a homeomorphism with a pseudo-Anosov

component. The two results above (and many others) are natural corollaries of

this fact.
By replacing / by a suitable power we may assume that {xi, ... , x2g+i} are

fixed points and / is orientation preserving, and prove the result under these

additional hypotheses. Let V be the mapping torus of /: A7 —> A7.

We can remove the fixed points {xi, ... , x2g+x} ç M and then "blow-up"

the missing points to (small) boundary circles Bx, ... , B2g+X . We shall denote
the resulting surface (with these 2g + 1 boundary components) by S.

Furthermore, we can replace /: A7 —> A7 by a homeomorphism h: S —> S

with the same topological entropy, and dynamical features. (This is a standard

construction, described in [1], for example.)

We can now apply the Thurston classification result to find a homeomorphism

k: S —> S homotopic to h: S -» S which has the decomposition described in

Proposition 6.

We begin by claiming that our hypothesis on fixed points implies that none of

the decomposing curves C, can be contractible (viewed as simple closed curves

on the original surface A7). If any curve C, were contractible then it would

correspond to the boundary of a contractible "disc" D ç M and D x [0, 1 ] c V

would be a tubular neighbourhood of the /-orbits of any of the fixed points

contained in D. However, it is clear from the definition of a rotation set that

if D contained two or more fixed points then their /-orbits are homotopic in

V . This implies that they must have the same rotation vector contradicting the

hypothesis of the theorem. Alternatively, if D contains a single fixed point it

contradicts Proposition 6(ii). This proves our claim.

We next claim that the curves C, can only be separating curves for the orig-

inal surface A7 (i.e. curves which divide it into two disjoint pieces). If we

assume that a curve C, is not separating, and we already know it is not con-

tractible in M, then it must be homeomorphic to the "meridian" curve of a
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handle of A7 [14]. In particular, we can choose the generators for the homology

by taking a standard homology basis for A7 and pulling it back under the above

homeomorphism. Let C* denote the generator which intersects C,. These ob-

servations show that C, x [0, 1] c V is an /-invariant submanifold which

constrains the rotation vectors of the fixed points to lie on the hyperplane "or-

thogonal" to the generator C,. This contradicts the hypotheses of the theorem

and so proves the claim. We can also conclude that d < g - 1.

We now know that each C,, i = I, ... , d , must be a separating curve. We

can thus divide the surface up into (d+1 ) components. Furthermore, we can fill

in the new boundary curves with discs to arrive at (d + 1) closed surfaces with

genera gx, ... , gd+i, where (d + 1 ) < gx H-\-gd+i = S • Assume that if the

/th such surface has r, of the original fixed points then rx-\-h rd+, = 2g + 1.

It follows that one of these surfaces must satisfy the hypotheses of the theorem

and have no separating curves C,. However, if this component corresponded

to a periodic homeomorphism then the action on the homology corresponds to

translation by a fixed vector in the integer lattice. In particular the periodic

points could not have different rotation vectors. This contradiction proves that

k has a pseudo-Anosov component.

The implication that a pseudo-Anosov component implies h(f) > 0 is now

immediate from the Thurston theory (cf. [10, 15, 8], for example).

Remark. The two conclusions of the theorem are those that we considered the

most interesting. However, the existence of a pseudo-Anosov component easily

gives a variety of related results. For example:

(i) limsuvn^+oo±{x£M\f"x = x}>h(k)>0 (cf. [15]).
This follows from Thurston's observation that the growth rate of periodic points

is minimized within any isotopy class by the pseudo-Anosov homeomorphism

(provided one exists) for which it equals the topological entropy. On those

components for which no pseudo-Anosov homeomorphism exists in the isotopy

class then the growth rate is subexponential, and so makes no contribution.

(ii) Let Xi, ... , xr be the periodic points lying in the component correspond-

ing to the pseudo-Anosov homeomorphisms then: (a) cü{xi , ... , xr} ç p(f) ;

and for any closed set F ç cö~{xi, ... , xr} there exists x g A7 with px(f) = F

(cf. [10]). The proof rests on the fact that pseudo-Anosov homeomorphisms can

be modelled using Markov partitions and symbolic dynamics, for which there

are familiar tracing properties.

(iii) Let ô be a closed curve on A7 which encloses at least two fixed points

from {xi, ... , xr} then ¿log|/"r5| —> h(k) > 0 where \ô\ denotes the word

length of S as a curve in nx(S) (cf. [15]). This is a familiar property for

pseudo-Anosov diffeomorphisms.

Example 4.1 (attributed to Michel Herman; cf. [10]). Let M be the 3-torus

and choose three disjoint cylinders parallel to each of the axes. We define

/: A7 —► A7 to be the identity exterior to the cylinders, translation by some

rational number in the appropriate direction at the cylinder centers, and some

continuous interpolation from the centre of the cylinders to their boundaries. It

is easy to see that h(f) - 0. However, the centers of the cylinders give rotation

vectors (for periodic points) on the three axes of 77] (A7, E) = E3 (with respect

to the obvious basis for the homology). Furthermore, any point exterior to the

cylinders is fixed with zero rotation vector.
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fixed point

to be "blown-up"

Figure 2

Example 4.2. Take two copies of the 2-torus and construct a homeomorphism

with an invariant subset A c T conjugate to a full shift on two symbols (each

state corresponding to each of the two natural generators for the homology).

Take corresponding fixed point for each copy, and blow them up to a circle (in

much the same way as in the proof of the theorem) and identify. This defines

a homeomorphism on a surface of genus g — 2, denoted /: A7 —► A7. (See

Figure 2.)

We can define a two dimensional simplex A ç E2 byA = {(x,y)|x,.y>0;

x + y < 1} . The homology of A7 is again 77i (A7, E) = E4 and relative to the

standard homology basis A corresponds to the sets Ax(0, 0)U(0, 0)xAC p(f).

Remark. In Example 2.1 we can easily construct a flow for which the time-one

map /: A7 —> A7 restricted to the boundary components has (rational) rotation

numbers px, p2 (for the inner circles) and ps (for the outer circle). Each

boundary contains periodic points with these rotation numbers from the usual

theory of diffeomorphisms of circles.

Recall that 7F¡ (A7, E) = E2, and the rotation vectors corresponding to

boundary periodic points are (pi, 0), (0, p2), (p$, pi) £ E2 . If we arrange

that pi / (pi + p2)¡2 then these points are not collinear. However, h(f) = 0

since it is derived from a flow. (This shows the importance of assuming A7 is

a closed surface in the theorem.)

5. Examples and problems

In this section we shall give examples of rotation sets for various homeomor-

phisms, and pose what we consider to be natural questions. (As a general rule it

is easier to construct counterexamples for manifolds of higher dimension than

surfaces of higher genus.) Many more examples for the special cases of annuli

and tori may be found in [4-7, 10, 12].

Example 5.1. Let A7 be a surface of genus 2 and let /: A7 —► M be the homeo-

morphism (isotopic to the identity) giving rise to a modified "Smale horse-shoe"

with hyperbolic behaviour on a rectangle F as illustrated in Figure 3. The dy-

namics on A = fln^-oo f"R corresponds to a subshift of finite type.



ROTATION SETS FOR HOMEOMORPHISMS AND HOMOLOGY 893

Figure 3

The homology of A7 takes the form 77! (A7, E) = E4 , and (relative to the
standard homology bases for M) the union of the rotation sets of points in the

set A is a simplex A ç F/¡ ( A7, E) of the form:

A = {(x, y, z,w)\x, y, z, w > 0; x + y + z + w < 1}.

We conclude with two problems which carry over from the case where A7 is

an annulus or a torus:

Problem 1. Is the set p(f) C HX(M, E) closed?
(For the special case of the annulus Mike Handel appears to have an affirma-

tive answer, apparently using techniques connected with Thurston's theorem.)

Problem 2. If int p(f) ^ 0 and A7 is a surface then are the rotation vectors

associated to periodic points dense to int p(f) ?

(For tori John Franks has shown that this is indeed the case [5].)

Example 5.3. We give a counterexample to this problem in higher dimensions.

Consider the standard Smale horse-shoe h : S2 -* S2 and let A denote the

hyperbolic invariant set (corresponding to the full shift on two symbols) and

let p, q be the other two fixed points for /. We can write A = Ao U Ai

corresponding to the two symbols in the shift space. We can define a home-

omorphism f : M —> M on A7 = S2xS' such that / is a skew product

with

(i) /i = h ;
(ii) 72|a<,u{p,í}(z) = z-e2n,a and f2\ A|(z) = z-e4n,a , where a is irrational.

By construction / : A7 —> A7 has no periodic points. Clearly, the first homology

group satisfies 7F¡ (A7, E) = E. Furthermore, it is easy to see that with the

obvious generators the rotation set consists of the interval [a, 2a] c E.

Remark. The above example can be viewed as a time-one map for an approxi-

mate suspended flow over the Smale horseshoe map. In particular it shows that

in general time-one flows need not satisfy the property that inX[p(f)] ^ 0 .

Problem 3. Find sufficient conditions for px(f) to be a single vector for all

x £ M.
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