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ISOPARAMETRIC SUBMANIFOLDS
OF HYPERBOLIC SPACES

BINGLE WU

Abstract. In this paper we prove a decomposition theorem for isoparametric

submanifolds of hyperbolic spaces. And as a consequence we obtain all polar

actions on hyperbolic spaces. We also prove that any isoparametric submani-

fold of infinite dimensional hyperbolic space is either totally geodesic, or finite

dimensional.

0. Introduction

In the late 1930s Élie Cartan defined the notion of isoparametric hypersurface

of a space form, and he proved that an isoparametric hypersurface of Euclidean

space is a totally umbilic hypersurface; an isoparametric hypersurface of a hy-

perbolic space is either a totally umbilic hypersurface, or the standard product

Sk x H"~k in Hn+X . But for the sphere case, isoparametric hypersurfaces turn

out to be very complicated [Cal-4]. In the last ten years many people carried

forward this research, see [Ab, FKM, Mü, OT], but the complete classification

is still not known. Recently, the general theory of higher codimensional isopara-

metric submanifolds of Euclidean space and Hubert space has been studied in

[Ha, CW1-3, Te 1-4, HPT, PT2].
Let Rn+k • ' be the Lorentz space with the nondegenerate symmetric bilinear

form (x, y) = ££f xm - xn+k+xyn+k+x, and H"+k = {x £ Rn+k< » \ (x, x) =

-1, xn+k+x > 0} , the standard isometric embedding of hyperbolic space with

sectional curvature -1 into Rn+k • ' . It is well known that any totally umbilic

complete submanifold of Hn+k is L(V, u) = Hn+k7\(V + u), where V is a lin-

ear subspace of Rn+k • ' and u £ Rn+k • '. In fact, if V c Rn+k • ' is a Euclidean

subspace, i.e., ( , )\V is positive definite, then L(V, u) is a sphere with sec-

tional curvature -l/((u, u) + 1), where u _L V ; if V c Rn+k'1 is a Lorentz

subspace, i.e., ( , )\V is a nondegenerate symmetric bilinear form with index 1,

then L(V, u) is a hyperbolic space with sectional curvature -1/((w,m) + 1),

where u 1 V ; if V c R"+k'1 is degenerate, i.e., ( , )\V is a degenerate

symmetric bilinear form, then L(V, u) is flat and isometric to a Euclidean

space. We will call L( V, u) spherical if V c R"+k • ' is a Euclidean subspace,

hyperbolic if V c Rn+k • ' is a Lorentz subspace, and flat if V c Rn+k • ' is

degenerate.
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610 BINGLE WU

A submanifold M" of 77"+^ is called isoparametric if it has a globally flat

normal bundle and the principal curvatures along any parallel normal vector

field are constant. In this paper we study isoparametric submanifolds of hy-

perbolic space and show that any isoparametric submanifold M" of Hn+k is

either an isoparametric submanifold of a totally umbilic hypersurface of Hn+k ,

or a standard product of an isoparametric submanifold of a spherical umbilic

submanifold and a hyperbolic umbilic submanifold in Hn+k . As a consequence

we are able to classify all polar actions of connected, closed Lie subgroups of

0(n, 1) on 77".

Let F be a separable Hubert space. Let V = R @ V with the inner product

((s, x), (t, y)) = -st + (x, y)   where s, t £ R, x, y £ V.

Then F is a Lorentz Hubert space. Let 77(F) = {(s, x) £ V \ -s2 + (x, x) =

-1, 5 > 0}. It is well known that 77(F) is a Riemannian Hubert hyperbolic

space with constant sectional curvature -1 . In this paper we prove that if M

is a submanifold of a Hubert hyperbolic space 77(F) with finite codimension,

and M satisfies: (1) u(M), the normal bundle of M in 77(F), is globally
flat, (2) for any parallel normal vector field v , the shape operator Av(X) is

orthogonally equivalent to the shape operator Av(y) for all x, y £ M, (3)

the shape operator Av is a compact operator for any v g v(M)x , then M

is either of finite dimension, or a totally geodesic submanifold of 77(F), i.e.,

M = 77(F) n Vx, where Vx is a Lorentz Hubert subspace of V.

This paper is organized as follows: in §1 we prove the basic properties of

isoparametric submanifolds of hyperbolic space, and the decomposition theo-

rem is given in §2. In §3 we obtain all polar actions of connected closed Lie

subgroups of 0(n, I) on Hn , and in §4, we study the infinite dimensional case.

The author would like to thank Professor R. S. Palais and Professor C. L.

Terng for their encouragement and many valuable suggestions.

1. Basic properties

Suppose a submanifold M" of 77"+^ is isoparametric, i.e., the normal bun-

dle of M in H"+k is globally flat and the principal curvatures along any par-

allel normal vector field are constant. Let v(M) be the normal bundle of M

in R"+k'1 . Then u(M) is globally flat, hence {Av \ v £ u(M)q} is a fam-

ily of commuting self adjoint operators on TMq for any q £ M. So, there

exists a common eigendecomposition TMq = 0f=1 E¡(q), at q. Since the

principal curvatures along any parallel normal vector field are constant, the E¡,

i = 1, 2, ... , p are smooth distributions and there exist vx,v2, ... ,vp , par-

allel normal vector fields, such that for any normal vector v £ v(M)q , we have

AV\E¡ = (v,Vi)idE,.

The E¡ are called the curvature distributions of M, and the v,■ are called the

curvature normals of TV7 in Rn+k • ' .

1.1.    We will make the following standing assumptions:

(1) M has p curvature distributions,  Ex, E2, ... , Ep, and rank(F,) =

m¡.



ISOPARAMETRIC SUBMANIFOLDS 611

(2) Let {ej \ I < j < n} be a local orthonormal tangent frame for M,

such that E¡ is spanned by {ej | p¡-X < j < p¡} , where p¡ = Y^,'s=\ ms,

po = 0.
(3) Let {e\,|« + l<a<rt + A:-l-l} be a local orthonormal parallel normal

frame for M in Rn+k>x, where en+k+x(x) = x for x £ M.

Remark, (a) Since M" c Hn+k , we have Aq = -I on TqM. Hence there is a

smooth vector field u¡ on M, such that v¡(q) = u¡(q) + q .

(b) Since the orthonormal frame field {ea} for TV7 is parallel, we have

coaß = 0   for all a, ß, and

coaj = ~{Vi, ea)Wj   where p¡-X <j< p¡.

1.2 Definition. A submanifold M of Hn+k is called full if M is not included
in any totally umbilic hypersurface of Hn+k .

1.3 Proposition. Let L(V, u) c 77"+* be a totally umbilic hypersurface and

suppose M c L(V, u) c Hn+k . Then M is isoparametric in L(V, u) iff M

is isoparametric in H"+k .

Proof. If M is isoparametric in Hn+k , then it is obvious that M is isopara-

metric in L(V, u).

Suppose M is isoparametric in L(V, u). If V = {x £ Rn+k'1 | (x, v) = 0} ,

then L(V, u) = {x £ Hn+k \ (x, v) = a}, where a = (u, v). Suppose en+k

is a normal vector field of L(V, u) in Hn+k , and X: Hn+k -» Rn+k'x is the

standard isometric embedding. Then v = -aX + ben+k , so 0 = -adX +

bden+k . For any tangent vector field Z on M, we have, bden+k(Z) = aZ .

Since b / 0, en+k is a parallel normal vector field and Ain+k has constant

eigenvalues on M. Therefore the normal bundle of M in Hn+k is flat and the

principal curvatures along any parallel normal vector field are constant, i.e., M

is isoparametric in Hn+k .   D

1.4 Proposition.  M is full in Hn+k iff vx, v2, ... ,vp span v(M).

Proof. If M is not full in Hn+k then M is included in a totally umbilic
hypersurface of Hn+k , i.e., there exists v £ R"+k'1 , v ^ 0, such that (v, x) is

constant on M. Hence v is a constant normal field on M, we have Av = 0.

On the other hand we know AV\E¡ = (v, v¡)idE,■. Therefore (v, v,) = 0,

i = 1,2, ... , p . Since v ^ 0, vx, v2, ... , vp do not span v(M).

If vx, v2, ... , vp do not span u(M), then there exists a normal field v on

M, such that (v , v¡) = 0, i = 1, 2, ... , p, and we have Av \E¡ = (v ,'vi)idE¡ =

0, i = 1, 2, ... , p , Av = 0; i.e., v is constant on M. Then

n

d(v,x) = (v,dx) = Y,cOi(v,e¡) = 0,
í=i

hence (v , x) = c is constant, i.e., M is included in a totally umbilic hypersur-

face of Hn+k.   D

1.5 Lemma. If <y,; = Y,k 7kjœk then

yu(v>' - vj') = yJik(v>' ~vk') = Vkj(vk> - vj>)

where p¡'-X < i < p¡<, Pj'-X < j < Pj>, Pk'-\ < k < pk,, and j / k .



612 BINGLE WU

Proof. Suppose p¡>-X < i < p¡> . Then we have coai = -(v? , ea)co¡ for all a,

and because dwal = coaJ A ojj¡, we have

œaj A tOji = -(«,-., ea) dto¡ = -(Vi>, ea)(ou A Wj,

cúij A {vj>, ea)coj = (vp , ea)cOij A (Oj,

Y^ yu(vr , ea)ojk A coj = Y^ yu(vi- ,e*)cokA (Oj.
k k

Comparing coefficients of cok A to} for j ^ k, if cokl_x < k < cokl we have

7ij(vJ' ' e«) - yJik(vk', e«) ~ yïj(vï , ea) - y]ik(vv , ea)   Va,

ykj(vv - Vj., ea) = y]ik(vv - vk,, ea)   Va,

hence, ykj(vr - vr) = y\k(vv -vk,) = ylkJ{vk, - vr).   d

1.6 Corollary. Suppose p¡'-X < i < p¡>, Pj'-X < j < py , and i' ^ /'. Then

(1) ykj = 0, if Pj>-X <k<pj,.

(2) If yk ^ 0, where p^'-x < k < pk<, then

vk, = ( 1 - akj,)Vj> + akj,Vj>,     where akj, ^0,1,

yïj = Átír = y'kM -a':j') •

1.7 Proposition. Each curvature distribution E, is integrable.

Proof. For simplicity, we consider the case i = I . Since Ex is defined by the

1-form equations on T17: co,■ = 0, mx < i < n , and

n

dcoi = ^2 œij Aojj = ^2 œij A œj
7=1 j<m\

= Yl YiCjO)k/\coj = 0   by (1.6).
j<nt\
k<m\

It follows that Ex is integrable.   D

1.8. Recall that the endpoint map Y: u(M) -> R"+k-1 is defined by Y(v) =

x + v for v £ v(M)x , and that a singular value of Y is called a focal point of

M.

1.9 Proposition. Let M bean isoparametric submanifold of Hn+k c Rn+k>x

and T its focal point set. For each q £ M, let Tq denote the intersection of T

with the normal plane u(M)q to M at q. Then

T=\jTq   and   rq = \Jl¡(q),
q6M 1 = 1

where l¡(q) = {v £ u(M)q \ (v,v¡) = 0}. These l¿(q) are called the focal

hyperplanes associated to E¡ at q.

Proof. Let Y be the endpoint map,

Y: v{M)-+ Rn+k-x,        (x,v)i-*x + v,
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so, we have

Y = Y(x, z) = x + Y zae«
a

dY = dx + ^ dzaea + ^ zadea

a a

a

= 0 [l - ( Y z«e« >v'))idE-+Y dz«ea ■
t=\

Then

and

q€M

Yq = {j{<l + V \V£u(M)q, (V,Vi) = 1}
(=1

P

= \J{v\v£u(M)q,(v,Vi) = 0}
¡=1

= (jh(Q),
;=1

where l¡(q) = {v £ v(M)q \ (v, v¡) = 0} .   G

1.10   Proposition. Let X : M" c H"+k c Rn+k • ' be an isoparametric subman-

ifold, and v a parallel normal vector field on M.

Then X + v: M —> Rn+k'1  is an immersion if and only if (v , v¿) ^ 1 for

i = 1,2,..., p. Moreover, if X + v is an immersion, then

(i)   The parallel set Mv = {x + v \ x e M} is an isoparametric submanifold

of Rn+k'1, i.e., Mv is a space-like submanifold of Rn+k>1, the normal

bundle of Mv  in Rn+k • '  is globally flat, and the principal curvatures

along any parallel normal field are constant.

(ii) Let q* = q + v(q), then

TMq = T(Mv)q. ,     v(Mq) = v(Mv)q. ,

q + v(M)q = q* + v(Mv)q. .

(iii) If {ea} is a local parallel normal frame on M, then {ë~a} is a local

parallel normal frame on Mv , where ea(q*) = ea(q).

(iv) E*(q*) = Ej(q) are the curvature distributions of Mv, and the corre-
sponding curvature normals are given by

W)=      Vi{q)l-(v, v¿)

(v) The focal hyperplane l*(q*) of Mv associated to E* is the same as the
focal hyperplane l¡(q) of M associated to E¡.
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Proof. The same proof as for Euclidean space works here. For details see [PT2,

Tel].   D

1.11 Theorem. Let M be a complete isoparametric submanifold of Hn+k c

Rn+k'1, E¡ the curvature distributions, v¿ the curvature normals, and I¡(q) the

focal hyperplanes associated to E¡ at q £ M. Let S,(q) denote the leaf of E¡

through q.

(1) If (v¡, v,) > 0, then
(i) Ei(x)®v(M)x is a fixed m¡ + k+l Lorentz subspace n¡ in Rn+k'1

for all x £ S¡(q).
(ii) Ej(x)®Rv¡(x) is a fixed m¡ + l Euclidean subspace & in Rn+k>1

for all x £ Sj(q).
(iii) ¡¡(x) = [¡(q) for all x £ S¡(q).
(iv)   x + Vi(x)/(v¡, v¡) = Ci is a constant for all x £ S¡(q).

(v)   Si(q)  is the standard sphere of £, + c¡, with radius  l/\v¿\  and

centered at c¡.

(2) If (Vi,v¡) <0, then
(i) Ei(x)®u(M)x is a fixed m¡+k+l Lorentz subspace rji in Rn+k<x

for all x £ S¡(q).
(ii) Ei(x) ®RVi(x) is a fixed m, + 1 Lorentz subspace & in Rn+k'x

for all x £ Si(q).
(iii) li(x) = U(q) for all x £ S,(q).
(iv) x + Vi(x)/(Vj, v¡) = c, is a constant for all x £ S¡(q).

(v) Si(q) is the standard hyperbolic space of c¡¡ + c¡, with radius l/\v¡\

and centered at c¡, i.e.,

Si(q) = {x £ d + ¿¡i | (x - c¡, x - Ci) = l/(Vi, «,)}.

(3) lf(v,,v,) = 0,then
(i) Vj(x) = c¡ is a constant on S¡(q).

(ii) Ej(x) © Rvj(x) + Rx is a fixed m¡ + 2 Lorentz subspace Ci for

x £ Si(q).

(iii)   Sj(q) is aflat umbilic hypersurface of the hyperbolic space Hn+k n

c«.

Proof. The proof for ( 1) and (2) is the same as for Euclidean space. For details

see [PT2, Tel].

Proof of'(3). For simplicity, we assume i = 1.

(i) Since Ve¡vx = AVxe¡ = (vx ,vx) = 0, if ej £ Ex , so vx(x) = cx   is

constant on Sx(q).

(ii) Let V\ (x) = ux (x) + x . Then, we have

F] (x) © Rvx + Rx = Ex (x) © Rux © Rx ,

and
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d(e"i A ■ ■ • A em¡ A ux A x) = Y, el A " ' • A de, A ■ ■ ■ A gm, A UX A X

7

= ^ ei A • • • A ¡Y Mjkek + Y 0}iaea I A • • • A £>w, A M, A X
; V k a J

= Y, ei A ' ' ' A ojjaea A • • • A «i A x

= }, e\ A ■ • • A   y^   <u7-aea A • • • A ux A x

= ^ COyé1! A • • • A   ^ (^i, ea)ea A • • • A U\ A X

= 0.

So Ci = F](x) © i?Wi + /?x is a fixed mx + 2 Lorentz subspace for all x G

Si(<7).

(iii) For any x G Si (#), we have

(x, x) = -I,        (x, cx) = -1 and x G Ci>

so Sx (q) is a flat umbilic hypersurface in the hyperbolic space of Hn+kn

Ci-   □
1.12   Definition. If v £ Rn+k>x , (v , v) ¿ 0, then Rv(x) = x-2(x, v)v/(v , v)

£ 0(n + k, 1) is called the linear reflection along v .

1.13.    Suppose Mn c Hn+k is an isoparametric submanifold with curvature

normals vx ,v2, ... ,vp, where  (v¡,v¡) < 0 if i = 1,2,...,/ and where

(v,•, v,) > 0 if i = I +1, ... , p .
Some notations:

(1) Rq¡ denotes the linear reflection of v(M)q along v¡(q), i = l+l, ... , p .

(2) Let <pi be the diffeomorphism of M defined by <p¡(q) = the antipodal
point of q in the leaf sphere S¡(q) of F, for i = I + 1, ... , p .

(3) Sp denotes the group of permutations of {1,2, ... , p}.

It follows from ( 1 ) of ( 1.11 ) that

Vl = X + 2^y        t = l+l,...,p,

and cp,(q) = Rq(q) ■ Since cp, is a diffeomorphism, it follows from (1.10) that

1.14 Proposition. If i > I + 1, then 2(i>,/(w,, v¡), v¡) ^ 1 for all j, i.e.,

1 - 2(v¡, Vj)/(Vi, v¡) ¿ 0   for all j.

1.15 Theorem. There exist permutations a¡+x, ... , op £ Sp such that

(1) Ej((pl(q)) = Ea¡U)(q),     i.e.,    <p*(Ej) = Ea¡U).

In particular, mj = maiU).

(2) v0iU)(q) =(l- ¿^"if) Vj(<pi(q))   and

(3) A»(^í))=(l-2<^u>)"1«di(J)(íf),

where i> I + 1,  1 < / < p.
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Proof. The same proof as for Euclidean space with trivial modifications.   D

1.16   Corollary. The subgroup Wq of 0(v(M))q generated by R%t,  i = l +
l, ... , p, is a finite group.

2. The Decomposition Theorem

Suppose Mn c Hn+k c Rn+k<1  is a full isoparametric submanifold with

curvature normals vx, v2, ... , vp such that

(v¡, v¡) <0   for i = I, ... , I   and   (v,■, v¡) > 0   for i = I + I, ... , p.

2.1    Lemma. Suppose p¡>-X < i < p¡*, pj'-X < j < p¡', and i' ^ f then

(vv,vy)=       y Y   (yk"2
1   ak' (ak'  - I) '

k' ßk,_x<k<uk, ui'j'\ui'j' )

vki=(\—a, ,)V:i+a i ,V:iK \ ¡l j' I    I ¡'j'     J

ak',.,¿0,\

Proof. By the Gauss equation

-dcoij + toik A cokj +  Y,  ^ia A u>aj = -ajj A coj.

a<n+k

We have

- Ya(yuœk) + Y yt'œk A y™0*™
k ktm

-    Y   (V>' ' e<*)(vj' , e<*)°>i A œJ = -OJiA COj ,

a<n+k

- Y áyu Ac°k~Y yuœktA oit + Y ykt7uœk a u>m
k kt ktm

= I y (vï - e«)(v 'e«) -l ) <°iA œJ = (vi'> vj')°>iA œj

\a<n+k /

Comparing the coefficients of <y, A coj , we have,

- Y rtjyíj + Y yHi + Y tó, - Y Áyís = (»/•> vr)>

Y (yuyii-yuyij-yikyiJ) = (v-',vjl) a>y(i.6)).
k

ek£Ei> ,Ej,

By (2) of (1.6), we have

a*,' ,^0,1

= (Vf, Vj>),

so

V ^      i     ak;,      \-ak;.,     ak!,(l - ak!■,)
k' uk,_x<k<pk,  K        ''J' ¡'J'       "/'7'v        ui'j'J
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Y Y     tâj)\k- ,1 _.)-(vi',vr).   a
, I , I t   ^ Wi' i> \ Mit jl 1 /

vk,=(l-a'¡¡¡l)vil+a'¡!¡,vjl H'-\<k<ßk> > J "■  ' J

af/j'^0.1

2.2   Lemma. Suppose 1 <i, j <l. Then,

(1) (Vi,vj)<0   ifiïj,

(2) (v¡, Vj)2 > (v¡, v¡)(Vj, Vj)   and   {v¡, v¡)2 = (v¡, Vi){vj, vj)   iff i = j.

Proof. (1) Suppose q £ M, then v¡(q) = u¡ + q, where (q, u¡) = 0,  i =

1,...,/.   So we have (v¡, Vj) = (u¡, «,-) - 1, Vi, /.   Since  (v¡, v¡) < 0,
(u¡, u¡) < 1, and (1) follows from the Schwarz inequality.

(2) If (v¡, v¡) = 0, then by (1) we have (v¡, Vj)2 > 0 = (v¡, v¡)(Vj, v¡) if

i ^ j . If (v¡, vi) < 0, then, since

v       (ViJOl ,
'       (Vi , Vi)

it follows that

hence

(Vj, Vj) (V¡, Vj)
Vj - -,-¿f Vi, Vj --if Vi ) > 0,

(Vi ,V¡) (Vi , Vi)

(Vi,Vj)2        I (Vi,Vj) (Vi,Vj)
(Vj , Vj) - V"    ".    ={Vj- J'.Vi, Vj - J'.Vi ) > 0.

(Vi,Vi) \ (Vi,Vi) (Vi,V¡)

Therefore we have

(Vi,Vj)2> (Vi,Vi)(Vj,Vj)

and
il) "      1) '\

(Vi ,Vj)2 = {Vi , Vi)(Vj , Vj)     iff Vj =       " J/Vi .
\ui, oi)

Since (Vi(q), q) = (v}(q), q) = -1,

(Vi, Vj)2 = (Vi, Vi)(Vj , Vj)    iff i = j.    D

2.3   Theorem. Suppose vx, ... ,vp are the curvature normals of M, where

(Vj,Vi}<0,    i'=l,...,/,        (Vj, v¡)>0,    i = l+ 1, ... ,p,

then / < 1.

Proof. Suppose / > 1. Then we can choose v¡>, v¡>   i', j' < I and i' / /' such

that

(vp , Vp ) > (vki, vkl )   for all k' < I,

(vp , Vj') > (Vj*, vk<)   for all k' < I, k' / /'.

Claim. If k' < I, vk, = (1 -ak!¡,)v¡i +ak'j, then, either ak'j, < 0, or, ak'j, > 1.

Otherwise, suppose 0 < ak ¡, < 1. Then, we have

(v¡> ,vk,) = (l- ak!y)(vp , Vf) + ak!j,(vv , vr)

> ( 1 - ak',j,)(vp , Vj,) + ak,'j,(vp ,vr)   by (2.2)

= (Vp ,Vj,).

Contradiction.
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If k' > I and vk, = (I - ak!¡,)Vi> + af.'j,, then either ak,'j, < 0, or ak,'j, > 1

because (vk< ,vk*)>0.
By (2.1) we have

<"''»«;'> = Y Y    tá>V(¿'     n^o.
k'       t     ßk,^<k<pk,        avyyavj<    l>

ak!,fi0,\

Contradiction. So, / < 1 .   G

2.4   Theorem. Suppose Mn   is a full isoparametric submanifold of Hn+k c

Rn+k' ' with curvature normals vx,v2, ... ,vp , where (v,■, v¡) < 0, / = 1,...,

/, and (v,■, Vj) > 0, i = I +1, ... , p .
Then 1=1, and (vx, v¡) = 0, i > 1.

Proof. Since Af is full in Hn+k , vx(q), ... ,vp(q) span v(M)q. Suppose

there is no curvature normal with negative length. Then, by (2.3), there are two

cases:

(i)   (vx, v\) = 0, and (v¡, v¡) > 0, / > 1, or
(ii)   (ví,Ví)>0, i= 1,2, ... ,p.

Case (i). Since RqVl(vx) = cvai(X), where c £ R, and ic¿, g 0(v(M)q), we

have 1^,(1) = vx. Hence

RqVi(vx)=cvx,        Vx-2{^\ = cvx.

This implies that (v¡■■, vx) = 0, i > 1, so, Vi, ... , vp do not span v(M)q , a

contradiction.

Case (ii).  Let u = ^xeWq t(q) ■ Then u g v(M)q is invariant under Wq .

In particular /?*.(«) = u so (v¡, u) = 0.

Claim. r(q), Vt g PF9 , are in the same component of the interior of the light

cone, so (u, u) < 0.

Proof of the claim. Since Wq is generated by R%t, so we only have to prove

that for any v , (v , v) < 0, then Rv,(v) and v are in the same component of

the interior of the light cone. Suppose

v = v' + aq,        a>0,  (q,v') = 0,

Vi = u¡ + q,        (q,u¡) = 0,

then
m , \     \ i (vi>v) i       \ , r,(Ui,v') -a

{Rv'{V) 'q) = ~a- 2^-v-){V' >q) = -a + \ul,ul)-l

2a\u¡\ ,.
< -a + -,-4-^—r   since \v \ < a

(Ui , Ui) - 1

<0.

So, Rv,(v), v are in the same component of the interior of the light cone.

Hence (v¡, u) = 0, and u ^ 0. Contradiction.

Therefore 717 has one and only one curvature normal with negative length.
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Since Rl^vi) = cva¿X), where c £ R, and R.% £ 0(v(M)q), so we have

<7,(1) = 1 and c = ±l.'

Since Rqv¡ (vx),vx are in the same component of the interior of the light cone,

c = 1. i.e.,

Rq.(vx) = vx    for i = 2, ... , p.

So, (vx, Vj) = 0 for i = 2, ... , p .   G

2.5   Corollary. Suppose  M"   c   Hn+k   is a full isoparametric submanifold,

vx, ... , vp are the curvature normals, where (vx, vx ) < 0, (v¡, v¡) > 0 if i > I,

Ei the corresponding curvature distributions.

If e¡ £ Ex, ek £ Ei, i > I, then cOjk = 0.

Proof. Let a>jk = J2i y\k03i ■ ̂ Y 0-°)> we know that if e¡ £ Ex , or E¡, then

Suppose y'jk / 0 and e¡ £ Es, s ^ I, i, then

vs = (1 -a\i)vx +asuVi   by (1.6).

By (2.4) we have (vx, vs) = 0, (vx, v¡) = 0. So, asu = 1, vs = v,, a contra-

diction. Hence we have y'jk = 0, and therefore

wjk = Yyjkwi = 0- D

2.6   Corollary. Suppose M" c Hn+k c Rn+k>1 is a full isoparametric subman-

ifold, vx, v2, ... , vp curvature normals, such that \vx\ < 0, \v¡\ > 0 for i > 1,

E\, E2,..., Ep are the corresponding curvature distributions and dim Ex = m.

Then there exists a Lorentz subspace Vm+X of Rn+k • ', such that

M = Hm ( ,    1    ^ x M"-m

\{Vl,Vi)J '

where

and

Hm (      l      ) = {x£ Vm+X \(x,x)=       l      }
\(Vi,Vx)J      \ (vx,vx)\

Mn-m c sn+k-m-\  (_ j _ 1- \  c y±
1 V (v\,vx)J

is an isoparametric submanifold.

Proof. Let
X* = X + ,   Vx   K : M -+ Rn+k• '.

(v\, vx)

Then

So, X*(M) = Mx is a submanifold, and X* : M —» Mx is a Riemannian sub-

mersion, E\ is the vertical distribution, and @i>x E¡ is the horizontal distri-

bution.
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From (2.5), we have

cojk = 0   if ej; £ Ex, ek £ @ F,.
¡>i

So, the O'Neil tensor A [O'Nl] is zero, therefore the horizontal distribution

®;>1 Ej is integrable. Let N(q) denote the leaf ®¡:>1 E¿ through q , q £ M.

Claim.  Ex(x)®Rvx(x) is a fixed m + l plane in R"+k'1 for x in N(q).

Proof of the claim. If ej £ E¡, i > 1, then Ve¡vx = -(vx, v,)ej = 0. So,

ex A •■ • Aem Ad^i = 0.

Suppose ex, ... , em £ Ex, then

d(ex A ••• Aem Avx)
m

= Y, ei A ' ' ' A dej A • • ■ A em A Ui + ^i A • • • A em A di>i

7=1

= y ex A ■ ■ •A ( Y œJkek+Y (aikea )A ' ' 'A e">A Vx
7=1 \k>m a /

= YeiA'"A[YœJaea)A'''AemAV{ by(2-5)

= Y ei A ' ' ' A      Y (Vl ' e<*)ea + en+k+i    A • • • A em A vx

7=1 \a<n+i /

m

= Yj ei A " ' A V{ A eJ+l A ' ' ' A em A Vl

7=1

= 0.

So, Ex(x) ® Rvx(x) is constant for x in N(q).

From (1.11) we know that Fi (x) © Rvx (x) is also fixed on any fiber of X*,

so Vm+X = E\(x) © Rvi(x) is a fixed m + 1 Lorentz subspace of Rn+k'1 .

Since

(x + 7^L,vx(x)) = 0,    x*(x) = x + 1^eV-
\       (vi,vx) 7 (vx,vx)

for any x £ M, i.e., X*(M) = Mx c V1-. Moreover, by direct computation

we see that X*(M) = Mx is isoparametric in the sphere of Vs- with radius

(-1 - l/(vx, vx))xl2, centered at the origin.

Suppose P is the orthogonal projection of Rn+k • ' onto V. Then

P\M:M^Hm (.    l    .V        P\M(x) = - ,V^X\
\{vi,vi)J (vx,vx)

is surjective, and X* = 1 - P\M. Therefore M = Hm x Mx .   G

3. Polar actions on 77"

Suppose G is a connected, closed Lie subgroup of 0(n, 1), and the iso-

metric action of G on 77"  is polar (see [PT1]), i.e.,  77"  has a connected,
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closed submanifold which meets all orbits orthogonally. Any such submanifold

is called a section of 77" . Suppose q £ 77" is a regular point, H(Lq) is the

unique section through q . Since sections are totally geodesic submanifolds of

77" , therefore 77(Z9) = "Lq n 77" , where Z? is a (m, I) Lorentz subspace of
RnX.

3.1 Theorem. Suppose q £ Hn is a regular point and Gq c I, where I is a

hyperplane of R"'x. Then

G(HCLq)nl) = lf)Hn,

in particular G(lnH") c /n77" . Moreover, the action of G on lf)H" is polar.

Proof. Suppose v is a normal vector of /, where / = {x G R"• ' | (x, v) = c}.

Then v £ vgq(Gq), the normal space of Gq in RnX at gq , for all g £ G.

(1) If x G HÇL9) ni, then (Çgx,v) = 0 for all g G G, { G g, the Lie
algebra of G, hence, (gx, v) is constant on G. Therefore, we have

(gx,v) = (x,v) = c   V#gG,

i.e., C7x C /. So, 07(77(1,) n /) c / n 77" .
(2) Since 77" = 077(1,), for any y g 77" n / there exist h£G, x G 77(1, ),

such that y = hx. Because (gx,v) is constant on G we have (x, v) =

(hx,v) = (y,v) = c, i.e., x G /. So, G(H(lq) n /) D / n 77" .
From (1) and (2) we have

G(HCLq)nl) = lnH",

so G acts on / n 77" and the action is polar.   G

3.2. Suppose some principal orbit of G is not included in any hyperplane.

Then all principal orbits of G in 77" are full isoparametric submanifolds of

77".

3.3 Theorem. Suppose Gq is a principal orbit of G, q £ 77" , vx is the cur-

vature normal of Gq in RnX suchthat (vx,vx)<0, Ex is the corresponding

curvature distribution,  V = Ex(q) ©Rvx(q), dim(Ex) = m. Then

(1) V is G-invariant (m,l) subspace of RnX, and

p:G^SO(V),        p±:G-^SO(V±)

are polar representations.

(2) There exists a polar representation Gx c SO(VL) such that the orbits of

G in 77" coincide with the orbits

{SO(m, l)uxxGxu2 | ux £ V, u2£VL , (ux, ux) < -1, and |wi|2+|"2|2 = -1}.

Proof. (1) From the proof of (2.6) we know,

V(gq) = Ex(gq) © Rvx(gq) = Ex(q) © Rvx(q) = V .

So gV = V for all g £ G, i.e., V is invariant under G. Moreover p, pL are

clearly polar.
(2) Let qx = -i»i(^f)/|ui| G 77" . Then from (2.6) we know

Gqx = {xgF|(x,x) = -1},

so V = Tqi Gqx © Rqx , hence the normal space of G^i at qx in 77" is VL .
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Let Ci be the identity component of Gq¡ . Then Gx c OCV-1) is a slice

representation of 77" , so it is a polar representation and TqiH(Lq) is a section

of Gx.
Let q2 = -vx(q)/(vx ,vx), q3 = q + Vi(^)/<Vi ,vx). Then q = q2 + q3, and

Qi £ V , q-i £ V1-. Since q is a regular point of G, so #3 is a regular point of

p±: G^SO(VL).
Denote the identity component of C7,3 by K . Then K fixes every vector in

TqtHÇLq)c VL . Since
Gq = Gq2 x Gq->,,

so

Gxqi = Gq},        Kq2 = Gq2.

Suppose g, gi, k are the Lie algebras of G, Gx, K respectively. Then gi#3 =

g<?3, kq2 = gq2 .

Claim, g = k + gi and G = Gx K = KGX.

Proof of the claim.

%q = %(l2 + Mi = kq2 + gxq-i = (k + gx)q2 + (k + gi)#3 = (k + gx)q,

and if X<7 = 0, leg, then X q2 = Xq3 = 0, so X G k n gi , hence g = k + gi
and G = GXK = KGX .

Now consider the K x Gx action on V © VL . For any ux + u2 £ H(Lq),

where ux £ Rvx , u2 £ TqiH(Zq),

G(ux + u2) c Kux x Gxu2,

and, because g — k + gi, by dimension and connectedness we have

G(ux + u2) = Kux x Gxu2.

By (2.6) we know

K1^ = \x£V\(x,x) = T^\,
(v\,vx)      \ (vx,vx)\

so, the orbits of G in 77" coincide with the orbits

{SO(m, l)ux x Gxu2 I «1 G V, u2£ Va- , (ux, ux) < -1,

and |«i|2 + ji/212 = -!}•   G

4. Isoparametric submanifold of

rlemannian hllbert hyperbolic space

Suppose F is a separable Hubert space.  Let  V = R © V with the inner
product

{(s, x), (t, y)) = -st + (x, y)   where s, t £ R, x, y £ V.

Then F is a Lorentz Hubert space. Let 77(F) = {(s, x) £ V \ -s2 + (x, x) =

-1, 5 > 0} , then 77( V) is a Riemannian Hubert hyperbolic space with constant

sectional curvature -1 .



ISOPARAMETRIC SUBMANIFOLDS 623

4.1 Definition. A Hubert submanifold M of 77(F) is called isoparametric if

M satisfies the following conditions:

(1) Codim(AT) < oo .

(2) v(M), the normal bundle of M in 77(F), is globally flat.
(3) If v is a parallel normal vector field on M, then AV(X), Av^ are or-

thogonally equivalent for all x, y £ M.

(4) Av is compact for any v £ v(M)x .

4.2 Proposition. Suppose M is not a full isoparametric Hubert submanifold of

H(V), i.e., there is a nonzero vector v in V, such that (x, v) is a constant on

M, then (v ,v) > 0, and (x, v) = 0 on M.

Proof. Suppose X: M c 77(F) c V, then we have (X,v) = a, (dX,v) = 0.

So, there exists a normal vector field Z of M in 77(F), such that v = aX+bZ ,

where b ± 0. Hence we have

0 = adX + bdZ ,        Az = t^tm ■
b

Since Az is a compact operator, a = 0.

Therefore (v , v) > 0 and (x, v) = 0 for all x £ M.

4.3 Theorem. If M c 77(F) is a full isoparametric submanifold, then dim(Af)

< 00 .

In order to prove Theorem 4.3, we need the following lemmas, in which we

will always assume that TV7 is a full isoparametric in 77(F) and v(M) is the

normal bundle of M in 77(F).

4.4 Lemma. There exist smooth distributions E¡, i £ I, and smooth parallel

normal fields v¡ g u(M) , i £ I, such that

FM = 0F,
i€l

and for any v £ v(M),
Av | Ei = (v , Vi)idE, .

Moreover, if we suppose vo = 0, then dim(F,) < oo, for i / 0.

Proof. The same proof as for the finite dimension case works here, because Av

is compact and selfadjoint.   a

E¡ are called curvature distributions, v¡ are called curvature normals. We

will assume that {e¡ \ i £ TV} is an orthonormal frame for 77(F), such that

{e¿ | i > k} is an orthonormal tangent frame for M, where e¡ is in some

curvature distribution, and {ea\ I < a < k} is an orthogonal normal frame of

T17 in 77(F).

4.5 Lemma.  M is full in 77(F) iff v¿, i £ I, span v(M).

Proof. The same proof as for (1.4).    G

4.6 Lemma. For e > 0, 7e = {i G 7 | |i>,|2 > e} is finite.

Proof. Since Aia is compact

i £l | \(Vi, ea)\ > JT }    is finite,\il]    1S
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hence

7£ c   (J   | i G 7 | \{v¡, ea)\ > J^ \    is finite,   d
\<a<k

4.7 Lemma. Let co¡j = £), y\¡(Oi. Then

y'u(«i» -V;') = y]u(vv -v,,) = yjj(v,, -Vj.),       j¿I,

where e¡ £ E? , e7 G Ey , e¡ £ E¡,.

Proof. The same proof as for (1.5).    G

4.8 Corollary. Suppose e¡ £ E,,, ej £ Ey , i' # /', then

(1) yj, = 0 ife,£Er.
(2) If y\j ¿ 0, where e¡ £ E¡,, /' # /, then

v¡, = (1 - afij,)v¡i + a¡,jiVy ,    where al¡,y #0,1

and

Ylij = Va4r = YÍj{l-4j')-

4.9 Lemma. Suppose v¡ ■£ v¡, then

(vi,vj)-i=     Y      Y (y'u)277177}
i a,jK-x)

vl=(l-a'¡J)vi+a¡jvj  e^Ei

«{,1*0.1

Proof. The same proof as for (2.1).   G

4.10   Lemma. (I) M has at most one curvature normal whose length < 1.
(2) If v¡ is a curvature normal of M, then v,/ 0.

Proof. ( 1 ) Suppose there are at least two curvature normals whose length < 1 .

Then, by (4.6), we can choose u,, Vj, i # /, such that \v¡\ < 1, \vj\ < 1 , and

if |u/| < 1 , then \v¡\ > \v¡\ and (v¡, Vj) > (v¡, v¡), for I £ i.
By (4.9)

ci.«;>-1-      £      E (^jqïrri)
/ í uij\ui]     l>

v,=(l-ali¡)vi+a'¡¡v¡  e'€E'

ai, #0,1

and (u,-, u7-) < (i>(-, v,-) < 1 , we have

/ í uij\uij       ll

v,=(\-a'¡¡)vi+a'ljVj   e'£Ei

a'/0,l

On the other hand, if \v¡\ < 1 , and v¡ = a^t;,- + (1 - a-;)v7-, 0 < a\, < 1, then

(v¡ ,v,) = a'u(v¡ ,vt) + (l- a'u)(v¡, vj)

>a'ij(Vi, Vj) + (l -a'ij)(Vi, Vj)

= (V¡ ,Vj),
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a contradiction. So, if \v¡\ < 1, and v¡ = al¡jV¡ + (1 - aL)Vj, then, either

a'jj < 0, or a\j > 1.

If \v¡\ > 1, and v/ = a\fOi + (1 - a\7)Vj, then, either a\s < 0, or a\, > 1.
So, we have

E     EötfsrsTTü*«.
«,=(!-«{,)%+«{,«';  e'eEi

«{,1*0.1

a contradiction. Thus vV7 has at most one curvature normal whose length < 1.

(2) Suppose fo = 0 is a curvature normal of M. By (1) and (4.6) we know

that M has only finitely many curvature normals, and M has at least one

nonzero curvature normal, since M is full. Hence we can choose v¡, such that

\Vj\ < \vi\, for all / # 0. Then, by (4.9) we have

<«...>>-!-    E     E^^ttj-.
H,=(/-«{y)«o+ai,V'e£'

8^0,1

vi=a'ijVjeteEi

a^O.l

On the other hand, if 0 < a{- < 1, and v¡ = a\¡Vj , then \v¡\ = a'ij\Vj\ < \vj\ ,

a contradiction. So, if v¡ = a'^Vj, then either a\} < 0, or a'tj > 1. Hence we

have

^   E«,>2;^T7)ï°.
/ t "¡7V   <7 '

t),=fl^;   e'eEl

4/0,1

a contradiction. Therefore M has no zero curvature normal.   G

4.11 Proof of Theorem 4.3. By (4.6) and (4.10), we know that A-Í has only a
finite number of curvature normals and none of them is zero. Therefore, by

(4.4), M is of finite dimension.   G

4.12 Theorem. Suppose M is an isoparametric Hubert submanifold of 77(F),

then M is either of finite dimension, or a totally geodesic submanifold of 77(F),

i.e., M = H(V)(lVx, where Vx is a Lorentz Hubert subspace of V.

Proof. The direct corollary of (4.2) and (4.3).   G
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