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NILPOTENCE AND TORSION IN
THE COHOMOLOGY OF THE STEENROD ALGEBRA

KENNETH G. MONKS

Abstract. In this paper we prove the existence of global nilpotence and global

torsion bounds for the cohomology of any finite Hopf subalgebra of the Steenrod

algebra for the prime 2. An explicit formula for computing such bounds is then

obtained. This is used to compute bounds for H* (sán ) fer n < 6 .

1. Introduction

Let R be any commutative algebra and x £ R. An element y £ R is said to

be x-torsion if xky = 0 for some k . R has x-torsion bound m if xmy = 0

for any x-torsion y £ R . R has global torsion bound m if m is an x-torsion

bound for all x e 7?. R has global nilpotence bound m if xm = 0 for all

nilpotent x £ R. For any algebra R, x £ R has nilpotence k if xk = 0 and
xk~x ¿0.

Let s/ be the Steenrod algebra at prime 2. Let s/(nx, n2, ...) be the Z2-

submodule of sf generated by the Milnor basis elements Sq(rx, r2, ...) with

r, < 2"' for all i. If 3k such that «, = 0 for all i > k then we will write
sf(nx, ... , nk) for s/(nx, n2, ...). s/(nx, n2, ...) is a Hopf subalgebra of
s/ if and only if nv > min{«„_„, nu + u - v} for all u, v with v > u > 1 .

Further, these are the only Hopf subalgebras of sf , [2, 3].

Let T = sf (nx, ... , nk) be any finite Hopf subalgebra of sé and 77* (T) =
Extr(Z2 , Z2). Our main results are

Theorem 1.1. 77* (Y) has a global nilpotence bound which is computable by
Proposition 1-3 below.

Theorem 1.2. Any global nilpotence bound for 77*(T) is also a global torsion

bound (and hence an x-torsion bound for any element x £ H*(T)) and vice
versa.

Thus the global nilpotence bounds in Theorem 1.1 are also global torsion

bounds for 77* (T). None of the bounds given above are known to be the best

possible, i.e. there may be smaller bounds than those given. The following

propositions are those referred to in Theorem 1.1.

Proposition 1 (W. H. Lin [6]).  77* (T) is nilfree if and only if

(a) T = s/(0, ... , 0, nt, nt+x, ...) with n¡ < t Vi, or
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904 K. G. MONKS

(b) T = sf (0, ... , 0, 1, «r+i, «,+2, ... ) with n, < t + 1  Vi and n¡ — t +1
for at least one j.

In this case, 77* (T) trivially has global nilpotence bound 1.

Proposition 2. Suppose Y is a finite Hopf subalgebra of sf ; and suppose

(a) there exists a finite family {A;| 1 < j < «} of Hopf subalgebras ofY, such
that for each j, Y is obtained from A; by the addition of one generator whose

class is aj in the same sense of Definition II. 1;

(b) there exist integers Wj > 0 such that Y["=l aJJ = 0 in 77*(Y) ;

(c) H*(Aj) has global nilpotence bound m¡ ;

then 77*(Y) has global nilpotence bound J2"j=\wjmj ■

In §11 we will define the notion of a 'k, m-allowable' Hopf subalgebra of

Yes/ (Definition II.4). To such a Hopf algebra Y we will associate Hopf

subalgebras r(/t) and r(m) (Definition II.3). We will also define a sense in

which a Hopf algebra can be built up from a Hopf subalgebra 'by the addition

of one generator whose class is hs¡t' (Definitions II. 1 and II.2).

Proposition 3. For any Y and any integers k, m such that Y is k, m-allowable,

Y is obtained from Y(k) (and also from r(m)) by the addition of one generator

whose class is h„k k (resp. hnm,m) and such that,

(a) hlnk~kk"hnm,m = 0 if nm > nk + k,

(b) hnk,khl2*m'"n =0ifnm<nk + k.
Further, if 77* (Y) is not nilfree then there exists at least one such pair of

integers.

While there is always one pair of integers k, m so that Y is k, m-allowable

in Proposition 3 (unless 77*(Y) is nilfree), there are often several such pairs.

The freedom in choosing between such pairs gives rise to several different strate-
gies for computing global nilpotence bounds that trade simplicity of computa-

tion for decreased size of the bounds.

The following is by far the simplest formula, but yields very large bounds.
We restrict ourselves to the case Y = s/n - sf(n + 1', «,..., 3, 2, 1).

Theorem 1.3.  H*(s/n) has global nilpotence bound 2(("+1)("+2)(n+3'/2).

The next method of computation yields the best possible bounds that are

attainable by the methods of Theorem 1.1, but does so at the expense of requiring

extensive calculations to compute most bounds.

For any k, «z-allowable Y (Definition II.4) define integers:

r 2nm-nk-k   if nm > nk + k , (I if nm>nk + k
Wq = { and   wx = < „   ,,

I 1 if nm < nk + k I 2n*+k-"-<    if nm < nk + k.

Thus h^kkhn^m = 0 in Proposition 3.

Theorem 1.4. For any finite Hopf subalgebra Y,

( 1    ifH*(Y) is nilfree,

Bound(T) = < min      {w0- Bound(r(/t)) + wx • Bound(r(m))}    otherwise,
k,m

v T k, m-allowable

is a global nilpotence for 77* (Y).
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A comparison of bounds for H*(sfn) for « < 6 given by these two methods

is shown in Table 1. The bounds given by Theorem 1.4 are known to be the

best possible for H*(s/o) and H*(sfx). H*(sf2) must have a global nilpotence
bound > 4 [11]. For « > 3 the global nilpotence bound for H*(s/„) must be
>2"+1 [5].

Table 1. Global nilpotence bounds for H*(s/n)
(scientific notation values rounded to 1 significant digit)

Bound from     Bound from

n     Theorem 1.3     Theorem 1.4

0 8 1

1 4096 3

2 IE9 9

3 17±18 96

4 4E31 3,294

5 4£50 267,282

6 7E75 60,896,016

The results in this paper constitute the major results of the author's Ph.D.

thesis [10] under Donald Davis at Lehigh. The author is very grateful for the

help and mathematical contributions of D. Anick, D. Davis, M. Hopkins, and

G. Stengle. The helpful comments of the referee are also much appreciated.

II. Background and notation

Let R be a commutative algebra. An ideal £P c 7? is prime if â0 ^ R and

xy £ P =$> x £ ¿P or y £ ¿P for any x, y £ R. An ideal € is primary if
€ ± R and x y £ S => y £ <S or xk e ¿? for some k . If ^ is any ideal then

the radical of S is defined to be r(J^) = {x £ R : xk £ J*~ for some k £ N}.

The radical of an ideal is an ideal. The radical of a primary ideal is prime.

The radical of a prime ideal is the ideal itself. If R is Noetherian, every ideal

contains a power of its radical. In a Noetherian algebra every ideal is a finite

intersection of primary ideals. Such a decomposition J7 = fl/Li^i is said to

be minimal if the ^ = r(€f) are all distinct and éf, does not contain fLy,^

for any i or j. Every ideal in a Noetherian ring has a minimal decomposition

and the «^ are uniquely determined.

Let si* be the dual of si . Milnor [9] showed that si* ~ Z2[£i , 6 ,&,... ]

with diagonal map ip :si* -* si* ®si* given by y(Çm) = T,a+b=m it ®£b on

generators and extended to be an algebra homomorphism. For any subalgebra

T = si(nx, «2, ... ) of si we have

r~z2[Zi,ç2,b,...]/(ç2ni,çp,çjH,...).

We will say that £j = 0 in Y* if the class of Çj is zero in this quotient. For any

graded Z2-algebra Y define the cohomology of Y to be 77* (Y) = Extf (Z2, Z2).
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This may be computed via the cobar resolution which is described fully in [1].

We now give some technical definitions that will be required in this paper.

Definition ILL Suppose Y = si(nx, n2, ...) is a finite Hopf subalgebra and

A is a normal Hopf subalgebra of Y such that Y/ /A = E[x] where x is the

equivalence class of an indecomposable element x £ Y. Let a £ HX'*(Y) be

the class which is the image of the polynomial generator of H* (Y/ /A) under

the map induced in cohomology by the quotient map. In this situation we say

that T is obtained from A by the addition of one generator a.

In this case, let i : A -> Y be the inclusion map and i* : H*'*(Y) —> 77*-* (A)

the induced map.

Definition II.2. Suppose Y is a Hopf subalgebra of si for which ^f £ Y* is

primitive. In this case we define hSit to be the corresponding class in HX(Y).

Definition II.3. For any finite Hopf subalgebra Y = si(nx, n2, ...) define

Í si(nx, ... , Kj-i, n¡- 1, nj+x, ...)   if«7^0,

(;)     IT ifn,=0.

Definition II.4. For any finite Hopf subalgebra Y - si(nx, n2, ...) and any

integers k, m we say that Y is k, m-allowable iff

(a) 1 < k < m ;
(b) nk > 0 and nm> k;

(c) nk > «, and nm > «, + k , Vi < k ;

(d) nk > «, + i - (k + m) and nm > «, + i - m , Vi < m .

We will show in §IV that if Y is k, m-allowable then Y^ and r(m) are Hopf
subalgebras of Y. A good reference for the background material in commutative

algebra is [4]. Background on the Steenrod algebra and its subalgebras can be

found in [8].

III. The existence of global bounds

In this section we prove Theorem 1.2. In order to do so we require the

following result. Let Y = si (nx, ... , nk) be any finite Hopf subalgebra of si .

Theorem ULI (Wilkerson [ 12]).  77*(Y) is Noetherian.

Theorem III.2. Any Noetherian algebra R has bounded x-torsion Vx £ R.

Proof. For any x £ R, define Ann(x) = {y £ R : yx = 0}. Consider the

ascending chain of ideals:

Ann(x) C Ann(x2) C Ann(x3) ç ■ ■ ■ ç Ann(x") ç Ann(x"+1) ç ■ ■ ■ .

Since R is Noetherian, this ascending chain must become stationary. Thus

there is mx such that Ann(x<:) = Ann(xWjc) for all k > mx and mx is the

least such integer. Hence, xky = 0 => xmxy = 0.   O

The following theorem was shown to the author by G. Stengle.

Theorem III.3. Every Noetherian algebra has a global torsion bound.

Proof. Let R be Noetherian and (0) be the zero ideal in 7?. Then we have

a minimal primary decomposition for (0), i.e.,   (0) = D/Li^/  where the Si
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are primary ideals and « e N. Define 9°i = r(S¡) for each i < «. Let m,

be the smallest integer such that ¿Pf1' c S¡. Let m = max,{m,}. Suppose

xky = 0. Then xky £ (0) = flLi ^ ani* so x¿y e ¿f)- for each i < « . Since

¿f) is primary, y € ¿f) or xkJ £ S¡ for some j, which implies that y e ¿f)
or x € !?i. Thus y 6 Si or xm e ^). So xmy £ Si for any i < n. Hence

x'"venH^ = (0)^oxm)' = 0.   D

Theorem III.4. Every Noetherian algebra R has a global nilpotence bound.

Proof. This is an obvious corollary to the previous theorem (take y = 1). But

it has a simpler proof. Since 7? is Noetherian the ideal (0) must contain some
power of r(0), which is just the set of nilpotents in 7?.   D

Theorem III.5. 7« any Noetherian algebra the smallest global torsion bound and

the smallest global nilpotence bound are equal.

Proof. As in the proof of Theorem III.3, let R be Noetherian and (0) be the
zero ideal in R. Then we have a minimal primary decomposition for (0), i.e.

(0) = f|/Li ^i wnere the Si are primary ideals and « e N. Define 3°i = r(S,)

for each i < «. Let m, be the smallest integer such that 9°™' c Si. Let

m = max,{m,}. We first show that m is the smallest global torsion bound

for R. If m = 1 it is clearly minimal. If m > 1 then since m¡ = m for

some j, we can choose z £ ¿Pj so that zm £ S¡ and zm~x £ Sj. Since our

decomposition is minimal there is w £ f)/?É. S¡ such that w £ S¡ ç. í?j. Then

zm-\w £ @. smce zm-\ ^ @. ancj w g cp. ancj g. is primary. So m is the

smallest global torsion bound.

Now let b = the smallest global nilpotence bound. Clearly m > b since

xk = 0 => xk • 1 = 0. It follows that if m = 1 then m = b = 1. If m > 1 then
since zmw = 0 we have (zw)m — (zmw)wm~x = Ow = 0. But (zw)m~x —

(zm-xw)wm-2 (where w° = 1). Further, zm~xw i Sj and wm~2 <£ &¡

(because r(&f) = &¡ and w £ ¿Pf), their product (zw)m~x £ Sj because

Sj is primary. Thus (zw)m-x <£ f]"=xSi = (0) => (zw)m~x ^ 0. So zw has

nilpotence m . Thus b > m . So m = b .   D

Thus the question of finding a global torsion bound is equivalent to that of

finding the global nilpotence bound. Hence we now have

Proof (of Theorem 1.2). By Theorem III. 1 77*(T) is Noetherian. Thus by The-
orem HI. 3 it has a global torsion bound, and hence a smallest one. By Theorem

III.5 this is equal to the smallest global nilpotence bound. The theorem fol-
lows.   D

Corollary ULI. The bounds computed by Theorem 1.1 are also global torsion
bounds.

IV. Computing global bounds

In this section we give the proof of Theorem 1.1. It suffices to prove Theorem

1.4 since this satisfies the existence requirement of Theorem LI. We begin by

showing how Theorem 1.4 follows from Propositions 1-3.

Proof (of Theorem 1.4). For any finite Hopf subalgebra Y = si(nx, n2, ...)

define o-(r) = £,■ «; •   Notice that Y finite => o(Y) < oo.   We proceed by
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induction on o(Y). If a (Y) = 1 then Y is exterior and 77* (Y) is nilfree

by Proposition ILL Hence Bound(T) = 1 and this is trivially a global nilpo-

tence/torsion bound for 77* (Y). So assume that Bound(A) is a global nilpo-

tence/torsion bound for the cohomology of any A with a (A) < o(Y). If

T has nilfree cohomology, then Bound(Y) = 1 and is still trivially a global

nilpotence/torsion bound. If not, then by Proposition 3 there is at least one

pair of integers k, m so that Y is obtained from Y/k) (resp. r(w)) by the

addition of one generator ak (resp. am) so that a^a^' = 0. By the induc-

tion hypothesis, Bound(r(¡)) is a global nilpotence/torsion bound for H*(Y^)

for any i such that Yi¡) is a proper subalgebra (i.e., «, ^ 0), since then

cT(r(/)) < o(Y). Thus by Proposition 2, 77*(T) has global nilpotence/torsion

bound Wo- Bound(r(¿.)) + wx • Bound(r(m)). Since this will be true for any

choice of the pair k, m such that Y is k, m-allowable, we can take the min-

imum of all such values to get the best possible value using these methods.

This is precisely what Bound(T) is, completing the induction and hence the

proof.   D

So we must now prove Propositions 1-3. Proposition 1 was proved by

W. H. Lin [6].
In order to prove Proposition 2 we require the following result of Lin [6].

Theorem IV.l. If Y is obtained from A by the addition of one generator whose

class is a and i* : H*'*(Y) —> 77* - * (A) is the map induced by the inclusion,

then Ker(i*) = ideal of H*(Y) generated by a.

Using this result we can now prove Proposition 2, which is the key result

used in this method of computing global nilpotence/torsion bounds.

Proof (of Proposition 2). Let x 6 77* (Y) be nilpotent. Let ij : Ay —► Y be

the inclusion map and let M = £"=1 w¡mj. Then x nilpotent => xk = 0 for

some k => i*(x)k = i*(xk) = 0 for each j = 1 ,...,«=> i*(x) is nilpotent for

each j => i*(x)m' = 0 for each j => i*(xm>) = 0 for each j => xm> £ Ker i* for

each j => xmJ = a¡ -y¡ for each j and some y; G 77*(Y) (by Theorem IV.l)

=;> xM = Yl"j=x(xmi)wi = (n"=i aJJ)-y = 0-y = 0 for some y G Y.   D

It should be noted at this point that we will only require the cases «=1,2

for our purposes.
It now remains to prove Proposition 3. In doing so we imitate the methods

of Lin [6]. We proceed by a series of lemmas. Throughout we will let Y -

si (nx,n2, ...) be any finite Hopf subalgebra of si .

Lemma IV.l. hs j is a well-defined nonzero element of 77*(Y) if n¡ + i -1 + 1 <

s < n, for ail i < t.

Proof. Since [if   ] cannot be a coboundary it is enough to show it is a cocycle.

But d[if->] = Ei<t[Zfi+"l\CÏ] = 0 since n, < t - i + s - 1 => if"-1 is
zero in Y* = si(nx, n2,...)*.   □

For any rational number q let |[<7jJ be the greatest integer less than or equal

to q . There are Steenrod operations in cohomology [7].

Lemma IV.2. There are Steenrod operations on H*'*(Y) satisfying:
1. Sq' :Hs->(Y)^Hs+i'2t(Y),
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2. Sq'(ab) = \Z]+k=iSq^(a)Sqk(b),

3. Sq'Sq* = E^o' {s;l2tl)Sqr+s-'Sq>,

4. Sq°([ax\---\an)) = [a2\---\a2],

5. Sqs(x)=x2 ifx£Hs>*(Y),

6. Sqs(x) = 0 if x G 77r'*(r) and r < s.

Thus by property 4 we have Sq°(hSJ) = hs+Xj whenever these are defined.

Lemma IV.3. Let x, y be nonzero elements of HX,*(Y).

Define Qb = Sq^'^Sq2*'2 ■■■Sq4Sq2Sqx. Then

Qb(xy) = (x2b)((Sq°)by) + ((Sq°)bx)(y2b).

Proof. This is proved in [6]. There is an easy proof using Lemma IV.2.   D

Lemma IV.4. If Y is k, m-allowable then
(a) hnk+k,m and h„kk are well-defined nonzero elements of Hx(Y) if nm>

nk + k, and

(b) h„m,m and hnm_kk are well-defined nonzero elements of 77'(Y) if nm <

nk + k.

Proof. Case a: nm > nk + k . Then Y k, m-allowable => n¡ + i - k < n¡ < nk

for i < k => h„ktk t¿ 0 G 77'(r) by Lemma IV.l, and r is k, m-allowable

=> n¡ + i - m < nk + k < nm for i < m => h„k+k m ^ 0 £ HX(Y) by Lemma
IV.l.

Case b: nm < nk + k. Then Y is k, m-allowable =» n¡ + i - k < ni <

nm - k < nk for i < k => hnm_kk /0e 77'(r) by Lemma IV.l, and Y is

k, m-allowable => n¡ + i-m < nm for i < m => h„m m^0e 771 (Y) by Lemma
IV.l.   d

Lemma IV.5. If Y is k, m-allowable then

(a) hnk+k<mh„ktk = 0 in H*(Y) if nm> nk +k, and

(b) hnm,mh„m_kk = 0 in H*(Y) if nm < nk + k .

Proof. Case a: nm> nk + k. Then T is Ac, m-allowable => «, < nk for i <

k => if"k — 0 in T* for i < k , and T is Ac, m-allowable => nj < nk+k+m-j

for j < m =$■ i2"k+ = 0 in Y* for j < m. Thus in the cobar resolution
for H*(Y):

k+m-l

i=i

Ef!;2nk+'-'lx)l2'<k-\-,   .ST^ Tz2»k+k+m-i-i]):2nk-x    -,   .   r!:2"*+':^l|K2',*-1i
K/fc+m-iKí        l +Z^lÇj lik+m-jl + lÇm ICjfc       J

i<k j<m

=ic+k-i\iri}.
Hence, h„k+k>mhnktk = 0 in H*(Y).

Case b: nm < nk + k. Then T is Ac, m-allowable =>• «,< nm - k for i <

Ac => if" = 0 in T* for i < Ac, and Y is Ac, m-allowable => n¡ < nm + m-j

for j < m => £j""+m       = 0 in P for j < m . Thus in the cobar resolution for
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H*(D:

k+m-\
s]Ij:2"m~k~ll _        V^     fe2"m+i~k-t ,):2'>m-k-\

"ISk+m       J -     2^   iGk+m-i     l<=i J
i=l

E.f2"m*'-k-\      2nm-k-\
l^k+m-i      K; J

i<k

+E [iïk+m-J-l\ir;mk-~jl}+[ir-'nr""]
j<m

_ ri2"m_' i jr2"m~*~l-.

— Km        Kfc J •

Hence, hnm,mhnm_k<k = 0 in 77*(T).   D

Lemma IV.6. If Y is k, m-allowable then

(a) hnm,mh2nn™~k"k~k = 0 in H*(Y) if nm>nk + k, and

(b) hf^mnmKk,k = 0 in H*(Y) ifnm<nk + k.

Proof. Notice that by definition h„l+bt¡ = 0 in 77* (T) for any t if b > 0.
Case a: nm > nk + k. If nm = nk + k then we are done by Lemma IV. 5.

So assume nm> nk + k and let b = nm - nk - k . Then by Lemma IV. 3 and

Lemma IV.4,

0 = Qb(0) = Qb(h„k+k<mhnk>k)
U2b U U U2b U ,2nm-nk-k

— nnk+k,mnnk+b,k + nnk+k+b,mnnk ,k = nnm,mn„k  k

Case b: nm < nk + k. Let b = nm - nk - k. Then by Lemma IV.3 and
Lemma IV.4,

0 = Qb(0) = Qb(hHm,mh„m_k>k)

= nnm ,mnnm-k+b ,k +nnm+b ,m"nm-k ,k = nnm ,m      nnk,k-     O

Lemma IV.7. If T^j is a proper Hopf subalgebra of Y then Y is obtained from

T(,) by the addition one generator h„it¡.

Proof. Since r(/) is a proper subalgebra «, > 0. Let A = r(i) and q = n,• - 1 .

We must show A is normal in Y, i.e., that T-A = A-T where A is the

augmentation ideal. To accomplish this we imitate the methods of Margolis

[8]. It suffices to show that

W = Z2 vector space span of { Sq(rx, ... ) £ Y \ Sq(rx,...)/ Pf }

spans both Y • A and A • Y. If x and y are Milnor basis elements then Pf is

a summand of xy if and only if x = pj+l~i and y = Pf_¡ for some j [8]. By

hypothesis A is a Hopf subalgebra of Y and so either n¡ < q + i-j or «,_; < q

for any j < i. Thus Pj+'~J and P? are not in Y for any j < i. Thus for any

Milnor elements x, y £ Y, Pf is not a summand of xy or yx unless x = 1

or y = 1. so T • A c W and ATcf . To obtain the opposite inclusions we
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note that as shown in [8], for any Milnor element Sq(rx, ... ) £ fê,

Sq(rx,...) = Sq(rx,...,rj-2h,...).Pf

+ terms of lower excess than Sq(rx, ...)

= Pf-Sq(n,...,rJ-2h,...)

+ terms of lower excess than Sq(ri, ...).

Notice that here that Pf is not one of the terms of lower excess (nor is it

Sq(rx, ... ) since this is in £P) because if it were it would be a summand of the

product Sq(rx, ... , r}-2h, ...)-Pf (resp. P^-Sq(rx, ... , r7-2A, ...)) which

we have already shown to be impossible since neither factor is 1. Hence by

induction on excess, Sq(rx, ...) g W =>■ Sq(rx , ...) G Y• A and Sq(rx ,...)£

A • T. So ^ c_A • r and f cT-A and so A is normal in Y. Thus the quotient

Y/ /A = Y/Y • A = E[Pf] is thus well defined and so Y is obtained from A by

the addition of one generator whose cobar representative is [if] = [if'   ], i.e.,

hn,,i-     □

Lemma IV.8. If Y is k, m-allowable then Yik) and T(m) are Hopf subalgebras
ofY.

Proof. Let

Y = si(nx, «2, ...),

I>) =si(px,p2, ...)=sf(nx, «2, ... , nk- 1, ...),

and

r(m) =sf(qx, q2, ...)=si(nx, n2, ... , nm - 1, ...).

Since T is a Hopf subalgebra of si we have either «„ > nu+u-v or nv > nv-u

for all 1 < u < v , and must show this property holds for both the p¡ and the

Qi-
For Y(k), the lemma easily follows from the following facts. If v < k then

Pi = «, for all i < v. If v = Ac then pk = nk - I > nu > nu + (u - Ac) for
all u < v since Y is Ac, m-allowable. Finally, if v > k then pu < nu for

all m < v and pv = nv . Similarly for r(m), the lemma easily follows from

the following facts. If v < m then q¡ = n¡ for all i < v. If v — m then

Qm = nm - 1 > nu + (u - m) for all u < v since T is Ac, m-allowable. Finally,

if v > m then qu < nu for all u < v and qv = nv .   D

Using these results we can now prove Proposition 3.

Proof (of Proposition 3). Y is Ac, m-allowable => Y^kx (and r(m)) are Hopf

subalgebras of Y (by Lemma IV.8) which Y is obtained from by the addition

of one generator whose class is h„ktk (resp. hnm,m) (by Lemma IV.7). The

relations (a) and (b) in the proposition are then true by Lemma IV.6. Thus it

suffices to show that for any Y — si(nx, n2, ...) which is not of type (a) of

Proposition 1, there is one pair of integers k, m such that T is Ac, m-allowable.

Let k = min{j : n¡ j= 0} and let m = min{j : «; > k) (which must exist

since T is not of type (a) of Proposition 1). We now show that Y is k, m-
allowable (refer to Definition II.4). Conditions (a) and (b) follow trivially from

the definition of k and m . By definition of Ac, «, = 0 for i < k, so condition
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(c) follows. Finally, by definition of m, «, < k for i < m and nm > k so

nm > k >n¡ > n, + i -m for i < m and nk > 0 > n¡■■ - k > n,■- k + i - m for
i < m.   D

All that remains is to prove Theorem 1.3.

Proof (of Theorem 1.3). Let « G N and W = 2n+2. If we write sin =

si(nx, «2, ... , «n+i = si(n + I, n, ... , 2,1) then «, = « + 2 - i for 1 <
i < « + 1 . Then w¡ < 2l"™-"*-/cl < 2"k+k < 2i-n+2-^+k = 2n+2 = W for all

Wj involved in the calculation of Bounds ) in Theorem 1.4. For any finite

Hopf subalgebra of s/„ , Y = si(nx, n2, ...), define Toobig(T) = (2W)a^ =

2(«+3)(T(r) where o(Y) = E, «,. Assume towards induction that Toobig(A) >

Bound(A) for any A with o(A) < o(Y). Then Toobig(r) > Bound(T) since

Bound(T) <      min     {w0 • Bo\xnd(Y,k)) + wx- Bound(r(m))}
ß(k,m,T)=l

< 2 • W • Toobig(r(;)),    Vi with Y{i) ± Y

< 2 • W • (2("+3)(T(r(o)) = 2("+3)("(r(o)+i)

= 2<"+3>i7(r) = Toobig(T).

Taking Y = si„, we have o(Y) = (« + 1)(« + 2)/2 and so Toobig(sin) =

2((«+i)(n+2)(»+3)/2) is a global nilpotence bound for H*(sin).   D
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