TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 334, Number 2, December 1992

HP- AND L?-VARIANTS OF MULTIPARAMETER
CALDERON-ZYGMUND THEORY

ANTHONY CARBERY AND ANDREAS SEEGER

ABSTRACT. We consider Calderén-Zygmund operators on product domains. Un-
der certain weak conditions on the kernel a singular integral operator can be
proved to be bounded on HP(Rx R x ---x R), 0 < p < 1, if its behaviour on
L? and on certain scalar-valued and vector-valued rectangle atoms is known.
Another result concerns an extension of the authors’ results on LP-variants of
Calder6én-Zygmund theory [1, 23] to the product-domain-setting. As an ap-
plication, one obtains estimates for Fourier multipliers and pseudo-differential
operators.

1. INTRODUCTION

The first purpose of this paper is to extend to the multiparameter setting the
results obtained by the authors in [1, 2, and 23] concerning the classical (one-
parameter) Calder6n-Zygmund theory of L? spaces. One of the results of [1
and 23] may be stated as follows. Let ® be a smooth bump function on R
supported in [1, 4] such that Y, ®(|¢7|/2")=1 on R\{0}.

Theorem A. Suppose m is a (bounded) function on R" such that if ;&) =
m(2:E)D(|€|), we have

Sgg(|lmil|p—p +Imilla,) < oo
1

Jorsome 1 < p <2 and some ¢ > 0. Then m is a Fourier multiplier of L"(R")
forp<r<p'.

(Here, || - ||[p-p is the L? multiplier norm and A; is the space of Lip-
schitz continuous functions of order ¢.) Theorem A strengthens the classical
Hoérmander multiplier theorem and gives a good “almost orthogonality” crite-
rion for Fourier multipliers in the sense that L? boundedness of each “dyadic
piece” #1; implies L” boundedness of the original multiplier m provided we
have a tiny amount of smoothness. (This smoothness cannot be entirely dis-
pensed with because of a classical counterexample of Littman, McCarthy and
Riviere [20].) Thus one of our aims is to prove the analogue of Theorem A when
the one-parameter family of dilations & + 2/¢ is replaced by the n-parameter
family (&, ..., &) — (21¢&,, ..., 2"E,). To give a taste of what is to come,
we state (for simplicity only) a result in R?.

Received by the editors December 1, 1989 and, in revised form, September 17, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 42B20; Secondary 35S05,
42B1S, 42B25S.

Key words and phrases. Calderon-Zygmund theory, product spaces.

©1992 American Mathematical Society
0002-9947/92 $1.00 + $.25 per page




720 ANTHONY CARBERY AND ANDREAS SEEGER

Theorem B. Suppose m is a function on R?* such that if

mi(&) = m(2'¢,, &)O(E]), M) =m(&, 2E)P(8),

and ‘ A
m;;(§) = m(2'&y, &) P(161) D (&) s
we have
sup ||i]|p—p < oo, sup || lp—p < o0,
i€Z JEZ
and

sup ||7;5]la; < oo.
i,j€T

Then m is a Fourier multiplier of L'(R?) for p<r<p'.

(Here again, |+||,—, is the LP(R?) multiplier norm and A} is the 2-parameter
Lipschitz space with differences taken in both variables.)

The second purpose of the paper is to obtain a strengthened H?-theory (0 <
p < 1) of product domain Calderon-Zygmund singular integrals Much work
on this topic has been done recently by Journé [15, 16, 17], R. Fefferman [6,
7], Soria [24], and Pipher [22], with Journé’s work being especially important.
The moral of R. Fefferman’s point of view [7] is that despite the fact that H?
cannot be characterized by “rectangle atoms,” nevertheless a linear operator
which “behaves well” with respect to rectangle atoms will be bounded from H?
to L?, at least in the 2-parameter setting. Journé [17] has shown that in three
parameters, this philosophy breaks down, but, however, remains valid (see also
H. Lin [19]) for convolution operators. Perhaps the principal achievement of
this paper is to show that with a different interpretation of rectangle atoms—
indeed as vector-valued rectangle atoms—the Fefferman philosophy remains
valid with any number of parameters. We stress at this point that the analysis
of this paper still relies heavily on Journé’s geometric ideas contained in [15].

Let us make things a little more precise. The H?-space on the product do-
main R x R x --- x R = R" consists of those tempered distributions f whose
multiparameter area integral S(f) isin L?. Here,

Sf(x) = (// v S0P dy

where I'(x) is the cone {(y, ?) eR"xRiIIy,—x,|<t,, i=1,...,n},and

n<>

where w isa C* function of compact support in [-—, %] satisfying

/ w(Op(r)dt =0
R

for all polynomials p of degree < M for sufficiently large M. (If 0<p <1,
we require M > n/p.) Of course a similar definition could have been made
for the product space R% x --- x R4  but for simplicity only we assume each
d; = 1. Also, this definition of S(f) and H” makes sense for f taking values
in a Hilbert space H, and all statements we shall make remain valid in this
setting.

We now introduce vector-valued rectangle atoms.

-
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Definition. A (p, R) rectangle atom on R™ with values in a Hilbert space H is
a function a:R™ — H which is supported on some rectangle R in R™ (here
and always a rectangle means a rectangle with sides parallel to the coordinate
axes) which satisfies
) Jrla(x)} dx < |R|'"P;

(i) fga(xi, ..., xj, ..., Xm)p(x;)dx; = 0 for almost all (xi,..., X1,
Xj41s+-->Xm), j =1,...,m, and for all polynomials p of degree < M,
where M is sufficiently large (we require M > n/p).

It is easy to see that every (p, R) rectangle atom is in H?(R™, H); see [4].
We shall refer to R as the rectangle associated to a. We use the letter m
instead of n in the above definition because we shall be considering rectangle
atoms living on a factor subspace R” of R”" with values in L?(R"~"™).

To be more systematic, given a subset o C {1, 2, ..., n}, we denote by
R the subspace of R” spanned by the unit coordinate vectors e;, s € a.
Similarly we define R? , N®, Z*. We shall denote by o’ the complement of «
in {1,...,n} sothat R" =R*@®R® forall a. II,: R* — R® is the natural
projection; when « is a singleton, say o = {s}, we shall often write II; instead
of Iy . If R is a dyadic rectangle in R*, we denote by 2%(R) the sidelength
of the projection IR and by L,(R) the vector in Z* with components Ls(R),
SEa.

Now consider a singular integral operator with kernel K(x, y) so that

- / K(x, »)f(v)dy.

For a C{l,...,n} and m € Z*, let T2 be the operator with kernel

X, - e L o
K(x,y) H<D(|2sm+2 ) K(x,y)®%(x —p) (with x, y € R*).
SE€Ea
When a = {1, ..., n}, T2 will be denoted by T,,, and L,(R) by L(R).
We are now ready to state our first result.

Theorem 1. Let T be a singular integral operator which is bounded on L*(R").
Let 0<p<1 ande>0. Supposethat forall « C{1,...,n}, 1 <|a|<n-1,
for all (p, R) L*(R*)-valued rectangle atoms a associated to some rectangle
R in R, for all I, € N* we have

—el,
NTE, Ry, @llLr(r2) < CH 278,

SEa

Suppose furthermore that for all C-valued (p, S) rectangle atoms b associated

to some rectangle S in R", forall | e N" and forall r=1, ..., n, we have
ZTLSHlb <CH2 81
>0 S#r

Then T is bounded from HP to L*.

Some remarks concerning Theorem 1 are in order.

Remark 1. Results for Calderén-Zygmund operators on H?- and BMO-spaces
in the multiparameter (n > 3) case have been obtained by Journé [15] and




722 ANTHONY CARBERY AND ANDREAS SEEGER

Pipher [22]. They considered classes of Calderén-Zygmund operators which
are defined by an iteration based on an induction over the dimension. Those
iterated conditions are not appropriate in the Hilbert-space valued setting, and
do not contain, for example, the standard Hormander-Marcinkiewicz multiplier
theorem (Corollary 5.2). In contrast, Theorem 1 immediately extends to the
vector-valued setting, with rectangle atoms in H?(R”, Hy) and H?(R™, L?(Hy))
and operator-valued kernels with values in .2 (Hy, H;).

We should like to remark that, in the special case of BMO-estimates, a result
like Theorem 1 could already have been obtained by the technique that Journé
used to prove L?-boundedness (p > 2) for the Littlewood-Paley-function as-
sociated to arbitrary intervals.

Remark 2. Theorem 1, as stated, is weaker in the case » = 2 than Fefferman’s
result [7] because we require the notion of vector-valued atoms. However there
is a sharper version (see Theorem 3.1 below) which is very close to Fefferman’s
theorem. In fact, it requires the notion of L2(R* )-valued atoms in R® only
for those a with |a| < n — 2. This illustrates the difference between the geo-
metrically simple case n = 2 and the higher-parameter case.

Complementary to the H? theory is an L? theory, 1 < p < 2, which even-
tually yields results such as Theorem B above. With this in mind, we introduce
a multiparameter Littlewood-Paley decomposition. Let ¢ be a smooth function

such that ¢> =®. For a C {1, ..., n} and j € Z* we define
Q3N (&) = [[ #2%1ED £(©)
S€a
and

PeN~©=1] {1 -y ¢2(2ks|¢|)} f(&).

S€a ks<Js
Then we have

Theorem 2. Suppose that T is an L? bounded singular integral operator. Sup-
pose that forall B, y C{l, ..., n} with Bny=¢, BUy # ¢, forall | € NP7,
all m € N8, and that for some ¢ > 0 and some large N we have

BUy BUY HB 7 —els N
Z _Su‘g. ”Qj+k Tj.,_[ Qnﬂj+m®Pm’j“r—r <c H 27¢ H2 s
kezpor JELY sEBUY seB

for r =p and for r =2 (with the obvious interpretation if § or y = @). Then
T is bounded on L”.

Section 2 of this paper contains the preliminaries from the Chang-Fefferman
Hardy space theory which we need and also the relevant geometric lemma (a
variant of Journé’s). Sharper versions of Theorems 1 and 2 are proved in §§3
and 4 respectively. Section 5 contains the applications to Fourier multipliers and
pseudodifferential operators. Finally, in §6, an example is presented to show that
one cannot replace “strip-hypotheses” in multiparameter multiplier theorems by
purely local hypotheses. That is, we cannot replace the first two hypotheses of
Theorem B by sup; jez [|#ijll,—p < oc and still have a true theorem. In fact,
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if we are to insist on local hypotheses, the standard Hérmander-Marcinkiewicz
theorem cannot be essentially improved upon.

2. PRELIMINARIES FROM HARDY-SPACE THEORY AND GEOMETRY

In this section we recall some definitions and facts about the Chang-Fefferman
atomic decomposition of H? functions and prove a variant of Journé’s covering
lemma.

We first need some notation. Given a dyadic rectangle R in R” and o C
{1, ..., n}, we associate a rectangle R in R"xR% by defining R, = {(x, f)|x
€ R, [ ~ 2R} where f ~ 2L(B means 2L < f < 2LWE+1 for all
s €a, (I =(&)sea). We also set xi ;(X) = xre(x,?) and drop the o when
a={1,

The following kind of estimate occurs in [3] and is proved by a duality ar-
gument and Plancherel’s theorem. Let ¥ bea C* even function of compact
support in [—, 4] such that [|¥(1)]>dt/t =1, and let ¥(&) = [T, P(1:Es) -

Lemma 2.1 [3]. Let # be a collection of distinct dyadic rectangles in R" . Sup-
pose that for each R € # , for each t € R, we have a function eg ,:R" — C.
Then

Z/ W * (eR (XR. t) <CZ/ ller, zllzt

ReZR ReZ

Moreover, if « C{1,...,n} and Z is a collection of distinct dyadzc rectan-
gles in R™ with common L, , and for each R € %, i € R%, we have a function
er,i:R" > C, then

2

di
Z/ Ve v (eR.iX5 1) <cH/ ez, ,||z
ReX H ReZ

S€a 2 sEa

(where x, denotes convolution only in the o-variables). O

For u € zZ, let Q, = {x|Sf(x) > 2#} and let &%, be the collection of all
dyadic rectangles R in R" satisfying |[RNQ,| > 1|R|, but |[RNQ,,| < $|R|.
Then we have

Lemma 2.2 [3].

dt dt,,
> /II[ (e * Nar A3——" <c22ﬂ|9”|. a]
REZ,

These lemmas were used to derive an atomic decomposition for H'! func-
tions. We give a definition of an atom associated to an open set similar to the
one which may be found in [3].

Definition. Let Q C R” be an open set of finite measure. A function bq is
called a (p, Q) atom (associated to Q) if by can be decomposed as by =
Spfvixer dt/T];_, ts where (x,t) — er(x,t) is supported in R, and R
runs over a collection of dyadic rectangles supported in Q, and where

dt 1/2
> /II%:I!% <|Q|iEte,
= t ety
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By Lemma 2.1, a (p, Q) atom bq satisfies ||bg|lz < ¢|Q|'/?2~1/7; hence any
(p — R) atom for R a rectangle is also a (p, R) rectangle atom.

Now any reasonable function has an atomic decomposition via the Calderén
reproducing formula. That is, f =} sz 4q, Where

aq, = Z /‘//t*[('/’t*f)XR,t]

ReA,

dt
t oty

(for suitably chosen ) and by Lemma 2.2 the functions [c|Q,|'/?2#] 'aq, are
(p, Q) atoms associated to the open set €, = {x|Mxq,(x) > 1}, M denoting
the strong maximal operator. (Note that by the strong maximal theorem, |Q,| <
c|Qy].)

If an operator T satisfies ||Thq|, < ¢ forall atoms bg , then, for 0<p <1,
it follows that [|Tf[5 < ¥ | Ta[5 < ¢ 1Q4(2% < c[|Sf15 = |l /1. and so T
is bounded from HP” into L”.

For future use, we set, in accordance with the above discussion,

dt
er,e = (Wex ARt €R=/'//t*€R,t—tlmt
n

so that the atom bg can be decomposed as the sum of elementary particles
z €R.

We now turn to geometry and a variant of Journé’s lemma.

Let Q2 C R" be a bounded open set, %Z a collection of dyadic rectangles
supported in Q. We define Q = {x|Myxq(x) > 107"} and inductively, Q) =
(QU=D)~ where QO =Q. For R=I, xhx---xI, €%, let I, =I;(R, Q)
be the largest dyadic interval containing /; such that

|(fl x Iy x - xI)NQ|> %lil x Iy x -+ x I|.

Notice that f, xIpx---x1I,C Q. Inductively let is = TS(R , Q) be the largest
dyadic interval containing I; such that

|(TIXf2x"'XfSXIs+Ix"’XIn)nﬁ(S_l)‘>%lileZX"'stXIsHx"'XInl»

and notice that f, X oo X IAS x Iy x - x I, C Qe (which allows fs+| to be
defined). Further, let x,(R, Q) = Ly(I;) — Ly(I;).

Given the subset {1,...,k} of {1,..., n}, we write R{!.-k} as RII"4I,
R{l:--k} ag Rk+1-n and similarly ZU'"K1 NU-k1 If now m e NU!""4] and
Q is dyadic in R[4 we let 9&';‘,}{‘] be the union of all dyadic rectangles
S in RKk+I"7 such that Q x S € &% and such that x;(Q x S, Q) = m;,

i =1,...,k. Further, for [ € NI""} et B'"/M =, 25 (where
m< [ means m; </l;, i=1,...,k). (Both 95,",;{‘] and ‘%’g;}'k] depend of
course on Q and #.)

Lemma23. For k=1,2,...,n—1 and [ € Nll"kI|

k
YoloIB) M) < e [T+,

s=1

where the sum is extended over the dyadic Q in RUKI,
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Proof. Firstlet k =1, [ € N. For a dyadic interval I of R!, let E;(Q) be the
union of all dyadic S in R such that 7 xS C Q. Let I(/) be the unique
dyadic interval containing I such that L,(I(/)) = L;(I)+[. We first claim that

2.1) Bl C [E(Q\Ey) (@1

To see this, let y € @,“} and let S be a dyadic rectangle in RZ" y e §,

>

with I xS € % and k;(I x §) <. Then, since I(/) x E;;)(Q) C Q,
[(I(1) x )N (I(1) x Eqy(Q))] < [(I(1) x $)n Q| < 5[I(]) x S|,

(the second inequality holding since I(/) is too big to be I (IxS, Q)). Hence,
IS NE)(Q)] < %|S| and consequently (since SUEj) C Ey), |(E/\Ejg))NS| >
31|, which shows that M (xg,\£,,)(¥) > § > 14 » establishing (2.1). (M here
and ~ of (2.1) refer to the strong maximal function in RI[>*"1.) We observe
that the sets I x (Ej\Ey(;) are disjoint if I runs over all dyadic intervals with
sidelength L,(I) = ml + i, for i fixed, for variable m € Z (since if I, G I,
and I, and I, have lengths of the form 2"/, m € Z, then I,(/) C I, and so
(Er\Ery) N(ER\EL1y) € EL\E}, ) = @) . By the strong maximal theorem we
have

Y B < ¢ 3 IENE )|
I

-1
<eY N ) U x(ENE)

i=0 mez I
L(I)=ml+i

<cllQf,

thus finishing the proof in the case k = 1.
Now assume that 2 < k < n — 1 and that the lemma has been proved

for 1,2,...,k—1. Take [ = (I, ) = (Ii, ..., [x) € N¥. We write dyadic
intervals in RI'""Kl as Q x I, with Q C RI'""k-11 |, C Rk},
We fix m € NI'“*kKl with mg <[, s=1, ...,k — 1, and consider a dyadic

rectangle R = QxS = I} x --- x I, where R € # and x,(R, Q) = m;,
s=1,...,k—1,and we write 0 =1,(OxS, Q) x-xL_(@xS,Q). In
other words, IAS = I;(m;) and so Q is independent of the choice of S used.
By the definition of 1,, we have

0 x 41 ¢ G,
Q’m -

For each m, let I, , = I; ,(R) be the largest dyadic interval in R}
containing I, such that

1k—1
[ X Tt % oo X D) VDG N > 31y Dy o x Dy,
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We have
IO x Iy x Iy x -+~ x Iy n Q%Y
A 1--k—1
>0 x (I pyx - x 1y n@é’m ]

> 310N gy % - x L
=%|Q><Illc,m X oo X Iyl

so that by the maximality condition in the definition of IAk we can conclude
that 7 ,’( a C I .

In analogy with (2.1) we now claim that for all Q = Q x I, dyadic in RI!"AI
and all m € NI'""k] we have

ok k ck— k
(2.2) Dy CIENDS TINE

1k=1]y 1~
I (m+1) (gé,m ])] s
where, for J an interval in R{¥} and X C Rk E[Jk](Z) is the union of all
dyadic S in R+l gych that J x SCX.

To establish (2.2), we should like to show that if 7' = I, x---xI, C 251,

wk—
then T C E}fl(@g’m ') and that
k k=1
ITNEN, . (gé’m h <.

The first of these two assertions is clear from the definitions, and the above
arguments show that I, C I,’(,m(Q xT) C Iy = It (my) G Iy (my + 1), and hence
that

|(c(mic+ 1) X Ty %+ x T) 0G5 N < JU(me 4+ 1) x Ty x o x Il
or |(Ix(my + 1) x T) n@é"j"“ﬂ < LI (my + 1) x T|. Now

k
L(my + 1) x EL

[1-- k 1] [1--k—1]
(2L 1) c gl
and so

|(I(my + 1) x T) N (I (mye + 1) x EW)

1k—1
P )]
< 3H(my + 1) x T).
Dividing both sides of this inequality by |I;(m; + 1)| establishes (2.2).
An immediate consequence of (2.2) is

1k k [1 k— 1] [k}
Dy SIEL@S T NE L

9[1 k=1~
whenever my < [, . Arguing as in the first step,
l—1

[1---k]
U nglk m,my)

my=1

D10y ) < }_:}:uQumZ

m<l

k 1--k—1 k 1o-k—1
<cZZ|Q|ZIIk'lE‘ PRIT AL

m<l Q I

<cy Y loinles 1,

m<l Q
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and, since Qg":‘” C Q%‘;lk‘” (g = ms + 1) we may apply the inductive
hypothesis to obtain

% QIS < el Y Y (0118 1)

m<l Q

k-1
<ch Y [Jome+ DF1HQ

m<l r=1

k=1
<ch Yy [THFQ

m<l r=1
k—1
=cl [ 1F-#{m < 1}1Q|

r=1

k-1
=ch [T F "0 k1€
r=1

k
— cHllc—rHlQ' ,

r=1
which is what we had to prove. O

Now let % be some collection of dyadic rectangles supported in Q such that
any two rectangles with the same projections on RI7=11 are disjoint. Define
L(R,Q) for Re #, 1 <s<n-1 asbefore. Let #(/, #) be the collection
of all those rectangles in % satisfying x;(R, Q) </, s=1,...,n—1. Then
we have the following variant of Journé’s lemma [16]:

Lemma 2.4.

n—1
Y. IRI<c[rQl

ReA(l,R) i=1
Proof. Two different dyadic rectangles in £ (/, %) with the same projection
Q in RU""~1 are disjoint and will be contained in Qx%,"}"~". The assertion
now follows from the case k =n—1 of Lemma 2.3. O
In the above two lemmas, we have made geometrical constructions (dilations
of rectangles in some directions) depending on an ordering of these directions.
Of course, we could have chosen any permutation of the standard ordering used

here, and still have obtained an analogous result; we shall need this observation
in the next section.

3. HP-ESTIMATES

We first formulate a version of Theorem 1, with, among other things, im-

proved decay assumptions. For a G {1, ..., n} with a={a) < - <a,} we
set d(I, a) =14 171, . Then we have

Theorem 3.1. Let T be a singular integral operator which is bounded on L?
with norm at most A. Suppose that for all o, 1 <|a|<n-2,all | € N*, all
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L*(R*)-valued (p, R) rectangle atoms a we have
ITZ, (ry+1@llLo(r2) < A7

Suppose furthermore that for all o, |a| =n—1, and all C-valued (p, S) rect-
angle atoms b we have
T, 5)+:01lp < B

and that forall 1 <r<n, forall [ e NI}

Z Tyrs)wib|| < Ci{r} .
1,>0

p
If
sup Y [4pd(l, )" /Pm1 2P < P,
lalsn_zleNa
sup Y [Bfd(l, o) /Pm12P < 4P,
lal=n—1 jcxa
and

sup 3 [CVd(l, ry) e <
LSTSM ety

then T is bounded from HP to LP with norm at most CA.

We first show how Theorem 1 can be obtained from Theorem 3.1. First of
all, d(, a) < ¢ [lea 2h¢ for every ¢ > 0. Hence we only have to verify that
under the assumptions of Theorem 1 we have

IT¢ siblly < ce [[27%¢ forjaj=n—1.
SE€Ea
Suppose without loss of generality that « = {2, ..., n} andlet b bea C-valued
rectangle atom associated to S = I x J with I C R{1} and J C R} . Let T
be the interval with the same centre as I but with twenty times the sidelength.
Then by Holder’s inequality,

p/2
|nzmﬂmggcALAJnm”Jy] dx|I|1 P

4:ﬁ. T 5y b1 dx
I xRe
—A+B

Now |I|~1/2+1/7||b||;'b may be considered as an L?(R®)-valued rectangle atom
associated to I and so 4 < c[]_,275® by the hypothesis of Theorem 1. More-

over,
14

n
<c[]27",
p

s=2

B < z Ty(s)+b

[|>O

again by the hypothesis of Theorem 1.
In order to prove Theorem 3.1 we shall use an induction argument which
reduces estimates for (p, I x A) atoms (with A4 living in an m-dimensional
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space with m > 2) to estimates for L2-valued (p, I) rectangle atoms and for
C-valued rectangle atoms, and, if m > 3, to estimates for (p, I x J x B) atoms
for B living in a space of dimension m — dim J .

Proposition 3.2. (a) Let bg be a (p, Q) atom in R". Suppose that T is
bounded on L*(R") with norm at most A. Suppose furthermore that for all

aC{l,...,n}, 1 <|a|<n-2, forall | € N~, for all dyadic rectangles Q in
R®, for all open sets A in R* and all (p, Q x A) atoms, we have
(3.1) ITZo)+ially <TI7, l e N,

Moreover, suppose that for all o, |a| =n—1, for all | € N*, for all dyadic S
in R" and all C-valued (p, S) rectangle atoms, we have

(3.2) ITZ, (s)+:4llp < Df
and also, writing 1 = (I, 1,), [ e N{"}',
(3.3) Z Tysyva|| < Ep
1,>0
P
Then

ITballb < c [A” + sup Y (TyYd(l, o)t
1S|0|Sn—2 lENe

+ sup Y (Dp)Pd(l, o)t

lal=n—1 jcpa
+ > Efdd, {n}')‘/—"”] :
leN{n}

(b) Suppose by 4 isa (p, I x A) atom where I CRF, ACR?, fny=o,
Buy={1,...,n}, y={yn <--- <y} with v > 2. Suppose that for all
L2(R?)-valued (p, I) rectangle atoms, we have
(3.4) ITallpms, 2wy < 4,

and that for all « Cy, |a| <|y| -2, forall | € N*, all Q dyadic in R*, for all
open sets B in R"™® and for all (p, I x Q x B) atoms a we have

(3.5) "TZ.(Q)Ha“p <I7.

Suppose furthermore that for all a C y, |a| =|y| =1, for all | € N*, all dyadic
S in R” and all (p, I xS) rectangle atoms, we have

(3.6) ITZ, s)+1@lle < DF

and if 1 = (I, L), [ e N—{n},

4
Z TL7(5)+[a

1,,>0

}'_{yv}
(3.7) < B,

p
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Then
ITbrwallt <c |4+ sup Y (Tp)Pd(l, a)' =77
|a|.<_|y|_21€Na
+ sup Y (Dp)Pd(l, a)' 7P
|a|=|)’|_1 leNe

+ Z E}' {»n} pd Y — {7 } 1 -p/2
leNr—{w}

Proof of Theorem 3.1. By the discussion of §2, it suffices to show ||Tbgl|l, < C
for all (p, Q) atoms. Proposition 3.2(a) reduces this to the L2-boundedness
of T, appropriate estimates of the form (3.2), and (3.3)—all of which are
hypotheses of Theorem 3.1—and estimates of the form (3.1). To check (3.1)
we apply Proposition 3.2(b) to the operator T"‘ ()41 > reducing matters to (3.4),
(3.6), and (3.7)—all of which follow directly from the hypotheses of Theorem
3.1—and (3.5). Hence Proposition 3.2 gives an iterative scheme for proving
Theorem 3.1. We leave the verification of the constants to the reader. O

In order to prove Proposition 3.2, we carry out a further geometric construc-
tion which is essentially the same as in [22].

Suppose y C{1,...,n}, y={y1 <--- <ym}. Let < be any total ordering
on the subset of y suchthat @ <--- <9 <y, whereif m > 2, 7 contains y,,.
(This last requirement is merely a technical convenience.) For o C y, let a
denote its predecessor with respect to the above ordering and define N(&) =0,
N(a) = N(@) + |a| (so that N(y) =Y ok(F) = m2m~1).

Let Q C R” be an open set and let % be a family of dyadic rectangles
supported in Q. For each R € # and each a C y we will define several “en-
largements” u¢(R, Q) (r=0, ..., |a]) and w*(R, Q), such that for every a
we will be able to apply Lemma 2.3 to the family of rectangles {ug(R, Q)}re -

We set w?(R) = R. Suppose we have defined w*(R) C Q@) | Given a =
{on <--- <o}, weset uj(R, Q) = w*(R) and if ug(R Q=I,x---xI,,

we proceed to define I,,l , Io‘2 ,..., I, asin§2. Thatis, I o, 18 the largest dyadic
interval containing I,, such that

Ly, x - x Iy X - xlymﬂﬁ(N(a))| > I, x - x Iy x - x1T,|
and we define uf(R, Q) =1, x---x I, x--x1I, :=J, x--xJ, , which

is clearly supported in QV@+D If v > 1 we let f be the largest dyadic
interval containing J,, such that

IJ}’I x...xj;zx...xj nﬁ(N(&)+l)|>l|Jyl x...xj;zx...xjyml

and set ug(R, Q) = J,, x - x J,,, C QW@+ _ Similarly, we proceed to define
u?(R, Q) supported in QW@+ for r = 3, ..., v. We set
u*(R, Q if ,
w"(R,Q):{ V( ) : a#‘y
u‘llyl_l(R, Q) ifa=y.
We also set k(R, Q) = L,w*(R, Q)—L;ug(R, Q),and v3(R, Q) = L;w?(R)—
Lsug(R, Q) for s € y, so that we clearly have

(3.8) K2(R, Q) < V2(R, Q).
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Notice also that x}(R, Q) = v/(R, Q) and that ) (R, Q) =0.
Lemma 3.3. (a) For Q dyadicin R*, | € N* (a C y), Q open in R, let

Ay /(Q) be the union of all projections I1,_,u$(R, Q) where v¥(R, Q) < I;,
sea and Tl,uf(R, Q) = Q. Then

Y14y Q)] < cd(l, ).
o

(b) For I € N=Um} let #)(Q) be the family of all dyadic S in R? such
that S = u}(R, Q) for some R € £ and such that v} (R, Q) = k](R, Q) < I,
for s # v . Then

Y ISI<cdd, y - {rm))IQ
seliy(Q)
Proof. Part (a) follows immediately from Lemma 2.3 applied to the rectan-

gles {#2(R)}res Wwhich are contained in the set Q(¥@) . To see part (b), ob-
serve that since 7 contains y,,, the maximality condition in the definition of
ufn_l (R, Q) ensures that two different .S in /il.y(Q) with the same projections

in R*~{r} are disjoint. Now apply Lemma 2.4. O

Proof of Proposition 3.2. We prove only part (a); the proof of part (b) is exactly
similar and will be omitted. Let bg be a (p, Q) atom; we consider Tbq
separately in Q2™ and in R"\Q"2"™") . As in [6], the estimate in Q(2"™")
is an easy consequence of the L2-boundedness of 7 and the strong maximal
theorem:

~ n—1 —
ITbal”® ~ < |QUF VPR Thally

Q(nZ" )

< CAP|Q|' PP |bg|l5 < C4P.

To estimate Thg in R"\Q"2"™")  we use the formula

Yoam= > (=p=t N a4+ > am

mezn 1<]al<n mezZ™, m;>0 mezZ™, m;<0
for s€a 1<s<n

(which may be proved by applying the formula

[Ta- -_1—ZP+ZPPk—ZPPk1>,

J j#k J#k#l

with Pj = x(m >0}) to write, as in [15], for x ¢ Q2" |

Tho(x)= Y (-DF='Y" N Toer(x)

1<|al<n R mg>L,w?(R,Q)
= ) (=0
1<al<n
with y ={1, ..., n} and

bQZZeRIZ/Wt*eR,rt dt
R R !
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since the missing term
> 2 2 Thex
I<|a|<n R m;<Lsw?(R,Q)

is supported in Q"2"™") . For 1 < |a| < n—2 we substitute /; = ms—Lug(R, Q)

and write
Z Z Z TIL:-L(,ug(R)eR

R [eNe Is>Lsw? (R)~Lsu(R)

'
> X Thugwer
IENe R : b2 (R, Q)<l;

Let ?/é”, be the family of all rectangles R such that v2(R, Q) < [, s € a,
and IT,u§(R) = Q. Then, if we set ag | = Eke%&, er , we have

L= Y Thiuo%.:

leNe Q dyadic in Re

1,

Now
-1/2

dt

V= 2

10 x 5/ | 1/p+1/ Z /“eR’l”%t 7 ag i
REZ3 | b in

is a constant multiple (for a fixed absolute constant) of a (p, Q x MQ‘"’,’) atom.
Consequently, we have
p/2
dt
tty

1771095 1ll5 < C(TTPIQ x 5|72 > /”eR,t“%
Re?s

and by applying Holder’s inequality and Lemma 3.3(a), we get

YT 9.l
Q

1-p/2 /2

N dt
<clyy | Yl S5 [ lerdi
Q n

Q Re#,

<cIyrd(l, a)l=r/2,
since bg isa (p, Q) atom. The bound for I, follows by summation on / € N,
For |a|] = n — 1 we use a slightly different argument. Let ./ (MQ",’,”) be the
family of all one-dimensional dyadic intervals which are maximal in MQ",’IY.
Each R € %, is contained in a unique Q x I with I € # (%) For
JeAd (MQ”"‘,Y) let

o — .
ag,5,1= Z €R;
RES |,

clearly a3 ; |0 x J|=VP+12)ay ;5 ll;" isa (p, Q x J) atom. Hence,

17 10)a8, 1,115 < (DPPIQ x JI' 722 Nag ;115

Ty RQJ
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Therefore,
Il < Y- (DpyP > 1o+ (Z |J|l_p/2”a5,1,l”12))
I€ENe ] J
p/2

< Z(D?’)”ZIQI“"/ZWQ"',’,yI"”/2 > lag I3

leNe Qo JeH (g

(since different J € .# (‘MQ"”,”) are disjoint)
p/2

< I OpIQPRY Y llag 13

I€Ne Q Jed ()
<e Y (Dpyddl, a)'rr2,

IENa

by Lemma 3.3, Lemma 2.1, and the definition of the atom bg .
Finally, we must estimate I, for y = {l1,...,n}. For S € /li”(Q), let

as = EuS(R,Q)=S €R . Then

Iy = Z Z TmeR

R m>Lsw?(R)

Z Z > >, Tnex

Y
uO(R) =S ms>sl_'sl( )+, ( Q) mn>Lnu0(R)

(since L,w?(R) = Lyu}(R))

= Z Z ZTL(S)+las-

le{n} Se4](Q) 120

Since |S|/2-1/P|jas||;'as isa (p, S) atom, we get
p

Y Tysyuas|| < cEjlS|'"=?/?|as|5,

[,>0 »

and, as before, by Holder’s inequality, Lemma 3.3, and Lemma 2.1,
p

S Tusas|| <eg? (S1s)' ™" (S hastp)”

SeA!(Q) ||1n>0 p
< EPd(l, {ny)'~"/2.

Thus

ILI5 < Y EPd(l, {n})'-7/2,
ie{n}’

concluding the proof of Proposition 3.2 and Theorem 3.1. O
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4. L[P-ESTIMATES

Recall the definition of Q% and P¢ from §1, and that of d(/, o) from §3.
We now state an improved version of Theorem 2, which is new even in the
classical one-parameter setting.

Theorem 4.1. Suppose T is a singular integral operator which is bounded on
L? with norm at most A, and let 1 < p < 2. Suppose that for all B, y C
{1,...,n} with 1 <|BUy|<n-1, Bny = (allowing the possibility that
B or y=2), forall me NP, [ € NPY? and some large N,
sup QZTEYON L @ P Nl < AP (n [T 2mN
keZBYY JEZBVY seB

for r=p and r = 2,~andsuppose that for all B,y with Uy ={1,..., n},
Bny=2, meNF, [ eN"Y and some large N,

~ sup Z Qi T, ~+,Qfﬁj+m ® Pgﬂ < B{F’V(r) H ymsN
kez(n....,n}fez{"" 1,>0 r—r SEB
for r=p and r=2. Let
C(ry=sup > AP7(nd(l, puy)'/=1/2
1<|puy|<n—1 JENAUY
sup Z Bﬂ }' [ {n} l/r—l/2
ﬂuy .. leN{"}'

If A+ C(2)+ C(p) < oo, then T is bounded on L”.

Remark. In the one-parameter case, the theorem reduces to the following state-
ment. Suppose 7T is an L2-bounded operator such that

Ssup[ Y 0uTup| <C
kez /€% || 10 iy
and
N
ZSUP ZQ}+k '+1Qj+m <C2m
kez /€2 ||1>0 ey

for m € N, some large N, for p <r <2. Then T is bounded on L?.
Proof. Let f € L?; then by the Calderén reproducing formula, we may write

(4.1) =2 % [wrlwes Hxeap

UEZ RER,

where v, R, , and Q, are defined as in §2, and where we additionally assume
[¥()t'dt=0,i=0,...,M,with M>N. For ueZ,te(Ry)",and R
running over the collection of all dyadic rectangles in R”, we consider vector-
valued functions F = {e ,} as members of one of the function spaces Y, with

norm
dt 121"
1/r—1/2 2
Q'Y (Z/lleﬁ,tllumn)m> ] )
R

1/r

IF|ly, = (;
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where |Q,| are fixed weights coming from a fixed f € L?. We shall apply
estimates for general F to the particular choice F(f) = {(y; * f) x;‘“} where

Xr.. = Xr,: (see §2) if R € %, and is zero otherwise. Then we may rewrite
(4.1) as

(42) =2 % [ur

HEZall R

and, by Lemma 2.2 we have

(4.3) IF (NN, < CUISNlp < ClISp-

For general F we consider the operator
dt
=ZZT[/'/”*(‘?£,!X§J), i
4 R 1 n

and set

dt

er(F) = /V/t * (eﬁ,txﬁ,l)ﬁ'
n

Hence, by (4.2), Tf = T(F(f)) . As in §3 we may decompose 7' by the formula

(44)  T(F)=V(F)+ Y (-~ 'ZZ Y Ta(ek(F)
I<lalsn R me>Lw(R,Q,)
S€Ea

where (R, Q,) is the (!~ " (R, Q,) of §3 and where

ZZ Y Tulek(F)).

mg<Ls;w(R, Q#)
s=1,..,n

For ieZ,let

so that V(F) =3 ;.2 V(Fa).

For je€Z*, | e N* (Ja| < n), let ?/j“ , be the family of all dyadic rectangles
R in R" with the property that if %, contains R, then v(R, ﬁ,,) < I,
s€a,and L,(ua(R,Q,)) =j (with u? asin§3). If BCa, f#2, icNF,
let %}, be the family of all dyadic R € #?, such that Ly(R) = Ilgj — i.
Similarly for j € 7, [ € N{"}' | let %, ; be the family of all dyadic rectangles
R in R" with the property that if %, contains R, then vs(R, Q w) < s,
1<s<n-1,and L(uo(R, Q,)) = j (with v =p{"" and ug = u({)l "},
If BC{l,...,n} and i € N8 let ?/jﬁll be the subfamily of rectangles R in
%j,i such that Lﬂ(R) =1Ilgj—1i.
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Setting er(F) =3, ex(F) (only one term in the sum is nonzero) we consider
the operators

o']‘."l(F)= Z er(F), U;’,’f](F)_ Z er(F),

Re#y, Re? !
T, f(F) = Z er(F), Tfyiyl-(F)z Z er(F).
ReZ; Re#*®

Jii N
With this notation, we may, as in §3, rewrite (4.4) as

T(F)-V(F)= > (=D ST

1<]aj<n—1 IENe jEZN

DN NS Tyt (F

IleN{n} JEZ" 1,>0

(4.5)

We shall need some estimates for the operators ¢ and 7.

Lemma 4.2, Let 1 <r<2.
1) (X jeze ||0°1(F)|| Wr<ed(l, a)/r=12||Flly, .
(i) f #BCa, i,meNF,

1/r
YN o b | < CT[27m+Md(l, o) =12\ F )y,
JEZ SER

(iii) (5jezn I, J(F)NNYT < cd(l, {n}) /=12 F |y,

(iv) If B#@, i,meNF,

I/r
(Z||Q,,,,,+m o (F >||;> < CT 2 m+™d(1, {n})"/="2||Fly,.

JEZ" SER

Proof. We prove only (ii) in the case that o — f # @ ; all the other cases may
be handled in the same way. Let W/ = y? « g /' then clearly for f; ~ 2/~
s € B, the L? operator norm of Qf .. W/ is dominated by [[,c,2-MIms+il.
For f=mgt, let

ngj+m

Re®*:f
Jaid

z / '/’zl’gl *p [er Xk ]_dt/ .
reri#Y S Hts
s¢B

Hence, considering the case r = 2 of (ii),

1/2
o di
(Z||Q,,,,,+,,,,,,<F)||> <Z / [ g H e o
2 o
SER

(by the Cauchy-Schwarz inequality), and, by using Lemma 2.1 with respect to
the B’ variables, we can dominate this by ], 2~ M +5)||F|ly, .
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Now we consider the case » = 1 of (ii); once this is established the general
case follows by interpolation. For a dyadic J in R* with L,(J) = j and
fe(R,)?, we set

/

BT _ u dt
a.(;,i,l,y - Z: /Wt’ *g [eR,IX;;,t]W
RE?/",”,nﬂ’ s

! s¢p

Mu(R,Q,)=J

Notice that a? f,'” is supported in Jx;ffj,(ﬁ#),where MJGI is the %;t,l{l,...,n}

of Lemma 3.3. Hence

Z ||Q7tpj+m J, l 1 )”1

JEZ~
dr
<CE Y [ 10 Wt
S

HEZ J dyadlc ts~
in R* sep

1/2

i a dr
_CZZH2(MS+&)M|JXM ()11 /”1,1311#2

u J sep
seﬂ
12

1/2
SER Hs

sEB
(by the strong maximal theorem and two applications of Cauchy-Schwarz)

172
dt
< CT[27tm+M § 19,1 2d(l, o) ( /II eR, ,Ilz )
ReZ,

SEPR U
(by Lemmas 2.1 and 3.3)
= C[[27"+9Md(l, @) Fly,. O
SEP
Next we shall prove an estimate for T(F ) — V(F) which will follow from
the case r = p of the following lemma.
Lemma 4.3. Let | <p<2andre{2,p}.
(1) If 1 <|a|<n-1 and | € N*,

Y Te08 (F)| <C sup AP'(d(l, o) 2| F ||y,

ic€Zo BUy=a
Jez r BNy=02

(ii) If [ € N{nY',

2> Tty (B)) <€ swp  BPI(NdU (m) " RIE
JEZ" 1,>0 , Buy={1,...,n}
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Proof. As in [1 and 23], we combine Littlewood-Paley theory and Calderon-
Zygmund theory. Thus

Z T 495, (B < Z Z Q1+ij+k (F)
JEZe JEZ~ ’
1/r
CZ (Z 1954 174107 (F )Ilﬁ)
JEZ

by Littlewood-Paley theory and the embedding /" C /2. Using the identity
=% > 08 0P, onk

BCa meNs
(valid for all j), we see this expression can in turn be dominated by

1/r
C Z Z z (Z ”Q;'l-}-kJ—'ja-{-]Qnﬂj-pm@szj”r I‘”Qnﬂj-}.m J, [( )“;)

BUy=a meN# k \j€Z*
Bny=92
1/r
<Cy A7 [N ZIIQ,,,,H,, o ()
BUY meNs sEP

(by the hypothesis of Theorem 4.1)

1/r
<cy ¥ S A2 (ZMQW ol >||,)

BUY meNB jeNF SEB
<y > Al [N MM, )Ry,
BUY m,icNB SEB

by Lemma 4.2. Since we have chosen M to be greater than N, we may sum
up and obtain part (i). Part (ii) is proved in a similar way. O

We have shown that ||T(F) — V(F)|l, < CC(p)IIF|ly, , and we now consider
V(F) and show
(4.6) V()N < Cl4+ CIF]ly,

for 1 <r < 2. Once we have done this, we are finished, since then
IT Al = ITE < WTES) = VEN M + 1V (E)p
<CA+C2)+ CEDIF Ny,
<CA+C2)+C)ISIl, by (4.3).
We establish (4.6) also by interpolation. For r = 2 we have

IV (F)ll2 < IT(F)ll2 + IV(T) = T(F)l2

dt
ZZ/‘/’t*eﬁ,,Xﬁ,:ﬁ
4 R 1 n

<A

+CC)F]y,
2

(by assumption and Lemma 4.3 in the case r = 2)
< C[A+ C)]IIF]ly, (by Plancherel’s theorem).
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Now let r =1 and write V/(F) =} ., V(F,), observing that V(F,) is sup-
ported in Q""" Hence,

IVEN < C Y IV (F)l,
u

<CY Q"4+ COIFully, (by (4.7))
I

S CIA+ CIIFy, »
which establishes (4.6), and hence Theorem 4.1. O

5. FOURIER MULTIPLIERS AND PSEUDODIFFERENTIAL OPERATORS

In this section we give some applications of Theorems 1.1 and 1.2 and prove
HP- and LP-results for convolution and pseudodifferential operators. The com-
putations needed to check the hypotheses of Theorems 1.1 and 1.2 are easy
modifications of those carried out in [1 and 2] in the one-parameter case; so we
will be very concise and omit most of the details.

We need some notation: M,, 1 < p < oo, denotes the standard space of
Fourier multipliers m in L?. The norm is given by the norm of the operator
T where (Tf)~(&) = m(&)f(¢). Similarly we define for a C {1,..., n} the
space M, consisting of those m such that the multiplier transformation T
is bounded on the mixed norm space L!'(R*, L2(R*')). (Note that by [13],
M, C Mp,.) The dyadic decomposition ®; (or ®f) is used to express some
Lipschitz conditions with respect to multiplier norms.

Proposition 5.1. Suppose that m is a bounded function, |m|. < A, and that
for some 6 >0,

n
(5.1) sup [[[¢m(t)]*Dyllar, < AJ[27%°
(ER,) 1
and that for each a C {1, ..., n}
(5.2) sup |6 m(t%:)] xa B [lare, < A [ 27,
12€(R ) s€a

Then we have the inequality

X 1
W ' Imflllee < CA| e for 3o <p<lL

Proof. 1t suffices to show that T : H? — L? since H” may be characterized as
a space of distributions whose iterated Hilbert transforms are in L? (see [11,
15]).

In order to keep the notation simple, we assume n = 2 and the general case
is proved in the same way. Then we have to check the four hypotheses of the
theorem. We only examine the hypothesis involving mixed norms in L?(L2);
the other inequalities are obtained in the same manner.

Let a be an L2-valued rectangle atom. We may consider a as a function
supported in I x R, where I = {x;, a < x; < b}. By translation and dila-
tion invariance, we may assume that / = [—1, 1]. Then we have to show the
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inequality
(5.3) T} allpo(r2y < €27%h
for some ¢ > 0. In this proof, T1| denotes the operator with kernel in
mY(x —y)®} ((x, —y1)/2!) (we shall write /, k, i instead of [, k;, i;). Since
T,‘a is supported in the strip {(x, x2), |x;| < 2/*'}, we have by Holder’s
inequality,

1T} all o2y < Czl(l_p)||7}la||i:(u)-
Using the dyadic decomposition (Q}) on the multiplier side with respect to the
&,-variable, we can write

Tla=Y 317001110/ Qla

I€EZ k€L

and if ¢ = ¢¢ and
maa(&r, &) = (2'E)) / 2102 (& - y))mi, &)(2K ) dyn

we get
p

1T} all o2y < 2/0P) lzz Il 119} @ll 1 12y

i kez
If i >0, the expression Q!a is small because the rectangles have cancellation
in the x;-direction: using Taylor’s formula, we obtain

(5.4) Q] allLi 2 < cmin(1, 27
where M(p) > 1 - Il, . By dilation invariance, we have to examine
i (15 &) = mia (27761, &)
= 9(&) [ 2B - 2 drm2 Ry, &) dn.
The essential terms occur if i is close to k ; we use the estimate

I lla, < NS5 ag, llgm (275 -) x @yl as,,
< cmin{1, 2k=1%}

(5.5)

(5.6)

(see also the Remark below). From (5.5) it is easy to check that for every j,
N > 0, we have the estimates

107 M) < ¢ 2!~ *min(1, 270=9N) if k > i+ 5,
8! M)l < ¢; ymin(1, 2-(=kIN) ifk<i->5.
& J>

Recalling that 1,,; has compact support in {% < || <4}, we obtain
1/2

lmicillmg,, < ngp [/{ M (&1, &)+ |0g, mi (&1, &)* dEy
2 1

< { en2! "% min(1, 2-U=-ON) ifk>i+5,
~ | ey min(1, 2-U=KIN) if k <i->5.

(5.7)
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Putting the estimates (5.4), (5.6), and (5.7) together, we get

p
1T} all, < c2/t-P (Z > 2% min(1, 2-“”(")))

i lk—il<5

p
+c2/-p) (Z > ok min(l,z—"“-fw)min(l,2-"M<P>))

i k>i+5

p
+c2!(=p) (Z > min(1, 2-</-">N)min(1,2-"M(P>))

i k<i-5

and since > 1 -1 M(p)>1-1 we getthe bound (5.3).

Similarly one can do the estlmates requlred for the rectangle atoms. For these
estimates we use (5.1) and the restriction theorem of de Leeuw ([18]; see also
Jodeit [14]). O

Remark. The condition (5.1) is equivalent to the condition

n
sup AL A gm (el < e[ 1hsl*

te€(R,) s=1

all h € R", some ¢ > 0, where A[s] denotes the difference operator A[S] f(x)=
f(x + hses) — f(x) in the xs-dlrectlon A similar remark applies to (5 2) This
observation can be used to show that the hypotheses of Proposition 5.1 are really
independent of the choice of ¢ (see [2, 23] for similar arguments).

Proposition 5.1 implies as a corollary an H?-version of the Hormander mul-
tiplier theorem in product spaces. The same result was proved by R. Fefferman
and K. C. Lin [9] in the two-parameter case, using R. Fefferman’s [7] result
on rectangle atoms. For p = 1 the corollary already follows from the BMO-
estimates for convolution operators proved by H. Lin [19].

Let us define the multiparameter Sobolev-space %’ by

lgller = ”%' LH(I + |cs|2>”2g}

=1

p

Then we have

Corollary 5.2 (Hérmander-Marcinkiewicz type multiplier theorem). Suppose
that for y>——- O<p<l1,

sup ”¢m(t|" ey tn')”_{;Z S A.
tE(RL)"

Let (Tf)~(&) = m(&)f(&). Then |Tfllur < cAllflue.
Proof. Suppose again n = 2 for simplicity. For fixed 1,, let I?,, = ¢om(t,-).
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We apply the Cauchy-Schwarz inequality and Plancherel’s theorem to get

1K, @} * &llLi(r2)

<[ L(f
o (]]
= | ( i |1? B} (&1, [ gl dy,

A 12
< c2hr2 sup( A Ky, * @) (&1, m2)? df])
1

(! | o)

R 1/2
<2l SUDSUD< ; |pm(t-, t2°) *‘D[l, €1, '71)|2df|) gl 2y
1

L m

/ K, @] (x —y)g(1, y2) dys

) 1/2
dxz> dx;dy,

1/2
dx) dy,

) 1/2
df) dy,

/ Ky @) (x — »)g(y) dys
Y2

/ g(y)e? 1 dy,

Similarly one may prove
R 1/2
K, < 22282 [im By de)

From these estimates, the corollary follows by Proposition 5.1. O

We now give a generalization of Proposition 5.1 for pseudodifferential oper-
ators

Tf=o(x,D)f = / o(x, &) F(E)e2E dé.

Let us first introduce some notation. In order to keep this simple, we restrict
ourselves to the two-parameter case. Let X, be the space of symbols o such
that o(-, D) is bounded in L?. The norm in this space is the operator-norm of
a(-, D). Let X,, be the space of symbols ¢ such that o(-, D) is bounded on
LP(L?), where the LP-norm is taken with respect to the x,-variable. Further, set
lollx, = llzollx, where t5(x1, X2, &1, &) = a(x2, x1, &2, &1). (Notice that
X, is a space of operators in L?(L?), not in L2(L?)!) Further, we introduce
the localized and dilated symbols

&) (x, &) =M(E)a (2 xy, x2, 274, &),
G2(x, &) = ¢ ¥(&)a(x1, 20xy, &1, 2708,
Gr(x, &) = ¢p(EN)P(E)a(2hxy, 2oxy, 27RE, 27hgy).

As in Proposition 5.1, Lipschitz conditions with respect to the x- and ¢&-
variables are expressed by certain decay conditions of the norms |gj *; <I>,||
||(I>1 *y O¢|l , etc. as [}, [, = oo. (For a detailed discussion, see [2, §3].)
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Proposition 5.3. (a) Suppose that ¢ >0 and T = a(-, D) satisfies the following

conditions:
(5.8) lollx, < 4,
(5.9) s}:puak'l xg, D} |lx,, < 427,
1
(5.10) sup |2 *¢, P2 ||x,, < A2,
ky
(5.11) sup |Gy * @yf|x, < 427¢h27¢hk
ki, ka
(5.12) sup su? 6k, (-5 x2, * E)lxym) < 4,
1 X2,62
(5.13) sup Sulg |Gk, *e, q)[ (-, x2, -, E)llxymwy < 42720,
1 X2,62
(5.14) sup sup ||y, (x1, +, &1, )llxm < 4,
ky x1,¢
(5.15) sgp su? |G, *e, (D,z(x, & nm) < A2~k
2 Xi,61
(5.16) suplo(x, §)| < 4.
x,¢

Then T is bounded from HP to L?, 1/(1+¢) < p <1, the operator norm
being bounded by c,A .

(b) Suppose that (5.8)-(5.16) hold with X, X5, X2 replacedby X, Xoo3,
Xyeo and suppose that furthermore

(5.17)  sup sup ||(I)1 %, O * <I>, (s X2, E)llxm) < 427027k

x2,&2

(5.18)  supsup 1B}, %5, &1+ B (x1, -5 &1, llxoomy < 42760270,
(5.19) sup sup B %, 6x(x, &)| < A2~€h2~eh
(5.20) S}cl,p:.u?. ||¢1 *x, Uk, (x15 5 &1y llxm) < 427,
(5.21) sup sup|<1>, *x, G (X, &) < 427

1 x,¢
(5.22) S}(lszszug ||(D1 *x sz( , X2, 05 &)l x(my < A272
(5.23) s}:psup|<p, *x, O (X, &) < A27°k

) x

Then T* is bounded from HP to LP, 1/(1 +¢€) < p <1, the operator norm
only depending on A. 0O

We will not give the proof of Proposition 5.3 here. The result follows by
straightforward modifications of computations in [1, §5] and [2, §4]. The hy-
potheses are more complicated than in the multiplier result because there is no
version of the de Leeuw restriction theorem on multipliers available in the con-
text of the pseudodifferential operators. Furthermore it is usually nontrivial to
verify the L2-boundedness (5.8). In order to do this one may use a product ver-
sion of the T1-theorem of David and Journé, proved by Journé [15], or certain
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product versions of the Calderdn-Vaillancourt theorems, proved in [2]. For the
HP-boundedness we state a corollary generalizing the product S?J-theorem. For
simplicity we shall use the abbreviation ¢ to indicate a (fractional) derivative
in the x-variable. Since we do not prove endpoint results, the reader may re-
place this by a Lipschitz condition as in Proposition 5.2. The corollary extends
certain previously known LP-results [25, 21, 2] to the Hardy-space setting.

Corollary 5.4. Suppose that 0<p <1, y > z_l) and for some € >0,

(5.24) Sup sup Gk (x, g < o0,

1/2
(5.25) (Z SUp sup |27, 0y (x -)Ili-en) <,
ko ke X /

1/2
(5.26) (Z sup sup |25 ||_$f,) < 00,

1/2
(5.27) (Zsup||98.@8 ,-)||§Z/.) < .

Then T = o(-, D) is bounded from HP to LP. If fZ;‘ is replaced by ,.?yz_l/z
and if &> 5 — 1 then T* is bounded from HP to LP. O

The proof of Corollary 5.4 consists of verifying the conditions in Proposition
5.3. This can be done by slightly modifying arguments in Coifman and Meyer
[5, p. 14] and [2, §§3.2 and 3.3]. We omit the details.

The _‘Zyl result for 7" does not require Theorem 1 and has already been
deduced from Journé’s and Pipher’s theorems [15 and 22]. However the 57,2
result for T* does require Theorem 1. Corollary 5.4 contains product space ver-
sions of the S?s theorems. In fact, suppose ¢ has support in {|&;| > 4, |&| >

4. If
o\ [0\
() () oo
for some 0 < J <1, we say then that ¢ is in the product S?a class. It is easy
to see that such a o satisfies

< Ca B |él |§ﬂl - |§2|6ﬂ2—ag

SUp | D%, 2%, 61 (x )|y < C27RUI0RHal1 =00
X

etc. and hence, in the case 0 < J < 1, satisfies the hypotheses of Corollary 5.4
forall y > 0.

We remark that every Lipschitz type condition in Propositions 5.1 and 5.3
may be replaced by a Dini-type condition (see [25] for certain results of this
nature for L?, 1 < p < o0).

We now turn to LP-results, 1 < p < 2. We restrict ourselves to Fourier mul-
tipliers, although similar results may be clearly obtained for pseudodifferential
operators in analogy with those in [2].
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Proposition 5.5. Let 1 < p < 2 and suppose that for all o, 1 < |a| < n, and
some 6 >0, we have

(5.28) sup [ @2 m(t*:) %o Bfag, < A[[274.

e, o

If (T) (&) =m(@&)f (&), then |Tfl, < CA|fll,. O

The proof consists of verifying the hypotheses of Theorem 2 or Theorem
4.1. This is done exactly as in [1, §§3 and 5], to which we refer the interested
reader for details. Finally, we observe that Theorem B of the Introduction is an
immediate consequence of Proposition 5.5, since the hypotheses of Theorem B
for a given p imply, by interpolation, those of Proposition 5.5 for each r with
p<r<?2.

6. A COUNTEREXAMPLE

We now wish to show that the “semilocal” assumptions in Propositions 5.1
and 5.2 cannot be replaced by purely “local” ones unless much more smoothness
is assumed.

Proposition 6.1. For each 1 < p <2 there is a bounded function m such that
(i) supy, 50 9m (11, t2)llas, < o0,
(ll) sup;, >0 llgm(ti-, t22)la;, <00,
(i) m ¢ M,.

Proof. We define

[e.]

m(&, &) = Z o2 fgz)eijéljl/Z—l/p

where 6 is supported in {|x;| < Tﬁ} and ¢ is supported in {‘126 <& < }—(')}. It
is easy to see that m satisfies (i) and (ii). By a result of Herz and Riviére [13], it
suffices to show that T associated to m is not a bounded operator on the mixed
norm space LP(L?). Choose a positive sequence a; with (3|a; 172 <1

but Y a?j?21 = oo, and define f(&, &) = 6(&) T, $(277¢2)a;279/2. Then

fe LP(L2) with norm < ¢(3"|aj|*)!/? < C. Further, by Plancherel’s theorem
with respect to x, and the fact that

{0 x6(-—J)}jez
have disjoint supports, we obtain

2 p/2

/ S04 0(xs — B IEN2 a2 dey | di
&

J

>3 [10460q - )P dxal P . O
7

“Tf"I[J_p(LZ) = /

X)

We conclude with two remarks. Firstly, condition (ii) of Proposition 6.1

is sharp in the sense that sup, o ll¢m(ti-, t2°)l|le < 0o for 1 = | — 3],

y > |3 — 4| implies m € M,, and of course we have | - |z < c|| - [ls;, for
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ions with compact support. Secondly, Proposition 5.1 and the proof of

Proposition 6.1 suggest the question of whether one can relax the M, hypothe-
ses on dyadic strips in Proposition 5.5 to M, conditions on dyadic rectangles
and M), conditions on the strips. This seems to be an open problem.
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