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Hp- AND L"-VARIANTS OF MULTIPARAMETER
CALDERÓN-ZYGMUND THEORY

ANTHONY CARBERY AND ANDREAS SEEGER

Abstract. We consider Calderón-Zygmund operators on product domains. Un-

der certain weak conditions on the kernel a singular integral operator can be

proved to be bounded on Hp(R x R x ■ ■ ■ x R), 0 < p < 1 , if its behaviour on

L2 and on certain scalar-valued and vector-valued rectangle atoms is known.

Another result concerns an extension of the authors' results on /Avariants of

Calderón-Zygmund theory [1, 23] to the product-domain-setting. As an ap-

plication, one obtains estimates for Fourier multipliers and pseudo-differential

operators.

1. Introduction

The first purpose of this paper is to extend to the multiparameter setting the

results obtained by the authors in [1, 2, and 23] concerning the classical (one-

parameter) Calderón-Zygmund theory of Lp spaces. One of the results of [ 1

and 23] may be stated as follows. Let <I> be a smooth bump function on 1

supported in [1, 4] such that ¿Zm^(\t\/2m) = 1 on E\{0}.

Theorem A. Suppose m is a (bounded) function on R" such that if m¡(cl) =

m(2'£)<I>(|£|), we have

sup(||m/||p_p + Hw/HaJ <oc

for some 1 < p < 2 and some e > 0. Then m is a Fourier multiplier of Lr(R")

for p < r < p'.

(Here, || • \\p-p is the LP multiplier norm and A£ is the space of Lip-

schitz continuous functions of order s .) Theorem A strengthens the classical

Hörmander multiplier theorem and gives a good "almost orthogonality" crite-

rion for Fourier multipliers in the sense that LP boundedness of each "dyadic

piece" m¡ implies U boundedness of the original multiplier m provided we

have a tiny amount of smoothness. (This smoothness cannot be entirely dis-

pensed with because of a classical counterexample of Littman, McCarthy and

Rivière [20].) Thus one of our aims is to prove the analogue of Theorem A when

the one-parameter family of dilations ¿j i-» 2'c; is replaced by the «-parameter

family (¿ji,... , <*„) ■-> (2'1cji, ... , 2'"Cj„). To give a taste of what is to come,

we state (for simplicity only) a result in K2.
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Theorem B. Suppose m is a function on R2 such that if

ihm = m(ñi, Í2WIÍ1I),    mj(Q = w(í,, 2>&)*(|&|),
and

*v(í) = w(2<€1,2>{2)*(|íi|)0(|&|),
we have

sup||w,-||p_p < 00,        sup||/ñ,-||p_p < 00,
iez jez

and
sup HwíjIIai < 00.
i, jez

Then m is a Fourier multiplier of Lr(R2) for p < r < p'.

(Here again, |H|p_p is the LP(R2) multiplier norm and Ag is the 2-parameter

Lipschitz space with differences taken in both variables.)

The second purpose of the paper is to obtain a strengthened Hp-theory (0 <

p < 1) of product domain Calderón-Zygmund singular integrals Much work

on this topic has been done recently by Journé [15, 16, 17], R. Fefferman [6,

7], Soria [24], and Pipher [22], with Journé's work being especially important.

The moral of R. Fefferman's point of view [7] is that despite the fact that Hp

cannot be characterized by "rectangle atoms," nevertheless a linear operator

which "behaves well" with respect to rectangle atoms will be bounded from Hp

to LP , at least in the 2-parameter setting. Journé [ 17] has shown that in three

parameters, this philosophy breaks down, but, however, remains valid (see also

H. Lin [19]) for convolution operators. Perhaps the principal achievement of

this paper is to show that with a different interpretation of rectangle atoms—

indeed as vector-valued rectangle atoms—the Fefferman philosophy remains
valid with any number of parameters. We stress at this point that the analysis

of this paper still relies heavily on Journé's geometric ideas contained in [15].

Let us make things a little more precise. The //''-space on the product do-

main RxRx---xR = R" consists of those tempered distributions / whose

multiparameter area integral S(f) is in LP . Here,

Sf(x)=([[     \y,t*f(y)\2dy-^-t
\J JTix) tx---t,

where Y(x) is the cone {(y, t) £ R" x ffi£ | \y,: - x¡\ < t,■■, i = 1, ... , n} , and

where \p is a C°° function of compact support in [-\, \] satisfying

f W(t)p(t)dt = 0

for all polynomials p of degree < M for sufficiently large M. (If 0 < p < 1,

we require M > n/p.) Of course a similar definition could have been made

for the product space Rd' x ■ ■■ x Rd*, but for simplicity only we assume each

dj = I. Also, this definition of S(f) and Hp makes sense for / taking values

in a Hubert space H, and all statements we shall make remain valid in this

setting.
We now introduce vector-valued rectangle atoms.

■ /-
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Definition. A (p, R) rectangle atom on Rm with values in a Hubert space H is

a function a : Rm -* H which is supported on some rectangle R in Rm (here

and always a rectangle means a rectangle with sides parallel to the coordinate

axes) which satisfies

(i) ¡R\a(x)\2Hdx<\R\x-2'p;

(ii) fRa(x\, ... , Xj, ... , xm)p(xj)dxj = 0 for almost all (xx, ... , X/_.,
Xj+i, ... , xm), j = I,... , m , and for all polynomials p of degree < M,

where M is sufficiently large (we require M > n/p).

It is easy to see that every (p, R) rectangle atom is in Hp(Rm , H) ; see [4].

We shall refer to R as the rectangle associated to a. We use the letter m

instead of n in the above definition because we shall be considering rectangle

atoms living on a factor subspace Rm of E" with values in L2(E"_m).

To be more systematic, given a subset a ç {1,2,...,«}, we denote by

Ra the subspace of R" spanned by the unit coordinate vectors es, s £ a.

Similarly we define R" , Na , Za . We shall denote by a' the complement of a

in {I, ... ,n} so that R" = Ra © Ra' for all a . Yla : R" -> Ra is the natural

projection; when a is a singleton, say a = {s} , we shall often write ns instead

of n^}. If R is a dyadic rectangle in Ra , we denote by 2Ls(R) the sidelength

of the projection YISR and by La(R) the vector in Za with components LS(R),

s £a.

Now consider a singular integral operator with kernel K(x, y) so that

Tf(x) = j K(x,y)f(y)dy.

For a C {I, ... , n} and m £ Za , let T^ be the operator with kernel

K(x, y) J] <D (~^) = K(x, y)<Pam(x - y)    (with X, y £ Ra).

When a = {I, ... , n} , T° will be denoted by Tm , and La(R) by L(R).
We are now ready to state our first result.

Theorem 1. Let T be a singular integral operator which is bounded on L2(R").

Let 0 < p < 1 and e > 0. Suppose that for all a ç {1,...,«}, 1 < \a\ < n-1,
for all (p, R) L2(Ra')-valued rectangle atoms a associated to some rectangle

R in Ra, for all la £ NQ we have

s€a

Suppose furthermore that for all C-valued (p, S) rectangle atoms b associated

to some rectangle S in R" , for all I £ N" and for all r = 1, ... , n, we have

Yl TLiS)+lrl
lr>0

<cl[[2-£l°

Then T is bounded from Hp to LP .

Some remarks concerning Theorem 1 are in order.

Remark 1. Results for Calderón-Zygmund operators on Hp- and BMO-spaces

in the multiparameter (n > 3) case have been obtained by Journé [15] and
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Pipher [22]. They considered classes of Calderón-Zygmund operators which

are defined by an iteration based on an induction over the dimension. Those

iterated conditions are not appropriate in the Hilbert-space valued setting, and

do not contain, for example, the standard Hörmander-Marcinkiewicz multiplier

theorem (Corollary 5.2). In contrast, Theorem 1 immediately extends to the

vector-valued setting, with rectangle atoms in Hp(Rn , H0) and Hp(Rm , L2(H0))

and operator-valued kernels with values in ^f(H0, Hx).

We should like to remark that, in the special case of BMO-estimates, a result

like Theorem 1 could already have been obtained by the technique that Journé

used to prove LP -boundedness (p > 2) for the Littlewood-Paley-function as-

sociated to arbitrary intervals.

Remark 2. Theorem 1, as stated, is weaker in the case n = 2 than Fefferman's

result [7] because we require the notion of vector-valued atoms. However there

is a sharper version (see Theorem 3.1 below) which is very close to Fefferman's

theorem. In fact, it requires the notion of L2(Ra')-valued atoms in Ra only

for those a with |q| < n - 2. This illustrates the difference between the geo-

metrically simple case n = 2 and the higher-parameter case.

Complementary to the Hp theory is an Lp theory, 1 < p < 2, which even-

tually yields results such as Theorem B above. With this in mind, we introduce

a multiparameter Littlewood-Paley decomposition. Let 0 be a smooth function

such that 4>2 = O. For a ç {1, ... , «} and j £ Za we define

(Qjfr(t) = l[(f>(2js\c\)f(t)

and

(pj-fr(Z) = n
s£a

Then we have

s€a

i-5>2(2^|c;i)
ks<js

M).

Theorem 2. Suppose that T is an L2 bounded singular integral operator. Sup-

pose that for all ß, y ç {1, ... , n} with ßr\y = 4>, ßUy f tp, forall l £ NßUy,
all m £ N^ , and that for some e > 0 and some large N we have

E   ."f \\Q^T?yQeßJ+m®PlJr_r<c J]  2-"* lp""",
ktzßuy Jezßu' seßuy        seß

for r = p and for r = 2 (with the obvious interpretation if ß or y = 0). Then

T is bounded on LP .

Section 2 of this paper contains the preliminaries from the Chang-Fefferman

Hardy space theory which we need and also the relevant geometric lemma (a

variant of Journé's). Sharper versions of Theorems 1 and 2 are proved in §§3

and 4 respectively. Section 5 contains the applications to Fourier multipliers and

pseudodifferential operators. Finally, in §6, an example is presented to show that

one cannot replace "strip-hypotheses" in multiparameter multiplier theorems by

purely local hypotheses. That is, we cannot replace the first two hypotheses of

Theorem B by sup, >yez ||m,7||p_p < oc and still have a true theorem. In fact,
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if we are to insist on local hypotheses, the standard Hörmander-Marcinkiewicz

theorem cannot be essentially improved upon.

2. Preliminaries from Hardy-space theory and geometry

In this section we recall some definitions and facts about the Chang-Fefferman

atomic decomposition of Hp functions and prove a variant of Journé's covering

lemma.

We first need some notation. Given a dyadic rectangle R in R" and a ç

{1, ... , n} , we associate a rectangle R" in R" xR^ by defining R+ = {(x, t)\x

£ R, ï ~ 2L°W), where t ~ 2L°W means 2L^ < ts < 2L^+X for all

s £ a, (t = (ts)sea). We also set xR j(x) = Xr°(x, t) and drop the a when

o = {l,..., n}.
The following kind of estimate occurs in [3] and is proved by a duality ar-

gument and Plancherel's theorem. Let *F be a C°° even function of compact

support in [-i , I] such that / \%)|2 dt/t = 1, and let ,??({) = Use« %&) -

Lemma 2.1 [3]. Let M be a collection of distinct dyadic rectangles in Rn . Sup-

pose that for each R £ M, for each t £ R\ , we have a function eRyt '■ Rn —* C.

Then
2

¿2 /   Vt*(eR,tXR,th—r    -czZ      IIe«A\
dt

tl ■ ■ ■ tn
lRe^,"K+ "   2        R£&'

Moreover, if a ç {I, ...,«} and ¿% is a collection of distinct dyadic rectan-

gles in Rn with common La>, and for each R £ 3Î, t £ 1" , we have a function

eRJ:Rn ->C, then

¿2  I   ¥¡-*a(eRjXaRj)^-
R&XJK [[t*

i€a

WAl
dt

(where *a denotes convolution only in the a-variables).   D

For p £ Z, let £lM = {x\Sf(x) > 2"} and let ^ be the collection of all

dyadic rectangles R in R" satisfying |RnQ^| > ^|R|,but IRnf^+il < ±|R|.
Then we have

Lemma 2.2 [3].

R€&u

lVt*f)XR,t]
dtx ■ - - dtn

h"tn
<c22"|£2|l|.    □

These lemmas were used to derive an atomic decomposition for Hx func-

tions. We give a definition of an atom associated to an open set similar to the

one which may be found in [3].

Definition. Let Q ç 1" be an open set of finite measure. A function bçi is

called a (p, Q) atom (associated to Q.) if bQ can be decomposed as bçi =

Z)r J ¥t* eR,tdt/ n"=i ts where (x, t) >-* eR(x, t) is supported in R+ and R

runs over a collection of dyadic rectangles supported in Q, and where

< \Çl\x'2'x'p.
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By Lemma 2.1, a (p, Cl) atom bçi satisfies ||¿n||2 < c\il\x/2~x/p ; hence any

(p - R) atom for R a rectangle is also a (p, R) rectangle atom.

Now any reasonable function has an atomic decomposition via the Calderón

reproducing formula. That is, / = E/iez an„ where

a^= ¿2   / Vt*[(Vft*f)XR,i\-—-
R€^, J tX'"tn

(for suitably chosen y/) and by Lemma 2.2 the functions [c\ilfx/p2li]~xacii¡ are

(p, Uß) atoms associated to the open set Uß = {x\Mxn (x) > \}, M denoting

the strong maximal operator. (Note that by the strong maximal theorem, \Uß\ <

c\aM\.)
If an operator T satisfies ||77jq||p < c for all atoms bn , then, for 0 < p < 1,

it follows that ||r/||g < EIITaß\\$ < c £ \aß\2»r < c\\Sf\\p = c\\f\\p , and so T
is bounded from Hp into Lp .

For future use, we set, in accordance with the above discussion,

eR,, = (>p,*f)XR,t,       eR = / ipt*eR,t---
f tx---tn

so that the atom ba can be decomposed as the sum of elementary particles

T,eR-
We now turn to geometry and a variant of Journé's lemma.

Let fiel" be a bounded open set, 31 a collection of dyadic rectangles

supported in Q. We define Q = (x\Mxa(x) > 10~"} and inductively, Ùf">> =

(Q^-1))-, where QW = Q. For R = h x 72 x ••• x /„ eáP, let h = h(R, Q)
be the largest dyadic interval containing Ix such that

\(îx x 72 x • • • x /„) n Q| > \\îi x 72 x • • • x I„\.

Notice that Ix x I2 x • • • x /„ ç Q. Inductively let Is = IS(R, il) be the largest

dyadic interval containing Is such that

|(/i x/2 x ••• xls xls+x x •••x/„)nQ(i"l)| > \\IX xl2x.xlsxls+ix-xl„\,

and notice that Ix x ■ ■ ■ x Is x Is+X x • • • x /„ ç Q(s) (which allows Is+X to be

defined). Further, let ks(R, il) = Ls(îs) - LS(IS).

Given the subset {1,... , k} of {1, ... , «}, we write RÍ1 ■•••■*> as R['-fcl,

Ri1--.*}' as R[*+'-«l, and similarly Zl1—*1, Nl1-*!. If now meil'"'*l and

Q is dyadic in Ri1'"*!, we let 3)q"^ be the union of all dyadic rectangles

5 in R[*+'-"] such that ßx5ef and such that k,(Q x S, il) = mi,

i = l,...,k. Further, for / £ N^"*!, let áj1;/*1 = IL</^¿U*1 (where

m < / means m, < I,•, i = I, ... ,k). (Both &¡¿''mk] and &[¿',k] depend of

course on il and «^ .)

Lemma 2.3. For k = 1, 2, ... , n - 1 a«rf / e N'1-*],

5=1

where the sum is extended over the dyadic Q in R[l "kx.
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Proof. First let k = 1, / e N. For a dyadic interval / of R1, let EfCl) he the
union of all dyadic S in Rt2-""1 such that / x S ç Q. Let /(/) be the unique

dyadic interval containing / such that Lx(I(l)) = L¡(I) + l. We first claim that

(2.1) 3S)X\ ç [£/(ß)\^/(/)(n)]~.

To see this, let y £ 3§\x\ and let S he a dyadic rectangle in Rt2 "J, y £ S,

with I xS £3ê and »,'(/ x S) < I. Then, since /(/) x Em(Cl) Ç Cl,

|(/(/) x 5) n (/(/) x %)(ß))| < |(/(/) x 5) n Q| < i|/(0 x s\,

(the second inequality holding since /(/) is too big to be IX(I xS, Q)). Hence,

\SnEm(il)\ < i|Sj and consequently (since Sl)Em ç £,), |(A/\A/(/))n5'| >

j\S\, which shows that M(xE,\E,m)(y) > \ > yg- , establishing (2.1). (A7 here

and ~ of (2.1) refer to the strong maximal function in R[2 "nX.) We observe

that the sets / x (E¡\E¡^) are disjoint if / runs over all dyadic intervals with

sidelength Lx (I) = ml + i, for i fixed, for variable m £ Z (since if Ix c I2

and /) and h have lengths of the form 2ml, m £ Z, then /[ (/) ç I2 , and so

(Ei^Ej^i)) n (A/2\/i/2(/)) C Ejf^Ej^i) = 0). By the strong maximal theorem we
have

i-i

^CEE     E     \I*{Ei\Em)\
(=0 m€Z /

L(/)=m/+i

<C/|Q|,

thus finishing the proof in the case k = 1 .

Now assume that 2 < k < n - I and that the lemma has been proved

for l,2,...,fe-l. Take I = (1, If) = (lx, ... , lk) £ Nk . We write dyadic
intervals in Rl1"*! as Q x Ik with Q ç Rli-^-n , ik ç RW .

We fix m £ Nl_' "kx with ms < ls, s = I, ... , k - I , and consider a dyadic

rectangle R = QxS = Ixx-xI„ where R £ 31 and ks(R, il) = ms,

s=l, ... ,k-l, and we write Q = ÎX(Q x S, Cl) x ■■■ x 4_,(ß x 51, Q). In

other words, Is = Is(ms) and so (5 is independent of the choice of S used.

By the definition of Is, we have

Öx#-W1CQ(H,

For each m, let 7¿ m = I'k m(R) be the largest dyadic interval in RM

containing 4 such that

|(7¿>m x Ik+l x ■ ■ ■ x /„) n^I'^-I]| >\\I'kmxIk+xx---xIn\.
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|(0x7¿>mx7fe+1x...x7„)no(fe-1)|

>\Qx(i'kmx.-.xinn^-mk-x^\

>iiâii/*,«x-x/-i

= ÍIOx/¿>mx...x/II|l

so that by the maximality condition in the definition of Ik we can conclude

that I'kmç îk.

In analogy with (2.1) we now claim that for all Q = Qx Ik dyadic in R[1' "kx

and all m e N'1'"^, we have

(2.2)        &ifkx ç [<](^1;wfc-11)\£J3mt+1)(^1;/í-11)]~,

where, for J an interval in RW and I C Rlk-»1, Elj](L) is the union of all

dyadic 5" in R^+1  "] suchthat JxSçL.

To establish (2.2), we should like to show that if T = Ik+Xx- -xln ç 3¡]f'kx,

then rcM^Si1'"1"11) and that

\TnElrk}m +u(&±}-k-X])\ < im.
1 <ki>nk+l)y    Q,m        n — 21    l

The first of these two assertions is clear from the definitions, and the above

arguments show that Ik ç I'k m(Q x T) C Ik = Ik(mk) ^ Ik(mk + I), and hence

that

\(h(mk + 1) x Ik+X x ■ ■ ■ x /„) na^"*-1^ < \\Ik(mk + 1) x Ik+l x • • - x 7,1,

or \(Ik(mk + 1) x T)nM"*-l*\ < \\(Ik(mk + 1) x T\. Now

Ik(mk + l)x E\k}m +U(&V-■k-x]) C3f^"k-l],
KK    K        '        4('"*+l)v    o,m       ' —     O.mQ,m

and so

\(Ik(mk + I) x T) n (Ik(mk + l)x Ef(m.xd3^"^))\*(»'* + I)v     Q,t

<\\Ik(mk+l)xT\.

Dividing both sides of this inequality by \Ik(mk + l)\ establishes (2.2).
An immediate consequence of (2.2) is

2Sr)-kx c [¿P(3V"*-l*)\E&}. A^-k-Xx)r
~^Q,m    -^hK    Q,m      n   hilkVK    Q,m      n

whenever mk <lk . Arguing as in the first step,

Eißii^/^EEißii^iE
Q Q     h m<l

^       Qxlk,im,mk]
mk = l

< c Y. £ lei £ i/.i M';„'-">\^,(3£„'-">
m<l q h

m<l q
Q,m
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and, since 3¡^"'k 1] C 3S^'"k 1] (ms = ms + 1) we may apply the inductive
Q,m -       Q,m Vi J ' J     rr j

hypothesis to obtain

Eiôii^/^c/.eE lelilí"11!
Q m<l   Q

k-l

<c4EIl(^+1)/c_1"r+1i"i
m<l r=l

< ck e n ir~r\Q\
m<l r=\

k-l

= clkY[lk-r#{m<I}\Cl\
r=l

k-l

= cikY[ik-rix.--ik_x\ii\
r=l

= cf[lk-r+x\Q\,

which is what we had to prove.   D

Now let 3Î be some collection of dyadic rectangles supported in Cl such that

any two rectangles with the same projections on Rt1 "-1! are disjoint. Define

Z(R, Q) for R £ 3Î , l<s<n-l as before. Let jf(l, 31) be the collection
of all those rectangles in 3t satisfying ks(R , il) < ls, s = 1, ... , n- 1. Then
we have the following variant of Journé's lemma [16]:

Lemma 2.4.

E i/?i<cn/riQ|.
Re_#(/,.5?) 1=1

Proof. Two different dyadic rectangles in Jf(l ,31) with the same projection

Q in Rt1 "-!] are disjoint and will be contained in Qx3?l f~xx _ The assertion

now follows from the case k = n - 1 of Lemma 2.3.   O

In the above two lemmas, we have made geometrical constructions (dilations

of rectangles in some directions) depending on an ordering of these directions.

Of course, we could have chosen any permutation of the standard ordering used

here, and still have obtained an analogous result; we shall need this observation

in the next section.

3.   //"-ESTIMATES

We first formulate a version of Theorem 1, with, among other things, im-

proved decay assumptions. For a ^ {1, ... , «} with a = {ai < ■■■ <av} we

set d(l, a) = ¡afaf1 ■ ■ ■ lav ■ Then we have

Theorem 3.1. Let T be a singular integral operator which is bounded on L2

with norm at most A. Suppose that for all a,  I <\a\ < n -2, all I £Na, all
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L2(Ra')-valued (p, R) rectangle atoms a we have

WTLaiR)+la\\LPiL*) <Af-

Suppose furthermore that for all a, \a\ = n - 1, and all C-valued (p, S) rect-

angle atoms b we have

\\Tl{S)+lb\\P < B?

and that for all 1 < r < n, for all Ï £ N^' ,

E TUS)+ll
lr>0

< c¡rY.

If

and

sup   J[4¿(/,íi)l/p-1/2f</,
l«*l<«-2/€No

sup   E^W' a)'/p_1/2F < Ap,

sup    E [Ctr} d(l> {r}')xlp-xl2]p < Ap ,
Kr<n

/eN<'}'

then T is bounded from Hp to LP with norm at most CA.

We first show how Theorem 1 can be obtained from Theorem 3.1. First of

all, d(l, a) < cE riiga 2/s£ for every e > 0. Hence we only have to verify that

under the assumptions of Theorem 1 we have

\\TZa{S)+lb\\p<ceH2-is*   for|a| = «-l.

Suppose without loss of generality that a = {2, ... , n} and let b be a C-valued

rectangle atom associated to S = I x J with / c R^ and / ç RÍ')' . Let 7

be the interval with the same centre as / but with twenty times the sidelength.

Then by Holder's inequality,

\Tlis)+ib\\pP<c¡_\¡  \TlÁS)+,b\2
«//  L*7IR"

+ L      \T'LiS)+MPdx
JTxtp

dx\I\]-p'2

= A + B.

Now |/|~1/2+1/p||è||^1è may be considered as an L2(Ra)-valued rectangle atom

associated to / and so A < c Y\"=2 2_/'£ by the hypothesis of Theorem 1. More-

over,
p

n

b< Er^)+/è  <cIl2"/l£'
/|>0 p s=2

again by the hypothesis of Theorem 1.

In order to prove Theorem 3.1 we shall use an induction argument which

reduces estimates for (p, I x A) atoms (with A living in an m-dimensional
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space with m > 2) to estimates for L2-valued (p, I) rectangle atoms and for

C-valued rectangle atoms, and, if m > 3 , to estimates for (p, I x J x B) atoms

for B living in a space of dimension m - dim J .

Proposition 3.2. (a) Let bçi be a (p, il) atom in R". Suppose that T is

bounded on L2(Rn) with norm at most A. Suppose furthermore that for all

a ç {1, ...,«}, 1 < |a| < « - 2, for all /eN", for all dyadic rectangles Q in

Ra, for all open sets A in Ra' and all (p, Qx A) atoms, we have

(3.1) \Ta        n\\    < Y°\1LiQ)+la\\P ^ l 1 ' l£

Moreover, suppose that for all a,  \a\ = n - 1, for all I £Na, for all dyadic S

in R" and all C-valued (p, S) rectangle atoms, we have

(3-2) IITZ^all, <D?

and also, writing I = (1, ln), í £ N*"}',

(3.3)

Then

E TLiS)+la
/„>0

<E7

\Tba\\'<c Ap+     sup     E^/T^a)1-"/2
l<|a|<n-2/gN„

+   sup   E(Z)/a)/'ä'(/'Q)1"P/2

M="-'/€N.

+   E   EPd(ï,{n}')x'-p'2

(b) Suppose bIxA is a (p, I x A) atom where I CRß , ici?, ßc\y = 0,

ß U y = {1,..., n}, y = {yx < ■ ■ ■ < yv} with v > 2. Suppose that for ail
L2(RY)-valued (p, /) rectangle atoms, we have

(3.4) l^lli/flRÎ ,L2(R?)) < ^>

and that for all aÇy, \a\ < \y\ - 2, for ail l e NQ , ail Q dyadic in Ra , for ail
open sets B in Ry_Q and for ail (p, I x Qx B) atoms a we have

;3.5) |7Xi(e)+/fl||p<i7.

Suppose furthermore that for all a ç y, \a\ = \y\ - 1, for ail l £ NQ , all dyadic

S in Ry and all (p, I x S) rectangle atoms, we have

(3.6) \\Tl(S)+la\\p<Df,

and if I = (Ï, lyf , /eN'-W,

(3.7) E^
L, >0

LyiS) + l
<E]

-{M
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Then

\\TbIxA\\p<c  A»+    sup    E(r/W/,a)>-'/2
l«l<l)'|-2/eN(1

+    sup    E(D/a)P^>«)'"P/2
l"l=|y|-l ;eNa

+    E   (E}-M)pd(l,y-{yv})x-pl2

/gN'-i?"'}

Proof of Theorem 3.1. By the discussion of §2, it suffices to show ||77>n||p < C

for all (p, il) atoms. Proposition 3.2(a) reduces this to the L2-boundedness

of T, appropriate estimates of the form (3.2), and (3.3)—all of which are

hypotheses of Theorem 3.1—and estimates of the form (3.1). To check (3.1)

we apply Proposition 3.2(b) to the operator 7£ , ,+/, reducing matters to (3.4),

(3.6), and (3.7)—all of which follow directly from the hypotheses of Theorem
3.1—and (3.5). Hence Proposition 3.2 gives an iterative scheme for proving

Theorem 3.1. We leave the verification of the constants to the reader.   □

In order to prove Proposition 3.2, we carry out a further geometric construc-

tion which is essentially the same as in [22].

Suppose y ç {1, ... , n} , y = {yx < ■ ■■ < ym} . Let < be any total ordering

on the subset of y such that 0 < ■■■ <y < y, where if m > 2, y contains ym .

(This last requirement is merely a technical convenience.) For a ç y, let á

denote its predecessor with respect to the above ordering and define N(0) = 0,

N(a) = N(á) + \a\ (so that N(y) = YZ=ok{T) = m2m~x).
Let Q C R? be an open set and let J1 be a family of dyadic rectangles

supported in Q. For each R £32 and each a ç y we will define several "en-
largements" u?(R, Cl) (r = 0, ... , \a\) and wa(R, Q), such that for every a

we will be able to apply Lemma 2.3 to the family of rectangles {Wq(R, il)}Re^ .

We set w0(R) = R. Suppose we have defined wà(R) ç QW*)). Given a =

{ai <■•■ <av}, we set «g(A, Q) = wá(R) and if u^(R, il) = I7¡ x---xlïm,

we proceed to define 7a,, Iai, ... , Ia„ as in §2. That is, Iax is the largest dyadic

interval containing Ia¡ such that

|7„ x • • • x 7ttl x • • • x Iym n ÖWM| > \\In x • • • x 7ai x • • • x IyJ

and we define u"(R, Cl) = Iy¡ x ■ ■ ■ x Ia¡ x • ■ • x Iym := Jyx x ■ ■ ■ x Jïm , which

is clearly supported in QWâ)+i) jf v > \ we iet jai be the largest dyadic

interval containing Jai such that

1     7\ ' ' ' *^Ct7 ' ' ' 7m \ 7\     7\ ' ' ' Gt-2 ' ' ' Ym

and set W$(R, il) = Jy¡ x ■■■ x J7m ç Q(A,(»)+2). Similarly, we proceed to define

u«(R, Q) supported in QWa)+') for r = 3, ... , v . We set

u%(R,Cl)        ifa^y,

"^•"'-■^..(Ji.a)  if —r.
We also set tcf(R, fl) = Lswa(R, il)-Lsu^(R, il), and v?(R, Q) = LswY(R)-
LsUq(R, Q) for 5 £ y, so that we clearly have

(3.8) Kf(R,Q)<vï(R,a).
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Notice also that k¡(R, Cl) = v¡(R, Cl) and that K¡m(R, Cl) = 0.

Lemma 3.3. (a) For Q dyadic in Ra, /ef (a ç y), Cl open in Ry, let
sf£'¡(Cl) be the union of all projections ny_a«g(A, Cl) where vf(R, Cl) < ls,

sea, and Ylau^(R, Cl) = Q. Then

ElßH4'j(ß)l<^(/,a)|Q|.
Q

(b) For le W-^-K let J?}y(Cl) be the family of all dyadic S in R? such

that S = uY0(R, Cl) for some R e 32 and such that u¡(R, Cl) = tc7s(R, Cl) < ls
for s t¿ ym . Then

E   \S\<cd(î,y-{ym})\Cl\.
sejf/isi)

Proof. Part (a) follows immediately from Lemma 2.3 applied to the rectan-

gles {Uq(R)}Rç^ which are contained in the set £2(iV(ö)). To see part (b), ob-

serve that since y contains ym , the maximality condition in the definition of

Um-X(R, Cl) ensures that two different S in J(-(CY) with the same projections

in R'-ü'»} are disjoint. Now apply Lemma 2.4.   G

Proof of Proposition 3.2. We prove only part (a); the proof of part (b) is exactly

similar and will be omitted. Let ba be a (p, Cl) atom; we consider Tbçi

separately in fít"2""') and in R"\Q("2""''. As in [6], the estimate in fi*"2""1)

is an easy consequence of the L2-boundedness of T and the strong maximal
theorem:

\\Tbn\\p ~     ,   <\Cl{nr~,)\x-p/2\\Tbçl\\P,"¿"(iK»2"-1)) _ ' I II       "112

< CAp\il\x-p/2\\bçi\\p < CAp.

To estimate Tbc¡ in R"\Q("2"~'), we use the formula

E«m= E (-1)|fl|_1    E    *.+    E    «*
m€Z" 1<|«|<« mSZm,  ms>0 meZm ,  ms<0

for iÇa 1<-S<"

(which may be proved by applying the formula

no-T^i-E^ + E^- E PjPkPt-
7 J i¥k j*k±l

with Pj = X{mj>0}) to write, as in [15], for x $ Q("2"~'),

TbÇÏ(x)= e (-i)|ahlE    E    T™e«w
l<|n|<« R   m,>Lsw?iR,n)

=       E    ("I)1*1-1'«
l<|a|<n

with y = {I, ... , n} and

dt
ba = E^« = E / V<*eR,<

U---tn
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since the missing term

E E    E    r**
l<|a|<«   R   ms<Lsw>iR,iï)

is supported in Q'"2""1*. For 1 < \a\ < n-2 we substitute ls = ms-Lsu^(R, Cl)

and write

/q=LL E Tia+LaWüiR)eR

R   lew ls>LswriR)-Lsu°iR)

= E        E        Tï+LaiqiR)eR-
leWR:ufiR,Çl)<l,

Let îf£ [ be the family of all rectangles R such that v?(R, Cl) < ls, sea,

and YIau^(R) = Q. Then, if we set af, ¡ = ¿ZRe%«>  eR , we have

Ia = E E Tl+LiQ)aQ,l-
/€N° Q dyadic in RQ

Now

/

\Q x ̂ a,y,-l/p+l/2
"   /   I

-1/2

\Re*S,t

„2       ¿*
Imilla:-T

11 • • • t„

y

^G,/

is a constant multiple (for a fixed absolute constant) of a (p, Qx srff'J) atom.

Consequently, we have

\pß

dt
\Tt+La(Q)aaQJ\\pp < c(Y?y\Q x ¿zQy\x-p/2

£/
\eR,th

<R**Q.I

tX ■ ■ ■ tn

J
and by applying Holder's inequality and Lemma 3.3(a), we get

EIITQ na    \\p
\\1l+L„iQ)aQ,l\\p

l-p/2 P/2

<c(i7)"(EIôII^q7
Q

EE/
ll 112     ¿'

' tx ■ ■ -tn

<c(YJ)»d(l,a)x-p'2,

since 6q is a (p, Q) atom. The bound for /„ follows by summation on / e NQ .

For \a\ = n - I we use a slightly different argument. Let J£(srff¡'J) be the

family of all one-dimensional dyadic intervals which are maximal in s/q '¡r.

Each R e %Sq i is contained in a unique Qx I with / e J((s¿q'J). For

J e Jr(sf£'J) let

a.
Q,J,1

E e«>
Re%?£ rna,R<ZJ

clearly üq y ¡\Q x J\  1/p+1/2||«<2,./,/ll2 ' is a (P> Q x J) atom. Hence,

W^hq^q.jjK < WHO * J\x-pl2\K,jM-
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Therefore,

\ia\\p < EW^Elßl1"'72 (t.^^H^J")
lew Q \ J /

\
p/2

< Ew)'Eißi1"'/Hoyi,"p/2    E   H,j,i\
lew q \jejris*°-J)

(since different / e ^(sff)7) are disjoint)

( v/2
< Ew)W"W2 E   E   H.jjl

lew \  Q jeJíisí^-J) ,

<cY,(DfYd(l,cx)x-Pl2,
lew

by Lemma 3.3, Lemma 2.1, and the definition of the atom bçi.

Finally, we must estimate Iy for y = {1,...,«}.   For S e J?J(Cl), let

as = ¿2u>jR,ci)=seR- Then

h = E   E   T**e*
R   ms>Lsw?iR)

= E E        E E     ̂ ^
5     * „'«^(sh^*,") «»>¿-.«S(*)

"o'R)-°       s=l ,...,n-l

(since Lnwy(R) = Lnuy0(R))

= E   E E TLiS)+ias.
¡e{n}'Se^¡i£i)i„>o

Since \S\xl2-lfp\\as\\2las isa (p,5) atom, we get

E TLiS)+laS
/„>0

<cEj\S\x-»/2\\as\\p2,

and, as before, by Holder's inequality, Lemma 3.3, and Lemma 2.1,

l-j/l,—, .xp/2

E
se^-'tQ)

E TLiS)+laS
/„>0

s^f(EPi)    (Eifeiii)

<EPd(l, {n}')x-pl2.

Thus

ii/7ii^< e ^(/,{«}'),-W2,

concluding the proof of Proposition 3.2 and Theorem 3.1.   G
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4.   Lp -ESTIMATES

Recall the definition of Qf¡ and Pf from §1, and that of d(l, a) from §3.

We now state an improved version of Theorem 2, which is new even in the

classical one-parameter setting.

Theorem 4.1. Suppose T is a singular integral operator which is bounded on

L2 with norm at most A, and let 1 < p < 2. Suppose that for all ß, y ç

{I, ... , n} with 1 < I/? U y| < « - 1, ß\~\y = 0 (allowing the possibility that
ß or y = 0), for all m e N^, le Nßu?, and some large N,

kcZßUy J£Zß seß

for r = p and r = 2, and suppose that for all ß, y with ßiAy = {I, ... , n}

ß n y = 0, meN', I £ NW and some large N,

E     sup
kezo.-.nyjez^.»> ln>0

< B?'y(r)\\2m*'

seß

for r = p and r = 2. Let

1/2

C(r)=       sup        E  Af'y(r)d(l,ßuy)x'r-X'2
l<\ßuy\<n-\ lesßUr

+       sup E   Bly(r)d(l,{n}')xl"-

If A + C(2) + C(p) < oo, then T is bounded on Lp .

Remark. In the one-parameter case, the theorem reduces to the following state-

ment. Suppose T is an L2-bounded operator such that

ESUP
fcezjez

^2QJ+kTJ+lPj
/>o

<C

and

ESUPjezkez

mN
¿2Qj+kTJ+iQj+m
/>0

for m e N, some large A, for p < r < 2. Then T is bounded on LP .

Proof. Let f eLP ; then by the Calderón reproducing formula, we may write

(4-1) / = EE íyt*[{vt*f)XR,t\T^T
pezReâi/ ll"ln

where y/, Rß, and ClM are defined as in §2, and where we additionally assume

lx¥(t)t'dt = 0, i = 0, ... , M, with M > N. For p e Z, t e (R+)" , and R
running over the collection of all dyadic rectangles in R" , we consider vector-

valued functions F = {ep[ J as members of one of the function spaces Y, with

norm
..•»-i r\ x'r

dt
\E\\Yr   =        E Wr~l/2 [Y, j \K,\

1/2

2
Z.2(R")

tl-t„
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where |fíp| are fixed weights coming from a fixed f e LP. We shall apply

estimates for general F to the particular choice F(f) = {(y/t * f)xR ,} where

XR t = XR,t (see §2) if R e 32ß and is zero otherwise. Then we may rewrite

(4.1) as

(4-2) f=EEJlf<*lFWRJ
dt

tX  ■ ■ • tn
tiezziiR

and, by Lemma 2.2 we have

(4.3) \\F(f)\\rp < C\\S(f)\\p < C'UWp-

For general F we consider the operator

and set

e

n/o = EEr[/^ *(«,,);
i ■ • • tn

l{F) = jm*(eltxlt)j¿1Tn

Hence, by (4.2), T f = T(F(f)). As in §3 we may decompose T by the formula

(4.4) f(F)=V(F)+   E   (-1)N_1EE        E Tm^R(F))
>^N^" ß     R    ms>LMR,^)

sea

where w(R,Clß) is the «a*1.">(Ä, Clß) of §3 and where

^) = EE        E        Tm(e^R(F)).
,<Lst

s=l.

For ft £ Z, let

ß      R    ms<Ls(o(R ,aß

c. - J eR,>'
""10,

p = p,
ßf ft,

so that V(F) = Ep€Z ^(7^).

For j £Za , I £ NQ   (|q| < n), let &?, be the family of all dyadic rectangles

R in R" with the property that if 32ß contains R, then v?(R, Qß) < ls,

s £ a, and La(ua(R, Clfj) = j (with u? as in §3). If ß ç a, ß^0, i £ N" ,

let f^'fx be the family of all dyadic Reí/?, such that Lß(R) = Ylßj - i.

Similarly for j £Zn , Í £ NW , let ^ ¿ be the family of all dyadic rectangles

R  in R"  with the property that if 32ß  contains R, then us(R, Qp) < ls,

1 <5<«-l,and L(uQ(R,nß)) =j (with i/s = up."} and u0 = u{0l'"'n}).

If ß Ç {1, ... , n) and / e N^ , let $/ß , be the subfamily of rectangles R in

if, j such that L^(A) = Ylßj - i.
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Setting eR(F) = E„ eR(F) (only one term in the sum is nonzero) we consider

the operators

of,(F)=   E  eR(F),        aJ;f,(F)=    E   eR(F),

xj/Fî= E e*(p)>   tju{F)= E **(n
*€*;./ Revf. j

With this notation, we may, as in §3, rewrite (4.4) as

f(F) - V(F) =      E     (-1)H_1 E E Tj+i°j+i(F)
i<\a\<n-i lewjez-

+ (-!)"-' E EEVi,i(n
/€NI»}' 7'eZ" /„>0

We shall need some estimates for the operators o and t .

Lemma 4.2. Let 1 < r < 2.

(i)  (Eje* K.iCW < cd(l,a)l"-W\\F\\r,.

(ii) If 0 t¿ ß ç a, i,m£Nß ,

( E \\Q^^Zß/F)\\r)     <C]j2-^'^d(l, af/'-WWFWr,.
\jeza j seß

(i") (Ejez- W*jj(E)\\rr)i/r < cd(ï, {«}')1/r-1/2||7'||yr.

(iv) If ß±0,  l.fflEN',

( E \\Qnßj+m*ßjAj{P)\\r)       <C l[2-^'^ d(l, {n}')X/^2\\F\\yr.
yez» J seß

Proof. We prove only (ii) in the case that a - ß f 0 ; all the other cases may

be handled in the same way. Let wf = y/f *ß f ; then clearly for ts ~ 2's~h ,

s £ ß , the LP operator norm of Q% j+mWtß is dominated by Y[seß 2-M\m*+>*\.

For t = nßt, let

Re^a-f        + 11 s

Hence, considering the case r = 2 of (ii),

/ \  1/2

EiißU^;i/(f)ii2     ^E/f ¿_ ii^«.^iliiK:iirii!^7.

(by the Cauchy-Schwarz inequality), and, by using Lemma 2.1 with respect to

the ß' variables, we can dominate this by \\seß 2~M(Ws+ís)||/r||y2.
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Now we consider the case r = 1 of (ii); once this is established the general

case follows by interpolation. For a dyadic J in RQ with La(J) = j and

t£ (R+)ß , we set

J ,i,l,p ~ E    h.-*KA%
,a:ß.n^„ 11  sRelF-^ra,

n„«g(ii,5^)=/

Notice that aaj'ßj ß is supported in Jxsff^Cl^), where s/f¡ isthe j/y"}{1"-'"}

of Lemma 3.3. Hence,

E i<;+m*;//>)ii>
jeia

^E E /   hoU(^»rai-iiiKi.'iji
pel J dyadic

inR" seß

< C E E II 2-(ms+,s)M|/ x ̂ /(Qp)!1/2
n    J seß

<cn2-(m'+/'>"E Ei/x<,(n,,)i
s€/? /<     \  7

1/2

i\\na-ß-'    II2   rfí

seß

1/2
1/2

E[\\na'ß'J   II2   ^

\ seß

Js
seß   J

(by the strong maximal theorem and two applications of Cauchy-Schwarz)

<Cn2-("'+w"£|0,r/2</(/,a)'/2( E   /il«*,,
úfí

1/2

¿1 • • • tn

(by Lemmas 2.1 and 3.3)

= CY[2-^+i^Md(l, a)x'2\\F\\Yx.    D
seß

Next we shall prove an estimate for f(F) - V(F) which will follow from

the case r = p of the following lemma.

Lemma 4.3. Let 1 < p < 2 and r £ {2, p}.

(i) // 1 < \a\ < n - 1 and 1er,

E *}W./<F>
jez"

(ii)  ///6NW,

7'ez" /„>o

<C   sup   ¿f •?(!•)<*(/, a)l/r~1/2||7'||y,.
ßuy=a

r ßny=e>

<C       sup       Bß'y(r)d(l,{n}')xlr-xl2\\F\\Yr.
ßu?={l,...,n}
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Proof. As in [1 and 23], we combine Littlewood-Paley theory and Calderón-

Zygmund theory. Thus

E TjWAF)
jez°

£E >^oj*!7A(fl
jez«

l/r

<CE \Y,\\Qj+kT°+laJ+l(FWr
k   \jeZ"

by Littlewood-Paley theory and the embedding lr ç I2, Using the identity

' = E E e£-+««<„■ onr
ÍCameNÍ

(valid for all j), we see this expression can in turn be dominated by

L/r

c E E E E iiß?+^/ßL+w ® ̂jr-,iißt,+«*;./™
JÎU7=a W6NÍ    i:      y'eZ«
¿ny=0

l/r

<CE E Af'y(r)Y[2^N [Y,Kj+~°fAF)\\r
ßUymeNß seß \  j

(by the hypothesis of Theorem 4.1)

^CE E E^'^n^lEiiô^^i/^ii^

^cE e ^f,7('-)n2,ni(jv_M)2"^i/(/'a)iA"i/2iijFii^
ßaym,ienf seß

by Lemma 4.2. Since we have chosen M to be greater than A, we may sum

up and obtain part (i). Part (ii) is proved in a similar way.    G

We have shown that \\T(F) - V(F)\\P < CC(p)\\F\\yp , and we now consider

V(F) and show

(4.6) \\V(F)\\r<C[A + C(2)]\\F\\Yr

for 1 < r < 2. Once we have done this, we are finished, since then

\\Tf\\p = \\f(F(f))\\r < \\T(F(f)) - V(F(f))\\p + \\V(F(f))\\p

<C(A + C(2) + C(p))\\F(f)\\Yp

<C(A + C(2) + C(p))\\f\\p   by (4.3).

We establish (4.6) also by interpolation. For r = 2 we have

\\V(F)\\2<\\f(F)\\2 + \\V(T)-f(F)\\2

(4.7)
<A EE/^.A,^

M     R

+ CC(2)\\F\\Yl

(by assumption and Lemma 4.3 in the case r = 2)

< C[A + C(2)]\\F\\y2    (by Plancherel's theorem).
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Now let r = 1 and write V(F) = Epez V(Fp), observing that V(Ffj is sup-

ported in Qp"2""'+1). Hence,

\\V(F)\\X <CEl^r/2ll^(7p)l|2
p

< CE \Clß\l/2[A + C(2)]\\F,\\Yl    (by (4.7))
p

<C[A + C(2)]\\F\\Yl,

which establishes (4.6), and hence Theorem 4.1.   G

5. Fourier multipliers and pseudodifferential operators

In this section we give some applications of Theorems 1.1 and 1.2 and prove

Hp- and Lp-results for convolution and pseudodifferential operators. The com-

putations needed to check the hypotheses of Theorems 1.1 and 1.2 are easy

modifications of those carried out in [ 1 and 2] in the one-parameter case; so we
will be very concise and omit most of the details.

We need some notation: Mp , 1 < p < oo, denotes the standard space of

Fourier multipliers m in LP . The norm is given by the norm of the operator

T where (Tf)~(Q = m(Ç)f(Ç). Similarly we define for a c {I, ... , n} the
space M\2 consisting of those m such that the multiplier transformation T

is bounded on the mixed norm space Lx(Ra, L2(Ra')). (Note that by [13],

Mx C Afjj.) The dyadic decomposition <¡>¡ (or ®f) is used to express some

Lipschitz conditions with respect to multiplier norms.

Proposition 5.1. Suppose that m is a bounded function, \\m\lrx < A, and that

for some S > 0,

n

(5.1) sup  ||[0m(^]*ê/||A,1<.4n2~/i<5
í€(K+)» fJl

and that for each a c {1, ... , n}

(5.2) sup   \\[rm(ta-)]*aO><f\\M°<AT\2-i*s.

Then we have the inequality

W-x[mh\\H, < CA\\f\\„,   for --j--- < p < I.

Proof. It suffices to show that T : Hp —► LP since Hp may be characterized as

a space of distributions whose iterated Hubert transforms are in Lp (see [11,
15]).

In order to keep the notation simple, we assume n = 2 and the general case

is proved in the same way. Then we have to check the four hypotheses of the

theorem. We only examine the hypothesis involving mixed norms in LP(L2) ;

the other inequalities are obtained in the same manner.

Let a he an L2-valued rectangle atom. We may consider a as a function

supported in / x R, where / = {xx , a < xx < b}. By translation and dila-

tion invariance, we may assume that / = [-!,!]. Then we have to show the
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inequality

(5.3) \\Txa\\mL2)<c2-^

for some e > 0. In this proof, Tx denotes the operator with kernel in

mf(x-y)Q>xl((xx -yx)/21) (we shall write I, k, i instead of lx, kx, ix). Since

Txa is supported in the strip {(xx, xf), \xx\ < 2l+x}, we have by Holder's

inequality,
\\Tln\\ <T rO!ii-P)\\Tln\\P
Wfo-WLP^i) <c¿"   "'\\il a\\LX(L1).

Using the dyadic decomposition (Qk) on the multiplier side with respect to the

^i-variable, we can write

T¡a = Y,Y^QkQkA)Q\Q}*
iez kez

and if <fi = (p(p and

w*/(íi, £2) = 0(2'ii) j2lÔ>(2>(Zx -yx))m(yx, &)&2*yi)<fy,,

we get
-\p

\\Tla\\um<2lQ-rt  EEll^'H^llß'0^'^)
.   ;   kez

If i > 0, the expression Q\ a is small because the rectangles have cancellation

in the X] -direction: using Taylor's formula, we obtain

(5.4) \\Q\a\\vll?)<cmm(l,2-m^)

where M(p) > 1 - 1. By dilation invariance, we have to examine

nïikitëi, 6) = m/w(2-,'íi, £>)

= ¿(í,) 12/-/cÔ(2/-'"(^ - 2'"S))4>(yi)m(2-kyx, fc) ¿y,.

The essential terms occur if / is close to /c ; we use the estimate

,<~ ll**/llAf„ < ||0(2'^.)||A/,2||0An(2-^)*Ö/_,|U12
w-6) ..    ...

<cmin{l, 2(^-/)<5}

(see also the Remark below). From (5.5) it is easy to check that for every j,

N > 0, we have the estimates

\dl[ñiiki]< cj,N2'-kmin(l, 2^-^)   if k > i + 5,

\d¿[miki]\<Cj>Nrmn(l, 2-{l-k)N) if k < i - 5.

Recalling that mikt has compact support in {\ < l^ | < 4} , we obtain

1/2

j \m¡kl(ix,Í2)\2 + \d(lm¡k¡(íx,Í2)\2díx\\mlkl\\Mn <CSUP
(5.7) Í2   U(l

f cN2'-k min(l, 2-V-W)   if k > i + 5,

cNmin(l,2-V-VN) ifk<i-5.



MULTIPARAMETER CALDERON-ZYGMUND THEORY 741

Putting the estimates (5.4), (5.6), and (5.7) together, we get

Hr/alli <c2/(1-") [E^   E   2<*-/*inin(l,2-a'W)
\ <  |fc-i|<s

+ c2/('-^[E E 2l-kwm(l,2-iV-l>ri)iBm(l,2-u'M)

\   i   k>i+5

+ c2l(l-p) ( £ E min(1 ' 2"(/"')W)min(l, 2-iM(p))

and since â > 1 - 1, M(p) > 1 - 1, we get the bound (5.3).

Similarly one can do the estimates required for the rectangle atoms. For these

estimates we use (5.1) and the restriction theorem of de Leeuw ([18]; see also

Jodeit [14]).   G

Remark. The condition (5.1) is equivalent to the condition

sup  \\A^l--A^(tl>m(t-)]\\Ml<cf[\hs\e,
f£(R+)- ' " fj¡

all h £ Rn , some e > 0, where A^1 denotes the difference operator A^/(x) =

f(x + hses) - f(x) in the Xç-direction. A similar remark applies to (5.2). This

observation can be used to show that the hypotheses of Proposition 5.1 are really

independent of the choice of </> (see [2, 23] for similar arguments).

Proposition 5.1 implies as a corollary an //''-version of the Hörmander mul-

tiplier theorem in product spaces. The same result was proved by R. Fefferman

and K. C. Lin [9] in the two-parameter case, using R. Fefferman's [7] result

on rectangle atoms. For p = 1 the corollary already follows from the BMO-

estimates for convolution operators proved by H. Lin [19].

Let us define the multiparameter Sobolev-space Sff by

IslLz' = & -1
U(l + \is\2)y,2g

Ls=l

Then we have

Corollary 5.2 (Hörmander-Marcinkiewicz type multiplier theorem). Suppose
I _ 1
p     2

that for y > i — 1    0</?<l

sup  \\4>m(tx-, ... , t„-)\\^i < A.
(6(R+)" '

Let (Tf)~(Ç) = m(Z)f(Z). Then \\Tf\\Hf < cA\\f\\„,.

Proof. Suppose again n = 2 for simplicity. For fixed tx , let A,, = cf>m(tx-).
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We apply the Cauchy-Schwarz inequality and PlancherePs theorem to get

\\Ktl<S>l*g\\v{V)

^ f í \Í \f K'^¡M~y)s(yi,y2)dy
Jyx Jxx  \Jxi \Jy2

< c2<>'2 [ ( ¡f I / KtM, (x - y)g(y) dy

2    y/2

dx2 I      dxx dyx

2        \ >/2

dx ]     dyx

= c2'>/21 ÍJJ A„ * &l (Í,, &) I g(y)

<c2l^2sup( [ \kh*âl(Çx,n2)\2dÇx

eiy^2 dy2

1/2

2        \'/2

#        dyx

Jyx   \Jç2    J
1>2'Í2 dy-i dh

1/2

dyx

< c2'>'2 sup sup ( f \4>m(tr, i2-) **/,(«! - »íi)l2¿í

Similarly one may prove

IIAO/lh <c2l</22U2(f\m*Ô>,\2dÇ

1/2

I S'IL' (i2)-

1/2

From these estimates, the corollary follows by Proposition 5.1.   G

We now give a generalization of Proposition 5.1 for pseudodifferential oper-

ators

Tf = o(x ,D)f=J a(x, i)M)e2nii'x d£.

Let us first introduce some notation. In order to keep this simple, we restrict

ourselves to the two-parameter case. Let Ap be the space of symbols o such

that o(-, D) is bounded in LP . The norm in this space is the operator-norm of

a(-, D). Let AP2 be the space of symbols o such that o(-, D) is bounded on

LP(L?), where the Lp-norm is taken with respect to the Xi-variable. Further, set

\\o\\xlp = \\To\\x2p where ra(xx ,x2,Çi, 6) = o(x2 , *i, &, £i). (Notice that

A2p is a space of operators in LP(L2), not in L2(LP)\) Further, we introduce

the localized and dilated symbols

à>(x, í) = (pxx\íx)o(2k^xx, X2, 2~H\, 6),

¿r22(x, Ç) = (p^2)o(xx, 2k>x2 , {,, 2-*2&),

àk(x,Ç) = 0(í,MÍ2M2*'x,, 2**jc2, 2-*»í,, 2~Hf).

As in Proposition 5.1, Lipschitz conditions with respect to the x- and in-

variables are expressed by certain decay conditions of the norms \\ok *{ Ô/||,

11^/ *x àk\\, etc. as A , /2 -+ oo . (For a detailed discussion, see [2, §3].)
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Proposition 5.3.  (a) Suppose that e > 0 and T = a(-, D) satisfies the following
conditions:

(5.8) \\o\\Xl<A,

(5.9) snp\\öl*^xh\\Xn<A2-^,
kx

(5.10) sup||à2*Î2Ô2|U12<^2-^,
"2

fe

(5.11) sup llcTfc *tf O/Hjt, <A2-£<>2-c'i,
kx,k2

(5.12) sup sup \\dkf-,x2, • &)l|;r2(R) <^,
fe     JC2,Í2

(5.13) sup sup \\dki *(l */,(•, x2, -, 6)||x,(R) < ^2-£/l,
kx   x2,Ç2

(5.14) sup sup \\ökl(x\ ,',Zi, -)llx2(R) < A,
k2  Xi.ii

(5.15) sup sup ||àfe2 *Í2 $22(x,,.,{!, >)\\XiW < A2-eh ,
k2   xx, i,

(5.16) sup|rj(x,£)| <A.
x,(

Then T is bounded from H" to Lp,   1/(1 + s) < p < I, the operator norm

being bounded by cpA.
(b) Suppose that (5.8)-(5.16) hold with Xx, Xx2, X2X replaced by X^, A^,

A200 and suppose that furthermore

(5.17) sup sup ||02 *X2 ~ak * ©J (•, x2, •, 6)IUoo(r) < ^2"£/'2-^ ,
k   x2,i2

(5.18)       sup sup H^ *Xl ök*%(xx,-,{!, OII^r) < ^2-£''2-£'^,
k   JCi.ii

-£/n-£/2(5.19)        sups\\p\<&i*xök(x,l;)\<A2-^2
k    x,i

(5.20)        sup sup W&l *Xi ok\(x,, •, <*,, -)IU2(R) < A2
kx   xx,í¡

(5.21)       supsupl^^à^x,^!^^
ki    x,í

\*Xl<("

(5.22)        sup sup ||<D/2 *X2 ölkf-, x2 , •, 6)IU2(R) < A2
k2   JC2,í2

(5.23)       supsup|0/2 *X2 olki(x, í)| < ¿2"«*.
fe  *,{

77ie« r* is bounded from Hp to LP ,  1/(1 + e) < p < 1, the operator norm
only depending on A.   G

We will not give the proof of Proposition 5.3 here. The result follows by

straightforward modifications of computations in [1, §5] and [2, §4]. The hy-

potheses are more complicated than in the multiplier result because there is no

version of the de Leeuw restriction theorem on multipliers available in the con-

text of the pseudodifferential operators. Furthermore it is usually nontrivial to

verify the L2-boundedness (5.8). In order to do this one may use a product ver-

sion of the Tl-theorem of David and Journé, proved by Journé [15], or certain
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product versions of the Calderón-Vaillancourt theorems, proved in [2]. For the

//''-boundedness we state a corollary generalizing the product S^s -theorem. For

simplicity we shall use the abbreviation 3X to indicate a (fractional) derivative

in the x-variable. Since we do not prove endpoint results, the reader may re-

place this by a Lipschitz condition as in Proposition 5.2. The corollary extends

certain previously known LP-results [25, 21, 2] to the Hardy-space setting.

Corollary 5.4. Suppose that 0 < p < 1, y > j¡ and for some e > 0,

(5.24) supsup ||¿Tjt(x, Oll^1 <oo,
k      x '

(5.25) \J2sapsup\\&;ök(x,
\kx   *2    x

(5.26) E SUPSUP \\^x2ök(x,
Vfe fe-   x

(5.27) fEsup||^,^à,(x,
V k  x

Then T = o(-,D) is bounded from Hp to U . If 5?J is replaced by £f2_

and if e > 1 - 1 then T* is bounded from Hp to LP .   G
7-1/2

The proof of Corollary 5.4 consists of verifying the conditions in Proposition

5.3. This can be done by slightly modifying arguments in Coifman and Meyer

[5, p. 14] and [2, §§3.2 and 3.3]. We omit the details.
The J2Ç1   result for  T does not require Theorem 1 and has already been

deduced from Journé's and Pipher's theorems [15 and 22]. However the ¿2fß

result for T* does require Theorem 1. Corollary 5.4 contains product space ver-

sions of the S\°s theorems. In fact, suppose a has support in {|£i| > 4,  |<j;2| >
4}. If

' <ca,ßUß^%2fß^da \dx>

for some 0 < ô < 1 , we say then that o is in the product 5{¿ class. It is easy

to see that such a o satisfies

snp\\3i£x 3£dk(x, OIL?! < C2-*l(|-'J)£2-/C2(1-'5)£,
X '

etc. and hence, in the case 0 < ô < 1, satisfies the hypotheses of Corollary 5.4
for all y > 0.

We remark that every Lipschitz type condition in Propositions 5.1 and 5.3

may be replaced by a Dini-type condition (see [25] for certain results of this

nature for LP , 1 < p < oo).

We now turn to LP -results, 1 < p < 2 . We restrict ourselves to Fourier mul-

tipliers, although similar results may be clearly obtained for pseudodifferential

operators in analogy with those in [2].
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Proposition 5.5. Let 1 < p < 2 and suppose that for all a,  I < \a\ < n, and

some S > 0, we have

(5.28) sup   \\4>am(ta-
/"6(R+)"

%ik<^n2_/s'
sea

aIf (Tfr(i) = m(i)f(t), then \\Tf\\p < CA\U np ,

The proof consists of verifying the hypotheses of Theorem 2 or Theorem

4.1. This is done exactly as in [1, §§3 and 5], to which we refer the interested

reader for details. Finally, we observe that Theorem B of the Introduction is an

immediate consequence of Proposition 5.5, since the hypotheses of Theorem B

for a given p imply, by interpolation, those of Proposition 5.5 for each r with

p < r < 2.

6. A COUNTEREXAMPLE

We now wish to show that the "semilocal" assumptions in Propositions 5.1

and 5.2 cannot be replaced by purely "local" ones unless much more smoothness

is assumed.

Proposition 6.1. For each 1 < p < 2 there is a bounded function m such that

(i) supiij(2>o||0m(ii-
(ii) supíii(2>0||(7im(íi-

(hi)   m fi Mp .

Proof. We define

ti-

ll-

\MX < oc,

I A' < OO,
1    1/P-I/2

m(tx, £2) = E^(íi)</'(2-^2)^í'j1/2-1/í'

7 = 1

where 9 is supported in {|xi| < yg} and </> is supported in {-$, < ¿;2 < {¿}. It

is easy to see that m satisfies (i) and (ii). By a result of Herz and Rivière [13], it

suffices to show that T associated to m is not a bounded operator on the mixed

norm space LP(L2). Choose a positive sequence a¡ with (El^l2)1^2 ^ 1

but \Za)ip,2'x = oc, and define /(£,, £2) = B(^\)\Zj^-^i)<iß~iß ■ Then

/ £ LP(L?) with norm < c(EI#./|2)1/2 ^ C- Further, by Plancherel's theorem
with respect to X2 and the fact that

{e*6(--j)}jez

have disjoint supports, we obtain

F/UV) Y,0*e(xx-j)tj,(2-^2)2-^ajj

>

/ /

Ey \e*d(xx-j)\pdxxapj
:     Jx,

j/2n.:l/2-l/p

-IP/2

¿Í2 dx\

pipl2-x =oo.

y >

We conclude with two remarks.   Firstly, condition (ii) of Proposition 6.1

sharp in the sense that sup(| r2>0 \\4>m(tx-, ̂ Oll-S" < oo for ^ =

- j\ implies m £ Mp, and of course we have || • ||_^« < c||
p        21 '

Ia' . for
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functions with compact support. Secondly, Proposition 5.1 and the proof of

Proposition 6.1 suggest the question of whether one can relax the Mp hypothe-

ses on dyadic strips in Proposition 5.5 to Mp conditions on dyadic rectangles

and vVfp2 conditions on the strips. This seems to be an open problem.
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