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A DYNAMICAL PROOF OF
THE MULTIPLICATIVE ERGODIC THEOREM

PETER WALTERS

Abstract. We shall give a proof of the following result of Oseledec, in which

GL(d) denotes the space of invertible d x d real matrices, || • || denotes

any norm on the space of d x d matrices, and log+(/) = max(0, log(i)) for

te[0, oo).

Oseledec's Multiplicative Ergodic Theorem [7]. Let T be a measure-preserving

transformation of a Lebesgue probability space (X, 38, m) and let x -* AX be

a measurable map of X into GL(d) such that the real-valued functions x -»

log+114x11, jc —► log+ ||(^)_1|l are integrable. There exists Ye 38 with TY c
Y and m(Y) = 1 such that

(i) there is a measurable function s : Y -, N with s oT = s ;

(ii) for each x £ Y there are real numbers X^x^(x) < X^x)~x\x) < ••• <

X^2\x) < X^(x)  with X^(Tx) = X^(x)  when  1 < i < s(x), and
x -, Xi-i)(x) is measurable on {x £ Y\s(x) > i} ;

(iii) for each x £ Y there are linear subspaces,

{0} = V^x)+l) C V?(x)) C • ■ • C V?] C Fx(1) = Rd,

of Rd with AXVX^ = V^l, and x —> Vxl) is a measurable map from

{x e Y\s(x) > i} into the Grassmannian of Rd ;

(iv)   Vx £ Y Vv £ VJP\VXM),  ilog\\ATK-ix---ATx.Axv\\ -, ffl(x) where
|| • || denotes any norm on Rd.

The proof we give is a dynamical proof free of most of the matrix calculations

of previous proofs [7, 9, 10, 6, 3]. As indicated in [8] it is quite straightforward

to obtain (i), (ii), (iii) above and to get (iv) with the limit replaced by limit supe-

rior (see §1). The work comes in showing the limit exists in (iv) and this is done
by using two results, Theorems 11 and 13, the second of which considers the

ergodic theory of a transformation onlx P(Rd) where P(Rd) is the protec-

tive space obtained from Rd . We have only been able to use the second result

under the assumptions that both x —► log+ \\AX\\, x -, log+ ||(^)_1|| are inte-

grable (which is equivalent to requiring x -* log||^x||, x -, log||(^x)_1|| are

integrable), whereas Oseledec's theorem is true under only the first assumption

but in this case a(íW)(x) can be -oo. We have indicated where the second
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assumption enters the proof. The numbers A(,)(x) are called the Lyapunov

characteristic exponents of (T, A) at x .
We shall use Ji(d) to denote the space of all real dxd matrices and ||.|| to

denote any norm on this vector space. The natural basis in Rd is denoted by

{ex,e2, ... ,ed} , and we always consider the Euclidean inner-product on Rd .

From now on (X, 38, m) will be a Lebesgue probability space and T: X —> X

a measure-preserving transformation. Hence m is a complete measure and

the ergodic decomposition holds. Also A: X —» J((d) (x -, Ax) will be a

measurable map with x —> log+||v4x|| integrable. For n > 0, (A")x denotes

ATn-\x ■ ■ ■ Arx.Ax (matrix multiplication).

If P is a compact metric space equipped with its Borel a -algebra 38 (P),

then Mm(X x P) denotes the space of probability measures on X x P that

project tomonl, and ii S: XxP —* XxP is a measurable map covering T

then Mm(XxP, S) denotes those members of Mm(Xx7*) which are invariant

under S.

1. Proof of (i), (ii), (iii) and most of (iv)

We shall use the following simple result about sequences of real numbers.

Lemma 1. If a„, b„ > 0 for n > 1 then

lim sup — log(a„ + bn) = max ( lim sup - loga„ , lim sup - logb„ )
n—>+oo n \ „_,+0o n n—,+00 n J

and

lim inf - log(tf„ + bn) > max ( lim inf — logan , lim inf - log b„ ) .
n—>+oo   n \ n-*+cx>   n n—»+oo   n )

Lemma 2. Suppose T: X —► X is a measure-preserving transformation of (X,

38, m) and let A: X -, Jf(d) be such that x -, log+ \AX\ is integrable. Define
X: XxRd ^7<U{±oo} by x(x, v) = limmon^+00x-log\\(An)xv\\. Then

(i) there exists Xx  £ 38   with  m(Xx) =  1   and  TXX  c Xx   such that
X(x,v)£Rö {-oo} Vx e I,,  Vw £ Rd ;

(ii)   x(x,0) = -oo Viel;
(iii)   x(x, v) = x(x, av) Va £ R\{0} Vv £ Rd Vx E X ;

(iv)   x(x, vx + v2) < max(y(x,vx),x(x, v2)) Vv,, v2 £ Rd Vx £ X;

(v)   x(Tx,Axv) = x(x,v)VveRdVxeX.

Proof, (i) \\(A")xv\\ < \\(A»)X\\ • IMI < (n-Jo1 Mr<xll)ll«|| and since x -,
log+ \\AX\\ is integrable y(x, v) £ R U {-oo} by Birkhoffs ergodic theorem.

The proofs of (ii) and (iii) are clear and (iv) follows from Lemma 1. Part

(v) follows since

X(Tx, Axv) = limsup-log||(¿r+1)xt;||
n—»+oo   n

= iimsup!L±i.   i   log||(;T+V||
n^+00     n      n + l

= X(x,v).   G
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Corollary 3. With the notation of Lemma 2 we have

(i)  Vx G Xx Vt £ R the set Vx(t) = {v e Rd\x(x, v) < t} is a linear

subspaceof Rd . We have AxVx(t) c VTx(t). Also s < t implies Vx(s) c

vx(t).
(ii)   Vx £ Xx, x(x, .) : Rd —► Rll {-oo} takes only a finite number, s(x), of

different values X^x»(x) < AW*>-')(x) < ••• < X^(x), where X^x»(x)

could be -oo. We have s(Tx) > s(x), and A(i(x))(x), ... , A(1)(x) are

among the values {X(j)(Tx): 1 < j < s(Tx)} .

(iii) If, for x£Xx,we define FJ° to be Vx(X^(x)), l<i< s(x), then

{0} = FJiW+1) c Vj¿s(x)) c • • • c FJ2) c Fx(1) = Rd

and

v£ V^]\Vx{i+l)^limsup - log||(>áB)xu|| = X®(x),        1 < i<s(x).
n—»+oo   n

Proof.

(i) Each Vx(t) is a linear subspace of Rd by Lemma 2(iii) and (iv). Part

(v) of Lemma 2 gives AxVx(t) c Vjx(t). The last claim is clear.

(ii) Fix x £ Xx . Since s < t implies Vx(s) c Vx(t) and hence dim(l^(s)) <

dim(I^(i)), we can let X^x^ < ■■■ < A(1)(x) be the values of t where

/ -> dim(V^(0) changes. Therefore Vx(X^(x)) = {v £ Rd\x(x, v) <

X^(x)}, and x(x, ■) can only take the values X^x))(x), ... , A(1)(x).

The last statement follows from Lemma 2(v).

(iii) This part is now clear from the proof of (ii).   D

Lemma 4. With the notation of Lemma 2,

(i)  s: Xx -, N is measurable and hence 3X2 £ 38 with m(X2) = 1, TX2 c
X2, and soT = s on X2;

(ii)   X®: {x £ Xx\s(x) > i} -, R U {-oo}  is measurable and X^(Tx) =

XW(x) Vx € X2 n {x\s(x) > i} ;

(iii)   x -, V¿l) is a measurable map from {x € Ii|s(x) > i} into the Grass-

mannian of Rd and Axv}'] c V$>.

Proof. We shall deal with the measurability questions in the next section. From

Corollary 3(ii) we have s o T > s so s o T = s a.e. We get a(,) o T = X^ a.e.

by Corollary 3(ii).    D

To prove Oseledec's theorem we need to show that for a.e. x £ X

linin-.oo £ log ||(^"^v|| exists Mv £ Rd . The rest of the paper, after §2, is

devoted to this.

2. Measurability questions

If y is a complete separable metric space let 3SK(Y) denote the collection of

all nonempty compact subsets of Y . We can equip 3°k(Y) with the Hausdorff

metric and it becomes a complete separable metric space. The following result

is from [2, pp. 80 and 62].
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Theorem 5 [2]. Let (X ,38, m) be a complete probability space and let Y be a

complete separable metric space. Let Y: X -, 3°K(Y) be a map. The following

statements are equivalent :

(a) T is measurable (using the Borel a-algebra on the metric space 3°k(Y)) .

(b) V open subset U of Y, {x £ X\Y(x) C\U¿0}e38.
(c) There is a sequence {an} of measurable maps on: X —> Y with a„(x) £

Y(x) VxeX and Y(x) = {<J„(x)}^=l.
(d) graph(r) = {(x, y)\y e T(x)} £ 38 x 38(Y).

We also have

Theorem 6 [2, p. 75]. If (X ,38, m) is a complete probability space and Y is a

complete separable metric space consider the natural projection from X x Y to

X. If De38 x38(Y) the projection of D to X is in 38 .

If F is a real vector space we let P(V) denote the corresponding projec-

tive space obtained by collapsing each line through the origin of F to a point.
The topology on P(Rd) is the quotient topology. Let G(Rd) denote the Grass-

mannian of Rd , which consists of all linear subspaces of Rd suitably topolo-

gized, and let Gk(Rd) denote the space of all Â>dimensional linear subspaces

of Rd [5]. We have

Theorem 7. Let (X, 38, m) be a complete probability space and let a map

x->Vx of X into G(Rd) be given. Define r: X -, N by r(x) = dim Vx . The

following are equivalent.

1. x —> Vx is a measurable map of X into G(Rd).

2. {(x,v)\x£X, v £ Vx}e38 x38(Rd).

3. {(x,y)\x£X, y£P(Vx)}£38x38(P(Rd)).
4. x -, P(VX) is a measurable map of X into 33K(P(Rd)) ■
5. r: X -, R is measurable and for each k, x —> Vx is a measurable map

ofr~x(k) into Gk(Rd).
6. r: X —* R is measurable and for each k there are measurable maps

vx, ... ,vk: r~x(k)-, Rd such that Vx G r~x(k), {vx(x), ... , vk(x)}

is an orthonormal basis for Vx .
1.   r: X -, R is measurable and for each k there is a bimeasurable bijection

from {(x, v)\x £ r~x(k), v £ Vx} onto r~l(k) x Rk which is linear on

fibres and covers the identity map of X.

8.   r: X —► 7? is measurable and for each k there are measurable maps

ux, ... ,uk: r~x(k) -, Rd such that Vx G r~x(k), {ux(x),... , uk(x)}

is a basis for Vx .

Proof. Clearly (6) and (8) are equivalent by using the Gram-Schmidt pro-

cess. Also (7) and (8) are clearly equivalent. Since the map E -, P(E) of

G(Rd) into 3dic(P(Rd)) is injective and continuous it is a homeomorphism

onto its image and hence (1) is equivalent to (4). By Theorem 5, (3) and

(4) are equivalent. Clearly (3) implies (2). To show that (2) implies (3) it

suffices to show, by Theorem 5, that for each open subset U of P(Rd) we

have {x g X\P(Vx) n U / 0} G 38. If q: X x Rd -, X denotes projection

to the first factor and n: Rd -, P(Rd) denotes the natural projection then

{x G X\P(VX) n U Í 0} = q({(x, v)\x £ X, v £ Vx} n (X x n~lU)) which
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belongs to 38 by Theorem 6. Therefore (2) and (3) are equivalent. Since the

dimension function is continuous on G(Rd) we get (1) is equivalent to (5).

It remains to show that (5) and (8) are equivalent. Let E G Gk(Rd). There

is a neighbourhood 'V(E) of E in Gk(Rd) and continuous maps &,... , & :

T(E) -, Rd so that for each V £ T~(E), {ÇX(V), Ç2(V), ... , &(F)} is
a basis for V. To do this let Rd = E ® EL, and then there is a neigh-
bourhood *V(E) of E such that each V g "V(E) is the graph of a unique

linear map Lv: E —> E3-. Let {ax, ... , ak} be a basis for E and then

{(ax, Ly(ax)), (a2, Lv(a2)), ... , (a¿, LK(afc))} is a basis for F. Since Gk(Rd)

is compact we can choose a finite collection ^"(T^), ... , <V(Er) of such neigh-

bourhoods that cover Gk(Rd), and by disjointifying them we get vx, ... , Vk :

r~x(k) -, Rd defined with the properties in (8). Hence (5) implies (8). If (8)
holds then let xn £ r~x(k). If y £ r~x(k), the linear map

Ly: span{w!(xi), ... , uk(x0)} -> (span{wi(x0), ... , u^xo)})1-

with graph span{ux(y), ... , «¿(v)} depends measurably on y , and hence x —►

Vx is a measurable map of r~l(k) into Gk(Rd) ■   □

We say that {Vx}x€X is a measurable subbundle of X x Rd when one, and

hence all, of the statements in Theorem 7 hold. Note that if {Ux}x&x , {Vx}xeX

are measurable subbundles of X x Rd with  Ux c Vx, and  Wx is denned
_L

by Vx = Ux © Wx, using the Euclidean inner-product, then {Wx}xeX is a

measurable subbundle.

We can now complete the proof of Lemma 4.

Proof of Lemma 4. We know y: X x Rd -, R is measurable so X^x\x) =

supt)^(x, v) = ma\iX(x, e¡) is measurable. Consider A2 = {(x, v) £ X y

Rd\x(x, v) < X^(x)} £ 38 x 38(Rd). If nx : X x Rd -, X is the natu-
ral projection then by Theorem 6 7ti(A2) G 38. Also 7ii(A2) = {x|s(x) >

1}. By Theorem 7 applied to x —► ni'x(x) n A2 on ^i(A2) we have mea-

surable maps r: 7ri(A2) -+ N and ux, ... ,uk: nx(A2) n r~x(k) -, Rd with

Mi(x), ... , wr(X)(x) a basis for A2 n nxl(x). Hence A(2)(x) = sup{y(x, t/)|

(x, v) £ A2} - maxjX(x, u¡(x)) is measurable. Let A3 = {(x, v) G X x Tî^l

X(x, v) < A(2)(x)}. As above, we get 7ii(A3) G 38, 7ii(A3) = {x|i(x) > 2},

and X^ is measurable. In this way we get that s : X -, N is measurable and

A(,): {x|s(x) >/}—>/? is measurable for each i. Now

{(x, v)\x £ X, v £ VXU)} = {(x,v) £XxRd\x(x,v) < X{J\x)}£38x38(Rd)

since x an<i ^ are measurable. By Theorem 7, x —> Vxi] is measurable.   D

3. Existence of the limit in (iv)

We first note that it suffices to prove part (iv) of Oseledec's theorem when

m is an ergodic T-invariant measure. To see this suppose (iv) holds whenever

m is an ergodic measure and consider

A=l(x,v)£XxRd\ lim -log||(^n)^t;|| exists) G & x 38(Rd).
n—oo n
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Let X' - 7iA\n(7i-x7iA\A) = {x £ X\{x} x Rd c A}. Then X' £ 38 by
Theorem 6 and m(X') = 1 for every ergodic T-invariant measure. Therefore

m(X') = 1 for every T-invariant measure by the ergodic decomposition.

Our first aim is to reduce the problem to a special case by proving Theorem

11. We use the next two simple lemmas to obtain Corollary 10.

Lemma 8. If T is a measure-preserving transformation of a probability space

(X, 38, m) and h : X -* [0, oo) is measurable then liminf^oo j¡h(Tnx) = 0

a.e.

Proof. Let Ak = {x\h(x) < k}. THen Ld Ak = X. If m(Ak) > 0 then, by
the recurrence theorem, for a.e. x G Ak there exist nx(x) < n2(x) < ••• with

Tn*(*)(x) £ Ak V/ > 1. Hence h(T"M(x)) < k and so liminf^^ \h(Tnx) =

0. This holds for a.e. x £ [J^i Ak = X.   D

For f:X-,R, f+: X —» [0, oo) denotes the positive part of / defined by

/+(x) = max(0,/(x)).

Lemma 9. If T is a measure-preserving transformation of a probability space

(X,38, m) and h: X -, R is measurable and (h - h o T)+ g Lx(m) then
}¡h(Tnx) -, 0 a.e.

Proof. We have h(Tnx) = h(x) - ¿Z"Z0\h - h o T)(Tx). Since (h - h o T)+ £

Lx(m) the ergodic theorem gives lim ^¡h(T"x) exists a.e. but could take on the

value of oo . However the limit is zero by Lemma 8.   D

Corollary 10. Suppose T is an ergodic measure-preserving transformation of

(X,38,m) and that x —> Ax is a measurable map of X into Jt(d) with

x -, log+ H^jcll integrable. Suppose {Ux}xeX is a measurable subbundle of

X x Rd with Ax Ux c Utx ■ By the subadditive ergodic theorem we have

Hmilog||yrk||

exists and is constant a.e., but could be -oo, and suppose the value of this limit

is less than or equal to p £ R. For e > 0 define

ac(x) = suo(\\A"\Ux\\e-"{P+e)).

Then \ logae(Tnx) -, 0 a.e.

Proof. By the choice of p we have 1 < a£(x) < oo . Also

¿a_<max(|M|„,|k-"«,l)

so that

loga£(x) - loga£(7x) < max(log+ \\AX\\ - (p + e), 0).

Hence x -, (loga£(x) - loga£(rx))+ is integrable and we can apply Lemma

9.   D

We shall mostly use the next result with Ux — Vxl+   ,  Vx = Vxl) for some

i, but we consider a more general situation in order to prove Corollary 12.
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Theorem 11. Let T be an ergodic measure-preserving transformation of the prob-

ability space (X ,38, m) and let A: X —> Jf(d) be such that x -» log+ \\AX\ is
integrable. Assume {Ux}xeX, {Vx}xeX are measurable subbundles of X x Rd

with UxcVx, AXUX c Ujx, and AXVX c VTx Vx G X. Let Y £38 be a set of

full measure with TY c Y and let p, X be real numbers where

lim sup -log || (A")x u || < p   Vm g Ux\{0}   Vx g Y
n—»oo     n

and

lim sup - log || (An)xv ||= X   VveVx\Ux   VxgT.
rt-+oo   n

Assume p < X. Define the measurable subbundle {Wx}x€X by Vx = UX@WX

using the Euclidean inner-product on Rd.   Let Ax\Vx: Vx -, Vrx induce the

linear maps CX:WX -> WTx, Bx: Wx -, UTx by Ax(w) = Bx(w) © Cx(w).

Then there exists Y' £ 38 with m(Y') = 1 and TY' c Y' with the following
properties : We have

limsup-log||(C")^u;|| = limsup-log||(^")x(w © iu)||
n—»oo    n n—>oc    n

Vw G Wx\{0} ,  \/u£Ux,  Vx G Y'.

Moreover, if lim^oo ^ log||(C")Jcit;|| exists for some w £ Wx\{0} and

some x £ Y' then lim„^oo ^log||(,4")x(« © ti;)||  exists V« G Ux and equals

lim^oo^loglKC")^^!!.

Proof. We use u to denote a general element of some Ux , and w to denote

a general element of some Wx . We have (A")x(u ®w) = [(An)xu + Dxn)w] ©

(C")xw, where Dxn): WX^UT„X is EU^"'^h^xBr'xiC'h . Taking the
square of the Euclidean norm of each side and using Lemma 1 we get

lim sup - log \\(A")x(u © u;) ||
i .       «—>oo   n

(*) / , ,

= max   lim sup - log \\(An)xu + D{xn)w\\, lim sup - log \\(C)xw\
\   n—»oo     n n—»oo     n

Putting u = 0 and w / 0 gives

limsup-log||(/l")xw||
,     . n—*oo    n

(**) / , , N

= max I lim sup - logHD^'i/jH, lim sup - loglKC1)*«;!! ) .

For e > 0 let a£(x) = sup„>0(||/r|[/J|é,~"(/,+£)). Let {£p}£L, be a sequence

with ep \ 0 and, using Corollaries 9 and 10, let Yp be the subset of Y of full

measure on which ^ loga£p(T"x) -> 0 and ¿log+ IMp.x|| -* 0 Vx G Yp . We

shall show Vx G f]^=x Yp ,

limsup-log||(C")xu;|| = limsup -log\\(A")xw\\,        Vw^O.
n—use     W n—>oc     W
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If not, choose x g fÇLx Yp and w ^ 0 with

lim sup -log II (C")xw II = t < A' = limsup-log||(i4',)xu>||.
n—»oo    W n—»oo    W

Choose p so that max(r, p) + ep < X'. There exists N, depending onx, to

and p, such that n > N implies ||(C")xtí;|| < en(T+e'). If we write Lx: Ux —

Utx instead of Ax\n   then

n-\

;=0

■ n—i—\>

\\D{xn)w\\ < £ ||(L"—%+,x|| . \\BT,X|| • 11(C),

< «   max   ||(L"—%+lx|| • \\BT,X\\ • \\(C')xw\\
0<i<«—i

= n\\(L"-i"-x)T,„+ix\\.\\BT,„x\\.\\(C'")xw\\

for some 0 < in < n - 1, which depends on x and w . Note that {/„} is an

increasing sequence. If {/„} is unbounded then i„ > N eventually and

X-lo%\\D^w\\<l-logn + Uoga£p(Tx+'"x)+[n'^ln\p + ,p)

1
+ -log+ \\BTtnx\\ + ±(T + ep)

so limsupn^^ ^logU-D^iüH < max(r, p) + ep < X', which contradicts (**).

Here we used

l-log+\\BT,nx\\<^Uoe+\\AT,„x\\^0.
n n in

If {/„} is bounded, say i„ < M for all n , then

-log||ßi")t/;||<-logN+ max -log\\(L"-l-x)v+ix\\
n - n o<í<m n

+ max - log \\BT,X\\ + max - log ||(C'')xti;||,
o<i<m n o<i<m n

so that limsupn^oo n 1°811^" "'H — P ' wbich contradicts (**). Hence

lim sup - log || (C )xw || = lim sup - log || (An )xw ||
n—»oo     ft n—*oo    ft

oo

Vx G fl Yp = Y' Viu G Wx\{0}.
p=\

By (*) and the above reasoning this also equals

limsup-log||(^'I)x(M©u;)||   Vuef/j.
n—»oo    fl

Now suppose lim„_oo ¿log||(C")jcti;||  exists for some w e Wx\{0}  and

some x G Y1. By Lemma 1 we have, using the Euclidean norm,

liminf-log||(^")x(w©if;)||
n—»oo    n

> max ( lim inf - log || (A* )xu + D{xn)w ||, lim inf - log || (Cn )xw \\]
\ n—»oo    n n—»oo    n J

> lim I log ||(C),«;|
n-»oo n
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With the first part of the proof this gives that lim„_00 j¡log\\(An)x(u © tu)||

exists Vw £ Ux and equals lim^oo ilog||(C)xit;||.   D

If we consider Theorem 11 with Ux = V^l+X), Vx = Fx(,) for some i then

we can consider the induced map Cx: Wx -, WTx where V^ = Vx'+i^ © Wx

and we have limsup,,^^ \ log ||(C")xiü|| = X^ Vw £ Wx\{0} . Therefore under

{Cx} every nonzero vector gives the same value A(,) for the limit supremum. If

we could replace "lim sup" by "lim" for {Cx} then, by the last part of Theorem

11, we could conclude lim^oo i log 11(^4")^^|| exists Vu G V¿l\v¿l+l). So we

can reduce our problem to considering a family {Cx} for which the lim sup

takes the same value for all nonzero vectors. We shall deal with this case by

considering the map induced onlx P(Rd) and using some "relative" ergodic

theory. However we consider the ergodic theory of the map induced on X x

P(Rd) in the general case {Ax} as this throws light on this situation. To define

the map on X x P(Rd) we need each Ax to be invertible:

Corollary 12. Let T be ergodic. To prove Oseledec's theorem for the case when

each Ax £ J£(d) and x -, log+ ||y4^|| is integrable it suffices to prove it for the

case when Ax £ GL(d) a.e. and x —> log+ \\AX\\ is integrable.

Proof. If Ax $ GL(d) then Axv = 0 for some v ¿ 0 so A«*»(jc) = -oo. If
this occurs on a set of positive measure then X^W'(x) = -oo a.e. Define the

measurable subbundle {Wx}xex by Wx = (Vx'')1- and consider the linear

map Cx: Wx —> WTx defined by letting Cxw be the orthogonal projection of

Axw onto Wtx ■ Then x —> log+ \\CX\\ is integrable and each Cx is invertible

since

limsup-log || (Cx)tt;|| ^ -oo   a.e.
n—»oo     fl

by Theorem 11. The Lyapunov exponents for x —> Cx are X(s(x)~X)(x), ... ,

X^(x) and the corresponding filtration is Vx{s{x)~l) nWx, ... , V^] nWx = Wx,

by Theorem 11. Suppose we have proved Oseledec's theorem for x —> Cx , so

that limn^oc}¡log\\(Cn)ww\\ = X^\x) for a.e. x and all

w £ (V¿J) n wx)\(v¿j+l) n wx) = (VXU)\VXU+1)) n wx.

Then by the second part of Theorem 11 lim,,_00 ¿log||(/l'')jCi;|| = X^\x) for

a.e. x and all v £ V^j\v^j+l) and Oseledec's theorem holds for x -+ Ax .   D

From now on we assume Ax £ GL(d) Vxel. We can then define tp: X x

P(Rd) -, R by <p(x, u) = log(||^û||/||o||) where ü is any nonzero element of

Rd on the line in Rd representing u £ P(Rd). The function tp is measurable

and for each x £ X the map u —» tp(x, u) is a real-valued continuous map of

P(Rd). If we define <P: X -, R by <P(x) = supue/»(Ä(i) tp(x, u) then <p(x) =

log \\AX\\ so the condition that x —» log+ \\AX\\ be integrable is equivalent to x —►

<D+(x) = max(0, <P(x)) being integrable. Define S: X x P(Rd) -, X x P(Rd)

by S(x, u) = (Tx, Axu) where Ax: P(Rd) —> P(Rd) is the homeomorphism

induced by Ax: Rd -, Rd.  If « is any nonzero element of Rd on the line
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given by u £ P(Rd) we have

n-\

5]ç»(S,'(x>u)) = log||(^"M||-log||û|
¿=0

so

1 1
limsup- V] <p(S'(x, u)) - limsup —log||(/4")ö||

n—»oo    n   . n—»oo    n
j=0

and if one side has a limit so does the other.

In the proof of the next result we shall use the following fact about dual

spaces. Let (X, 38, m) be a probability space and let E be a separable Ba-

nach space with dual space E*. Let Lxm(E) be the space of all measurable

functions /: X —» E with x —» ||/(x)|| integrable where two such func-

tions are identified if they are equal a.e. This is a Banach space with norm

11/11 = / ll/(*)ll dm(x). Let L%(E*, E) be the space of all maps y: X -» E*
for which x -, yx(v) is bounded and measurable for each v £ E, where

two such functions y(l), y(2) are identified if x —► yx\v) is equal a.e. to

x —> yx2\v) f°r every v £ E. This is a Banach space with norm ||y||oo =

ess.sup.||y(x)||, which is finite by the principle of uniform boundedness. Then

the map ¥: L%(E*, E) -, (Lxm(E))*, given by (*¥y)(f) = ¡yx(fx)dm(x)
where y: X -, E* (x -» yx) is in L%(E*, E) and /: X -, E (x -» fx)
is in Lxm(E), is an isometric isomorphism of Banach spaces [1, p. 47; 11,

p. 95]. We shall be interested in the case when E = C(P, R) for a com-

pact metric space P. The set Lm(M(P)) of all measurable maps from X to

M(P) is a subset of the unit ball in L<%(E*, E), with E = C(P, R), and is
closed with respect to the weak*-topology on L^(E*, E). Hence Lm(M(P))
is compact with respect to this topology. The set Lm(M(P)) can be identified

with Mm(X x P) = {v £ M(X x P)\v projects to m on X} via the map

a —» a G Mm(X x P) where for x —» fx in Llm(C(P, R)) we have

/     fx(y) da(x, y) = f ( [ fx(y) dax(y)) dm(x).
JXxP JX  \JP J

The map tp: X x P(Rd) -, R, defined above, gives a map x —► (p(x, .) of X

into C(P(Rd), R). We noted above that sup{p(x, u)\u £ P(Rd)} = log\\Ax\\

and an easy calculation gives inî{q>(x, u)\u £ P(Rd)} = -log||(^)_1||. Hence

log+IK^)"1!! = -min(0,ini{(p(x,u)\u £ P(Rd)}. Therefore x -, tp(x, .)

is in Lxm(C(P(Rd), R)) iff both x - log+ \\AX\\ and x -, log+ IK^r'H are
integrable iff both x —> log||/ix|| and x —> log || (^4jc)—11| are integrable. It is for

this reason we have to assume both of these integrability conditions in the last

stage of the proof.
A version of the following result appears in [4].

Theorem 13. Let T be an ergodic measure-preserving transformation of a prob-

ability space (X ,38, m). Let P be a compact metric space and let S: X x P —>

X x P be a measurable map of the form S(x, u) = (Tx, Sxu) where, for each

x g X, the map Sx: P —> P is continuous. Let tp : X x P —> 7? be measurable

and for every x £ X let <p(x, .): P -, R be continuous. If O: X -, R is defined
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by O(x) = sup„e/> <p(x, u) then suppose <t>+ £ Lxm. Then for m a.e. x £ X,

lim sup- S^ <p(S'(x, u)) = sup< / <pdv\v £ Mm(X x P, S)

Proof. Note that the extreme points of the convex set Mm (X x P, S), of

all iS-invariant members of Mm(X x P), are exactly the ergodic members of

Mm(XxP,S).
Note that if y/ : X x P —> 7? is measurable and y/(x, .): P -, R is continuous

for each x £ X then x -+ sup„ep y/(x, u) is measurable since if {un}™=l is a

dense subset of P then supue/> y/(x, u) = supn>1 y/(x, u„). Let

n-\

Mn(x) = sup VV (-$"(*, u)).
u€P

1=0

^ n   .This is measurable and M{+ £ Lxm so the subadditive ergodic theorem gives

that lim„_>00 j¡Mn(x) exists a.e. and is equal to a constant c a.e. If we put

b = sup{J tp dv\v £ Mm(X x P, S)} then we have to show c = b . Note that

c, b could equal -co.
To show c > b is easy. Suppose b ^ -oo , or there is nothing to prove. For

each e > 0 we can choose an ergodic vz £ Mm(XxP, S) with / tpdve > b-e .

By Birkhoffs ergodic theorem

n-\
1 f
-"^2<p(S'(x, w))-> / <pdvt
n /=o J

for vE a.e. (x, u) £ X x P. But M„(x) > J2"=o <P(S'(x, «)) so c > b - e .
In order to show c < b consider, for each n > 1, the set

n-\

A„ = ^(x, u)£XxP\'YJ<p(Si(x,u)) = Mn(x)\ £38 x38(P).

We have nA„ = X, where n : X x P —» X is the natural projection. Since

for each x, {u £ P\(x, u) £ A„} is closed we can choose a measurable map

wn: X -, P with (x, w„(x)) £ An Vx G X (Theorem 5). Hence M„(x) =

Y!¡Zo f(S'(x, wn(x)) and x -, SWnM is in Lm(M(P)). For each n > 1 the

linear functional on Lxm(C(P, R)) given by

n-\
1 Í

y/ —> — y^ / y«S"(x, wn(x))dm(x)

¡=o

gives an element a(n) of Lm(M(P)). The sequence {a(n)} has a conver-

gent subsequence in the weak*-topology. Therefore there is n¡ / oo and

a £ Lm(M(P)), which corresponds to some ä £ Mm(X x P), with

j -Yy/Si(x,wnj(x))dm(x)^ [ Wda   V^ g Lxm(C(P, R)).
J  ni «=o J

If, for each N > 1, we let <pN = max(p, -A^) then q>N g Lxm(C(P, R)) and

Mn¡(x) < YÜLo1 <PnS'(x , wnj(x)). Hence c < J <pNda for each ./V and hence
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c < J tpda.   We now show a £ Mm(X x P, S)  and this gives c < b.   If

y/ E Lxm(C(P, R)) then

/ y/oSdo.- / y/da.

= lim —   ¡[y/(S"i(x, w„(x))) - y/(x, wn(x))]dm(x)
;-»oo Hj J

< lim —2 [\\y/(x,.)\\dm(x) = 0.
j-Kx> n¡   J

Hence a is S-invariant.   D

Corollary 14. Suppose in addition to the assumptions of Theorem 13 that J <pdv

takes the same value b for all v £ Mm(X x P, S) and that x -, infuep <p(x, u)

is also in Lxm. Then for m a.e. x e X, ^ X^Jq1 <p(S'(x, «)) -» b uniformly

in u £ P.

Proof. By Theorem 13 we have

1 ""'
lim sup-Y<P(S1 (x,u))^b   VxgI'

n-»oo „cp n /—i'"eP" ,=0

with m(X') = 1 . By applying Theorem 13 to -<p instead of tp we get

I""1
lim inf - V ç?(S'(x, u)) -» b   Vx G X"

n->ccu€P n
i'=0

with m(X") = 1. Hence for xEX'nX", ± X)"=o' «KS''(*,«))-» ¿> uniformly
in « G P.   D

We now complete the proof of Osedelec's theorem. Because

x-,iog+\\(Axrx\\

is integrable we have A(iW)(x) ^ -oo a.e. By Lemma 4 and the ergodicity of

T there is a set X3 G ̂ " with m(X}) = 1, TX-$ c X3 on which x —» s(x)

is constant, each x -» A(,)(x) is constant and each x -> dim(Kc(,)) is constant.

By Lemma 4(iii) and Theorem 7 there is a bimeasurable bijection between

{VxS)}xeXi and X3 x 7?rs covering the identity and which is linear on fibres,

where rs = dim(Fx(i)). Using this bijection we can define <p : X^ x Rr* -, R by

(p(x, u) = log(||/4jcu||/||ü|| where w is any nonzero element of Rr* on the line

given by u. We have limsup,,^,^ ¿log||(^")xi;|| = A(i) Vu G ^(i)\{0} so we

have

1 ""'
lim sup - V <p(S'(x, u)) = X&   V« G P(Rr>).

™   n ,-=o

By Birkhoff s ergodic theorem we have / q> dv = X& Vi/ G Mm(X3 x P(Rrs), S).

Because we are assuming x —» log+ ||(^;r)_,||  is integrable, the conditions of

Corollary 14 hold and we get for all x G X4 , where m(X4) = 1 and TX4 c X4 ,

ïïE"="o <P(si(x, u)) = X^ uniformly in u £ P(Rr*). This says ±log\\(An)xv\\ -,

/(*> Vu G Fx(î)\{0} (and uniformly over {v £ Vj\ \\v\\ = 1}).
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Now consider {V¿'~l)}xeXt. Write FJ*-1) = Vf. ®WX. By Theorem 11 we
have for a.e. x ,

limsup-log||(CJ)u;|| = A<i-"   Vu; g Wx\{0},
n—*oo     fl

where CX:WX^> WTx is induced from Ax. Since {Wx} is a measurable

subbundle and \\CX\\ < \\Ax\\, ||(CX)_1|| < ||(4x)_1|| we can apply the above

reasoning to x -> Cx on {Wx} . This gives for a.e. x that ^log||(C")xuj|| -,

^(i-i) \jw g W^\{0}. Then by the second part of Theorem 11 we get for a.e.
x,

^logiK^)*«!! - A**-1)  vu g vtX)\v¿.

The proof follows by repeating the above reasoning.   D

Note that for ip: X -, Rd -, R defined by tp(x, u) - log(||/4xu||/||u||) we
have for almost every x G X,

1 ""'
-5>(ñ*. ")) -> A<'">   V« G P(V^)\P(VX{,+1)).

(=0

For each ergodic v g Mm(XxP, S) there is a largest i with v((JxP(VJ¿l))) = 1,

and for this i, / tpdv = X^ . Moreover, for each i there exists an ergodic

measure corresponding to i in the above way. Hence the exponents are the

values of / (p du as v runs over ergodic measures in Mm(X x P, S). This was

first pointed out by Ledrappier [6].
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