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ON THE THEORY OF FROBENIUS EXTENSIONS
AND ITS APPLICATION TO LIE SUPERALGEBRAS

ALLEN D. BELL AND ROLF FARNSTEINER

Abstract. By using an approach to the theory of Frobenius extensions that

emphasizes notions related to associative forms, we obtain results concerning

the trace and corestriction mappings and transitivity. These are employed to

show that the extension of enveloping algebras determined by a subalgebra of

a Lie superalgebra is a Frobenius extension, and to study certain questions in

representation theory.

0. Introduction

The theory of Frobenius extensions, initiated independently by Kasch [10]

and Nakayama-Tsuzuku [13], has, aside from its intrinsic value, proven to be

a useful tool in the study of groups and modular Lie algebras. The twofold

purpose of this note is to extend the abstract theory as well as to point out

another application concerning the theory of Lie superalgebras.

In § 1 we reformulate some of the basic features of the theory of Frobenius

extensions and generalize various results of [2, 15], including results on tran-

sitivity of Frobenius extensions. Our approach, which emphasizes associative

forms, is particularly useful for the study of the trace and corestriction map-

pings. The second section is devoted to the investigation of extensions defined

by the universal enveloping algebras of a Lie superalgebra L and a subalgebra

K containing the space Lo of even elements. Our main result, namely that their

respective enveloping algebras define a Frobenius extension, strikingly parallels
recent work on restricted Lie algebras (cf. [3]).

The irreducible modules of the so-called basic classical Lie superalgebras are

obtained, according to [8], by inducing from representations of certain subal-

gebras. By showing that some of the essential features of this theory can be

derived from the general principles of the theory of Frobenius extensions, we

provide a new conceptual approach to various well-known results.

Frobenius extensions can in particular be used to investigate the cohomology

theory of the defining rings. It is, for instance, possible to introduce a complete

relative cohomology theory that generalizes well-known principles from the the-

ory of groups (cf. [4, 11]). We shall not dwell on these aspects here, but rather
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briefly illustrate in §3 some applications related to more recent developments

of the theory.

1. Basic results concerning Frobenius extensions

Throughout this paper all rings are assumed to have an identity that operates

via the identity transformation on all modules under consideration. Modules

are left modules, unless otherwise stated. Let 5 be a subring of 7?, and suppose

that a is an automorphism of 5. If M is an 5-module, we let aM denote

the 5-module with a new action defined by s * m = a(s)m . Thus, for example,

Homs(7?, aS) denotes the set of additive maps f:R—>S such that f(sr) =

a(s)f(r) for all s e S, r e R. This is an (R, 5)-bimodule via the action

(r • f • s)(x) = f(xr)s. We say 7? is an a-Frobenius extension of 5 if

(i) 7? is a finitely generated projective 5-module, and

(ii) there exists an isomorphism q>: 7?—»Horns (7?, a5) of (7?, 5)-bimodules.

Such an extension is referred to as free if 7? is a free 5-module. In the literature,

Frobenius extensions are frequently defined using right modules. Both notions

are equivalent in the sense that every left a-Frobenius extension is a right a-'-

Frobenius extension (cf. the remarks after (1.2)).

Given an endomorphism ß of 5, a ß-associative form from R to S is a

biadditive map ( , ) : 7? x 7? —» 5 such that

(a) (sx, y) =s(x, y),     (b) (x, ys) = (x, y)ß(s),     (c) (xr, y) = (x, ry)

for all 5 e 5, r, x, y e R. We say that ( , ) is nondegenerate if its left and

right radicals are trivial.
A ^-associative form determines an additive map n: R —* S ; n(r) :=

(r, 1) = (1, r) that satisfies n(sr) = sn(r) and n(rs) = n(r)ß(s) for all

r e R and s e S. Conversely, given any additive map n: R —► S with these

properties, we can define a ^-associative form from 7? to 5 by means of

(x,y) :=n(xy).

In this section we shall provide conditions pertaining to a-1-associative

forms that are tantamount to an extension of rings being an a-Frobenius exten-

sion. This approach, which amounts to a refinement of the methods introduced

in [15], will be employed later to show that enveloping algebras of Lie superal-

gebras give rise to Frobenius extensions.

Definition. Let ( , ): 7Î x 7? —> 5 be an a-'-associative form. We say that two

finite subsets {xx, ... , xn} and {yx, ... ,y„} of R form a dual projective pair

relative to ( , ) if

n n

r = Y^yM(Xi, r)) = ¿^(r, y,)x,    for all r e R.
1=1 /=i

Note that the 5-linear mappings y}¡: R —> 5; y>¡(r) := (r, y¡) together with

the set {xi,... ,xn} form a projective basis for 7? as an 5-module.

Let {xx, ... , xn} and {yi, ... , y„} be subsets of 7? with 7? = ¿2"=x Sx¡ =

2~2"=1 y;5. In the ring Mn(S) of (nx n) matrices with coefficients in 5, define

A = [(xi, yj)h<i,j<n . If {xx, ... , xn} and {yx, ... , y„} form a dual projec-

tive pair relative to the a-'-associative form ( ,  ), then the i, j-entxy of A2
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is

¿Z(*«' ' yk){Xk . yj) = ( 5^<*i, y*)**, y;- \ = (x¡, y}),
k=\ \k=\ I

proving that A is idempotent. In addition, if r e R and (r, R) = 0, then

r = £í=i(r> y¡)x¡ = 0. Likewise (R,r) = 0 implies r = 0, so ( , ) is

nondegenerate.

Suppose conversely that A is idempotent and ( , ) is nondegenerate. The

above calculation shows (x¡ - ¿Z"k=x(xi, yk)xk, yj) — 0 for all j . Since 7? =

¿2"=x yjS, the element x¡ - ¿2k=x (x¡, yk)xk is contained in the left radical of

( , ). Consequently, x¡ = ¿2l=\(x> > yk)*k for all i, and since ¿Z"=x Sx¡ = R,

this implies r = Y,k=i (r > yk)*k for any r e R. By the same token, we have r =

ELi yk<*((Xk ,r)),so {xx, ... , xn} and {yx, ... , y„} form a dual projective

pair.

Theorem 1.1. Let S be a subring of R and suppose that a is an automorphism

of 5. Then the following statements are equivalent.

(a) R is an a-Frobenius extension of S.

(b) There is an a~x-associative form ( , ) from R to S relative to which a

dual projective pair {xx, ... , xn}, {yx, ... , yn} exists.

(c) There exist a nondegenerate a~x-associative form { , ) from R to 5

and two subsets {xx, ... , xn} and {yx, ... ,yn} of R with R = ¿2"=x Sx¡ =

zZl=i y¡S such that the matrix A = [{x¡, yj)]¡j is equivalent to an idempotent

matrix in the sense that there is a left invertible P e M„ (S) and a right invertible

Q e M„(S) with PAQ idempotent.

Proof, (a) => (b) Let y>: R —> Homs(7?, aS) be the defining isomorphism of

(R, 5)-bimodules. We define a bilinear form ( , ) : 7? x 7? —> S by means

of (x, y) := a~x (q>(y)(x)). Using the definition of the bimodule actions, one

readily verifies that ( , ) is an a-'-associative form.

Let xx, ... , xn e R and <px, ... , y>„ e Hom,s(7x, 5) form a projective basis

for the 5-module R. Since a o y>¡; e Homs(7?, aS), there exist elements y, of

7? for I < i < n such that q>(yi) — a o y>¡■. Now

n n n

r = ^2<Pi(r)Xi = Y^ot-x((p(yi)(r))Xi = J](r, y,-)jc,-
¡=i i=i i=i

for any r e R . Applying / e Homs(7?, aS) to this last equation shows that

n

fi = zZ<p(yt)-fi(x,).
!=i

If f=(p(r), this gives y>(r) = (p(Y!¡=xyia((xi,r))), whence r = YJ¡=xyia((Xi, r))

for any r e R.
The implication (b) => (c) is a direct consequence of the remarks preced-

ing the theorem. To verify (c) => (a) we define ax, ... , an,bx, ... ,bn e R

by (ax,...,an)' = P(xx, ... , x„)' and (bx,...,bn) = (yx, ... , y„)a(Q).

The left invertibility of P and the right invertibility of a(Q) ensure that

R = EUSai = ZUbiS. Clearly [(a,, ¿>,}]i<, j<„ = PAQ, and so by the
remarks preceding the theorem {ax, ... , an} and {bx, ... , b„} form a dual

projective pair.   Define an (R, 5)-bimodule map y>: R —> Homs(7?, aS) by
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<p(y)(x) := a((x, y)). To prove the invertibility of <p we consider the mapping

W- Homs(R, Q5) -> R; w(f) ■= E"=i bif(a¡). For any r e R, we have

n n

W((p(r)) = Y^ bi(p(r)(a¡) = ^ bia((a¡ ,r)) = r.
i=\ i=\

Similarly, we obtain for / e Hom,s(7?, aS) :

n

<p(W(f))(r) = a((r, y,(f))) = £a((r, b.Aa,)))
1=1

= ¿ a((r, b,))f(ai) = f (¿(r, b^a] = f(r).
1=1 \/=i /

Thus q> and w are inverses, proving that (a) holds.   □

Let 7? : 5 bean a-Frobenius extension, let ( , ) be the a-1-associative form

from R to 5 in (1.1), and define n: R -> 5 by. n(r) := (r, 1) = (1, r). The
maps aon and n are customarily referred to as the Frobenius homomorphisms

associated to this Frobenius extension. In this paper we shall only refer to n

as the Frobenius homomorphism. Our remarks above show the form ( , ) is

determined by n.

Definition. Let ( ,   ): 7? x R —> 5 be an a"'-associative form.  Two subsets

{Xi,..., xn} and {yx, ... , yn} of R are said to form a dual free pair relative

to ( , ) if

(i) R = Y,LlSxl = ¿zUy¡s,
(ii) (Xi, yj) = 8U for I <i, j <n.

Note that {xx, ... , xn} and {yx, ... ,yn} are bases for 7? as a left and

right 5-module, respectively. A direct computation shows that {xx, ... , x„}

and {y x, ... , y„} form a dual free pair if and only if they form a dual projective

pair and they are bases for R as a left and right 5-module, respectively.

The analogue of ( 1.1 ) for free Frobenius extensions is the following.

Corollary 1.2. Let S be a subring of R and let a be an automorphism of S.

Then the following statements are equivalent.

(a) 7? is a free a-Frobenius extension of S.

(b) There is an a~x-associative form ( , ) from R to S relative to which a

dual free pair {xx, ... , xn}, {yx, ... , y„} exists.

(c) There exist an a~x-associative form ( , ) from R to S and elements

xx, ... , xn,yx, ... , yn e R such that R — ¿"=, 5x, = £"=i yfi and the n x n

matrix [(x,, yf)]i,j has a two-sided inverse in the ring Mn(S).

Proof, (a) => (b) Define an a-'-associative bilinear form ( , ): 7? x R —<■ S as

in the proof of (1.1). Let {xi,..., x„} be a basis of the left 5-module R.
Since <p is surjective there exist yx, ... , yn in 7? such that a~x o q>(yj) is the

jxh projection from 7? onto 5 relative to this basis. Clearly (x, ,yf) - 8¿j for

1 < /', j < n. Since {yx , ... , y„} generates the right 5-module 7? as in the

proof of (1.1), we obtain (b).
The implication (b) => (c) is trivial. As regards (c) => (a), it follows directly

from the invertibility of [(x,, yj)] that the form ( , ) is nondegenerate. An

application of ( 1.1 ) now yields the desired result.   D
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Examples. (A) If 5 is any ring and 7? = M„(S), define (x, y) := Tr(xy).

If we let e¡j denote the matrix with 1 in the i, j position and O's elsewhere,

then {eij}i<ij<n and {f/<}i<i,/<« form a dual free pair. Thus 7? is a free
Frobenius extension of 5 by (1.2(b)).

(B) It is well known that if G is a group and 77 is a subgroup of finite

index, the group ring K[G] is a free Frobenius extension of 7<"[77]. This result

can be generalized to the case of any strongly G-graded ring (for example a

crossed product) in place of K[G]. Recall that a ring R is graded by G if R -

0 €G7îg , where each 7?^ is an Abelian subgroup of 7? and RgRn Ç Rgn for

all g, h e G. We say R is strongly graded by G if equality always holds. This
condition is easily seen to be equivalent to the existence of xXtg, ... , xm(i) > g e

Rg, yXjg, ... ,ym(g),g £Rg-> with T^fyi.gXi.g = J fox each g e G. If R
is strongly graded by G and 5 = 0?e// 7?^ , then 7? : 5 is an id^-Frobenius

extension.

To see this, we define the Frobenius homomorphism by n(Y,geGrg) :=

Y,g€Hrg. If we let {Hg: g e C} be a complete set of right cosets for 77

in G, then it is clear that {x¡jg: g e C, 1 < i < m(g)} and {y¡,g: g e
C,   1 < i < m(g)} form a dual projective pair.

(C) We give an example which employs a method very much like our proof

in §2 that enveloping algebras of Lie superalgebras give rise to Frobenius ex-

tensions. Let 5 be a subring of R and suppose that there exist an x e R, a

positive integer m , and an automorphism a of 5 such that

(i)  I, x, ... , xm is a basis for 7? as a left 5-module, and

(ii) sx - xa(s) e S for all s e S.

Then 7? : 5 is a free am-Frobenius extension.

To see this, first note that we can use (ii) and induction to prove that for any

positive integer k,

(*)  sxk-xkak(s)eS+xS+---+xk-xS = S+Sx + ---+Sxk~x   for all s e S.

Thus I, x, ... , xm is also a basis for R as a right 5-module. Now define

n: R —» 5 by rc(2~Z/üo5'-*') '■- sm . Clearly n is left 5-linear, and (*) implies

that for any s e S, there exist s'0, ... , s'm_x e S such that Y,?=os'x's =

sma-m(s)xm + ¿ZT=~o[ s'ix' ■ h follows that the form ( , ) : Rx7? -» 5; (rx, r2) :=

n(rxr2), is (am)~x-associative.

If 0 < i < j < m, then (x', xm->) = 0, while (x', xm-') = 1 . Con-

sequently the matrix [(x', xm~J)]o<ij<m is a lower triangular matrix all of

whose diagonal entries are 1. Such a matrix is invertible, and so R : S is a free

am-Frobenius extension by (1.2).

(D) As a special case of example (C), let K be any ring and consider the

extension 7? : 5 given by R = M2(K), and 5 = {[aQ *]: a, b e K}.   This

satisfies the hypotheses of (C) if we set x = [ ° ] and define a([a b]) :=[a ~b ].

Thus 7? : 5 is a free a-Frobenius extension. (The Frobenius homomorphism

in this case is defined by n([a ,]) = [cn a~ ]. If we were to define n': R —> S
cd Oc

by &'(["*]) - [cQa+cd]> then R '■ s co"*0 be shown to be an id5-Frobenius

extension as well.)

One interesting facet of this example is that 5 = 7y"[Z]/(Z2) , where / is an
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indeterminate, so the global dimension gl.dim5 is infinite, while gl.dimT? =

gl.dim K. Since R : S is a Frobenius extension, the relative global dimension

of R : S is 0 or oo. Consequently, this example shows no simple relation need

hold between the actual global dimensions of 7? and 5. In addition, if we

take K of finite global dimension, we obtain an example of a finite free ring

extension where the extension ring has smaller global dimension than the base

ring. This is a simpler example than those usually cited in the literature, as well

as being valid in any characteristic (cf. [12, 7.2.7]).
(E) If we let K be a field and V a vector space of dimension zz, then one

can easily iterate example (C) and show that the Grassmann algebra A(V) is

a Frobenius algebra over K, with the Frobenius homomorphism n : R —► K

determined by the projection onto A"(V).

Remarks. ( 1 ) If 7? : 5 is an a-Frobenius extension with form ( , ), then

one readily sees from (1.1) that the extension defined by their opposite rings is

an a~'-Frobenius extension with defining form (x, y) := a((y, x)). This in

particular implies the well-known fact that Frobenius extensions can be equally

well defined in terms of right modules.
(2) Suppose 7?, is an a,-Frobenius extension of 5, for I < i < n , and each

5, and each 7?, is an algebra over the commutative ring K, and every a, is K-

linear. Then the tensor product over K of the 7?, is an a-Frobenius extension

of the tensor product over K of the 5,, where a is the tensor product of the

a,. This is easy to see using (1.1): a dual projective pair for R: S is obtained

by tensoring together the elements of the dual projective pairs for the extensions

Ri : Si.
It now readily follows that if 7? : 5 is an a-Frobenius extension, then 7? ®z

7?op is an (a ® a~')-Frobenius extension of 5®z5op . This enables us to apply

module-theoretic results on Frobenius extensions to bimodules.

Now let 7? : 5 be an a-Frobenius extension and consider two 7?-modules

M, N. Given a dual projective pair {xx, ... , xn}, {yx, ... , y„} the mapping

Tx[R . s] ■ Horns (Af, a A7) —► Hom«(A/, N), which is defined by

n

Yr[R:s](f)(m) = ^2yifi(x¡m)   for m e M,
i=i

is customarily referred to as the trace map.
The ensuing result elaborates on [15, Satz 6] by providing a factorization of

the trace map.

Proposition 1.3. Let T c 5 c 7? be rings such that

(a) 7? : 5 is an a-Frobenius extension,

(b) S : T is a y-Frobenius extension, and

(c) a(T) = T.

Then R:T is an (a o y)-Frobenius extension and Tr[Ä : T\ - Yx[R. S] o Tr[5. TX.

Proof. Let n: R —> 5 and p: S —> T denote the Frobenius homomorphisms

of 7? : 5 and S : T, respectively. We define an (a o y)-1-associative form

( , ): TxxT? -» T via (a, b) := (pon)(ab) for a, b e R. The extensions 7? : 5

and 5 : T have associated dual projective pairs {xx, ... , x„}, {yx, ... , yn}

and  {ux, ... , Um} ,{vx, ... , vm}, respectively.   Then, for every element  r
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of R

r = ^y,a(7t(x,-r)) = J^y/a    YvJ^P(Uj7t(Xir)))

= Y ^yia(Vj)(a o y)((p o n)(UjX¡r))

1=1 7 = 1

= 5]y¿a(v;-)(aoy)((M;X/, r)).
¡J

Similarly, r = £,- ;(r, y,a(7;;))zzyx,. This shows that {zz;x,: 1 < z < n,   1 <

7 < zrz} and {y¡a(Vj): 1 < i < n,   1 < j < m} form a dual projective pair

relative to ( ,  ). According to (1.1), 7? : T is therefore an (a o y)-Frobenius

extension.

Now let / be an element of Homr(Af, aoyN) = Hoiri7-(A/, 7(aN)). Then

Tr[lS: T](fi) £ Hoiris(M, aN) and

m m

Tr[S: T](f)(tn) = YVJ* f(uJm) = Ya(vj)f(ujm)•
7=i ;=i

Consequently,
n

Tr[R : -j] o Tr[5. T](f)(m) = J^y.-Trp : T](f)(x,m)
i=i

'.7

The following result provides a partial converse to (1.3).

Theorem 1.4. LeZ T c S c R be rings and suppose that

(a) R:T is a ß-Frobenius extension with Frobenius homomorphism o : R —>

7\
(b) S : T is a y-Frobenius extension with Frobenius homomorphism p: S —►

7\ azzz7

(c) 7? is a projective S-module.

Then the following statements hold:

(1) The map n := Tx[s ■ r\(y ° o) is the unique element of Homs(7?, 5) such
that p o n = a .

(2) If there exists an automorphism a of S with n(rs) = n(r)a~x(s) for

all r e R, s e S, then R : S is an a-Frobenius extension with Frobenius

homomorphism n.

Proof. Let {xx, ... , xn}, {yx, ... , yn} be a dual projective pair for 5 : T, so

that s = ¿ZU y>y ° P{x¡s) = ZU p{sy,)Xi for all 5 e 5.
(1) Suppose that n = Tr¡s : j)(y ° o) ■ For r e R we obtain

(p o n)(r) = p I ¿y,-0> ° a)(x¡r) ) = Y p(yi)o(x¡r)
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so p o n = a . Assume conversely that p o n — a . As Trçs :t](7°p) = ids > it

follows that

Yr[S : t](Y °o) = Tr[S. T](y o pon) = Tr[5 : T](y o p) o n = n.

(2) Define cp: R -> Homs(7?, a5) by <p(r) = r • (a o n), i.e., <p(r)(r') =

a(n(r'r)). Our assumption concerning n ensures that y> is a well-defined

(R, 5)-bimodule map.
Suppose r e Yjextp. Then for every r' e R, we have n(r'r) = 0, whence

0 = (p o n)(r'r) — a(r'r) for all r' e R . Since R : T is a Frobenius extension,

it follows that r = 0 .
Suppose / e Homs(7?, aS). Then ß o p o a~x o f e Homr(7?, ßT); since

7? : T is a /?-Frobenius extension, there is an r e R with ß o p o a~x o f =

r-(ßoa) — ßopo(r-n). We can cancel ß and conclude /)oa"' of = po(r-n).

Hence
r • n = Tx[S -, T](y o p) o (r ■ n) = Tx[S ■. T)(y opo(r-n))

= Tx[S : t](Y ° P ° a~x of) =a~x of,

proving that q>(r) = r • (a o n) = f. This shows <p is an isomorphism.   D

The automorphism a in part (2) of the preceding result is uniquely deter-

mined. Moreover, its existence is related to the behavior of the Nakayama

automorphism of the extension R : T. To see this, we first observe that by

definition of n , we have

n(rt) = n(r)y(ß-x(t))

for any te T, r e R. Consequently, a(t) — (ß o y~x)(t). In particular,

a(T) = T, and hence a(Cs(T)) = CS(T).
Associated to any Frobenius extension is the Nakayama automorphism, an

automorphism of the centralizer of the subring in the extension ring (cf. [11]).

In the situation of (1.4), there are two Nakayama automorphisms, p: Cr(T) ->

Cr(T) and v: Cs(T) —> Cs(T), whose defining relations are

o(cr) - o(rp(c))   and   p(cs) = p(sv(c)).

Suppose that (a) through (c) of (1.4) hold and put n :- Tr[iS: TX(y o a). Then

the following statements are equivalent:

(i) p(Cs(T)) = Cs(T).
(ii) There exists an automorphism a of Cs(T) suchthat n(rs) = n(r)a x(s)

for all re R, s e CS(T).

To prove (i) implies (ii), suppose that p(Cs(T)) = C$(T). Then for any

r e R, ce Cs(T), we have

p o n(rc) = a(rc) = o(p~x(c)r) = p(p~x(c)n(r)) = p(n(r)(u o p~x)(c)).

Upon composing both sides with y and applying the operator Tr(s ; 7-], we

obtain n(rc) = n(r)(v o p~x)(c). Consequently, a:=pov~x has the requisite

property.

Conversely, assume (ii) holds. For ce CS(T) and r e R we obtain

o(p-x(c)r) = po n(rc) = p(n(r)a-x(c)) = p((v~x o a~x)(c)n(r))

= p o 7T((z/-' o a~x)(c)r) = a((u~x o a~x)(c)r).
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Consequently, p~l(c) = (z^_'oa_1)(c). As a result we have p(Cs(T)) = C$(T).

It follows from our above deliberations that condition (i) is necessary for the

existence of a in (1.4) (2).

If T is contained in the center of 5, the above calculations show that
n(rs) = n(r)(v o p~x(s)) for all r e R, s e S. Thus, in this case (1.4) can

be restated as follows.

Corollary 1.5 [15, Satz 7]. Let T c S c R be rings such that T c Z(S) and
suppose that the following conditions hold.

(a) R : T is a ß-Frobenius extension with Nakayama automorphism p :

CR(T) -» CR(T) such that p(S) = S,
(b) S : T is a Frobenius extension with Nakayama automorphism v: S —>

S, and
(c) 7? is a projective S-module.

Then R: S is a (po v~x)-Frobenius extension.   D

Examples. We give an example showing that the technical assumption (c) is

essential to the validity of (1.4) and (1.5).
(F) Let K be a field and / an indeterminate, and set 7? := K[t]/(t3) = K[l].

Let 5 be the subalgebra K[t ] of R, and set T := K. Then by example (C),

R and 5 are Frobenius algebras with a : R —> K given by o(a + bt + ct ) = c

and p: S —► K obtained by restricting a to 5. All the hypotheses of (1.4) and

(1.5) are satisfied in this setting except projectivity of 7? as an 5-module. Since

5 is a local ring, if 7? were projective, it would be free. This is impossible,

however, since 7Î is 3-dimensional over K and 5 is 2-dimensional. (In fact,

one can show in this example that Homs(7?, 5) = 7?, so 7? : 5 satisfies all the
conditions for a Frobenius extension except projectivity.)

The following example illustrates that Frobenius extensions also arise if the

technical assumptions of (1.4) and (1.5) do not hold.

(G) Let K be a field whose characteristic is not 2 and let R be the Grassmann

algebra over K in the indeterminates x, y. By example (E), 7? is a Frobe-

nius algebra over K with Frobenius homomorphism a: R —> K defined by

a(a + bx + cy + dxy) = d for a, b, c, d e K . The Nakayama automorphism

p of R is given by

p(a + bx + cy + dxy) — a - bx - cy + dxy.

Set t := x + xy e R ; then t2 — 0, whence 5 := K + Kt is a subalgebra of

7?. By example (C), 5 is also a Frobenius algebra over Tí with Frobenius ho-

momorphism p : S —* K defined by p(a + bt) = b. It is easy to see that {1, y}

is a basis for R as a right or left 5-module. If we define an automorphism a

of 5 by a(t) = -t, then sy = ya(s) for s e S. It thus follows from example

(C) that 7? : 5 is an a-Frobenius extension with Frobenius homomorphism

n(a + bx + cy + dxy) = c + (d - b)t.
Since 5 is not invariant under the Nakayama automorphism p of R, the

hypothesis p(S) = S in (1.5) is independent of the other hypotheses of (1.5),

and so by the equivalence of (i) and (ii) in the remarks after ( 1.4), the hypothesis

(2) of (1.4) is independent of the other hypotheses in (1.4). Moreover, this

example shows the hypotheses of (1.4) and (1.5) are not necessary for R : S to

be a Frobenius extension.
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2. Frobenius extensions of Lie superalgebras

Let F be a field whose characteristic is not 2 and suppose that L is a
Lie superalgebra over F with even part Lo and odd part Lx . (See [8] for

definitions and terminology.) We shall be concerned with subalgebras K —

Ko © Kx of L for which Kq coincides with Lo . Note that these subalgebras

correspond to the L0-submodules of Lx. Suppose that K is such a subalgebra

with diirçr L/K - n . Let J2- = {0, 1}" be the set of all multi-indices of length
n and put x = (I, I, ... , I). We say that two such multi-indices 7, J e J2-

are disjoint if there is no component in which both are nonzero. The weight

of I, which is defined to be the sum of the components, will be denoted by

|7|. Let %(L) and %(K) be the universal enveloping algebras of L and K,

respectively, and choose xx, ... , x„ to be elements of Lx whose cosets form

a basis for L/K. For 7 = (z(l), ... , i(n)) e ^ , we define x1 = x|(1) • • -x^ .

The Poincaré-Birkhoff-Witt Theorem ensures that every element of %f(L) can

be written uniquely in the form u = Zie^ u'x' > witb eSLCn Ul lym8 in %(K).

We filter the ^(Tv)-module Í¿(L) by setting V(m) := T!¡Lo^(K) ' (L\)
(so V(0) = %(K) and V(n) = %(L)). A standard straightening argument

shows that V(m) • %(K) c V(m), qualifying V(m) as a ^(Tv)-subbimodule

of Í¿(L). By applying the Poincaré-Birkhoff-Witt Theorem we thus obtain

V(m) = ®mmW(K)x' = ©|/|<mx'^(7v). Clearly, V(k)V(l) Ç V(k + I) for

all k, I > 0.

Lemma 2.1. (1) For m > 2, the product of any m linearly dependent elements

of Lx lies in V(m - 2).
(2) Let yx, ... ,yme Lx and let a be a permutation in Sm . Then

y£7(i)---y<r(m)-(sgn(7)yi---ym e V(m-2).

(3)IfI,JeJr,thenoneofx'xJ+xI+J orx'xJ-xI+J liesin V(\I\+\J\-2).

Proof. ( 1 ) We may write the factors in the product as a linear combination of

some subset of them, and so for the first claim it is enough to prove yx ■ ■ ■ ym_ i y,

e V(m - 2) whenever yx, ... , ym-X e Lx, 1 < i < m — 1. If i = m — 1,
then, observing [ym-X, ym-\] e Lo , we obtain

y\---ym-iym-\ym-\ = \y\ •••ym-2[ym-i,ym-i]e v(m-2).

If i < m - 1, then

yi •••ym-2ym-iy< = -y\ ■■■ym-iyiym-\ +y\ ■••ym^Iym-i, y¡],

with the second summand obviously being contained in V(m-2), since [yw-i,

y¡] e Lq. By induction on m we may assume yx ■ ■ -ym-2yi e V(m-3), whence

the element yx ■ ■■ym-2yiym-i belongs to V(m-2).

(2), (3) To prove (2), we may assume without loss of generality that a is a

transposition of the form (ii + 1). In this case

yi • • -yz+iy/ ■■■ym+y\- • -y¡yi+\ ■■•ym

= yi---y/-i[y/, y^ilyz+i ■••ym e V(m-2).  n

The definition of a Lie superalgebra implies that the map f:K—< gl(L/K)

defined by f(a)(y + K) :- [a, y] + K for a e K , y e L is a homomorphism of

Lie superalgebras, and so A: K —> F defined by X(a) := tr(/(a)) = -str(/(a))
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(where str stands for the supertrace) is a linear functional on 7v which vanishes

on [K, K] + Kx . Hence there is a unique automorphism a of Í¿(K) such that

(*) "(a) -{
a + X(a)l    fox a e Ko,

(-l)na      foxaeKx.

Theorem 2.2. Let L be a Lie superalgebra, and K c L a subalgebra of L of

codimension n that contains Lo. Then the extension %(L) : Í¿(K) is a free

a-Frobenius extension, where a is defined by (*).

Proof. We will use the notation in the discussion preceding the theorem. We

first consider the case K — Lq. Accordingly, let xx, ... , x„ be a basis for

Lx. We define a: %(L) —> í/(Lq) by o(Zl€Jr ujx1) = zzT and consider the

associated biadditive map ( , ): %(L) x ^¿(L) -> ^(Lq) ; (zz, v) :- a(uv).

The Poincaré-Birkhoff-Witt Theorem shows that %(L) is a finitely generated

free right and left ^(Lo)-module, each on the basis {x1 : I e J?}. The form

( , ) is evidently associative, and it is clear that if a is an element of %(Lo),

then a(au) = aa(u), so (au,v) = a(u,v). Defining ß: %/(Lq) —> ̂(Lq)

via ß(x) = x + tr(adx|z,,) for x e Lo , we claim a(ua) = o(u)ß~x(a) for all

zz e &(L), a e %S(L0).
The Poincaré-Birkhoff-Witt Theorem shows that the multiplication map of

%(L) induces an isomorphism

%(Lo)®FA(L\) = %(L)

of Lo-modules, with Lo acting on ^(Lo) and the exterior algebra A(Li) via

the adjoint representation. Recall that A(Li) is a graded Lo-module on whose

zzth component L0 operates via the map x h-> tr(adx|¿,). Now let a e Lo and

u e %(Lo). Then we have

a([a, ux1]) = a([a, u]x') + a(u[a, x']) = 8¡<z[a, u] + 8¡¡TÁ.(a)u

= [a, a(ux1)] + X(a)a(uxI).

Consequently,

a([a, r]) = [a, a(r)] + k(a)o(r)   for all a e Lo,  re °¿¿(L).

This implies

a(ra) = o(ar - [a, r}) = aa(r) - [a, a(r)] - X(a)a(r) = o(r)ß~x(a)

for every a e Lo and r e f¿(L). Thus a(rs) = o(r)ß~x(s) for every 5 e ^(Lo)

and r e %(L).

Next define any total order -c on S which has the property that 7 <s J

implies |7| < |7|. Let V denote the complement x - I of 7, so |7'| — n-\I\.

If |7| < \J\, then |7| + \J'\ < n , so x'xr eV(n-l). If |7| = |7| and / # J,

then |7| + |/'| = n , but 7 and J' axe not disjoint (i.e., x' and xJ' have some

variables in common), so (2.1 )( 1) yields xV e V(n - 2). This shows that

if 7 < J and I ^ J, then (x1, xJ') = 0. Applying (2.1) again we see that

(x> ,x>') = ±l.

For I e S put x/ := x' and y¡ := x'' . Then {x¡: I e J"} and {y¡: I e
J?} are ordered bases of the left and right ^(Lo)-module f/(L), respectively.

Consider the matrix [(x¡, yj)]¡ j&Jr. According to the last paragraph this is
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a lower triangular matrix whose diagonal entries are all ±1 . Thus by (1.2)(c),

%(L) is a free /3-Frobenius extension of f¿(Lo).

Now suppose that K is as given in the theorem. Let xx,... , x„ be elements

of Lx whose cosets form a basis of L/K and let wx, ... ,wm be a basis for

Kx. Adopting the notation introduced above, we define n : %(L) -> %/(K) by

nŒi€jr uix') '•= ui » where the coefficients u¡ are in Í¿(K). By the first part of

the proof, %(L) : %(Lo) is a /7-Frobenius extension, with the Frobenius homo-

morphism o being the projection of an element of %(L) onto the coefficient

(from {%(Lq)) of the monomial wx---wmxx---xn . Likewise, W(K) : ^(L0)

is a y-Frobenius extension, where y(x) — x + tr(adx|jf,) for x e Lo , with the

Frobenius homomorphism p being the projection of an element of *i¿(K.) onto

the coefficient (from (2¿(Lq)) of the monomial wx- ■■ wm . Obviously pon = a ,

and we have noted before that %S(L) is free over %(K). By (1.4), to show

W(L) : %(K) is an a-Frobenius extension with Frobenius homomorphism n ,

it suffices to verify

n(ua) — n(u)a~x(a)   for all u e %(L), aeK.

By definition we have a(a) = ß o y ~ ' (a) for a e %/(Lq) , so it is enough to show

this equality for a e Kx .
Let a e Kx and let u e %(K). For 7 e S , we obtain as a consequence of

(2.1) that zzx'zz = (-Xfuax1  (mod V(n - 1)), so that

n(uxla) = (-l)"ua8f^ — n(ux,)a~x(a).

It now follows that n(rb) = n(r)a~x(b) for all r e %(L) and all b e %(K).   D

Throughout the remainder of this section L - Lo@ Lx is assumed to be

a finite-dimensional, Z-graded Lie superalgebra, i.e., L = 0/6Z £.(,-) with each

L(,) a homogeneous subspace and with [L(¡), L(j)] c L(/+J). We consider L~ :=
0¡<OL(,) and L+ := 0;>OL(;) and define ¿P := Li(j)®L+ . Using the Poincaré-
Birkhoff-Witt Theorem one readily verifies the following facts for the Z-grading

inherited by í¿(L) :
(i) %(&>) = ©,>0^(^)(0 ; &(&>){l) c W(L(o)W(L+)+ for all i > 0, where

%f(L+)+ is the augmentation ideal of %f(L+) (that is, the kernel of the canonical

supplementation on %?(L+)).

(ii) V(L-) = e;<0^(L-)(i) ; aC(L-)(0) = F • 1.
Following Shen [16], we refer to a Z-graded L-module 2^ as positively

graded if W = ©,>o ^io • A positively graded module 'V is said to be transi-

tively graded if Jfo) = {v e'V: x-v = 0 for all x e L~}.
Let F be an L(0) -module. We extend the operation on V to 9° by letting

L+ act trivially. Note that the augmentation ideal ^(L+)+ of ^(L+) then

annihilates V. We shall be studying the coinduced module Coind^.(F) :=

Homvm(&(L),V).

Theorem 2.3. Let V be an L^-module and suppose Lo c ¿P .
(1) The L-module W := Coindc¡¡>(F) obtains the structure of a transitively

graded L-module by setting ^ := {/ e T: f(W(L)U)) = (0) for all j ¿ -i}.
(2) Jfo) is isomorphic to V as an L^-module.

Suppose, in addition, that V is finite dimensional.

(3) If V is indecomposable, then *V is indecomposable.
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(4) If V is irreducible, V = ^(L(0))vo. then "V contains a unique irreducible

submodule, which is generated by the image of vq under the isomorphism in (2).

Proof. (1) Let / be an element of f^ , u e %/(L)ik), and suppose that ;' ^

-i - k. If x e í¿(L)ij), then xu e &(L)(j+k) and as j + k ^ -i we obtain

(zz ■ f)(x) = f(xu) = 0. Consequently, (u • f) belongs to Jfj+k).
Now let {zzi, ... , ZZ(} be the basis of %(L) over ^/(â0) induced by a basis

{ex, ... , ek} of L~ . (Such a basis is finite since L0 C &.) Owing to (ii)

we have u¡ e ^(L)(¡(/)), where /(/) < 0 for  I < I < t.   For an arbitrary

element v e V and I e {I, ... , t} ,let X{vl): 1¿(L) -> V be the ^(^)-module

homomorphism given by Xy(u¡) := 8¡¡v for 1 < i < t. Any element zz e

^(L)ik) has a representation zz = Yl\=x riui > where r¡ e <fc,{@>)(k-i(i)) for 1 <

I < t. Given I e {I, ... ,t},v/e have Xv'\u) = r¡v . If k ^ i(l), then (i) in
conjunction with the definition of the í¿(¿P)-module structure of V forces the

vanishing of Xv \u). This qualifies X„ ' as an element of %f-i(i)) ■ For every

element / e "V we have / = Yli=\ xftu) ■ Consequently, T = 0{=1 T^¡f¡)),

proving that 3^ is a positively graded module.

To verify the transitivity of °V, let / be an element of 'V such that x-f - 0

for every x e L~ . Since each homogeneous constituent of / enjoys the same

property, we may assume / to be homogeneous of degree /. Suppose that

/ > 0 : we may write any element of i/(L)<_^ as a sum of elements of the form

u - Yji+k=-i a'bk > where a¡ e ^(â0)^ and bk e ^(L~)(jt). Owing to (i) we
have a¡ • V = (0) for i > 0, and so

/(«)=   Y  alf(bk) = aof(b_,) = ao(b_l.f)(l).
i+k=-l

By virtue of (ii), b_¡ is contained in í¿(L~y and therefore annihilates /.

Thus f(u) = 0 and it follows that / is the zero map. This shows "V is

transitively graded.

(2) We proceed by showing that X: 2^0) -> V \ Kf) '•= /(I) is an isomor-
phism of L(0) -modules. If x € L(0), then

X(x .f) = (x • /)(1) = f{x) = x/(l) = xX(f),

and so A is a homomorphism of L(0)-modules. Since I = u¡0 e %f(L)(o) is,

according to definition, contained in {ux, ... , zz,}, the corresponding map Xvo)

is a preimage of v e V under X. Suppose that / e ker a. Owing to the

Poincaré-Birkhoff-Witt Theorem, every element of %f(L)(o) is a sum of elements

of the form zz = Zi+k=oa'bk > where a¡ e t2¿(¿P)tyi-) and bk e (?¿(L~){k-). Since,

according to (i), a¡ = 0 for z < 0 and a, e f¿'(L^fk'(L+)+ for z > 0, we

obtain, observing (ii),

f(u) = Y aiWk) = "ofi(bo) = a0bof(l) = 0.
i+k=0

As a result, / vanishes on ^(L)(0) and thereby on all of °¿/(L).

(3), (4) Assume that V is finite dimensional. As f¿(L) is a free module

of finite rank over (2/(0l>), 'V is finite dimensional. Let U c 'V be any

nonzero submodule. The associative F-algebra %((L~)+ obviously acts on "V



420 A. D. BELL AND ROLF FARNSTEINER

by nilpotent transformations. The Engel-Jacobson Theorem (cf. [7, p. 33]) thus

implies that U0(L~) :- {v e U: x ■ v = 0 for all x e L~} is not trivial.

If T = U® W is a decomposition of T, (I) ensures that 2^0) = U0(L~) ©

W0(L~) is a decomposition of Ufo) into L(0)-modules. It now follows from

(2) and our present assumption that Uq(L~) = (0) or Wo(L~) = (0). Hence

the initially given decomposition of 'V is trivial, by the observation in the last

paragraph.

In case V is irreducible and U ^ (0) is an L-submodule of 'V, we obtain

from (2) that Uo(L~) coincides with Jfo) • Thus the submodule generated by

A~'(t;o) is contained in U and hence is the unique irreducible submodule of

T.   D

We now specialize our considerations to basic classical Lie superalgebras over

an algebraically closed field of characteristic 0. According to [9] such a Lie su-

peralgebra is simple with a reductive Lie algebra as subalgebra of even elements.

Let 77 be a Cartan subalgebra of L0 . Then there exists a triangular decompo-

sition L = N~ © 77 © N+ of subalgebras of L. An L-module V is said to be
a highest weight module of L with highest weight X e 77*, if there is Vx e V
such that

(a) V = W(L)vx,
(b) h • Vx = X(h)vx for every h e 77, and

(c) A+ • vx = (0).

If L is of type I, it admits a so-called distinguished Z-gradation of the form

L = L(_1)©L(o)©L(1), for which ¿P = L0 + N+ = L(0)©L(1) and Nf = L(_1}.
If px denotes the half sum of all odd positive roots, then tx(adh\N~) = -2px(h)

for all h e 77. Given an irreducible highest weight module V(X) for Lo , Kac

[9] studied the induced modules lnd^(V(X)) := %(L) ®%tg¡) V(X). Note that
lnd^>(V(X)) is a highest weight module of L with highest weight X and highest
weight vector 1 ® Vx .

Corollary 2.4. Let L = Lo © Lx be a basic classical Lie superalgebra of type I

and V(X) a finite-dimensional irreducible highest weight module for Lo- Then

lnd^>(V(X)) contains a unique irreducible submodule, which is of highest weight

X-2px.
Proof. Since L0 is contained in £P , %(L) : ^(â0) is, in accordance with (2.2),

an a-Frobenius extension. In view of the isomorphism

IikMK(A)) = Coind^(QF(A))

(cf. §3) it suffices to establish the assertion for the coinduced module. Since

N0+ operates nilpotently on L, we have a(x) = x for every x e N0+ . Hence

the highest weight vector Vx of the Lo-module V(X) is a highest weight vector

of highest weight X - 2px for the irreducible Lo-module nV(X). Since Lo

is contained in ¿? and V(X) is finite dimensional, (2.3)(4) applies and the

coinduced module Coind^(aF(A)) contains a unique irreducible submodule,

which is generated by a highest weight vector of highest weight X - 2px .   D

3.  COHOMOLOGICAL OBSERVATIONS

Suppose R : S is an a-Frobenius extension, and let V he an 7\-module.

The theory of Frobenius extensions! 13, p. 96f] provides a natural equivalence
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R®sV*Homs(R,aV).

Consequently, there exists a projection Homs(7?,aA) -» N for every 7?-

module N. By Frobenius reciprocity there result corestriction maps

Corf*. s] : Extns(M, aN) -» ExtnR(M, N)

for any two «-modules M and N (cf. [2, §3]). Note that by [2, 3.1(1)],

Cor°Ä. s] = Trr/j : s], so the following result generalizes part of (1.3).

Theorem 3.1. Let T c 5 c 7? be rings such that

(a) 7? : 5 is an a-Frobenius extension,

(b) S : T is a y-Frobenius extension, and
(c) a(T) = T.

If M and N are R-modules, then Cor"Ä. T] = Cor^ . sjoCor^. T] for all zz > 0.

Proof. We shall proceed by induction on n, the case zz = 0 following from

(1.3). Now suppose that zz > 1. Let (0) -» X -> P -> M -> (0) be a projective

presentation of the 7?-module M. Since the rings involved are projective over

the relevant subrings, the above sequence is also a projective presentation of M

viewed as an 5- and T-module, respectively. The corestriction mappings are

natural transformations that commute with connecting homomorphisms. The

long exact cohomology sequence thus yields the following commutative diagram:

ExtnT-[(X,aOÏN) -► Ext"T(M, aoYN) --   (0)

Extns-x(X,aN)   ->   Exts(A/\Q/V)    -►   (0)

I 1
ExtnR-l(X,N)    -►    Ext"R(M,N)    -► (0),

where the vertical arrows represent the relevant corestriction mappings. By the

inductive hypothesis our claim holds for the corestriction maps of level n - 1 .

The assertion now follows from a standard argument.   D

We let Res"R:s]: Ext"R(M, N) -> Exts(M, N) denote the natural change of

rings map. The following result provides a generalization of [2, (3.1)].

Theorem 3.2. Let R : S be an a-Frobenius extension and X, M, N be R-

modules. Let f be an element of Homs(M, aN). Then the following statements
hold:

(1) ExtnR(idx,Tx[R:S](f)) = CoxinR.S]oExtns(idx,f)oRes?R.s] for all n > 0.

Ext£(Tr[R : S](f), id*) = Coifr. S] ° ExXtts(f, id*) o Res^. S] fior all n>0.

(2) Suppose that ExtR+1 (X, kexTx[R : S](f)) = (0) for some n > 0 and
Tr[Ä;s](/) is surjective.

(a) If Extns(X, M) = (0) or Exts(X, aN) = (0), then Ext^(X, N) = (0).

(b) IfExtns+l(X, M) = (0) or Ext^1^, aN) = (0), then Ext^+1(X, M) =

(0).
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Proof. ( 1 ) We proceed by induction on zz. For n = 0, both identities follow

via direct computation using Cor^ . sx = Tr[Ä. s] ■ Since all maps involved are

natural in X, the argument of the proof of (3.1) may now be adopted mutatis

mutandis to yield our assertions.
(2)(a) By considering the long exact cohomology sequence induced by (0) —>

kerTr^ : s](/) -* M —> A'' —> (0) in conjunction with the hypothesis

ExtR+l(X,kerTr[R:S](f)) = (0),

we obtain the surjectivity of the map Ext^id*, Tt[R:s](f)): Ext^(X, M) —►

ExtnR(X,N). If Extns(X,M) or Exls(X, aN) is trivial, then Exts(idx, f)

vanishes and the above factorization identifies ExtR(idx, Tx[R : S](f)) as the

zero map. Consequently, Ext^(X, N) = (0).

(b) In this situation Exts+1 (id* , /) is trivial and Ext^+1 (id*, Tx[R ■ s\(f)) is

injective. Consequently, Ext"R+l(X, M) = (0).   D

Remark. If a can be extended to an endomorphism of R, then the first part

of the preceding result, applied to id/v e Homs(aN, aN), readily yields [2,

(3.1)(2)].
Given an 7?-module M, we let inj.dim^M denote its injective dimension.

Corollary 3.3. Let R : S be an a-Frobenius extension, X and M be R-

modules, and suppose that M is (R, S)-injective. Then the following statements

hold:
(1) The restriction map Res^-sj: Ext^(A", M) —> Exts(A", M) is injective.

(2) inj.dim^A/" = inj.dimsM. In particular, M is R-injective if and only if

it is S-injective.

Proof. (1) Owing to [15, Satz 11] there exists / e Homs(A7, aM) such that

Tr[Ä : s](f) = idw • It thus follows from (3.2)(1) that CorfÄ. S] o Exigid* , f) o

Res^. s] is the identity operator on Ext^(X, M), thereby proving the injectiv-

ity of Resfa. S].
(2) It suffices to prove that inj.dimÄA7 < inj.dimsM . This is a direct conse-

quence of (1).   D

An analogous result holds for projective dimensions.

We shall next study the relation between the cohomology theories of L and

Lo under the hypothesis that L is finite dimensional. Our attention will be

focused on the case where the Lie algebra Lo is semireductive in the sense

that it is the direct sum of a nilpotent and a semisimple ideal. Assuming the

characteristic of the underlying base field to be zero, we then have tr(adi.0(x)) =

0 for every x e Lq . Consequently, the automorphism a of the Frobenius

extension kf(L) : f/(Lo) is the restriction of the automorphism of ^/(L) that

maps an element x of L onto x - str(ad¿(x))l .

In general, consider a subalgebra K of L that contains L0 . If the automor-

phism a of f/(K) can be extended to an endomorphism a of %/(L) (this is

not always the case) and {xx, ... , xm}, {yx, ... , ym} is a dual free pair for

the Frobenius extension ?/(L) : (k'(K), we let Co := J2U y¡a(x¡) denote the

Casimir element of the extension (cf. [2]). This element has the property that

rc0 = c0a(r) for all r e k'(L).
Given an L-module M, we shall consider H"(L, M) := Ext^-(¿)(F, M),
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the cohomology groups of L with coefficients in M. Let e: 'k'(L) —> F be the

canonical supplementation.

Proposition 3.4. Suppose that char(F) = 0 and let Lq be semireductive. Given

a finite-dimensional L-module M, define ML° := {m e M | x • m = 0 for all

x e Lo}. Then the following statements hold:

(1) Suppose that ML° = {0}. If there exists f e Hon%^0)(Af, aM) such
that Tx(fi) is a bijection, then Hn(L, M) = (0) for all n>0.

(2) Suppose that ML° = {0}. If e(c0) ¿ 0, then Hn(L, M) = (0) for all
n>0.

(3) If Lo is semisimple and Co operates invertibly on M, then M is com-
pletely reducible.

(4) If L0 is semisimple and if either c0 operates invertibly on M or e(c0) í 0,

then H"(L, M) = (0) for 1 < zz < 2.

Proof. (1) We apply (3.2) to the case X := F and N := M. Since kerTr(/) =
(0), we have that Ext|/(I)(F, kerTr(/)) vanishes for all zz. On the other hand,

[1, (3.1)] shows that 77"(L0, M) = (0) for zz > 0. Consequently, (3.2) gives
the desired result.

(2) According to [2, (3.1), (3.2); 1, (3.1)], the map Cor„ o Res„ is invertible
while Res„ is the zero map. Consequently, Hn(L,M) is trivial for all zz.

(3) Let V c M be a submodule. By the first Whitehead Lemma, we have

ExtlnLo)(M/V, V) s T7'(L0, HoxnF(M/V, V)) = (0). Since c0 operates in-

vertibly on V , the map Cor„ o Res„ is invertible, and we obtain the vanishing

of Extw,L)(M/V, V). Hence F is a direct summand of M.

(4) The proof is analogous to (2) with the exception that the Whitehead

Lemmas (cf. [7, pp. 77, 89]) are used in lieu of [1, (3.1)].   D

Remarks. (1) If a = id^(i,0), then Co lies in the center of Í¿(L), and any

finite-dimensional L-module M admits a decomposition M = A/q © Mx into

L-stable Fitting components relative to Co . By the preceding result, Mx is a

completely reducible L-module.
(2) Suppose that L is a basic classical Lie superalgebra of type I. Let

\nd$>(V(X)) be the highest weight module defined by an irreducible Lo-module

V(X). Then Ind^(F(A)) is indecomposable and the Casimir element operates

on \ndg>(V(X)) by a scalar Xq . If Ao is not zero, then the above observations
ensure the irreducibility of Ind^(F(A)).

Example. The Lie superalgebra osp( 1,2) is the set of matrices of the form

-Q I d   -C
c    r     s

.d    t    -r.

with the usual supercommutator; note that L0 = sl(2). A basis for Lx is given

by x = e2x - en, y = eix + ex2.  Thus the left ^(L0)-module Í¿(L) has a
basis consisting of Xi = 1, x2 = x, X3 = y, X4 = xy + 1 - [x, y].   A dual

basis with respect to ( ,   )  for ^(L) as a right ^(L0)-module is given by

yi = xy, y2 = y, y3 = -x, y4 = 1. Now

4

co = Y y,x< = xy + yx - xy + xy + l - [x, y] = 1.
i=i
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Thus (3.4)(3) applies and every finite-dimensional osp(l, 2)-module is com-

pletely reducible. This fact was first observed by Hochschild in [6].

Corollary 3.5. Suppose that L = Lo © Lx is a Lie superalgebra with semireduc-

tive even part over a field F of characteristic 0. Let K be a subalgebra of L

containing Lo and V be a finite-dimensional K-module. Suppose that

(a) {v e V : x • v = -tx(adL/K(x))v for all x e L0} = (0), and

(b) the Casimir element cq of the extension %¿(K) : $¿(Lo) operates non-

trivially on F.

Then Hn(L, Ind*(K)) = (0) for all zz > 0.

Proof. Let a be the automorphism of the Frobenius extension k'(L) : k'(K).

By Frobenius reciprocity in conjunction with the natural equivalence

%(L) ®nK) V = HomnK)(^(L) ,aV),

we have Hn(L, lndK(V)) = Hn(K,aV) for every zz > 0. Now condition

(a) implies (aV)1* = (0). Consequently, (3.4)(2) along with (b) forces the

vanishing of Hn(K, aV) for every n > 0.   D
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