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BASS SERIES OF LOCAL RING HOMOMORPHISMS
OF FINITE FLAT DIMENSION

LUCHEZAR L. AVRAMOV, HANS-BJ0RN FOXBY, AND JACK LESCOT

Dedicated to Robert Fossum on his fiftieth birthday

Abstract. Nontrivial relations between Bass numbers of local commutative

rings are established in case there exists a local homomorphism ¡j>:R —» S

which makes 5 into an /{-module of finite flat dimension. In particular, it is

shown that an inequality ¿R+áeplhR < /4+depth S holds for all i e Z . This is

a consequence of an equality involving the Bass series IB(t) = H/ez/'áí^)''

of a complex M of Ä-modules which has bounded above and finite type ho-

mology and the Bass series of the complex of S-modules M®   S, where ®
—R —

denotes the derived tensor product.  It is proved that there is an equality of
M®   S

formal Laurent series Is —R (t) = IB(t)IF^)(t), where F(<j>) is the fiber of <j>

considered as a homomorphism of commutative differential graded rings. Coef-
M® S

ficientwise inequalities are deduced for Is —R (t), and Golod homomorphisms

are characterized by one of them becoming an equality.

Introduction

This paper describes relations between the Bass series IR(t) and Is(t), when

there is a local homomorphism <f>:R -> S of local noetherian rings making
S into an 7?-module of the finite flat dimension. Recall, that when R has

maximal ideal m and residue field / = R/m, and M is a finitely generated 7?-

module, the Bass series of M is the formal power series IR(t) - ¿/>0 p'R(M)t'

where p'R(M) is the dimension of the /-vector space Ext^(/, M) (and Ir(í)

stands for IR(t)). This series is of interest since the Bass numbers p'R (=

p'R(R)) contain important information on the ring JR. The bridge between

Ir(í) and Is(t) is provided by the invariants of the DG fiber F = F(<j)) of the

homomorphism (j>. This fiber was introduced by Avramov in [1] as a differential

graded algebra whose homology is naturally isomorphic to TorÄ(/, S) (cf. §3

below). In particular, F is augmented to the residue field / = S/n of S. This

allows the construction of the /-vector space Extjr(/, F) (cf. [7], [5], and §1

below). Let the /th Bass number p'F of F be the dimension of this /-vector
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498 L. L. AVRAMOV, H.-B. FOXBY, AND JACK LESCOT

space, and set p}. = plF and 7¿(r) = 2^ieiPlJl : this is a formal Laurent series

in case p'^ is finite for all i e Z and p'^ = 0 for i small enough.

Theorem A. Let (f>:R -> S be a local ring homomorphism of finite flat dimension

and with DG fiber F(<¡>). All the Bass numbers p', are then finite and vanish for

i small enough, and there is an identity of formal Laurent series

h(t) = /*( W).
In fact, we prove in §5 a more general result involving Bass series of mod-

ules. When <f> is flat F(<f>) can be replaced by the local ring S/mS. This
shows that the result of §5 extends the one in [12] from flat homomorphisms to
homomorphisms of finite flat dimension.

The formula for the Bass series gives nontrivial lower and upper bounds for

the Bass series (numbers) of S in terms of those of 7?.

Theorem B.
( 1 ) With <f> as above the inequalities

(*) /4+dePth*</4+depthS,

hold for all i el.
(2) Assume furthermore, that S/mS is artinian. Unless <p is flat and S/mS

is afield, the following coefficient wise inequality holds:

l+'-E/,o(lengthsTorf(/,X))/'*'

where f = fdRS, the flat dimension of the R-module S.

When <p is flat and S/mS is a field, it is obvious that equality holds in (*)

for all i. Those <fr which have equality in (*) for all / e Z form a large and
interesting class, which is studied in detail in [41.

Next we discuss when equality holds in (**). To this end, recall that for an

arbitrary local ring homomorphism (f> with S/mS artinian there is an inequality

of Poincaré series:

Ps(t) « PR(t)-
1 + t - Ei=o(length5Torf (4, S))V+X '

(where PR(t) = ¿3,>o(^im^ Torf (4, 4))t'). In case equality holds, (f> is called

a standard Golod homomorphism. (In general, a Golod homomorphism is de-

fined by the condition that H(F(</>)) be an algebra with trivial Massey products.

If length^Tor*(/, S) ^ 2 then <p is Golod if and only if </> is standard Golod,
cf. [2].) '

Theorem C. Let 4>:R —► S be a local ring homomorphism of finite flat dimension

f with S/mS artinian. Assume furthermore that tf> is not flat with S/mS afield.

There is then equality in (**) if and only if tj> is Golod.

In fact, the results of §5 are generalizations of Theorems A, B, and C in

two directions: they deal with Bass series of complexes of 7?-modules and they

avoid the artinian assumption on S/mS.

Next we describe applications to a different setup. According to the Looking

Glass Principle in [7] properties of the (co-)homology of local rings usually have
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some counterpart in rational homotopy theory. The results of this paper are

no exception. Indeed, let G be a topological space with finite Betti numbers

bi = dim77'(C7, Q), such that ¿>, = 0, bf ¿ 0, and b¡ = 0 for i > f. If
G -* E —> B is a fibration such that B is a simply connected space with

77* (B, Q) of finite type, then the precise analog of Theorem A is provided by

the recent result of Félix, Halperin, and Thomas [10]: There is an isomorphism

Extc.(£iQ)(Q,C*(£,Q))

= Extc.(B,Q)(Q, C*(B,Q)) ®q Extc.(G,Q)(Q, C*(G, Q)),

where C*(-, Q) denotes the singular cochain algebra with rational coefficients.

The analogs of Theorems B and C we state in the absolute case only.

Theorem D. For G as above, the following inequalities hold for the Laurent

series IG(t) = £,.6Z(dimQExtcÍ(G,Q)(Q, C*(G, ®)))t' :

bft-f « IG(t) « XLibit-'-r^

Equality holds on the right-hand side if and only if G is rationally equivalent to

a wedge of spheres, namely Go ~ \f{=2(\/ ' S').

(There is a version of this result which holds for homology with coefficients

in an arbitrary field, cf. (2.13). In [10] it is discussed when equality holds on

the left-hand side.)
Out of the five section of this paper, the first and the third are introductory,

and the second and the fourth are computations in differential graded homo-

logical algebra, while the applications to commutative algebra are given in §5.

The main results of this paper have been announced in the note [6].

The statements of many of our results involve only classical invariants of

commutative rings and modules, but their proofs depend in an essential way

on the techniques of DG homological algebra. This supports our point of view

that much is to be gained by embedding commutative algebra into differential

graded commutative algebra. The sequel to this paper, [4], represents an even
more transparent application of this principle.

1. Summary of DG homological algebra

Following earlier work of Eilenberg-Mac Lane and Cartan on the (co)homol-

ogy of K(n, n) 's, Eilenberg and Moore invented differential graded homologi-

cal algebra, cf. Moore [18]. In particular, they constructed groups Torf (L, M)

for bounded DG modules over a DG ring 7? concentrated in nonnegative de-

grees. However, their technique does not provide the groups Ext'R(M, N) un-

less connectivity restrictions are present. This is not the case for the DG rings

and DG modules of this paper, so we use the construction of the derived func-

tors introduced in [7], which works in general and is based on the notion of

semifree DG modules. Below we present an outline of this approach using the

familiar idiom of projective resolutions. This presentation is rather expansive

because a comprehensive account is only in preparation, and hence it will only

be available in the literature later (in [5]).

A G ring is a collection of abelian groups R = (7?,),ez together with pairings:

7?, x Rj —► Ri+j (for i, j e Z) subject to the usual requirements of associativity,
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distributivity, and existence of a unit 1 e 7?0 . In particular, R0 is a ring, and

7?, is an 7?o-module for ail i e Z. An element of R is an element of 7?,

for some i. In this paper we do not consider the direct sum \}iez Ri (with

one exception in a cautionary remark). This is the reason for our usage of the

abbreviation G ring instead of the expression graded ring.

A homomorphism of G rings </>: 7? —► S is a collection of additive maps

(cpr.Ri -» Si)tez suchthat </>0(l) = 1, and 4>m+n(xy) = tpm(x)<p„(y) for x e Rm

and y e Rn. In particular, cf>0 is a homomorphism of rings, and (f>¡ is a

homomorphism of 7?o-modules for all i el.
A left G R-module is a collection of abelian groups M = (Mj)jeZ together

with pairings: R¡ x M¡ —> Mi+j (for i, j e Z) subject to the usual conditions.

In particular, M¡ is an 7?n-module for all / e Z. An element of M is an

element of M¡ for some i. A right G R-module is defined by interchanging

the factors. G modules are left G modules unless otherwise specified.

In this setup (which is that of Moore [18] and Mac Lane [17]) each nonzero

element of R or M has a unique degree denoted by | |. That is, \x\ = i,

if x t¿ 0 and x belongs to 7?, or to M¡■. AG 7?-module M is said to be

bounded above (respectively: bounded below, bounded), if there exits an n e Z

such that M¡ = 0 for i > n (respectively: for i < n , for \i\ > n).

A G 7?-module M is said to be of G finite type if there exists a set of

generators E for M such that E¡ = {e e E\ \e\ = /} is finite for each i eZ.
If there exists an n e Z such that E¡ = 0 for i > n (respectively: for i < n ,

\i\ > n) then M is said to be of bounded above (respectively: bounded below,
bounded) type.

A homomorphism of degree n of left G 7?-modules a: M —> N is a collection

of additive maps (a¡:M¡ —> N¡+„)¡ez satisfying the identities

a(rm) = (-l)^nra(m)   forreR and m e M.

Remark. Here is the first instance of the general rule which we (have tried to)

follow throughout the paper: When, in an expression, two elements a and b

are transposed the sign (-l)'a' '*' appears. (In the example above \a\ = n.)

We denote by HomR(M, N)n the abelian group of homomorphisms: M —>

N of degree n, and HomR(M, N) denotes the G Z-module of homomor-

phisms (HomR(M, N)n)nez . (Caution: V[i€ZHomR(M, N)¡ is not (in gen-

eral) the group of (JJ(€Z7?()-homomorphisms: LI¡ez Af, —> U^A,-.)
A morphism a: M -+ N of G 7?-modules is a homomorphism of degree zero.

A left G Ä-module N is said to be G-projective (respectively, G-injective) if the

functor HomR(N, -) (respectively, HomR(-, N)) preserves exact sequences

of morphisms of left G 7?-modules. A left G 7?-module F is G-flat if -®RF
preserves exact sequences of right G 7?-modules. A G-projective G module is

G-flat.
Each G 7?-module M has a G-projective resolution P, that is, a complex of

morphisms of projective G modules

P =-► /"(,■) -> P(i-i) -»••■->P(i)->r,(o)-tO-»- ,

with 77(o) (P) isomorphic to M and 77(;)(P) = 0 for / ^ 0. The G Z-

module Ext'R(M, N) is defined up to unique isomorphism by Ext^(A7, N)j

= 77(_,)(Hom/?(P, N)j), when  P  is a G-projective resolution of M, and
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HoniR(P, N) is the complex of G 7?-modules

■ • • - 0 -> Hom*(7>(0), N) Hom.^ HomÄ(P(1), N) -+ • • • .

For G Z-modules L and M the tensor product L <g>z M is the G Z-module

defined by (L ®z A7), = Up+q=i Lp ®z A79 . For a right G Ä-module L and a

left G 7?-module M the tensor product L®R M is the cokernel of the natural

morphism of G Z-modules

L <g>z 7? ®z M -> L <g>z A7       (l®r®m^lr®m-l® rm).

As usual Torf(L, A7) is the G Z-module defined up to unique isomorphism

by Torf (L, M)¡ = 77(í)((L<8>r P);) when P is a G-projective resolution of M.

A (left) derivation of degree n of the G ring R is a collection of additive

maps d = (d¡:Ri —> 7?,+„),eZ satisfying the Leibniz rule

ö(«) = 0(r)5 + (-l)lrIVÖ5.

A G ring R together with a degree -1 derivation d of square zero is called a

DG ring. The derivation d is then referred to as the differential of R. The G

ring underlying the DG ring R is denoted by R# .
A homomorphism of DG rings </>: 7? —> S is a homomorphism of G rings

satisfying 4>d = d<f>. A homomorphism of DG rings cf>:R -» S such that
H((f)):H(R) —> H(S) is an isomorphism is said to be a homology isomorphism.

If R is a DG ring, a left (respectively: right) DG 7?-module M is a left

(respectively: right) G 7?#-module M* together with a degree -1 additive

endomorphism d: M —> M, such that d2 = 0 and

d(rx) = ô(r)x + (-l)lr]rdx   (respectively : d(xr) = d(x)r+(-l)^xdr),

for all r e R and x e M ; d is called the differential of M.

Remark. Throughout this paper notions with DG are natural extensions of the
usual notions from module theory to a differential graded (DG) setup. However,

the inverse passage from the DG framework to that of module theory is not

always reflected in a deletion of DG in the notation.

For example, a ring A may (and will) be considered as a DG ring A by
setting A0 = A and A,■ = 0 for i ^ 0. We shall refer to this by saying, that
A is concentrated in degree zero. Similarly a left ^4-module can be considered

as a left DG ^-module. However, a left DG ^4-module is a complex of left

^-modules! In this situation we use the two expressions, DG A-module and

complex of A-modules, interchangeably.

A morphism a: M —> N of DG 7?-modules is a morphism: M# —> A# of G
7?#-modules such that ad = da.

The cycles of M, the boundaries of M, and the homology of M are defined,

as usual, by

Z(M) = {aeM\da = 0};    B(M) = {db\b e M};    H(M) = Z(M)/B(M),

respectively.

The homology 77(7?) is a G ring and 77 is a functor from DG 7v-modules

to G 77(7?)-modules. The homology class of a cycle z is denoted [z]. A DG

7?-module M is said to be homologically trivial, if 77(A7) = 0. A morphism
a: M -» N is said to be a homology isomorphism, if H(a):H(M) —> 77(A) is
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an isomorphism (of G 77(7\)-modules). A homology isomorphism is indicated

by the symbol ~ next to its arrow, while = is our symbol for isomorphisms.

Two morphisms a, ß:M —> N are said to be R-homotopic, if there exists a

y e FiomR(M, N)\ such that dy + yd = a- ß ; in this case we write a ~ ß .

Note that this implies 77(a) = H(ß).
For DG 7?-modules M and N a DG Z-module HomR(M, N) is defined

by

HomR(M, N)* = HomR»(M*, N*)   and

d(a)(m) = d(am) - (-l)wa(dm)    for a e HomR(M, N) and m e M.

For a right DG 7?-module L and a left DG 7?-module M a DG Z-module
L ®r M is defined by

(L ®R Mf = L* ®R» M*   and

d(l®m) = d(l) <B> m + (-1)1'1/ ® dm   for I e L and me M.

A DG module P suchthat YiomR(P, -) preserves homology isomorphisms,

and P* is a G-projective G 7?#-module, is called DG-projective. (Caution: This

notion is less restrictive than the one in [18].)
A DG module 7 such that HomÄ(- , 7) preserves homology isomorphisms,

and 7# is a G-injective G 7?#-module, is called DG-injective.

A DG module F such that - ®R F preserves homology isomorphisms, and

F* is a G-flat G 7?#-module, is called DG-flat. (Caution: This notion is more

restrictive than the one in [10, Appendix].)

Remark. Assume that 7? = A is concentrated in degree zero. A bounded below

DG ,4-module F is a DG-projective (respectively, DG-flat) DG module if and

only if each P¡ is a projective (respectively, flat) /1-module. A bounded above

DG vl-module 7 is a DG-injective DG module if and only if each 7, is an
injective ^4-module.

A homology isomorphism of DG 7?-modules: P =* M with P DG-projective

(respectively: DG-flat) is said to be a DG-projective (respectively: DG-flat) reso-

lution of M (over R ). A homology isomorphism of DG 7?-modules: M =* I

with 7 DG-injective is said to be a DG-injective resolution of M (over 7?).

Remark. Assume that R = A is concentrated in degree zero, and M is an

7?-module. The usual resolutions of homological algebra are then resolutions in

the sense above.

(1.1) Every DG R-module M has a DG-projective resolution e.:P=> M with

e surjective. Every DG R-module M has a DG-injective resolution n: M -^ 7

with n injective.   D

(1.2) Let K be a DG-projective (respectively, DG-injective) DG R-module.

Then to each morphism a:K —> N (respectively, y:M —> K) and each homology

isomorphism ß:M => N there exists a morphism y:K —> M (respectively,

a: N —» K), such that a ~ ßy (respectively, aß ~ y), that is, such that the

diagram

y^*\*       í M
^>^   ~\p respectively,   «U

K    —*     N \
CÏ V
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commutes up to homotopy. Furthermore this y (respectively, a) is necessarily

unique up to R-homotopy, that is, if y' (respectively, a') satisfies a ~ ßy'

(respectively, a'ß ~ y), then y' ~ y (respectively, a' ~ a).   □

(1.3) Each DG-projective DG R-module is DG-flat.   D

(1.4) If y:P' -5- p is a homology isomorphism of left DG-projective (respec-

tively: DG-flat) DG R-modules, then for any left DG R-module N (respectively:
right DG R-module L), Hom(y, N) (respectively: L ® y) is a homology iso-

morphism.

If y:I =* V is a homology isomorphism of left DG-injective DG R-modules,

then Hom(y, N) is a homology isomorphism for any left DG R-module M.   □

We let )ApmR(M, N) (respectively: L® M) denote any of the DG Z-

modules Horn«(7*, 7) (respectively: Q<g>R P), where P is a DG-projective

resolution of the DG 7?-module M, I is a DG-injective resolution of the

DG 7?-module N, and Q is a DG-projective resolution of the right DG 7?-

module L. By (1.2) any two such DG modules are connected by homology

isomorphisms, which themselves are defined uniquely up to homotopy. Thus

H(AApmR(M, N)) (respectively: H(L® M)) is defined up to unique isomor-

phism.

Definition.

Ext^Af, N) = 77_,(HomR(M, A))

and

Torf(L,M) = Hi(L®nM).

Remark. Assume that R = A is concentrated in degree zero. If M and N are

7?-modules, these constructions give the standard notions. If M and A are

complexes of 7?-modules bounded on the appropriate side, then the construc-

tions specialize to hyper(co)homology, cf. e.g. [14] or [11].

Let L be a right DG 7?-module, and let M and N be left DG 7?-modules.
Let also R' be a DG ring. Let L' be a right DG 7?'-module, and let M' and
N' be left DG 7?'-modules. In order to describe the functoriality of Ext and

Tor consider the following situation:

<f>: R —► R' is a homomorphism of DG rings,

a:L -> L' is an additive morphism, such that a(lr) = a(l)4>(r) forreR

and I e L,
ß:M -» M' is an additive morphism, such that ß(rm) = (¡>(r)ß(m) for

r e R and m e M, and
y:N' —► A is an additive morphism, such that y(<j>(r)n') = ry(n') for r e R

and n' e N'.
Using (1.2) one constructs, as usual, homomorphisms of G Z-modules:

Tor*(a, ß): Tor*(L, M) -> Tor*'(L1, M')

and

Ext4ß,y):ExtR,(M',N') - Ext*(M, N).

Their main property, which we shall mostly use without specific reference in

the rest of the paper, is given by the following theorem.
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(1.5) The G Z-modules Tor1*(M, N) and ExtR(M, N) are functorial in
the triple (M, R, N). When <j>, a, ß, and y are homology isomorphisms,

then Tor^(a,ß) and Exi^ß, y) are isomorphisms.    D

Furthermore, by the definitions and (1.3), we have

(1.6) The induced maps:

HomR(M, I) ^ HomR(P, I) £ Hom^T5, A),

Q ®R M £■ Q ®R P => L ®r P,

are homology isomorphisms, which are defined uniquely up to homotopy.

After this short exposition of basic DG homological techniques, we pass to

the discussion of more specific facts, which will be needed below.

(1.7) If (f>:R —> 5 is a homomorphism of DG rings making S into a DG-
projective (respectively: DG-flat) left DG R-module, and if P is a DG-projective

(respectively: DG-flat) left DG S-module, then P is also DG-projective (respec-

tively: DG-flat) as a left DG R-module.   D

An augmented DG ring eR:R —> / is a homomorphism of the DG ring R

into a field 4 concentrated in degree zero, such that / is the field of fractions

of the image eR(R). We shall often suppress eR or / (or both of them)

from the notation. The field / will always be considered as a left and right

DG 7?-module with the structure given by eR . Of special interest are the 4-

vector spaces Ext'R(4, 7?). Let also eRr. R' —► 4' be an augmented DG ring. A

homomorphism of augmented DG rings: R —► 7?' is a homomorphism of the

underlying DG rings such that (Kere^) n 7? = Kere« . When R is a local ring

(concentrated in degree zero) e* will always denote the canonical surjection of

R onto the residue field.

(1.8) Let 4>:R —> R' be a homology isomorphism of augmented DG rings.

The induced map: 4^4' is then an isomorphism, and the 4-vector spaces

Exi'R(4, R) and Ext'R,(4', R') are canonically isomorphic.

Proof. The claim on the field extension is verified directly, and (1.5) provides

isomorphisms

ExtR(4 , R) * Ext!R(4', R') * Extjj, (/', R').   D

For a DG module M over an augmented DG ring 7? —> / the Bass number

pR(M) is the (cardinal) number dim/ Ext'R(4, M) (dim/ denotes dimension

as a /-vector space). The Bass "series" IR(t) is the "Laurent series"

iei

We set

depthRM = inf{/eZ|Ext^(/, M) ¿ 0} € {-oo} U Zu {oo}.

When d = depths M e Z, we set

DGtypeRA7 = dim/ Ex\R(4 , M) e {0} U N U {oo}.
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We abbreviate depthR7? and DGtypeR7? to depth 7? and DGtypeT?, respec-
tively.

Remark. If M is a finitely generated module over a local noetherian ring R,

then we recover the usual notion of depth; however for type we keep the DG in

this case also, since type^M is sometimes defined as dim/Ext^(/, M) with
n = dim M.

More generally, for complexes of modules over a local ring, the following

finiteness results hold, cf. [14] or [11].

(1.9) If R is noetherian and concentrated in degree zero and H(M) is bounded

above, then M has a bounded above DG-injective resolution. If, furthermore, all

Hi(M) are finitely generated, then IR(t) is a formal Laurent series, and IR(t) ^

0 when H(M) ^ 0. In particular, deoihRM e Z and DGtypeÄM < oo.   □

In some of our computations we shall have to carefully keep track of different

module structures. To do this we use the standard language of bimodules. How-

ever, since the signs are important and may get complicated, we have collected

the necessary information below.

If M is a left DG 7?-module and a right DG r-module in such a way that

(rm)t = r(mt) for all r e R, m e M, and t e T, then M is called a DG

R- T-bimodule. We denote this by writing RMj. Equivalently, M is a (left)

DG (R ®i rop)-module with (r ® t)m = (-l^^rmt, when Top denotes

the DG ring with rop = T as DG Z-modules and with product • defined by

t • t' = (-l)l'H'Vr. Now consider the following situation: SLR , RMT, and

RNu . There are natural structures as follows:

L®R M is a DG (5 ®z rop)-module by

(s ® t)(l ®m) = (-l)d(sl) ® (mt) with d = \t\(\l\ + \m\) ;

HomR(M, N) is a DG (T ®z L°P)-module by

((t ® u)a)(m) = (-\)ea(mt)u with e = (\t\ + \n\)(\a\ + \m\).

Here l e L, me M, s e S, t e T, u e U, and a e UomR(M, N).

Consider now DG bimodules sPt , sLR, and RNV . There is a canonical

map

tûpLN: Hom5(7', L)®R N -► Hom^P, L®R N)

defined by copL^(ß ®n)(p) = (-l)'p' '"'/?(/?) ®n , which is a homomorphism of

DG (T®z t/°P)-modules.

(1.10) Assume that there exist homology isomorphisms (denoted by - since

the direction does not matter) as follows:

P'-P of DG-projective DG S-modules, with P' G finite of bounded below
type;

L-L' of right DG (S ®z Rop)-modules, with L' bounded above;
N-N' of DG-flat DG R-modules, with N' bounded above.
In this case ojplm is a homology isomorphism.
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Proof. Consider the commutative diagram

Hom5(7> ,L)®RN      ^       \Aoms(P ,L®RN)
-I I-

Hom5(7>, L) ®R N'     °^'      Homs(P, L ®R A')

Homs(7>, V) ®R N'    a^'     Yioms(P, L' ®R A')

-I I-
Hom5(7", L') ®R N'   Wf-^'    Hom5(7", L' ®R A').

Since the vertical maps are homology isomorphisms by (1.4), and the bottom ar-

row is an isomorphism by inspection, the top arrow is a homology isomorphism,

as claimed.   D

A G ring or DG ring 7? is said to be commutative if the following hold for all

r,r'eR: r'r = (-1)^ ^'^rr' and r2 = 0 if \r\ is odd. (Such a ring is sometimes

termed strictly commutative.)

When 7? is commutative every left DG 7?-module can (and will) be consid-

ered also as a right DG 7?-module by means of the action: mr = (-l)lml ^rm

for m e M and r e R. In particular, the DG Z-modules HomR(M, N) and
M ®R N are then DG 7?-modules for the following actions:

(ra)(m) = (-l)|r||a|a(rm) = (-l)|r|(l<l|+|m|>a(mr),

r(m ®n) = (rm) ®n — (-l)|r| |m'm ® rn,

where r e R, a e HomR(M, N), m e M, and n e N.

From now on (with the exception of (2.12) and (2.13)) all DG rings are

assumed to be commutative and concentrated in nonnegative degrees.

2.   BASS SERIES OF FINITE DIMENSIONAL DG ALGEBRAS

Throughout this section the following assumptions are in force:

• F denotes a commutative supplemented DG algebra over a field

/, that is, an augmented DG ring eF: F —» / equipped with a

homomorphism of DG rings nF:4 —» F such that zFnF = I/.

(2.0)        • dim/ F is finite.

• H0(F) is a local ring (and then necessarily artinian).

• f = m*x{i\Hi(F)¿0}.
.mH{F) = ker(H(eF):H(F)^4).

For the theory of Golod algebras we refer to [2]. In general, the Golod polyno-

mial of F is defined by

f
GF(t) = l + t- ^(length^T^F))^1.

¡=o

Note that, in the setup (2.0), length/^j is equal to dim/ . Recall that the

socle of a module over a local ring is the submodule consisting of the elements

annihilated by the maximal ideal.
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(2.1) Theorem. Under the assumptions above the following hold.

(a) There is an equality IF(t) = 1 if and only if 77n(F) is a Gorenstein ring

and H¡(F) = 0 for i¿0.
(b) If m//(f ) j¿ 0 there is a coefficientwise inequality of formal Laurent series:

i (a « MrX)h{t) « -'-GpW

(c) Equality holds in (b) if and only if F is a Golod algebra and mH(F) ¥= 0.
(d) Both series in (b) have the same order. Their initial terms coincide if and

only if Hf(F) - socleH^F)Hf(F) (this is the case, in particular, when

Ho(F) 2 /).
(e) depth F = -/ and DGtypeF = dim/ soc\eHo(F)Hf(F).

Proof. Let Fv denote the (left) DG F-module Hom/(F,/) with operation

of F and differential given by, respectively: (xa)(y) = (-l)^^+^a(yx) and

(da)(y) = (-l)Wa(dy) for a e Fv and x,yeF.

We shall make some explicit computations with bar-constructions, cf. [17,

(X.10)], so we recall that B(/, F, FV) = B(/, F, F)®F FVwhere B(/, F, F)
is defined as follows. Let F denote the G /-module with F, = (F//),_i, and

set (B(/, F, F))# = Up>o(^)®" ® F* witn the action of F* induced from the

right-hand factor. (Tensor products are over /.) Writing \\yx\ •• • \yp\\x for a
typical element, the differential is defined by

d(\\yx\--AyP\\x)^-j^(-\)s'-^\yi\--^dy¡\--^yp\\x + (-\yP\\yi\---\yp\\dx
i=\

p-\

+ ez-tvOIN • • • Ml* + ̂ (-if'lN • ■ • |w/+i| ■ • • \yP\\x
¡=i

+ (-\Y\\yi\---\yP-i\\yPx,

where s' = ¿ + Ej=i W-
Note that 77(B(/ , F, F)) = / (by the well-known contracting homotopy).

That B(/, F, F) is a DG-projective DG F-module can easily be verified from

its construction, cf. e.g. [5]; thus 77(B(/, F, Fv)) = Tor^(/, Fv). In partic-

ular, it shows that Torf (/, Fv) is finite dimensional for all i e Z and is zero

for / «: 0.
By standard isomorphisms we get

Extf (/ , F) £ Extf (/ , (Fv)v) S (Tor^(/ , Fv))v ,

and hence

(2.2) IF(t) = $>im/ Torf (/ , Fv))í*.

Thus 7/r(i) is a formal Laurent series.

Now, note that Tor^(/, Fv) is the abutment of the Eilenberg-Moore spec-

tral sequence obtained from filtering B(/ , F, Fv) "by the number of bars"

(2.3) 2Epq = Torf V\/, 77(FV))9 => Torf+?(/ , Fv).
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We denote by B the 'F-term of the sequence (2.3) and by d its differential.

Thus, B is a bigraded vector space with Mpq = (m^F) <g> 77(FV))? . Consider

the exact sequence of bigraded spaces

0^Z(B)^B-^d(B)->0,

0^¿T(B)^Z(B)^2F->0,

where all the maps have bidegree (0, 0) except d which has bidegree (-1,0).

We write \V\(t ,u) = Y,p ?(dim/ Vpq)tpuq for the two-variable Hubert "series"

of a bigraded vector space V. Taking into account the equality dim/ 77,(F) =

dim/ 77_,(FV), we obtain

\2E\(t, w) = |B|(/, iO-(l+i)|0(B)|(r,K)

(2.4) =      Ei=o(dim/77/(F))M-'

1 - tY,{=o(dim/(mH(F))i)W
-(l + t)\d(M)\(t,u).

Next we need some notation and explicit information on the G 77(F)-module

structure of 77(FV). The augmentation eF:F —> / , considered as an element

of Fv, is a cycle and gives a nonzero class in 770(FV) : we call it the funda-

mental class and denote it by e. The canonical nondegenerate bilinear map

given by the module structure

FxFw -*FV^/V =/

induces in homology an /-bilinear map of G /-modules

(2.5) 77(F) x77(Fv)^77(Fv)/^4)/.

This is given by, for x e Z¡(F) and a e Zj(Fy),

ixfl(l)   if i + ;=0,

It is also nondegenerate, that is, it is a perfect pairing. Assuming [x] / 0 and

noticing that 4[x] n (mH(F))o[x] = 0, it is possible to choose [a] e 77(FV)

such that ([x], [a]) = 1 and ([y][x], [a]) - 0 for [y] e (mH{F))0. Then we

have (1, [x][a]) = 1 and {[y], [x][a]) = 0 for [y] e (nt//(/r))0 . These equalities

characterize ¿sthus [x][a] = e and we obtain:

(2.6) For any nonzero [x] e 77(F) there exists an element [a] e 77(FV) such
that [x][a] = e.

After these preparations we start proving the different claims of the theorem.

We consider (b) first. Set Tpq = (nt^F))9 and T = \}p q Tpq . Remark that

viewing 77(FV) as a bigraded space with H(Fv)0q = H(Fv)q and H(Fv)pq =

0 for p ^ 0, we have that B = T ® 77(FV) as bigraded vector spaces.

Since mtf(F) ^ 0, we can choose x e Z(KereF) with [x] / 0 in m//(i-).

Then we use (2.6) to pick an a e Z(Fy) such that [x][a] = e . Consider the

/-linear homomorphism of bidegree (0, 0)

(2.7) S:T->d(B),        ô(t) = ~B(t ® [x] ® [a]).
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Note that S(t) = t' ® [a] ± t ® e where t' e T. Since [x]e = 0 the elements

[a] and e of 77(FV) are linearly independent over / , and thus S is injective.

Hence

|ö(B)|(i, u) » \T\(t, u) =- l    -—-.
1 -iE/=o(dinv(m/f(F))i)"'

Substituting this into (2.4) yields the inequality

Í - Œi=o(dlm/(mH(F))i)u'

Combining this with the inequality

M0«£( £ (dim/%,)/') = \2E\(t,t),

which follows from (2.2) and the convergence of the spectral sequence (2.3),

and with the equality

f f

J^(dim/77i(F))w' - 1 = ^2(dim/(mH{F))l)u'
(=0 /=o

we obtain the required inequality, and the proof of (b) has been completed.

To prove (c) consider the following conditions:

(2.8) IF(t) = -tG(rx)/G(t).

(2.9) xnH(F) ̂ 0, the homomorphism 6 in (2.7) is surjective, and 2E = °°F

in the spectral sequence (2.3).

(2.10) mH(F) ̂  0, m2H(F) = 0, and 2E = °°E in the spectral sequence (2.3).

(2.11) nt//(i-) t¿ 0 and F is a Golod algebra.
Our claim is that (2.8) and (2.11) are equivalent. In order to establish this,

we shall show the equivalence of all four conditions. First, to prove that (2.8)

and (2.9) are equivalent, note that (2.8) implies m//(f ) / 0, since otherwise it

produces the absurd equality 1 = IF(t) = -t. Now the equivalence follows
from the argument in the proof of (b).

To prove that (2.9) implies (2.10) assume that there are u, v e mH(F) such

that uv / 0. By (2.6) there is then an h e 77(FV), such that (uv)h = e. Since

ue = 0, the elements vh and e of 77(FV) are linearly independent over /.

Because of the expression for a given in (2.7), this implies that the element

d(||v||/i) = ±vh cannot lie in Imô . Thus, a is not surjective.

To prove that (2.10) implies (2.9) assume that there are v e mH(F) and

h e 77(FV), such that 0 ^ vh e H(Fy)//e. Since in the duality given by

(2.5), one has (mH(F))± = ^e, there isa h é mn{F) such that (u, vh) ^ 0,

therefore u(vh) ^ 0.  But this contradicts the assumption mLf) = 0, hence

mH{F)H(Fy) = /e. It follows that d(B) = T ® e . Now the equality t ® e =

±ô(t ® [x] ® [a]) shows that ô is surjective.

(2.10) => (2.11). By [2, Theorem (2.3)] we have to show that 77(F) has only

trivial Massey products. This follows from the argument just after [8, (4.3)] by

replacing H(KE) by 77(FV) and shifting the degrees by -/.
(2.11) => (2.8). By [2, Theorem 2.3] F is linked by a sequence of homology

isomorphisms to a trivial extension F' = / « W (that is, / k W = / ®W as
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vector spaces, / is a subring, W2 = 0, and 9 = 0). Hence m.ff(F) = W, so

in particular Gp(t) = Gp'(t). Furthermore, by (1.8) Ip(t) = /*•'(/). Thus it

suffices to prove that there is equality in (2.8) when F — / x W. But in this

case (2.10) holds trivially, and we use the implication (2.10) =>• (2.8) which is

already available.

To prove (e) note that in the spectral sequence (2.3) we have

2F0,-/ = (/ ®h0(F) 77(FV))_7 =■ / ®Ho{F) 77_/(Fv).

Because of the canonical isomorphisms of 77o(F)-modules

(/ ®HoiF) H_f(Fy)Y = Hom/(/ ®Ho{F) H_f(Fy), /)

^HomHo{F)(4, H_f(Fy)y)

?HomHo(F)(4,Hf(F))

=" socle Hf(F),

we have dim/ E0_f- dim/ socle 77/(F).
Furthermore Mpq = 0 when either p < 0 or q < -f. This implies that

2F0,_/ = °°E0i_f, and that ^Epq = 0 when either p + q < -f or p + q = -f
with (p, q) t¿ (0, -f). In other words, the initial term of

/fW = E( Etdim/F^)]''
z'eZ  \p+q=i J

is (dim/ 2EQ_f)t~f = (dim/ socleHf(F))t~f which was to be proved.

To prove (d) note that, by inspection, the Laurent series -tG(t~x)/G(t) has

initial term (length^^TT/^F))?--^, hence our claim follows by comparison with

the result of (e).
Finally to prove (a) note that the assumption IF(t) = 1, by (e), implies that

/ = 0 and that dim/ socle 770(F) = 1, that is, H¡(F) = 0 for / ^ 0 and 770(F)
is a Gorenstein ring. Conversely, when the last two conditions are satisfied the

spectral sequence (2.3) has 2Epq — 0 for (p, q) ^ (0, 0) and 2Foo - / , hence
IF(t) = l.    D

(2.12) Proof of Theorem D. Let C" denote a minimal model [19] of the Sullivan

algebra of commutative Q-cochains on G. The DG rings C*(G, Q) and C
are connected by a sequence of homology isomorphisms

Extc.(G,Q)(Q,C*(<7,Q)) = ExtC'(Q,C'),

by (1.5). Furthermore, truncating C if necessary by an ideal of finite codimen-

sion and zero cohomology, cf. the proof of (3.4) below, we obtain a homology

isomorphism of C onto a finite dimensional connected Q-algebra C with

C1 = 0. In particular, by (1.5) again, Extc<(Q, C) and Extc(Q, C) are iso-

morphic. With due care for the grading convention the arguments of the proof

of (2.1) carry over to this cohomological situation and establish the inequality of

Theorem D, with equality holding if and only if H*(G,Q) has trivial Massey

products. However, this is well known to characterize rational suspensions, cf.

[21].    D

(2.13) Remarks. Let / be a field of arbitrary characteristic. For a space G

which satisfies the assumption of Theorem D, consider now the Betti num-

bers bj = dim/ H'(G, /), the cochain algebra C*(C7, /), and the Bass series
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-1

h{t) = E/ez(dinV Ext~Í(Gi/)(/, C*(G, /)))*'' , where the C*(G, /)-modules

under inspection are right modules.

(a) The inequalities of Theorem D hold in this broader setup.
To see this, replace in the proof of this theorem the Sullivan model of G by a

free model, also denoted C , of C*(G, /) : cf. e.g. [9]. As above one then links

C*(G, /) by a sequence of homology isomorphisms to a finite dimensional

supplemented DG algebra C, with C° = / and C1 = 0. Such a C will (in
general) be noncommutative, but the commutativity of F was never used in

the proof of Theorem (2.1.b).
(b) The right-hand side inequality of Theorem D is an equality if and only

if the Massey products of all orders (including the cup products) of elements of

H+(G,/) are equal to zero.

To prove this one cannot use the argument of Theorem (2.1.c) since the

commutativity of F was essential in its last portion. However, the claim can

be established by adapting the techniques used in [8, §§3 and 4].

(c) If G is a suspension, then there is an identity

k(t)= f^r'-r'Wfi-ÇiV'

Namely, 77*(G, /) has trivial Massey products, cf. Kraines [15].

3.  DG FIBERS OF HOMOMORPHISMS OF COMMUTATIVE DG RINGS

For a G Z-module B we denote by AB the free commutative G ring on

B, that is, the (possibly infinite) tensor product of the symmetric algebras on

B2i and exterior algebras on B2i+X for i e Z. Every homomorphism of DG

rings (/>: F —» S can be factored in the form

R^Y 5>S
i My

where Y* = R*®iAB, B is concentrated in nonnegative degrees, B„ is Z-free
for each n , and t is the canonical inclusion; this follows from a modification,

cf. [3], of the procedure of adjoining variables to kill cycles, cf. [20]. We call

such a factorization a free R-algebra resolution of S ; by abuse of language, we

give Y the same name. For proofs of the next two properties of the construction

we refer to [3] and [20], respectively.

(3.1) nY is a DG-projective resolution of the DG R-module S.

(3.2) If eR:R-* 4 is surjective, Hq(R) is a noetherian ring, and 77,(F) is a

noetherian H0(R)-module for each ieZ,then B¿ can be taken of finite rank for

each i e Z. In particular, the DG R-module 4 has a DG-projective resolution

which is G finite of bounded below type.

Now consider the commutative diagram

T <-  R —^ S

(3.3) [r [p j.        ,

T <- R' -> S'
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of homomorphisms of commutative DG rings. Embed (say) the right-hand

square into the commutative diagram

S

[o

S'

This is easily done, extending p by induction on the degrees of the elements in

a basis of B . Thus one obtains a homomorphism of commutative DG rings

? ®p X- T ®R Y - V ®R, Y'.

Since Y (respectively: Y') can be shown to be a DG-projective resolution of the

DG F-module S (respectively: oftheDG F'-module S') this homomorphism

represents a map

r®  a:T®  S -» T'®   S'.
=P =R =«'

If one takes algebra resolutions X and X' in place of Y and Y', respectively,

there results a diagram of DG ring homomorphisms

T ®R Y -►   V ®R, Y'

T ®R X -► V ®R< X',

where the vertical maps are homotopy isomorphisms defined uniquely up to

homotopy, and which is itself commutative up to homotopy. Due to (1.6), this

shows in particular that Tor~(-, -) is a functor from diagrams of the form
(3.3) to G rings.

Definition. If (R —> 4) —> (S —► /) is a homomorphism of augmented DG

rings, then any representative of 4®  S, constructed as above from a free R-
—R

algebra resolution Y of S, will be called a DG fiber of 0, and denoted F(<f>).

The DG fiber F = F(<j>) of <j> will always be considered as an augmented

DG ring by means of the augmentation

Sp = 4®_&R es: 4®R S —> 4®j 4 = 4 ®/ / = /.

The G /-module Ex\p(f, F) is defined uniquely up to a unique isomorphism:

this follows from the preceding discussion and (1.6).

Remark. The fiber of a local homomorphism 0 of local rings (or, more gen-

erally, of augmented T-DG rings, that is, DG rings with divided powers) was

introduced in [1] as a T-DG ring and called the homotopy fiber. The construc-

tion described above gives a DG fiber in the category of augmented DG rings

(no divided powers). However, both fibers are homology isomorphic, hence

by (1.8) the /-vector spaces Extp(/, F) are canonically isomorphic for any

choice of the fiber F . In particular, the Bass "series" Ip(t) does not depend on

the choice of the fiber F . We denote it by I^t) and call it the Bass series of

R    <-* Y -»
1 Tly

ï P Ï X

r'  «^ r ^
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<j>. Furthermore, we set depths = depthF(4>) and DGtypetj> = DGtypeF(0),
cf. (1.8).

One of the main advantages of the DG version of homological algebra, as

compared with the classical one, is the possibility of changing a ring argument by

a homology isomorphic one, which may be more suitable for the computations

at hand. The next two propositions provide efficient ways of using finiteness

assumptions on the DG fiber.

For a DG ^4-module A the flat dimension of N, fd^A, over A is defined
by

fd^ A = infsup{n|F„ ¥" 0},
F

where the infimum is taken over all DG-flat DG F-modules F such that there

exists a sequence of homology isomorphisms between A and F .

(3.4) Proposition. Letfr.R —> S be a homomorphism of augmented DG rings,
F —> / and S -» / . Assume furthermore that

(a) 7? is concentrated in degree zero,

(b) S is a DG R-module of finite flat dimension.

Then for any free R-algebra resolution: R -» Y ■=♦ S there exists a DG ideal J
Ky

in Y such that the surjection Y —> Y' = Y/J is a homology isomorphism, all

Y- are flat R-modules, and Y[ = 0 for i < 0 and for i > fdRS.
Furthermore, there is a canonical isomorphism:

ExtpW(/, F(tp)) - Ext/^Y,(/,4 ®R Y').

Remark. Recall that all DG rings are assumed to be commutative and concen-
trated in nonnegative degrees.

Proof. Let / = fdRS. It follows from the definition of flat dimension that

77,(7) S 77,(5) = 0 for i> f.
First we prove that Yf/Bf(Y) is a flat F-module. Note that

■ •■-y/+2-7/+1-y/-o----

is a flat resolution of Y//Bf(Y), and hence

Torf(M, Yf/Bf(Y)) = Hf+l(M ®R Y) = Torf+x(M, S) = 0,

for all Fv-modules M.

Consider the subcomplex J of Y

J = ...^Yf+2->Yf+l^Bf(Y)^0^--..

This is a DG ideal in Y, and 77(7) = 0. Thus the canonical projection k: Y —►

Y/J = Y" is a homology isomorphism of DG rings, and Y" is F-flat (since

Yf+i/Bf+i(Y) is flat).
The homology isomorphism k induces a homology isomorphism 4 ®k :

4 ®R Y ->4 ®R Y" , by (1.4). Now, note that F(0) is equal to 4 ®R Y and

apply (1.5) to obtain the isomorphism in Ext.   D

(3.5) [3, (10.6)] Let Eg'- G —► / be an augmented DG ring such that Ho(G)
is an artinian local ring which contains a field 4 as a subring. If 77(G) has

finite length over Hq(G) then G can be linked by a sequence of homology iso-
morphisms to a supplemented finite dimensional DG /-algebra sp:F —» / .    D
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4. A BASE CHANGE FORMULA FOR COHOMOLOGY

In this section we prove the main result of the paper.

(4.1) Theorem. Let R—> 4 and S —> / be augmented commutative DG rings

with surjective augmentations, let cp:R —> S be a homomorphism of augmented

DG rings, and let M be a DG R-module. Assume furthermore that:

(a) R is a noetherian ring concentrated in degree zero;

(b) 770(5) is a noetherian ring and 77,(5) is a finitely generated 77n(5)-

module for each ieZ;
(c) 5 is a DG R-module of finite flat dimension;
(d) H(M) is bounded above.

When F(</>) denotes the DG fiber of 4>, there is an isomorphism of G  /-

modules Exts(/, M<gR 5) =■ ExtÄ(/, M) ®¿ ExtF{4>)(/, F(tj>)).

Remark. The proof takes the rest of this section. For an overview of the argu-

ment the reader could consult the note [6].

Proof. First of all we introduce resolutions of the different modules and alge-

bras involved. Most of this information is summarized in the following two

commutative diagrams of homomorphisms of DG rings (diagrams (I) and (II)):

k     <r R
<t>

(I) ® Y    <-
R

-rr—       X    ®    Y       -=-
c ®Y R X®ir

^    X ® S
R

O      =   &®7T
F Y

71 U
U

k ® S
R
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-»   s

(II) u

These maps are defined as follows:

ex : X -> / is a free F-algebra resolution of / over R .

n y'-Y -> 5 is a free F-algebra resolution of 5.

The equalities define F, U, G, pF , pu , Pg > and nu • Note that F is the

DG fiber F(<f>) from the preceding section.

ey: V —> / is a free ¿7-algebra resolution of / .

Since HomY(X®RY, -) = HomR(X, -) we have that U is a DG-projective

DG y-module. By (1.7) this implies:

(4.2) V is a DG-projective DG Y-module.
There are several maps that are marked as homology isomorphisms in the

diagrams, but not constructed as such. We now give the reasons.

V®uy is a homology isomorphism because %y is a homology isomorphism

and F is a DG-projective DG 7-module by (4.2).
By the commutativity of the triangle we obtain

(4.3) ey ® es is a homology isomorphism.

Tirj = ex® Y is a homology isomorphism because ex is a homology isomor-

phism and y is a free DG F-module.
7iu®V is a homology isomorphism because ny is a homology isomorphism

and V is a DG-projective DG (/-module.

By the commutativity of the triangle we obtain

(4.4) eF ® ey is a homology isomorphism.

Having explained the diagrams we proceed to record the precise statements

needed in the proof.

The canonical isomorphism Homs(V ®Y S, -) = Homy (F, -) together

with (4.2) show that V ®Y S is a DG-projective DG 5-module. Thus (4.3)
shows that the following holds.

(4.5) V ®y S isa DG-projective resolution of I over 5.

Next we note that 4 ®x V is, in a natural way, a DG module over 4 ®x U =

4 ®R Y = F , and that
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(4.6) The canonical isomorphisms

4 ®x V=,4®x U ®v V=-4®R Y ®u V s F ®v V

are F-linear.

Now, since FíomF(F ®i¡ V, -) =■ Homu(V, -) the DG F-module F®v V
is DG-projective, and hence, due to (4.4), we have

(4.7) 4 ®x V is a DG-projective resolution of / over F .

We also introduce homology isomorphisms of complexes (DG F-modules)

P-^M^I,

with F DG-projective and 7 DG-injective and bounded above, cf. (1.1) and

(1.9).
Finally, consider Horn y (L, I®R Y) with the DG [/-module structure given

by

(ua)(u') = (-\)da(u'u)   where d = \u\(\a\ + \u'\),

for a e Homy(i7, I ®R Y) and u,u' 6 U, and consider HornR(Jf, I ®R Y)
with the DG [/-module structure given by

((x®y)ß)(x') = (-\)eyß(xx')   where e = \x\(\ß\ + \y\),

for ß e HomJ?(Ar, I ®R Y), x, x' e X, and y e Y.

A straightforward computation shows that

(4.8) The canonical isomorphism d:HomY(U, I®R Y) -^ HomÄ(X, I®R Y)

is an isomorphism ofDG U-modules.

Because of condition (a) there is a homology isomorphism X -=► X' with X'

a DG-projective DG F-module, which is G finite and of bounded below type.

By (3.4) there is a homology isomorphism Y -=> Y' with Y' a bounded DG-flat
DG F-module. Thus by (1.10) we conclude that

(4.9) Hom«(X, 7) ®R Y -» Hom/;(Ar, I ®R Y) is a homology isomorphism

ofDG U-modules.

Now follows a sequence of isomorphisms and homology isomorphisms with

explanations in square brackets.

Homs(V®Y S,P®R S)

= Homy( F, F ®R S) [canonical isomorphism]

HomY(V,P®R Y)

Homy(F,7®Ä Y)

Y^S; F is DG-flat over F ;
V is DG-projective over Y

P -^ M -^ 7 ;  y is DG-projective
overF ;   V is DG-projective over Y

= Homu(V, HomY(U, I ®R Y)) [canonical isomorphism]

^Homu(V,HomR(X,I®RY)) [(4.8)]
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Homu(V, HomÄ(X, 7) ®R Y)

Homu(V,HomR(4,I)®R Y)

(4.9) since V is
DG-projective over U

X=>4;
I is DG-injective over F ;

y is DG-projective over F ;

V is DG-projective over U

= Hoirif (F ®u V, HomÄ(/, 7) ®R Y) [canonical isomorphism]

2 HomF(4 ®x V, HomR(4,1) ®R Y) [(4.6)]

=■ Homf (/ ®x V, HomÄ(/, 7) ®/ F)
canonical isomorphism

using F = 4 ®R Y

Now we note that 77o(F) = 4 ®R 77n(5) is a noetherian ring. Let X' —* 4 be a

resolution by finitely generated projective F-modules. Then there is a standard

first quadrant spectral sequence of the double complex X' ®R S,

2Epq = HP(X' ®R 77,(5)) => Hp+q(X' ®R S) Si Hp+q(F).

Since 2Epq is finitely generated over 77o(5) by condition (b), this shows that

77,(F) is finitely generated over 77o(F) for each i eZ.

Because of (3.2), the preceding implies that / has over F a DG-projective

resolution V , which is G finite and of bounded below type. Since by (4.7)

4 ®x V also is a DG-projective resolution of / over F, there is a homology

isomorphism V ■=+ 4 ®x V ofDG F-modules, cf. (1.2). Furthermore, since

77(F) = H(4 ®R Y) = TorR(4, 5) is bounded above by condition (c), there is

by (3.4) a homology isomorphism F => F', with F' a bounded DG /-algebra.
Thus we can apply (1.10) to obtain the homology isomorphism

HomF(4 ®* V, HomR(4, 7) ®/ F) £ Homf (/ ®^ V, F) ®/ Hom*(Z, 7).

To summarize this

(4.10) There is an isomorphism of the homology of the DG modules

Homs(V ®Y S, P ®R S)   and   Homf (4 ®x V, F) ®/ HomÄ(/ , 7).

The next sequence of equalities and isomorphisms proves the theorem.

Ext5(/, M^R 5) = Exts(4 ,P®RS) [( 1.5)]

= 77(Hom5(F®y S, P®R 5)) [(4.5)]

Si H(HomF(4 ®x V,F)®4 HomÄ(/,7)) [(4.10)]

Si 77(Homf(/ ®x V, F)) ®/ 77(HomR(/, 7))        [Runneth]

= Ex\p(4 ,F)®4Ex\R(4 ,M) [(4.7) and (1.10)].   D

5. Local homomorphisms of finite flat dimension

This section contains the applications to local algebra of the homological

computations of the preceding sections. Theorem A of the Introduction is the

special case M = R of (5.1) below, while Theorem B and Theorem C are

obtained from (5.3) and (5.7) in the special case M = F.
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Throughout this section the following assumptions will be in force.

• </>: (R, m, 4) —» (5, n, /) is a local homomorphism of finite flat

(5.0) dimension of noetherian local rings, and S = S/mS;

• M is a complex of R-modules with H(M) bounded above.

Recall that the Bass "series" IR(t) of M over F is defined by

^(0 = £(dim/Ex4(/,M))i'.
;£Z

For the definitions of the DG fiber F = F(<¡>), the Bass "series" I$(t), depth <j>,
and DGtype (j> we refer to (3.2).

(5.1) Theorem. Under the assumptions above 1'¿(t) is a nonzero formal Laurent

series. Furthermore, if IR(t) is a formal Laurent series (e.g., if all H¡(M) are
M®rS

finitely generated R-modules), then Is - (t) is a formal Laurent series as well,

and the following equalities hold:
M®   S

h=R (0    h(t)   j (t)
ijfw    hit) - Wj-

Proof. Consider the isomorphism:

Ext5(/ , A£Ä 5) Si Ex\R(4 , N) ®/ Extf (/ , F),

from Theorem (4.1). First we use (1.9) and the isomorphism with A = F to

show that I^t) is a nonzero formal Laurent series equal to Is(t)/IR(t), and

then we use the isomorphism with A = M to obtain the other equality.   D

(5.2) Remark. The result applies in particular when tf> is flat and M is a

finitely generated R-module. In this case the complex M®R S can be replaced

by the module M <g>R S, and the DG fiber F can be replaced by the local ring

5. (Indeed, there are homology isomorphisms: M®S —> M®R S and F —* S,

and hence (1.5) applies.) Thus for a flat local homomorphism Theorem (5.1)

specializes to the main result of [12].

(5.3) Corollary. The following inequalities hold for all ieZ

pR+deplhR(M) < (DGtype<ß)p,R+de'pthR(M) < ^+depthS(M^5).

Furthermore, there are equalities

depths(Af®  5) - depthRM = depth 5 - depth F = depth tj>,
R

pe<r(Af®_5)     r>r;tvnp\
= DGtype cj>.

DGtype5(Af^5)      DGtype 5

DGtype^M DGtype F

Proof. From the identity Is(t) = /j?(i)/^(r) it follows that depths = depth5-
depthF = d and DGtype F = DGtype 5/DGtype F, that is,

7,(0» (DGtype <p)td

and both series have the same initial term. By multiplying both sides by the

series with nonnegative coefficients, IR(t), and applying the theorem once again

we see that
M<8rS ,, ., ,

h =    W = ÍR^hit) » (DGtypeF)I%(t)td
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and the series have the same initial term. This is equivalent to the assertions in

the corollary.   O

(5.4) Remark. Recall that the trivial extension, F k A, of the ring F by

an F-module A, is the abelian group F © A with product (r, n)(r', n') =

(rr', rn' + r'n). Let now A be a finitely generated F-module of finite projective

dimension, and denote by tf> the inclusion F ^-> F x A. Then depth F x

A = min(depthF, depth^A) and deothF(4>) = -pdRN by (3.5) and (2.1.e).
Hence it follows from the corollary that min(depthF, depthRA) = depth F -
pdRN. Thus the Auslander-Buchsbaum formula: depthRA + pdÄA = depth F

is contained in the identity (5.1) of formal Laurent series.

The next two examples show that the assumption of finite flat dimension in

Theorem (5.1) is essential.

(5.5) Example. A local homomorphism <fi:R -> 5 with I^(t) = tu for some

w.but Is(t) ¿ 7jt(0W •

Let Xi, ... , xm (m > 0), and yi, ... , y„ be regular sequences in some local

ring Q with maximal ideal q, such that x, = £)"=1 ai¡y¡ for i e {\, ... , m]

and a¡j e q. Let fr.R -^ S denote the canonical projection from F =

Q/(xi,..., xm) ~* S = Q/(y¡, ... , y„). Let Tx, ... ,Tn denote exterior vari-

ables of degree 1, and let U\,... ,Um denote divided power variables of degree

2. Finally, let Y denote the DG ring

r(tu ..., Tn, Vu ..., Um; dTj=yj,dUl = ¿Iiy7}\ .

By [20] we have H¡(Y) = 0 for / ¿ 0 and 770(y) = S, hence F -► Y 4-
5 is an algebra resolution of (f>. Thus the DG fiber is F = 4 ®R Y =
4(Tu ■■■ , T„, Ui, ... , Um) with trivial differential. Assume now that /

is of characteristic zero; then F is isomorphic to the tensor product A ®/ F,

where A is the exterior algebra on T\,... ,Tn and F is a polynomial algebra

on Ui, ... , U m . We obtain then

740 = iF(t) = lA(t)iP(t) = rnt3m = t3m-n.

On the other hand

ls(t)/iR(t) = lQ(t)rn/lQ(t)rm = tm-n / 7,(0.

(5.6) Example. A local homomorphism cj>:R -> 5 with I^(t) = 0.

With 4> as above, assume now that the characteristic of / is p > 0. Then

F is isomorphic to A ®/ T, where Y is the free divided powers algebra on

7/1, ... , Un , which is an infinite tensor product of /-algebras. Thus F is an

infinite tensor product, and this implies I^(t) = 0, cf. [10, proof of (1.7)].

(5.7) Theorem. In the notation of (5.0) assume furthermore, that IR(t) is a

formal Laurent series, and that S is artinian.

M®r S —
(a) The equality Is - (t) = IR(t) holds, if (p is flat with S Gorenstein.

Conversely, if H(M) / 0 and the equality holds, then <f> is flat with S
Gorenstein.
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(b) Assume that <j> is not flat with mS = n. There is then an inequality

C=\t) « l-{t)^o^nsTorf(4,S))^-t-l
1 +1 - £i=0(lengthsTorf (/, S))t>+X

where f = fdRS. Equality holds if 4> is Golod. Conversely, if H(M) ± 0
and the equality holds, then 4> is Golod.

(c) There is an inequality:

DGtype5M®j? 5 < (DGtypeÄA/)lengths(Torf (/, S)),

where f = fdRS. Here, equality holds if and only if nTorf (/, 5) = 0,

in particular if S = / .

Proof. First, note that since 77(F) Si Tor*(/, 5), we have 77,(F) = 0 for

i # 0 if and only if <j) is flat; and that mH(F) = 0 if and only if, in addition,
vaS = n.

Next, note that I^(t) ¿ 0 when H(M) ¿ 0.
Because of (3.5), and the change of rings formula (5.1), assertion (a) follows

from (2.1.a), and assertion (b) follows from (2.1.b) and (2.1.c). Assertion (c) is

a consequence of (5.3), (2.1.d), and (2.1.e).   D

(5.8) Remark. Let Q be an arbitrary local ring, and let tf>:R —> 5 be a Cohen

presentation of the completion 5 of Q, such that the regular local ring F

satisfies dim F = edim5. In this case Tor'V.S) = 77(Fß), where K<2
denotes the Koszul complex on a minimal system of generators of the maximal

ideal of Q. Since 7G(i) = Is(t), Theorem (5.7.b) for M = F coincides with the
main result of [8]. When 0 is a surjective Golod homomorphism, the equality

in (5.7.b) for M = R was initially established in [16].

(5.9) Proposition. Let N be a nonzero finitely generated R-module of finite
projective dimension, and let F « A be the trivial extension. The following

identity then holds:
iR*N(t) = Pß(rx)-t

iR(t)       i - tP*(t) '

where Pß(t) = 2^,>o(dim/Torf (/, N))t' is the Poincaré polynomial.

Proof. By [13] PR*N(t) = PR(t)/(\ - tP§(t)). Since 1 - tPß(t) = 1 + t -

5]?=o(dim/Torf (/, R k N))t'+X, where p denotes the projective dimension

of the F-module M, the homomorphism: F —► F k N is a standard Golod

homomorphism, cf. the Introduction.   Thus, the identity is a special case of

(5.7.b).   D

(5.10) Theorem. In addition to the notation of (5.0) set r = edim5 and let

X\, ... , xr be elements of n which map onto a minimal generating set of ñ =

n/m5. Let <f>':(R', m', 4) -> (5,n,/) be the local homomorphism of R-
algebra from

R — R[Xi, ... , Xr\m+(X¡ ,....xr)) >

given by </>'(A,) = x,.

(a)  The following inequality holds:

fd^5<fdR5 + edim5.
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If S is artinian, then equality holds.
Assume furthermore, that IR(t) is a formal Laurent series.

M®rS _
(b) The equality Is= (t) = IR(t)tr holds if (f> is flat with S regular.

Conversely, if H(M) ^ 0 and the equality holds, then 4> is flat with S
regular.

(c) Assume that 4> is not flat with S regular. There is then an inequality:

G<j>>(t)

where G,,(i) = 1 - E^dim/ TorfV, S))t'+X for f = fdR.S.
The equality holds if (j)' is Golod. Conversely, if H(M) ± 0 and the

equality holds, then <p' is Golod.
(d) The two series in (c) have the same initial term. In particular, if H(M) /

0 then

depth5 (71/^5) - depth M = edimS - fdR.S > -fdRS.

Proof. We start with the proof of (a). Set f' = R'/mR'. Because of the F-

flatness of F' there are canonical isomorphisms

Torf(F',5)*Toif(/,5),

for all q , and hence Tor^ (F , 5) = 0 for q > fdRS. Now the standard change

of rings spectral sequence

2Epq = TorfV, Torf (F', 5)) =¡> TorR'+q(4, 5)

shows that Torf'(/, 5) = 0 for n > fdR5-l-edim5, since Torf (- , -) = 0 for

p > dim F = edim 5, by the regularity of F . The desired inequality follows,

cf. e.g. [4, (1.7)]. In the artinian case the equality follows from the usual corner

argument in the spectral sequence.

Now we prove (b). Let F denote the DG fiber F(<f>). Because 7 =" (t) =

IR{t)h(l) (by (5-!))> and because H(M) ¿ 0 implies I¡f(t) ¿ 0, by (1.9), the
assertions in (b) follow from the claim

4> is flat with 5 regular o I^(t) = f.

For the rest of this proof we set F' = F (</>'). The proof of the claim is divided

into three parts.

First we show that

I^t) = f^I^,(t) = \.

From (5.1) and (a) we obtain the three identities: Is(t) = 7Ä(i)7^,(/), Is(t) =

Iw(t)I^(t), and IR,(t) = IR(t)IQ(t) where Q is the DG fiber of F -> F'. As

noted in (5.2) Iq(í) = IR'(t), which is ? since F is regular of dimension r.

Thus, I^(t) = I<j,'(t)tr, as desired.

Next note that by (3.5) and (2.1.a), since 770(F') = / , we have

70(i) = 1 «• m„{FI) = 0.
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Finally we prove that

^H(F') = 0<$ <j) is flat with 5 regular.

Indeed, the isomorphism 77(F') = Tor* (/, 5) shows that the vanishing of

mH(F') implies that 5 is F'-flat, and hence is also F-flat. The induced local

homomorphisms: F -» 5 is then flat with m'5' = ñ. Since F is regular

this shows that 5 is regular. Conversely, if <fi is flat, then the augmentation

F —► 5 is a homology isomorphism, and hence 77(F') is isomorphic to the

Koszul homology of 5 with respect to a minimal set of generators of ñ. This

shows that if 5, in addition, is regular then m¡j(F') = 0.

Now we turn to the proof of (c). Set M' = M®R R'. By (a) and (5.7.b) we

have the inequality

with equality if <f>' is Golod. By (5.2) we have equalities

lRi'(t) = liY(t)lJ,(t) = liY(t)tr.

M'togi S M®RS
Furthermore, Is - (t) = Is — S(t) since M'® S and M®RS are ho-

mologically isomorphic. Substitution now yields the desired inequality, which

becomes an equality if </>' is Golod.
Finally, to prove (d) note that the initial terms coincide by (5.1), (3.5), and

(2.1.d). The equality follows by computing the orders of the series in (c), and

the inequality is that of (a).   D
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