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FRACTAL DIMENSIONS AND SINGULARITIES OF THE
WEIERSTRASS TYPE FUNCTIONS

TIAN-YOU HU AND KA-SING LAU

Abstract. A new type of fractal measures Xs, 1 < s < 2, defined on the

subsets of the graph of a continuous function is introduced. The ^-dimension

defined by this measure is 'closer' to the Hausdorff dimension than the other

fractal dimensions in recent literatures. For the Weierstrass type functions de-

fined by W(x) = £S°'k-aig()Jx), where X > 1 , 0 < a < 1 , and g is an

almost periodic Lipschitz function of order greater than a , it is shown that the

^-dimension of the graph of W equals to 2 - a , this conclusion is also equiv-

alent to certain rate of the local oscillation of the function. Some problems on

the ' knot ' points and the nondifferentiability of W are also discussed.

1. Introduction

It is easy to show that if f e Lip(a) (the class of Lipschitz functions of order

a), 0 < a < 1, then the Hausdorff dimension of the graph of /, denoted by

Yf, does not exceed 2 - a . On the other hand, there is no satisfactory condition

to estimate the lower bound of the dimension of Yf. In particular, it is an open

question that for X > 1, 0 < a < 1 , the Hausdorff dimension of the graph of

the Weierstrass function

(1.1) W(x) = ^2x-aisin(X'nx),        xeR,
/=i

(or more general, replace the sine function by a bounded differentiable almost
periodic function) equals to 2-a . Recall that for 5 > 0 the Hausdorff measure

%?s is defined on subsets of E" by

#"{E)= lim %?(E),
s-> o+

where

2g'(E) = inf J ̂ (diam U¡)s: E ç (J ut-, diam £/,-<<?!,

{C/,-}f are open subsets of R" . The Hausdorff dimension of E, denoted by

¿T-dimF, is defined by ¿F-dimF = inf{s > 0: WS(E) = 0}.
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There are many attempts in solving the problem stated in (1.1). Besicovitch

and Ursell [1] gave a positive answer by modifying the term X~°" to Â, such

that Xi+X/Xi increases to oo and logA,+i/logA, —> 1. Kaplan, Mallet-Paret and

Yorke [10] and Rezakhanlou [13] proved respectively that the box dimension

and the packing dimension (see §3) of Yw is 2 - a. Mauldin and Williams

[11] using a Cantor set argument concluded that the Hausdorff dimension of

Yw is greater than 2 - a - (c/logX), provided that X is large. More recently

the authors [7] considered the replacement of W by the Rademacher series

oo

R(x) = Y,2-aiRi(x),       *e[0,l],
i=i

where 7?i(x) = sign(sin27ix), and R¡(x) = 7?!(2'_1x), i = 1, 2, ... , is a se-

quence of Rademacher functions. They showed that if the distribution function

F of 7? is absolutely continuous and F' 6 LP for some p > 1, then the Haus-

dorff dimension of Yr is 2-a. This is the case when a = l/n , n = 1, 2, ... .

Furthermore the result is true for all 0 < a < 1 if a small perturbation of 2~al

in the sense of Kahane and Salem [9] is allowed [8]. The first result of the

Rademacher series R(x) was also obtained by Przytycki and Urbanski [12] by

using a dynamics argument; they also proved a more striking result: there exist

some values of a ( 2a is a Pisot-Vijayaraghavan number) so that the graph of

7?(x) has Hausdorff dimension strictly less than 2-a.
The main purpose of the paper is twofold: First we introduce another type of

measures Jfs, 1 < s < 2, on the subsets of the graph of a continuous function

/, and define a new ^-dimension index. While the Hausdorff dimension is

determined by the measure using arbitrary open covers, and the box dimension

is corresponding to covers with balls of equal size, the new scheme is a mixture

of these two. The importance of such consideration is that
(i) 3?s is a genuine measure on the subsets of Tf ;

(ii) With regard to the continuous curves, the ^f-dimension is an improve-

ment (closer to the Hausdorff dimension) of the box dimension and other di-

mensions in the literature (Theorems 3.1 and 3.2);
(iii) 3fs(Yf) is closely related to different variational norms of functions on

R;
(iv) It is a natural tool to deal with Lipschitz functions, especially for the

Weierstrass type functions (Lemma 2.4 and §4 ).

Secondly, we study the local oscillation behavior of the Weierstrass type func-

tions. For X > 1, 0 < a < ß < 1, let g(x) defined on K be a bounded
real-valued (Bohr) almost periodic Lipschitz function of order ß , let W he a

Weierstrass type function defined by

oo

(1.2) W(x) = ¿2k-aig(X'x),        *eR-
0

By substracting a constant, we can assume, without loss of generality, that

g(0) = 0. Let

ce

(1.3) F(x) = ^A-Q'g(A,x),        x€R,
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then the series converges for all x, V is also known as the Weierstrass-Mandel-

brot function. For any real-valued function f on R, e > 0, x eR and any

interval Ix containing x , let

(1.4)        E(fi,e,Ix) = {yelx: \f(y) - f(x)\/\y -x\a>e,y¿x}.

Our main result is Theorem 4.1. We prove that V ^ 0 if and only if %f-

dim r„, = 2 - a, which is also equivalent to that there exist positive numbers

e, n and c so that \E(W, e, Fx)|/|Fjc| > c for every x e R and every interval

Ix containing x with \IX\ < n, where \A\ denotes the Lebesgue measure of

A for any Lebesgue measurable subset A of R. This improves the previous

results of Hata [6], Kaplan et al. [10], and of Rezakhanlou [13].

The singularities of the Weierstrass function have been attracting much at-

tention for a long time (see [5, 6, 10 and 12]). Recently Hata made another

detail study and strengthened most of the previous results by using expressions
similar to (1.4). By modifying the idea of the proof of Theorem 4.1, we can

improve some of his results. Our proofs are especially simple since we make

use of the 'relatively dense sets' of almost periodic functions and the auxiliary

function V(x) in (1.3) instead of his spectral approach.

The paper is organized as follows: In §2 we introduce the ^-measure and

the notion of the ^-dimension. In §3 we compare the ^-dimension with the

other dimension indices. We also observe that the ^-measure of the graph

of / is related to some variational norms of /. The main part is §4, which

proves the equivalence between the fractal dimension and the local oscillation

of W. In §5, we follow the idea used in §4, and improve a theorem of Hata

on the ' knot ' points of the Weierstrass type functions. Some remarks of the

theorems and comparisons of the conditions used by Hata and Kaplan et al.

are also given.

Acknowledgments. The authors would like to express their gratitude to Professor
T. A. Metzger and Professor W. B. Zeng for bringing to their attention some

relevant literature. They also thank the referee for many helpful comments.

2.  A NEW DEFINITION OF DIMENSION

Let / be a continuous function defined on [0,1] with graph Yf. For any

open interval 7 of [0, 1], let q¡ he the least number of open squares 7x7'

whose union covers f(I). It is clear that

(2.1) 9/-l<osc(/,7)/|/|<f?/,

where osc(f, 7) denotes the oscillation of / on the interval 7. Let s > 0,

and let P be the natural projection from R2 to R defined by P(x, y) = x.

For any subset E of Yf and arbitrary open cover W of P(E), define

<ps(E,&) = '£q,\I\\

/er

and
X\E) = lim   inf tps(E,ff),

<s-o+ \&\<s

where \W\ = sup{|7|: /e?}. A routine check shows that 5PS is an outer

measure on Yf. As usual we call a subset E of Yf .^-measurable if 3¡fs(A) =
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Jfs(A n E) +3fs(A n Ec), for all subsets A of Yf ; Xs is then a measure on

the er-algebra of all J^s-measurable subsets. It is also easy to check that Xs

is a metric outer measure in the sense that 5fs(E u F) = J?S(E) + 3?S(F),

whenever the distance in R2 between E and F is positive, hence it follows

from an argument of Carathéodory that all the Borel subsets of Yf axe Jfs-

measurable (see [4, pp. 5-6]).

We remark that 3¡fs can be defined similarly on all subsets of R2, however,

in such case, it would not be an outer measure any more.

We omit the simple proof for the following proposition which excludes the

trivial cases of s.

Proposition 2.1. Let f be a continuous function defined on [0, 1].

(i) If 0 < s < 1, then &s(Yf) = oc ; and
(ii) If s > 2, then 5?S(E) = 0 for any subset E ofYf.

The .^-measure of Yf can be put into the following simpler form in con-

nection with the variational norms which will be considered in the next section.

Proposition 2.2. Let f be a continuous function defined on [0, I], and let 1 <

s < 2, then

(2.2) 5?s(Yf)= lixn  inf Y osc(f, A^A/I*"1,
v     ' v 3>    ¿-o+ini«*^

where Yl = {0 = x0 < xx < ■■■ < xn = 1} is a partition of [0, 1], A, =

[x,_i, x¡), and \U\ = max |A,-|.

Proof. We first show that the left-hand side of (2.2) is not greater than the right-

hand side. Let M = osc(f, [0, 1]). For S > 0, let n = {0 = x0 < Xi < • • • <
x„ = 1} be a partition of [0, 1] with £ |A,|S < ô . Notice that such a partition

can be found because s > 1. Let n > 0 he such that nM(2n)s~x + n(2n)s < ô .

Let W he the open cover of [0, 1] consisting of A° , the interior of A,, and

A;• = (x,■- n, x,: + n), i= I, ... ,n. Then by (2.1),
n n

^([0, l],g?) = £9AHA,f-r$>í;Kl
1=1    ' /=i

<¿(l+osc(/,A/)/|A/|)|A,|í + ¿(l+M/2z/)(2z/r
;=i

<2¿ + £osc(/,AI-)|A/|

i=i i=i
15-1

n

By letting ô —> 0, the inequality follows.
Conversely let S > 0, and let W be an open cover of [0, 1 ]. By the com-

pactness of [0,1] we can assume that W is finite, it is easy to construct a

partition n from W such that

5>Ao|A,f <5>|7|*.
n     ' /er

Applying (2.1) we obtain

^osci/.AOIA,!*-1^*/!/!'.
n ¡&

By taking the infimum the lemma follows.
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In the definition of S£s, if we replace the cover f of open intervals and

the corresponding open squares by nonoverlapping half open dyadic intervals

and dyadic squares respectively, we obtain another measure Ji's (see [4, pp.

64-65]), and we have

Proposition 2.3. For any subset E of Yf, XS(E) < 3í's(E) < cJis(E), for
some constant c independent of f and E.

Analogous to the Hausdorff dimension we define the dimension index in

terms of 3ts by

JT-dimYf = inf{s > 0: JTs(Yf) = 0}.

It is easy to show that it also equals sup{s > 0: JFs(Yf) = oo}, and by Propo-

sition 2.1, 1 <J?-dimYf<2.
The following simple lemma gives a useful criterion for the lower bound

of 5?-dimYf, in particular when / e Lip(a). It will be used to study the

Weierstrass type functions in §4.

Lemma 2.4. Let 0 < a < 1.  Suppose that there exists a subset A of [0, I]

such that \A\ > 0, and hm^x^Qosc(f, Ix)/\Ix\a > 0, for all x e A, then

5?2-a(Yf) >0,and hence S?-din\Yf > 2 - a.

Proof. The hypothesis implies that there exist n > 0 and c > 0 such that

(2.3) |xe[0,l]:   inf osc(f,Ix)/\Ix\a>c\ >0.

Let E be the subset in (2.3). For any open cover W of [0, 1], let W he the

collection of all those 7 in f intersecting E. Then, using ô < r¡, we have, by

(2.1),

jr2-Q(r.) > lim   inf y c\I\ > c\E\,

proving the lemma.

3. Comparison with the other definitions

Let F be a subset in R2, and let M„(E) he the smallest number of open

balls of radius 1/zz needed to cover E, define the lower box dimension by

0(E) = liml0g,M"(£) ,
—    logzz

and the upper box dimension A(E) by replacing lim„ with lim„. It is obvious

that S(E) < A(E), and if the equality holds then the common value is called

the box dimension of E .

Theorem 3.1. Let f be a continuous function on [0, 1], then !%f'- dixnYf < J?'-

dixnYf<S(Yf).

Proof. It suffices to prove the second inequality. It is known that the open balls

in the definition of M„(E) can be replaced by dyadic squares of equal size 2~" .

Also note that the x-projections of these squares form a cover £f of [0, 1] of



654 TIAN-YOU HU AND KA-SING LAU

dyadic intervals of equal size. For any s > ô(Yf), then lim„^^ M2n(Yf)-2 ns <

1. It follows that

Jf's(T7) < hm V q¡\I\s = Hm M2n(Yf) ■ 2~ns < 1.

Using Proposition 2.3 we see that Jif-dixnYf < s, and the proof is completed

by letting s -> ô(Yf).

One of the shortcomings of the lower (and upper) box dimension is that

ô(E) = ô(E), where E is the closure of E. To eliminate this one may define

r5(F) = inf {supa(F,): E ç |Jf;} ,

and define Â similarly. Then ô < ô and %'- dim < 5 < A < A. Note that Â
is also equivalent to the packing dimension recently introduced by Taylor and

Tricot (see [14, 15 and 16]).
For any interval 7 of [0, 1] let /} be the restriction of a function f on I.

In comparison with f%- dim we have

Theorem 3.2. Let f be a continuous function on [0,1]. If the values of JÍ-

dixnYf are equal for all open intervals I of[0, I], then Jf-dimYf < S(Yf).

Proof. By using the relation 6(E) = S(E), it is easy to verify that S(Yf) also

equals to inf{sup,a(F,): Yf Q\JEi, E¡ ç Yf} . For arbitrary sequence of {F,}

in R2 whose union covering Yf, by the Baire's theorem, there is at least one of
them with x-projection containing an interval 7. The hypothesis and Theorem

3.1 (still valid with Yf replaced by Yfl ) imply that sup¿(F,) > ô(Yfl) > 3?-

dimYf = 3íf - diml"f. This completes the proof since {F,} is arbitrary.

For 1 < p < oo , let

\f\p = lim  inf Vosc(/, A^IA,-!1-1^ ,
d->0+ |Il|<d *—*

and let

11/11,= lim sup^TosclAAOIA,-!1-1/*,
¿-o* im«? y

then both | \p and || ||p are seminorms. As already proved in Proposition 2.2,

if / is continuous and 1 < p < oo, then \f\p = 5f2-xlp(Yf). We use T? and

V to denote the two classes of functions for which \f\p < oo and ||/||p < oo

respectively. It is clear that V? C Tp , and if px < p2 then T^ ç V»2 and
yp\ ç VP2.

Proposition 3.3. For 1 < p < oo, let f e Tp, then
(i) / is bounded; and
(ii) if 1 < p < oo, then f is continuous almost everywhere with respect to

%?x-1 for every t < l/p.

Proof, (i) Suppose that \f\p < oo, then X)nosc(/' A,)|A;|1_1'/i' = M < oo for

some fixed partition n = {0 = x0 < xi < ■ • • < xn = 1}. We have

sup|/(x)| < 1/(0)1 + zz • suposc(/, A,-) < |/(0)| + zz • M/min|A,|1-'/'' < oo.
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To prove (ii), let E = {x e [0, 1]: / is not continuous at x}, and suppose

that ¿r'-'(F) > 0, where t < l/p. There exist a subset F of E and n > 0

so that ^X~'(F) > 0 and osc(/, Ix) > n, for every x e F and any interval

Ix containing x.

Let n be any partition of [0, 1], and let A\, ... ,A'k he all those subinter-
vals of n whose union covers F , then

k k

5>sc(/, Ai)\Ai\x-xl" > ¿osc(/, A'i)\A'Ál~l,p > ^¿|A;.|'-'^
n ¡=1 ;=1

> nJT¿;l/p(F) -♦ ti¿fx-x'p(F),    when |ü| -► 0.

Since 2trx-\F) > 0, thus ^X~X'P(F) = oo, this implies that \f\p = oo, con-

tradicting that / e Tp .

Corollary 3.4.   F°° = 27"00 and is exactly the class of bounded functions.

Proof. In view of Proposition 3.3(i), we only need to see that every bounded

function is in V°° , but this follows directly from the definition.

Proposition 3.5. For 1 < p < oo, f eVp if and only if

lim sup £ |/(x;) - /(x,-_,)| IA,!1-1" < oo.

In particular, feVx ifand only if f is of bounded variation.

Proof. It suffices to show that there is a constant c such that

(3.1) c\\f\\p < lim sup ¿2\f{Xi)-f(Xi-X)\ \Ai\x-x/».

For any partition n = {0 = x0 < Xi < ••• < x„ = 1}, we can find two

points y, and z, in each A, so that \f(z¡) - f(y¡)\ > osc(/, A,-)/3, and that

\z,-yt\> IA/l/3. Thus

\f(zi) - f(y¡)\ \zí -yi\x-xlp > osc(/, A,)|A,|1-1/732-1/".

Form the new partition n' which includes the points of n and of {y,, z, : i =

1, ... , zz}, then

¿Z\f(Xi)-fi(xi-X)\\Ai\x-x^>^\f(zi)-f(yi)\\zi-yi\x-xlp
n i=i

>3'/"-2j:osc(/,A,)|A;|1-,/p,

n

proving (3.1).

For 1 < p < oo, let 77F" = {/: 8UpEnl/(*/)-/(*<-i)r' < °°} be the
class of functions of bounded p-variation (see Wiener [17]), and let âè"Vp =

{/: lim¿_0+inf|n|<(5 2^n(osc(/' A,-))p < oo} be the class of functions of bounded

weak p-variation (see Goffman and Loughlin [3]).
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Proposition 3.6. Let 1 < p < oo, then Lip(l/p) ç BVp ç Vp, and &T~P ç
ff,

Proof. The proposition follows from the Holder inequality that

^i/(^)-/(^-i)iiAii,-i/p<(si/(^-/(x(-1)r)1/p(^iAl-i)1",/p

= (zz\fi(xi)-(xl-x)\py/p.

From Proposition 2.2, we see that if / is a continuous function then 3F-

dixnYf actually equals to inf{2 - l/p: \f\p = 0} . We can also define an analog

dimension index by

7v--dimr/ = inf{2-l/p:||/||p = 0}.

This dimension index dominates the previous ones in the following sense:

Proposition 3.7. Let f be a continuous function on [0, I], then A(Yf) < K-

dim Yf.

Proposition 3.8. Under the assumption of Lemma 2.4, if f e Vp, then 0 <

5?2-xlp(Yf) < oo, and JT-dimYf = K- dimYf = 2 - l/p.

4. The main theorem

For the rest of this paper we will fix 0 < a < ß < 1 . Let g(x) defined

on R be a real-valued (Bohr) bounded almost periodic Lipschitz function of

order ß . For simplicity, assume that g(0) = 0, \g(x) - g(y)\ < \x -y\ß for

all x,y e R and supxeK|^(x)| < 1. Let W(x), V(x), and E(f, e, Ix) be
defined by (1.2), (1.3), and (1.4) respectively. W is clearly an almost periodic

function, but V is not. Indeed this follows directly from the equation

(4.1) V(Xix)=XaiV(x),        xeR,

for any integer i.

Theorem 4.1. The following statements are equivalent:

(i) V±0;
(ii) There exist positive numbers e, n and c such that \E(W, e, IX)\/\IX\ > c

for every x e R and every interval Ix containing x with \IX\ < n;

(iii) 0 < ^2_Q(r„,) < oo, z'zz this case Jf-dimYw = 2-a.

Moreover the above equivalence is still valid if W in (ii) and (iii) is replaced

by V.

Before proving the theorem we make some remarks.

Remark 1. We cannot replace  F by  IF in (i), this can be justified by the

following example essentially due to Kaplan et al. [10]:

Let r(x) he any bounded almost periodic Lipschitz function of order ß so

that Jf-dimYr equals 2-ß and r(0) = 0. Then g(x) = r(x)-X~ar(Xx) is also

such a function. A simple computation shows that W(x) = ¿~^ X~a'g(X'x) =

r(x), thus Jf-dixnYfv = 2- ß .

Remark 2. From Theorem 4.1, we can deduce that W and V satisfy the hy-

potheses of Theorem 3.2, thus 8{Yw ) = A(Yw) — 2-a, and the same conclusion
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holds with Yw replaced by Yv ■ This improves the corresponding results of

Kaplan et al. [10] and of Rezakhanlou [13].

Remark 3. Statement (ii) of Theorem 4.1 is the conclusion of Hata's Theorem

2.1 in [6]. A comparison of his conditions and that V ^ 0 will be given in
Proposition 5.6.

We need a lemma to prove the theorem. A subset D of R is relatively dense

if there is a number h > 0 such that every interval [x, x + h], x eR, contains

at least one point of D. It is known that a continuous function g is almost

periodic if and only if for any e > 0, there is a relatively dense subset D = 73(e)

of K such that for every x e D we have \g(x + t) - g(x)\ < e , for all x e R

(see [2]).

Lemma 4.2. If there exist y eR and a > 0 such that V(y) > 3a (or < -3a),

then there exist a relatively dense subset D of' R, an integer r, and a positive

number o such that

(W(X-"(t + y))-W(X~nt))/X-an>a   (or <-a),

for all n > r and every t e UTez>(T -o ,x + a).

Proof. Let r he a fixed integer to be determined in the proof, and let Vr(t) =

Y^_rX~a'g(X't). By the hypothesis on g,Vr e Lip(yS) and Vr is an almost

periodic function. Let D he the relatively dense subset of R such that for

every x e D,

\Vr(t + x)-Vr(t)\<a/4,    for all/g R.

Since Vr(0) = 0, hence \Vr(x)\ < a/4 for all x e D. Let Mr he the Lipschitz

constant of Vr. Let a = (a/4Mr)x^ , then for n > r, and t e (x - o, x + a),

where x e D, we have

W(X-"(t + y))-W(X-nt)

(n—r—\        n+r oo     \

E+E +   E   U-o/(g(Aí-"(r-ry))-^(Aí-"0)
i'=0        i=n-r     i=n+r+\/

= sx+s2 + s3.

If r is chosen so that

(4.2) Vr(y)>3a,

then
n+r

S2 = E ¿-Q/W""(i + y)) - g(Xi-"t))
i=n—r

r

= X-anYJ^a\s(^i(t + y))-g(Xit))

—r

= X-a"(Vr(t + y)-Vr(t))

= X-an{Vr(y) - [Vr(y) - Vr(x + y)} - [Vr(x + y)- Vr(t + y)]

- [Vr(t) - K(X)] - Vr(x)}

> X-a"[3a - a/4 - 2Mr(a/4Mr) - a/4]

= 2aX~an.
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If r satisfies

(4.3) \y\ßX{a-ß)r/(X^a - 1) < a/2,

using the Lipschitz condition of g(t) then

n-r-l

(4.4) |5i|<  Y, ¿~aW~"y\ß < aX~an/2.

1=0

If further r satisfies

(4.5) l/Xar(Xa- l)<a/4,

then

|S3|<2   53   X~ai < aX-an/2.

i=n+r+l

The lemma follows from the following inequality:

W(X-"(t + y)) - W(X-"t) >S2-\SX\- \S3\ > aX~an,

provided that r satisfies (4.2), (4.3), and (4.5).

For x e R and any subset A of R, let x + A = {x + a : a e A} and let

xA = {xa : a e A}.

Proof of Theorem 4.1. (i) => (ii): Since V ^ 0, we can find a y e R and a > 0
such that |F(y)| > 3a. Let a > 0, integer r, and the relatively dense D he

as in Lemma 4.2. Let h > 0 be such that every interval [x, x + h], x e R,

contains at least one point of D. Without loss of generality assume that o < h

and 0 < y < h .
Set  n = X~rh.   For any x € R and any interval Ix  containing x with

17.x | < n, let zi be the least integer so that

(4.6) 4h<X"\Ix\,

then n > r, and we can find some x e D such that both (x - o, x + a) and

y + (x - a, x + o) are contained in X"IX . Pick any t e (x - a, x + a), it follows

from Lemma 4.2 that

\W(X-n(t + y))-W(X-"t)\
a <

(4.7)

Then

x-
\W(X-"(t + y))-W(x)\     \W(x)-W(X~"t)\

X~na + X-na

\\W(X-"(t + y))-W(x)\    \W(X~"t)- W(x)\

1       \X-"(t + y)-x\»       '        \X-»t-x\°       J

(   &] >max{\W(X-»(t + y))-W(x)\    \W(X-"t)-W(x)\\

>a/2(X"\Ix\r       (by (4.7))

>e,        (by (4.6))

where s = a(4Xh)a/2. Since / e (x - o, x + a) is arbitrary, the above es-

timate implies that \E(W, e, Ix)\ > 2aX~n. Again by (4.6) we obtain that

\E(W, e, 7X)|/|7X| > c, where c equals to a/2hX. This proves (ii).
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(ii) => (iii): For any x e R and every interval Ix containing x with \IX\

small enough then

osc(IF, Ix) > sup\W(s) - W(x)\
seE

>esup|i-x|a > e(c\Ix\/2)a,
s£E

where E = E(W, e, Ix). Hence hjn\Ix\^oOsc(W, Ix)/\Ix\a > 0, for every

x e R. Observe that W e Lip(a) Ç Vxla, thus (iii) follows from Proposition

3.8.
(iii) =>■ (i): Since (W - V) e Lip(/?), it follows from Proposition 3.8 that

the ^-dimension of the graph of (W - V) is less than 2 - ß , hence V £ 0.
By using (W -V) e Lip(p°), it is easy to show that the theorem remains true

with W replaced by V. This completes the proof of Theorem 4.1.

Remark 4. Lemma 4.2 and Theorem 4.1 remain true if we relax the condition

that g(x) e Lip(yS) to be

sup\g(x + h)- g(x)\ = o(|A|a/(log|A|)"),    as h - 0,
xeM

for some p > 1. All we need to adjust is the estimate of Sx in (4.4):

n—r—l

\Sx\<c J] A-Q,|A'-'Iy|7(log|A'-ny|)''<aA-a72,

i=0

where c is a positive number as small as we like.

We conclude this section by giving a simple criterion to guarantee that V ^ 0.

Proposition 4.3. Let g e Lip(/?). Assume that there is a c > 0 such that

G(x) = /* g(t)dt > 0, for 0 < x < c < oo, and M = G (a) > 0, for some

a e (0, c]. Let m = inf{C7(x): x e(aX, oo)}, if M > (-m)/(Xa+x - 1), then

V±0.

Proof. Since V(x) = X^oo x~°"'sW'x) converges uniformly on compact sub-

sets, integrating term by term gives

(0 oo \

53 + £h-<«+1>'"G(A'a)
Jo

>G(iz) + m53A-(a+1)' = M + m/(Aa+1 -1),

i

proving the proposition.

The condition of Proposition 4.3 can be applied easily, e.g., to the classical

cases: g(x) = sinx , or g(x) is of period 1 and equals to 1 — |1 — 2x| on [0,

1] (the corresponding W is called the Takagi function). Actually in both cases

we have m > 0.

5. Singularities of the Weierstrass type functions

For any real-valued function of R, we let

r»+/v    \       i- f(X + h)-f(x)
D+f(x) = hm sup —-{-—-^—L ,    and

Zi^o+ h

f(x + h)- f(x)
D+f(x) = lim inf

Zi^0+
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be the upper right derivative and the lower right derívate of / at x . Similarly
we can define the upper and lower left derivative of / at x, denoted by D~ f(x)

and D-f(x). A point x 6 R is called a knot point of a real-value function f(x)

provided that

D+f(x) = D-f(x) = oo,    and   D+f(x) = D_/(x) = -co.

The set of knot points of f(x) is denoted by Knot(/). Another type of

singularity, in contrast to the knot point, is the notion of differential coefficient

oo at x defined by D+f(x) = D~f(x) = D+f(x) = D-f(x) = oo . For e > 0,
n > 0 and x e R, let

(5.1) Ep(f,e, n) = {se (x,x + n): (f(s) - f(x))/\s - x\a > e} ,

and

(5.2) E"x(f,e,r1) = {se(x,x + r1):(f(s)-f(x))/\s-x\a<-e}.

Similarly define Epx(f, e, -n) and Ex(f, e, -n) with (x, x + n) in (5.1) and

(5.2) replaced by (x - n, x) respectively.

For the rest of the section, unless specified, W and V will be defined by

(1.2) and (1.3).

Theorem 5.1. Suppose that V ^ 0, then there exist positive constants e and c,

and a dense Gg-subset G of R with \R\G\ = 0 such that for every x e G,

(5 3) ^°+       1 " *
k     ' \Ep(W,e,-r,)\    \EZ(W,e,-n)\

n n

In particular, Knot(IF) contains a dense G¿-set, and R\Knot(lF) is of
Lebesgue measure zero. Moreover, the theorem remains true with W replaced

by V.

Remark 1. The above theorem (without the dense G¿ part) is stated in Hata [6,

Theorem 3.1] with some other assumptions (see the remark before Proposition

5.6). It seems that there is a gap in his proof (p. 77, line 11), and his conclusion

in (5.3) can only be stated as the minimum of the limit supremum of the four

terms greater than c instead.

Remark 2. By modifying the example in Remark 1 of the last section, we see

that V cannot be replaced by W in the assumption.
We need the following two lemmas to obtain an estimation analogous to (4.8)

in the proof of Theorem 4.1.

Lemma 5.2. Given that X > 1, a/zú? a > 0. Let D be any relatively dense subset

of R. Then there exists a dense G ¿-subset G of R with \R\G\ = 0 satisfying:
for every x e G, z e R, there exists infinitely many positive integers n such

that

(5.4) Xnxe z+\J(x-o,x + a).
reo

Proof. Without loss of generality assume that z = 0.   Let 7 be any open

interval with  \I\ < oo, let h > 0 he such that every interval  (x, x + h),

>c.
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x e R, contains at least one point of D and that 2o < h, and let U =

Ut6£)(t - a, x + a). For each positive integer p, let Bp = (XPI) n U, and let

Ap = X~PBP . Then it is easy to check that for each zz > 1, \Jp>„ Ap is open

and dense in 7. Let A = f)n>x \Jp>n ̂ p > tnen ^4 is a dense C^-subset of 7,

and each x e A will satisfy (5.4).
We will complete the proof by showing that \A\ = \I\, or equivalently,

IUp>n^pl = 1^1 f°r arbitrary n . Suppose this is not true, let G„ = (fp>nAp ,

and assume that |7\C7„| = n > 0. Then we can find a sequence of disjoint

intervals {7,-}f of the form [a,b)C\I suchthat .7 = UÍ>17, covers 7\C7„ and

that

(5.5) |/|<i, + e,

where e is a small positive number which will be determined later.

For each i, choose an integer Zc, > zz such that

(5.6) Xk'\Ij\>h + 2o>Xk'-x\I¡\.

This can always be done by reducing the size of 7, if necessary. Let 77,' =

(Xk,Ii) n U, and let Q, = X~kiB\. Since XkiI¡ contains at least one interval

(x - a, x + a) for some x e D by (5.6), hence

\Ck.M\Ii\ > (X-k'2a)/\Ii\ > (X-k>2o)/X-^-x\h + 2a) = c,

where c = 2a/X(h + 2a). By the definition of Ap we see that Ck. C A^ Q Gn .
Observe that C^ ç 7,, the above estimate yields

oo oo

\J n G„\ = J] \It n Gn\ > 53c|7,| > en.
i=i i

Since |/\C7„| = |7\t7„| = n, thus |7| = \J n G„\ + \J\G„\ > n + cr\, this
contradicts (5.5) if we choose e < en, and the proof is completed.

If V ^ 0, by Theorem 4.1 we see that V is nowhere monotone, therefore

we can find a positive number a > 0, and z, x,, and y, in [0, oo), i = 1, 2,

such that xx < z < x2, yx < z < y2, and they satisfy

V(Xi) - V(z) > 3a,    and    V(y¡) - V(z) <-3a,        i =1,2.

By an obvious modification of the proof of Lemma 4.2 we can prove the fol-

lowing

Lemma 5.3. If V ^ 0, then there exist z, x,■■, and y,■■, i = 1, 2, as above, and

there also exist a relatively dense subset D of R, a> 0, a > 0 and an integer

r such that

(W(X~n(t + x)) - W(X-"t))/X-an >a,    and

(W(X-"(t + y)) - W(X-nt))/X-an < -a,

for all n > r, t e z + UTei>(T _ a > T + a) > x e x¡ - z + (—a, a) and y e

yi-z + (-a,a), i =1,2.

Proof of Theorem 5.1. We use the same notations as in Lemma 5.3. Let h > 0

he such that every interval (x, x + h), x e R, contains at least one point of

D and that x2 < h, y2 < h and o < miníjx, - z\, \y¡ - z\: i = 1, 2}. By
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Lemma 5.2, there exists a dense C^-subset G of R with |R\C| = 0 satisfying

for every x e G, there exist infinitely many positive integers zz such that

X"x e z + (J (t - o, x + a).

For each x e G, we can find zz, = zz,(x) > r and x¡ e D, i = 1,2, ... , such

that

(5.7) XRix ez + (Xi-o, Xi + a).

Let t]i — 3hX~"'. Then Xn,x + (x2 - z) + (-a, a) is contained in the interval

Xn'(x, x + tji). Hence for arbitrary x e x2 - z + (-a, a), y = X~"'x, we have

x + y e (x, x + r\i). Thus (5.7) and Lemma 5.3 imply

(W(x + y)-W(x))/X-n'a>a.

Hence

(W(x + y)- W(x))/ya = (W(x + y)- W(x))/(X.-n»x)a > e,

where e = a/(3h)a . This implies that \EX(W, e, z/,)| > 2aX~n'. Therefore

\Ep(W,e, r\i)\/t\i > c, where c = 2o/3h .
Similarly we can prove that \EX(W, e, z/,)|/z/,, \E^(W, e, -ni)\/n¡, and

\E^(W, e, -nj)\/t]i axe greater than c.  Thus the theorem follows by letting

i —> oo .

It is trivial to see that for those x where local maximum or local minimum

occurs, then x cannot be knot points. Furthermore, as pointed out by Hardy

[5, Theorem 2.71] that if X~a(X+ I) < 2, then W defined by (1.1) has the
differential coefficient oo at the origin, and hence the origin is not a knot
point. In general, we have

Proposition 5.4. If V ̂  0, then W (defined by (1.2)) has the differential coeffi-
cient oo at the origin if and only if V(x) > 0 for all x > 0, and V(x) < 0 for

all x < 0.

Proof. Assume that V(x) > 0 for all x > 0 and V(x) < 0 for all x < 0.
Applying Lemma 4.2, and noting that 0 can be selected into the relatively dense

subset D, we have for large n

W(X-"y)/X-an > 0,    for all y > 0 ; and

W(X-"y)/X-an < 0,     for all y < 0.

Hence W has the differential coefficient oo at the origin.

Conversely, if V(y) < 0 for some y > 0, then by Lemma 4.2 and the

equation (4.1 ) we obtain that

Hm W(x)/x = -oo   or   0,
x->0+

this contradicts to lim;(._>0+ W(x)/x = oo . Hence V(x) > 0 for all x > 0.

Corollary 5.5 (Hardy). If X~a(X + I) < 2, then W defined by (1.1) has the
differential coefficient oo at the origin.
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Proof. For any x > 0, choose an integer r such that Xr'xx < 1/2 < Xrx. By

using the inequality sinx/x > 2/n, for 0 < x < n/2, we obtain

r— 1 oo

V(x) = 53 ¿~Q'' sin(A'Ttx) + 53 x~ai sin(A'Kx)
— oo r

«  r—1 oo

>-Era/(A'*x)-53r<"'
— oo r

= ^xaV^1-" - 1) - 1/(1 - X~a)]X-ar

>[l/(A'-a-l)- l/(l-A-a)]A-Qr>0,

with the given condition. Since V(x) is an odd function, we thus have V(x) <

0 for all x < 0, proving the corollary.

To conclude this section we will give a discussion of the condition V ^ 0 and

the conditions of the Fourier coefficients of W used in Hata [6] and Kaplan et

al. [10]. For any bounded real-valued almost periodic function / and £ e R,

let

/(£) = limi/ f(x)e-^dx
T^°° i Jo

to be the Fourier coefficient of /, then

sw~E *«)<?**.

It is known that the set S = {Ç: g(Ç) ± 0} is at most countable, and the

Fourier coefficient W(Q of W is given by W(g) = ££° ¿""'¿(a-^) ; here we

are summing only those i for which X~'Ç e S. Hata [6, Theorem 2.1] proved

(ii) of Theorem 4.1 by assuming the conditions g e Lip(/?) and

(5.8) hm\iaW(C)\>0.

In his theorem of knot points of W, [6, Theorem 3.1], he made use of the

condition (5.8) and

(5-9) 53™¿)|<oo,
í>o

(condition (5.9) has also been used in Kaplan et al. [10]). To compare these

conditions with the condition that V ^ 0, we have

Proposition 5.6. Let Vk(x) = £_jt X~a'g(X'x), consider the following state-

ments:_

(i) lim*.,«, |Vk(Q\ > 0, for some ÇeR;

(ii) lixni^oo\Ç*W(Ç)\>0;

(iii) V^O.
If g e Lip(/?) with g(0) = 0, then (i) •*=> (ii) => (iii). If in addition assume
that g satisfies (5.9), then these three statements are equivalent.
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Proof,   (i) =>•  (ii). (Without assuming that g e Lip(/?).) Let <* €

Hm^oo |K*(i)| > 0, and let & = A*£, then

so that

lim |í^(ífc)| = liriim
k—»oo fc—»oo

= |£|a lim
k—>oo

53#-'>g^-^)
1=0

oo

53 A-Q'i(A-'{)
i=-*

= |i|Q lim \Vk(Z) > 0.

(ii) => (i). We apply a method of Hata [6, p. 65]. Let Uk(x) = Vk(x) - W(x),

then there exists M > 0 such that sup¿. \Uk(x) - Uk(y)\ < M\x -y\ß . Now for

any integer zz and £ > 0,

\Uk(Z)\ = lim
27TZ2

lim ^-
n—'oo ¿Tin

< lim =i-
n-»oo 27TZJ

flnnj

h
n—\    .

u
Uk(x)e~iixdx

k=0

n-\

u
uk

2kn
+ x]-Uk

2kn
~iixdx

2K/Í

Mxßd)

c£-

where c = M(2n)l}/(l + ß). Notejhat 0k(Ç) = Vk(i)-W(Ç), hence (ii) implies

that for all sufficiently large £, lim^oo | Vk(£)\ > 0.
To see the relation between (ii) and (iii), observe that if the condition g e

Lip(/?) (respectively g satisfies (5.9)) is assumed, the (ii) implies (respectively

is equivalent to) the second statement of Theorem 4.1 (see [6, Theorem 2.1 and

Theorem 2.4] respectively), but the latter is equivalent to (iii).

Remark. The equivalence of (i) and (iii) was also proved by Kaplan et al. [10,

Proposition 2.2] under the conditions that g is a smooth function and satisfies

(5.9).
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