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EXCLUDING INFINITE TREES

P. D. SEYMOUR AND ROBIN THOMAS

Abstract. For each infinite cardinal k we give several necessary and sufficient

conditions for a graph not to contain a minor isomorphic to the infinite k-

branching tree in terms of a certain kind of a "tree-decomposition," in terms

of a "path-decomposition," and also in terms of a "cops-and-robber game."

We also give necessary and sufficient conditions for a graph not to contain a

subgraph isomorphic to a subdivision of the same tree.

1. Introduction

In this paper graphs may be infinite, and may have loops and multiple edges.

Let G be a graph, let {Ga}Q€A be a collection of mutually vertex-disjoint con-

nected nonnull subgraphs of G, and let F be a set of edges of G such that

every member of E has both its endpoints in UaeA ̂  > Dut does not belong to

UaeA ̂ « • The graPh H "with vertex-set A and edge-set E with the obvious

incidences is called a minor of G. The graphs Ga will be called the nodes of

the minor. A graph G is a subdivision of a graph H if G can be obtained

from 77 by replacing the edges of 77 by internally disjoint paths joining the

same ends.
For a cardinal k we define TK to be the tree whose vertices are finite se-

quences (including the empty one) of ordinals < zc with (ax, ... , a„) and

(ßx, ... , ßm) being adjacent if \n - m\ = 1 and a, = /?, for z" = 1, ... ,

min(zz, m). Thus, if zc is infinite then TK is a regular tree of valency k . (This

is false in the finite case; for instance, 7*2 is the tree with all vertices of valency

3 except for one of valency 2.)

In [1, 5] it was proved that every finite graph with no minor isomorphic to

a given finite tree admits a "path-decomposition" of bounded "width." In this

paper we shall study some infinite extensions of this theorem, concerned with

excluding TK either as a minor or as a subdivision. It turns out that there

are several relatively easy necessary and sufficient conditions, and we begin by

introducing them.

The following is an extension of the cops-and-robber game from [8] to infinite

cardinals. The game is played by two players on a graph G, with a fixed cardinal

zc . One player controls the robber, and the other the cops. The cops attempt to

catch the robber, and the robber to survive uncaptured. The robber stands on a

vertex of the graph, and can at any time run at great speed to any other vertex
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along a path of the graph. He is not permitted to run through a cop, however.

At any time there are any number < zc cops, each of whom at any time either

stands on a vertex or is in a helicopter (that is, is temporarily removed from

the game). A move for the cop player consists either of having a set of cops

take off or of "creating" more cops (subject to the restriction that the total is

less than k) and landing them on the vertices of the graph. The objective of

the player controlling the movement of the cops is to land a cop via helicopter

on the vertex occupied by the robber, and the robber's objective is to elude

capture. (The point of the helicopters is that cops are not constrained to move

along paths of the graph—they move from vertex to vertex arbitrarily.) The

robber can see the helicopter approaching its landing spot and may run to a

new vertex before the helicopter actually lands. In our version of the game the

robber is visible and also can see the cops, so it is a full-knowledge game. It

is also important that the cops win only if they capture the robber in finitely

many steps. For extensions of this game see §6.

Let us make some definitions. We denote by G\X the graph obtained from

G by deleting X (here X may be a vertex or an edge, or a set of vertices

or edges). If X ç V(G), the vertex set of a component of G\X is called an

X-flap. We denote by [V]<K the set of all subsets of V of cardinality < k .
Now we can state the game more precisely. A position is a pair (X, R), where

X e[V(G)]<K and R is an X-flap. (X is the set of vertices currently occupied

by cops, and R tells us where the robber is—since he can run arbitrarily fast, all

that matters is which component of G\X contains him.) We set (Xo, Rq) to

an initial position. In the normal game, Xq = 0 and the robber chooses 7?o to

be some component of G ; however, in the analysis it will be useful to consider

other initial positions. Now step 1 of the game begins. In general, at the start

of the z'th step we have a position (X,_i, i?,_i) ■ The cop player chooses a new

set X¡ e [V(G)]<K such that either X,_, ç X¡ or X¡ ç Zi_1. Then the robber
player chooses (if possible) an X,-flap R¡ satisfying 7?,- ç 7?,_i or 7?;_i C 7?,

respectively. If this choice is impossible, that is, if V(R¡_X) ç X¡, the cop

player has won, and otherwise the game continues with step i + I. The robber

player thus cannot win; his objective is to stop the cop player winning. If there

is a winning strategy for the cop player, we say that " < k cops can search the

graph."
To describe a strategy for the robber, we need the following definition. Let

G be a graph and zc a cardinal. An escape of order zc in G is a function a

which assigns to each X e [V(G)]<K the union of a set of X-flaps in such a

way that

(i) if icy then a(Y)Ccj(X),
(ii) if X ç y then every X-flap in a(X) intersects a(Y), and

(iii)  er(0) ^ 0.

We speak of (i), (ii) and (iii) as the first, second, and third escape axioms.

We remark that if (i) and (ii) are satisfied, then either a(X) = 0 for all

X e [V(G)]<K, or a(X) ¿ 0 for all X e [V(G)]<K , and so the third ax-

iom ensures the latter. The relation to the cops-and-robber game is described

in the following.

(1.1) The graph G cannot be searched by < zc cops if and only if there is an

escape of order k in G.
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Proof. If there is an escape a of order zc , the robber can remain uncaptured

by choosing R¡ ç a(X¡) at each step. Conversely, suppose that zc cops cannot

search the graph G. For each X e [V(G)]<K, let a(X) be the union of all

X-flaps R such that the cop player cannot guarantee to win when the initial

position is set to be (X, R). Then a is an escape of order zc in G.   D

So we see that escapes correspond to nonlosing strategies for the robber. In

contrast to escapes of finite order in finite graphs (see [8]), escapes of infinite

order in connected graphs are determined by trees, as follows. For k > No, a

tree T is called zc -balanced if \E(T)\ > 1 and for every edge e of T, both

components of T\e have > zc vertices, unless k = No in which case T is also

permitted to be a one-way infinite path.

(1.2) Let G be a connected graph and k an infinite cardinal. If T is a subgraph
of G which is a K-balanced tree, then there exists a unique escape o in G of

order k such that

, .       for every X e [V(G)]<K and every X-flap C, C ç a(X) if and

W       onlyif\CnV(T)\>K.

Conversely, for every escape a of order k in G there exists a subgraph T of G

which is a K-balanced tree and such that (*) holds.

Our first equivalent condition will be in terms of escapes. The second will be

in terms of "tree-decompositions." If F is a tree and tx, t2e V(T), we denote

by T[tx, t2] the set of vertices of T which lie on the path in T between tx

and t2. A tree-decomposition of a graph G is a pair (T, W), where F is a

tree and W = (Wt: t e V(T)) is such that

(WI) Utev(T) wi = V(G) > anc* every edge of G has both ends in some Wt,

(W2) if f e T[t, t"], then Wt n Wt„ ç Wt,.

Let k be a cardinal. A tree-decomposition (T, W) has width <k if \Wt\ < zc

for every te V(T) and | \J°1X f)j>t Wtj\ < k for every infinite path tx, t2, ...

in T. It has adhesion < k if \Wt n Wv\ < k for every {t, t'} e E(T) and
liminf/^oo \WU n Wti+X\ < k for every infinite path tx, t2, ... in T. Unfor-

tunately, we also need a more general type of "tree-decomposition," but we

postpone its definition until it is needed.

The third equivalent condition will be in terms of an analogue of the "path-

decompositions" of [1, 5]. A well-ordered decomposition of a graph G is a pair

(X, W), where X is an ordinal and W = ( Wa : a < X) is such that

(WOl)   (ja<x Wa = V(G), and every edge of G has both ends in Wa for some

a < X,
(W02) if a<ß<y<X, then rVanWyCWß, and

(W03) if a < X is a limit ordinal, then for all ß < a, 0a>y>ß Wyç\Wa.

We say that (X, W) has width < k if \Wa\ < k for every a < X. It has
adhesion < zc if for every ordinal a < X there exists a cardinal zc' < zc such

that for every ß < a there exists y such that ß < y < a and | Wy n Wy+X | < zc',

and if a < X then | Wa n Wa+X | < zc'.
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A ray is a one-way infinite path and a graph is called rayless if it has no ray.

A tree-decomposition (T, W) is called rayless if T is rayless. Rayless trees

are easy to handle—they admit an "ordinal ranking."

Now we can state our results in preliminary forms; full versions are stated

later.

(1.3) For a graph G and an uncountable cardinal zc, the following conditions

are equivalent:

(i) G has no minor isomorphic to TK,

(ii) G has no escape of order k ,
(iii) < zc cops can search G,

(iv) G admits a rayless tree-decomposition of width < k ,

(v) G admits a well-ordered decomposition of width < k and adhesion < k .

For k = N0, the analogue of (1.3) is the following. (The equivalence of (i)

and (iv) in (1.4) was proved by Halin [2].)

(1.4) For a graph G, the following conditions are equivalent:

(i) G is rayless,
(ii) G has no escape of order N0.

(iii) < No cops can search G,

(iv) G admits a rayless tree-decomposition of width < N0.

In order to characterize graphs with no minor isomorphic to T^0, we need the

following definitions. Let a he an escape of order zc in a graph G. A subset

Y e [V(G)]<K is said to be later than a subset X e [V(G)]<K if \Y\ < \X\,
Y ç X u a(X), and a(Y) ç a(X). A subset X e [V(G)]<K is said to be
terminal if there is no later Y ç V(G) with Y ^ X . The escape a is said to

be massive if for every X e [V(G)]<K there is a later set Y which is terminal.

A tree T is called scattered if it contains no subgraph isomorphic to a sub-
division of T2, and a tree-decomposition (T, W) is called scattered if T is

scattered. Scattered trees are well understood—see (4.5) for a result of [4].

(1.5) For a graph G, the following conditions are equivalent:

(i) G contains no minor isomorphic to T^0,

(ii) G contains no minor isomorphic to T2,

(iii) G contains no subgraph isomorphic to a subdivision of T2,

(iv) G has no massive escape of order No,

(v) G admits a scattered tree-decomposition of width < No azza" adhesion

<N0,

(vi)   G admits a well-ordered decomposition of width < K0 and adhesion

<N0.

An escape a of order zc in a graph G is called major if for every X e

[V(G)]<K and every X-flap C ç a(X) there exists a vertex v e C such that

v e Y U o(Y) for every Y e [V(G)]<K .
We state only a special case of our last result; the full version is presented in

§4. (For a definition of cf(zc) see the end of this section.)

(1.6) For a graph G and an infinite cardinal zc, the following conditions are

equivalent:

(i) G contains no subgraph isomorphic to a subdivision of TK ,
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(ii) G has no major escape of order k ,

(iii) G admits a well-ordered decomposition of width < k .

If cf(/c) = oj, then these conditions are moreover equivalent to

(iv) G admits a scattered tree-decomposition of width < k .

We remark that (iii) =>■ (iv) of (1.6) is false in general. For example, let k

be a singular cardinal with cf(zc) uncountable, let k = sup{zca: a < cf(zc)},

where every zca < zc, and let G be the graph whose vertices are all pairs of

ordinals (a, ß) such that a < cf(zc) and ß < Ka, with (a, ß) and (a', ß')

being adjacent if and only if either a = a' or ß = ß'. It can be verified that G

admits a well-ordered decomposition of width < k , but does not admit a tree-

decomposition of width < zc . A condition similar to (iv) which is equivalent to

the other three conditions of ( 1.6) is formulated in §4. Let us also remark that if

k is a regular uncountable cardinal, then the conditions of (1.3) are equivalent

to those of (1.6) (because in that case (2.3)(ii) =► (1.6)(i) =*• (2.3)(iii)).
All results presented so far hold in ZFC. In §7 we discuss a structure theorem

which is less interesting from the point of view of graph theory, but which is

undecidable in ZFC.
The paper is organized as follows. In §2 we prove (1.3); in §3 we prove (1.2),

(1.4), and (1.5); in §4 we prove (1.6); in §5 we investigate the structure of the set

of all escapes; in §6 we are concerned with modifications of the cops-and-robber

game; and finally §7 contains the undecidability result.

Our notation about ordinals and cardinals is standard. We identify each

ordinal with the set of all its predecessors, and each cardinal is also treated as

an ordinal. Let X he an ordinal. A set M ç A is said to be cofinal in X if

for every a < X there exists ß e M such that a < ß . The least ordinal type

of a set cofinal in X is called the cofinality of X and is denoted by cf(A). An

ordinal X is regular if cf(A) = X, and otherwise it is singular. For a cardinal

zc , we denote by zc+ the least cardinal > zc .

2. Escapes of uncountable order

In this section we prove (1.3), but before we do so we state and prove a result

about escapes of any infinite order.

(2.1) For a graph G and an infinite cardinal k, the following conditions are

equivalent.

(i) G has no escape of order k ,

(ii) G admits a rayless tree-decomposition of width < k ,

(iii) < zc cops can search G.

Proof. We prove that (i) => (ii) => (iii); (iii) => (i) follows from (1.1). Assume

that G has no escape of order zc. For X e [V(G)]<K let a(X) he the union

of all X-flaps C such that the restriction of G to C does not have a rayless

tree-decomposition of width < k .

(1) Let X e [V(G)]<K, let X' ç X, and let {Fa}aeA be a set of
X-flaps, each disjoint from a(X). Then the subgraph H of G
induced by X' U UaeA ̂  admits a rayless tree-decomposition of

width < k .
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For let X, X', {Fa}a€A, and 77 be as stated, let (Ta, Wa) be a rayless

tree-decomposition of width < zc of the restriction of G to Fa (a e A), and

let Wa = (Wf: t e V(Ta)). Let t0 i LUa V(Ta) and let F be a tree with
vertex set \JaeAV(Ta)U{to} which contains every edge from E(Ta) for every

a e A, and in which io is adjacent to exactly one vertex of each Ta (a e A).

We put
_(X'uWta   if teV(Ta),

W'~\X' ift = t0,

and W = (Wt: t e V(T)). It follows easily that (T, W) is a rayless tree-

decomposition of 77 of width < K , thus proving (1).

(2)        a satisfies the first two escape axioms.

For let X ç Y with Y e [V(G)]<K , let F be a F-flap and let F ç K, where
K is an X-ftap, and assume that the restriction of G to AT admits a rayless

tree-decomposition (T, W) of width < zc , where W = (Wt: t e V(T)). Let

W{ = Wt n F for t e V(T), and let W = (W¡: t e V(T)). Then (T, W) is
a rayless tree-decomposition of the restriction of G to F of width < zc . Thus

o(Y) ç o(X), which verifies the first axiom.

For the second axiom, let X ç Y with Y e [V(G)]<K and let K be an

X-flap. Then K = (K n Y) U Uo6A F<* » where Fa (a e A) are F-flaps. If
K c a(X) then by (1) (setting X' = K n Y) there exists an a e A such that

Fa ç a(Y), which verifies the second axiom and hence proves (2).

It follows from (2) that a does not satisfy the third escape axiom. Hence

every component of G admits a rayless tree-decomposition of width < k , and

so G itself admits such a decomposition by (1). Thus (i) =î> (ii).

To prove that (ii) =$■ (iii) let (T, W) he a rayless tree-decomposition of G

of width < zc . Here is a winning strategy for the cop player. Choose a vertex
tx e V(T), and let Xx = W,x . For z > 2, let the position at the start of the zth

move be (X¡-X, R¿-X). The set {/ e V(T): R¿-X nWt ¿ 0} is the vertex set

of a subtree of T, since R¡-X is the vertex set of a connected subgraph of G ;

and so there is a vertex Z, e V(T) such that R¡^x n Wt. ̂  0, and t¡ e T[tx, t]

for every t eV(T) such that 7?,_i n Wt ¿ 0 . Choose X¡ = X,_x u Wu . Then
7?, (if it exists) is a subset of R¡-X , and so Z, e T[tx, ti+x]. Since this holds for

all i such that 7?, exists, we deduce that some 7?, does not exist, for otherwise

tx, t2, ti, ...  would all lie on some ray of T. Thus the cop player wins.   D

A linear decomposition of a graph G is a pair (L, W), where L is a

(Dedekind) complete linearly ordered set and W = (W¡: I e L) is such that

(LI)     (J W¡ = V(G), and every edge of G has both ends in some W¡,

l€L

(L2)    if / < /' < I", then W, n Wv, ç W,,,

(L3)      ~] W,-Ç. Wiafij) n Wsup(j) for every nonempty interval 7 Ç L.

iei

Let us remark that the requirement that L be complete is not restrictive, because

any "incomplete" decomposition can be completed in a natural way. Obviously,

linear decompositions generalize well-ordered decompositions, in the sense that
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if (X, W) is a well-ordered decomposition then (X + 1, W) is a linear decom-

position. A linear decomposition (L, W) has width < k if \W¡\ < k for every

I e L. We say that (L, W) has adhesion < zc' at I e L if for every m e L
with m / / there exist distinct lx,l2 e L between / and m such that there

is no li e L strictly between A and l2, and such that \Wlx n W¡2\ < zc'. We
say that (L, IF) has adhesion < zc if for every I e L there exists k' < k such

that (L, W) has adhesion < zc' at /.
A linear ordering L is called scattered if the set of rational numbers cannot

be monotonely embedded into L. We say that a linear decomposition (L, W)

of a graph G is scattered linear if L is scattered. We remark that we are using

"scattered" in two different (but related) contexts: scattered trees and scattered

linear orderings.

Let zc be an infinite cardinal. We recall that a tree T with E(T) / 0 is

zc-balanced if either for every edge e, both components of T\e have > zc

vertices, or zc = N0 and F is a ray.

(2.2) Let T be a tree with E(T) =¿ 0 which is not a ray. If k = No, T is
K-balanced if and only if for every e e E(T), both components of T\e have

a ray. For zc > Ni, T is K-balanced if and only if for every e e E(T), both

components of T\e have a TK-minor.

Proof. "If is clear for all zc, and "only if is clear for zc = No . For zc > Ni,

let T he zc-balanced, let eo e E(T), and let 7? be a component of F\eo. We

shall construct a mapping n which assigns to each t e V(TK) a subset of V(R)
and to each e e E(TK) an edge of R in such a way that

(1) n(t) induces a tree in R for every t e V(TK),

(2) if t, f e V(TK) and t ¿ t', then n(t) n n(t') = 0 ,

(3) if t, t' e V(TK) and e is an edge of TK with endpoints t, t'
then n(e) has one endpoint in n(t) and the other one in n(t').

Let zc = sup(zcQ: a < cf(zc)), where every zcQ is regular. We need the fact

that every tree of cardinality > zc contains a vertex of valency > zca for every
a < cf(zc). The mapping n will be constructed in œ steps. In the first step we

choose a vertex ro e V(R) of valency > cf(zc), and let {Ca}a<cf(K) be some

of the components of F\zo contained in R. In each Ca choose a vertex ra

of valency > Ka, let 7?0 be the smallest subtree of 7? containing r0 and all

ra (a < cf(k)) , and let n of the null sequence be the vertex set of 7?o • For

a < cf(zc) let Ea ç E(R) he a set of edges of cardinality zca, all incident

with r° but with no other vertex in Ro . Now if e is an edge of TK incident

with the null sequence we define n(e) e UQ<cf(<c) E<* arbitrarily subject to the

requirement that n he 1-1. This is clearly possible.

Now let « > 0 be an integer, let Mn be the set of all te V(TK) of the

form t = (ax, ... , ak) for k < n , and assume that we have defined n(t) for

all t e M„ and all edges incident to vertices in Mn in such a way that (l)-(3)

are satisfied for all t,t'eMn, and

(4) if e is an edge of TK with endpoints t e Mn and /' e Mn+X -

Mn , then n(e) has exactly one endpoint in n(t), and V(Be) ç

F(7?), where Be is the component of T\e which is disjoint

from n(t).
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It follows that if t, t' ,e axe as in (4) then V(Be)nn(t") = 0 for all t" e Mn .

We must define n(t) for all / e M„+x - Mn and n(e) for all edges e incident

to vertices from M„+x - M„ . To this end we fix t = (ax, ... , a„) e M„ ,

and let e be an edge of TK with one endpoint t and the other say te =

(ax, ... , an, ae) e M„+x. Let 77,, be as in (4), and let re e V(Be) be an

endpoint of n(e). We select r'e in Be of valency > cf(zc), let {C"}a<c^K) be

some of the components of T\r'e which are included in V(R), and let r" be

a vertex of C" of valency > Ka . We define n(te) to be the vertex set of the

minimal subtree of 7? containing re and all r" (a < cf(zc)). Let Ee be a set

of k edges with one endpoint some r" (a < cf(zc)) and the other not in n(te).

If / is an edge of TK with one endpoint te and the other in Mn+2 - M„+x

we define n(f) e Ee arbitrarily subject to the requirement that n be 1-1. This

completes the inductive definition. It is easily seen that conditions (l)-(4) are

satisfied. By (l)-(3) the sets n(t) form the nodes of a minor of 7? isomorphic

to TK as desired.   G

A tree T is called a K-nova if it is zc-balanced and every vertex has valency

< k , with strict inequality if zc is singular. Obviously TK is a zc-nova for

every regular cardinal zc , but zc-novas exist even for infinite singular cardinals.

Indeed, if k is infinite singular we may choose cardinals {Ka: a < cf(zc)} with

Ka < k and sup{zca: a < cf(zc)} = k and consider the subtree of TK consisting

of all sequences (ax, ... , an), where a, < cf(zc) if i is odd and a, < Ka¡_x if

i is even. This tree is a zc-nova.

The following is an expanded form of (1.3).

(2.3) For a graph G andan uncountable cardinal k, the following conditions

are equivalent:

(i) G has no minor isomorphic to TK ,

(ii) for every K-nova T, G contains no subgraph isomorphic to a subdivision

ofT,
(Hi) for some K-nova T, G contains no subgraph isomorphic to a subdivision

ofT,
(iv) G has no escape of order k ,

(v)  < zc cops can search G,

(vi) G admits a rayless tree-decomposition of width < zc,

(vii) G admits a scattered tree-decomposition of width  < k and adhesion

< K,

(viii) G admits a well-ordered decomposition of width < k and adhesion < k ,

(ix) G admits a scattered linear decomposition of width < zc and adhesion

< K.

Implications (vi) => (vii) and (viii) =» (ix) are trivial, (i) =i> (ii) follows from

(2.2), (ii) => (Hi) follows since a zc-nova exists, (iv) => (v) => (vi) follows from

(2.1), and (vii) => (viii) follows from (4.6). In the rest of this section we prove

that (iii) => (iv) and (ix) => (i).

We start with a lemma which will be used in this and a subsequent paper.

Let a be an escape in a graph G of order zc > N0 and let zc' < k . We say that

a vertex v e V(G) is k'-major if v e X U o(X) for every X e [V(G)]<K' and

we say that it is major if it is zc-major.

(2.4) Let a be an escape of order zc > Ni in a graph G and let k' be a regular
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cardinal with N0 < zc' < zc. Let X e [V(G)]<K', and let C be an X-flap with
C ç a(X). Then there exists a k'-major vertex in C.

Proof. For each v e V(G) which is not zc'-major, there exists by definition a

set Xv e [V(G)]<K' with v £ Xv U a(Xv). We construct a sequence X0 ç

Xx ç X2 c ■ ■ ■ of subsets of V(G), each of cardinality < zc', as follows.

Let X0 ç V(G) be any subset of V(G) of size < zc' with X0 n C ^ 0 and
X ç Xo. Assume that we have already constructed sets X0 ç ■ ■ ■ c X„ , and let

us construct X„+x . Let X„+x = Xn{3[fXv , the union taken over all v e Xn

which are not zc'-major. We see that \Xn+x\ < k' since zc' is regular.

Let Y = U^=o^n 'tnen \Y\ < K smce f > Ni. Let.us choose u e Cila(Y),

adjacent to a vertex v e C f) Y. (This is possible, for C n Y / 0, and

C n a(Y) t¿ 0 from the second escape axiom.) We claim that v is zc'-major.

For if not then v £ Xv\Jo(Xv) and Xv C Y, and therefore u e a(Y) ç o(Xv),

which is impossible since u, v are adjacent.   D

We recall that an escape a of order k in G is major if for every X e

[V(G)]<K and for every X-flap C ç a(X) there is a major vertex in C. From

(2.4) we deduce that if zc > Ni , and is regular, then every escape of order zc is

major.

(2.5) Let k be an infinite cardinal, and let T be a tree on k vertices. Then

there exists a well-ordering {ta}a<K of the vertices of T of order type k such

that

(i) for a > 0, ta is adjacent to exactly one tß with ß < a, and

(ii) if t e V(T) has valency < k, then {a < zc: ta is adjacent to t} is not

cofinal in k .

Proof. We may assume that the vertices of T axe finite sequences of ordinals

such that

(a) (ßi,..., ß„) € V(T) and (ß[,..., ß'„,) e V(T) are adjacent if and

only if \n - n'\ = 1 and ßi = ß\ for i = I, ... , min(zz, n')

(h) if (ßi, ... , ßn) e V(T) then ßt >i for 1 < 1 < n, and
(c) if (ßx,...,ß„) e V(T) where n > 1 then (ßx, ... , ß„_x) e V(T),

and if zz < ß < ßn then (ßx, ... , ß„_x, ß) e V(T).

Let ío be the empty sequence and assume that {tp: ß < a} ç V(T) have

already been defined. If V(T) = {tß-. ß < a}, we stop. Otherwise we choose

ta = (ßx,... , ßn) in V(T) - {tß : ß < a} such that

( 1 )        max{/?i, ... , ß„} is as small as possible,

and, subject to (1),

(2) n is as small as possible.

Condition (i) now follows easily.

(3) If x is an infinite cardinal and ßi, ... , ßn < X are ordinals,

and ta = (ßx,...,ßn)e V(T) then a < x ■

For let ß = max(/?i, ... , ß„). Since ß < x , the set of finite sequences of

ordinals < ß which belong to V(T) has cardinality < x (using (b) if x = No) •

The claim follows.
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We deduce that V(T) = {ta: a < k} , since the existence of tK would violate

(3). It remains to prove (ii), and we assume that zc is singular, because (ii) is

clear when zc is regular. Suppose that t = (ßx, ... , ß„) e V(T) has valency

p < k . Let X = max(|/?i|,... , \ßn\, p, No) ; then X < zc , and so X+ < zc since

zc is singular and hence not a successor cardinal. By (3), a < X+ for every

a < k such that ta is adjacent to t, and hence (ii) follows, as required.   D

For a graph G, let P(G) denote the set of finite (possibly closed) paths in G,

containing at least one edge. A subgraph of G is isomorphic to a subdivision of

agraph 77 if and only if there exists a mapping h: V(H)\JE(H) -► F(G)UF(G),
called a homeomorphic embedding of 77 into G, such that

(i) h(V(H))ÇV(G),h(E(H))ÇP(G),
(ii) h is injective,

(iii) if e e F(77) has end vertices u, v e V(H), then the path h(e) joins

h(u) and h(v) and uses no h(w) for w e V(H) - {u, v},
(iv) if e, e' are distinct edges of 77, then h(e) and zz(e') are internally

disjoint.

(2.6) Let G be a graph, and let zc, p be infinite cardinals with p > Ni azza"

p = k or k+ and let o be an escape of order k in G such that for every

p! < p, every X e [V(G)]<ß' and every X-flap C ç a(X) there exists a p'-

major vertex in C. Let T be a tree with \V(T)\ = k and with every vertex of

valency < p, and let I be a function from V(T) to the set of cardinals < p.

Then there exists a homeomorphic embedding h ofT into G suchthat h(t) is

l(t)-major for every t e V(T).

Proof. Since |F(F)| = zc, every vertex of T has valency < p and p > Ni , it

follows that if p = k then zc is singular. Let {ta}a<K he the well ordering of

V(T) as in (2.5). For each / e V(T), if p = k+ let X(t) = k , and if p = zc let
X(t) < k be an infinite cardinal such that l(t) < X(t) and a < X(t) for every

ta e V(T) adjacent to t. (This exists since zc is singular and the well-ordering

satisfies (2.5ii).) If a < zc is an ordinal, we denote by Sa the subtree of T

consisting of all vertices tß for ß < a. A majority is a pair (a, h), where

a < k is an ordinal and h is a homeomorphic embedding of Sa into G such

that

(1) for every t e V(Sa), h(t) is X(t)-major.

If (a, h), (a', h') axe two majorities, we put (a, h) < (a', h') if a < a'

and h! restricted to Sa coincides with h . It follows from Zorn's Lemma that

there exists a maximal majority (a, h). We claim that a = k , which will

complete the proof. So suppose for a contradiction that a < k and let X he

the set of all vertices of the form h(t) for t e V(Sa) together with all vertices

of the paths h(e) for e 6 E(Sa). By (2.5i), since a > 0 there exists ß < a

such that ta is adjacent to tß , and it follows that \X\ < X(tß) (because X is

finite if a is finite, and |X| < \a\ < X(tß) if a is infinite).

(2) There exists an X-flap C ç a(X) such that h(tß) is adjacent

to a vertex in C.

For otherwise h(tß) £ a(X - {h(tß)}), a contradiction since h(tß) is X(tß)-

major by (1).
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Now take a X(ta)-major vertex v e C, and take a path P joining v and

h(tß) such that P\h(tß) is contained in C. Put a' = a + 1, and let

( h(x)   ifxeV(Sa)uE(Sa),

h'(x) = < v        if x = ta,

If        if x is the edge of Sa+X joining ta and tß .

Then (a, h) < (a1, h'), a contradiction.   D

Let G be a graph and a an escape in G of order zc . We say that a connected

subgraph 77 of G is major if V(H)n(XUa(X)) ¿ 0 for every X e [V(G)]<K .
The following corollary implies (iii) =>■ (iv) in (2.3).

(2.7) Let G be a graph, let a be an escape in G of order zc > Ni, azzo" let T be

a K-nova. Then there exists a subgraph S of G isomorphic to a subdivision of T

such that for every edge e of S, both components of S\e are major subgraphs.

Proof. Let p = zc+ if zc is regular, and p = k otherwise. For each t e V(T),

let l(t) he the valency of í in F. By (2.4) and (2.6), there is a subgraph
S of G isomorphic to a subdivision of F, such that for each t e V(T), the

corresponding vertex 5 6 V(S) is /(i)-major. For each regular cardinal k' < k ,

since for each edge f of T both components of T\fi have vertices of valency

> zc', it follows that for each edge e of S both components of S\e have zc'-

major vertices; and hence both components of 5"\e are major, as required.   D

In the next section we shall need the following variation of (2.7).

(2.8) Let G be a graph, let o be an escape in G of order k >WX, let Z e

[V(G)]<K and let 77 be a component of G\Z with V(H)Ca(Z). Then there
exists a subgraph T of 77, which is a K-nova, such that for every edge e of T,

both components of T\e are major.

Proof. We define x(X) = a(X u Z) n V(H), for X e [V(H)]<K . It is easily
seen that x is an escape of order zc in 77 and thus the result follows from
(2.7), for any subdivision of a zc-nova is a K-nova.    D

Now we begin the proof that (ix) => (i) in (2.3).

(2.9) Lei (L, W) be a linear decomposition of a graph G, let 77 be a connected

subgraph of G and let lx, l2, ly, U e L be such that lx < l2 < h < U, there
is no I e L  with h < I < h, and V(H) n Wh £ 0 ^ V(H) n Wu.   Then
V(H) n wh nw,3¿0.

Proof. Suppose not. Then (using (L2)) there exist adjacent vertices u,ve

V(H) such that u e U/</2 W, - U/>/3 W, and v e U/>/3 W, - U/</2 W¡. By (LI)
there exists / e L with u, v e W¡, and hence l2 < I < /3, a contradiction.   D

(2.10) Let k be an infinite cardinal, let (L, W) be a linear decomposition of

width <k of a graph G, and let 77 be a minor of G. Assume furthermore that

either

(i) every node of the minor has < cf(zc) vertices, or

(ii) k is a regular uncountable cardinal, or

(iii) (L, W) has adhesion <k.
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Then there exists a linear decomposition (L, U) (that is, using the same linear

ordering) of 77 of width < k .

Proof. We say that I e L has a predecessor if there exists /' < / such that there

is no /" e L with /'</"</, and we say that it has a successor if it has a

predecessor in the inverse linear ordering. Let {Ga}a6A be the nodes of 77.

For / € L, we define

V, = {a e A: V(Ga) nW¡¿0},

J 0 if / has a predecessor,

'      I U/'</ ri/'</»<z vi"   otherwise,
+     J 0 if / has a successor,

1      I U/<>/ \\v>v>i vt"   otherwise,

U¡ = Uf Up Uf.

Let U = (U¡: I e L). We claim that (L, U) is a linear decomposition of

77. Condition (LI) follows easily from the fact that (L, W) satisfies (LI). To
prove (L2) let lx, l2, I e L satisfy lx < I < l2, and let a e U¡x n U¡2. Then there
exist l[, l'2e L such that l{ < I < l2 and a e Vv n Vv , and hence a e V¡ ç U¡

by (2.9). To prove (L3) let a e A and let I — {l e L: a e U¡}. By symmetry
it is enough to prove that inf(7) e I. Suppose not and let /o = inf(7). Since

/o $. I it follows that ¡o has no successor. Choose l2 e I. We claim that

a e V¡ for all / e 7 with I < l2. For since / is not the successor of /o, there

exists lx e I with lx < I ; then a e U¡x n £//2, and as in the proof of (L2)

above it follows that a e V¡, as claimed. We deduce that a e Uf ç C//0, a

contradiction. This completes the proof of our claim that (L, U) is a linear

decomposition of 77. It remains to check its width. Clearly \V¡\ < \W¡\ < zc .

We must show that |Uf | < k and \Uf\ < k . We prove the former, for the

latter follows by symmetry. Before we do so we need two definitions.

Let I e L. We say that a set M ç L well-ordered by the ordering of L is
lower cofinalfor I if m < I for every m e M and for every /' e L with /' < /

there exists an m e M such that /' < m . It follows from Zorn's lemma that

there exists a lower cofinal set for every I e L. We define the lower cofinality

of I e L to be the least ordinal a such that there exists a lower cofinal set for

/ of order type a. It follows from the standard proofs about cofinality that the

lower cofinality is always either 0 (if / = inf(L)) or 1 (if / has a predecessor)

or an infinite regular cardinal (otherwise).

Let I e L. We may assume that Uf # 0, and so / ^ inf(L) and / has no

predecessor.

(1) If the lower cofinality of I e L  is smaller than cf(zc), then

\Uf\<K.

For let M ç L be a lower cofinal set for / of cardinality < cf(/c). Then

Uf ç (jmeM Vm , and hence \Uf\<K.
In view of (1), we assume from now on that / e L is such that

(2) The lower cofinality of I is at least cf(zc).

(3)       If (i) holds then Uf ç V¡.
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For let a eUf . Since |F(Ga)| < cf(zc) it follows from (2) that there exists

v e V(Ga) such that for each m e L with m < I there exists s e L with

m < s < I and v e Ws. By (L2), since / / inf(L), there exists mo e L with

zno < / such that v e Wm for every m e L with mo < m < I. Hence v e W¡

by (L3), since / has no predecessor, and thus a e V¡, as desired.

(4)       If (ii) holds then Uf ç V¡.

For suppose that a e Uf - V¡. Choose mo e L with mo < I such that

Wm n V(Ga) t¿ 0 for all m e L with mo < m < I, and assume that we have

already constructed Wo, ... , m„-X e L with m0 < mx < ■■■ < mn-X < /. By

(2), since cf(zc) = zc and \Wmri_,| < zc and / has no predecessor, there exists

mn e L such that mn-i < mn < I and Wmn_x n V(Ga) n Wmn = 0. This

completes the construction of an infinite sequence mo < mx < ■ ■ ■ of elements

of L. We deduce from (2.9) that the sets Wmn n V(Ga) axe mutually disjoint.

Let m = sup{zn„ : zz > 0}, the supremum being taken in L. By (2), since

cf(zc) > No it follows that m < I and hence a e Vm . Let F be a path in Ga

from Wm n V(Ga) to Wm n V(Ga). Then F meets each Wm„ n V(Ga), which

is impossible because there are infinitely many such sets and they are mutually

disjoint. This contradiction implies that a does not exist, as required.

We deduce from (3) and (4) that in the first two cases the width of (L, U)

is indeed < zc. For the third case we may therefore assume that zc is not a

successor cardinal, that is, if p < k is a cardinal, then p+ < k . Let p < k he

such that (L, U) has adhesion < p at / ; then for every I' e L with /' < /

there exist lx,l2e L such that /' < lx < l2 < I, \ W¡x n W¡2 \ < p and there is no

/" € L with lx < I" < l2. Then l2 ̂  /, since / has no predecessor, and for the

same reason we may choose the pair lx, l2 with lx±V . By (2.9),

n * < \{a e A: V(Ga) n wh n Wh ± 0}| < p,

and therefore | U¡ \ < p+ <k , because U¡ is a monotone union of sets, each
of cardinality < p . Hence (L, U) has width < zc in the third case as well.    D

The following corollary of (2.10) will be needed in §4.

(2.11) Let k be an infinite cardinal and let (L, W) be a linear decomposition

of width <k of a graph G, and let a subdivision of a tree T be isomorphic to
a subgraph of G. Then there exists a linear decomposition (L, U) (using the

same linear ordering) of T of width < k .

Proof. Under the assumption, F is isomorphic to a minor of G in which every

node is finite, and therefore the result follows from (2.10).   D

We denote by 2<n the set of all sequences of 0's and l's of length < zz, and

let 2<» = U„>02<V

(2.12) A complete linear ordering (L, <) is not scattered if and only if there

exists a mapping F from 2<0) into the set of nonempty closed intervals of L

such that

(i) if s' e 2<w is an extension of s, then F(s') ç F(s), and

(ii) if s, s' e 2<(0 have the same length and s ^ s', then F(s) n F(s') = 0.
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Proof. The "only if part is easy (and is not used here). We prove the "if part

as follows. For s e 2<m, let sx, s2 e 2<0} he the two 1-term extensions of s,

where sup(F(s!)) < sup(F(52)) • We define f(s) = sup(F(si)). It is easy to

see that / is an injection. Let L0 = {f(s): s e 2<w}. We claim that for all

f(s), f(s') e L0 with f(s) < f(s'), there exists / e L0 with f(s) < I < f(s').
For let sx, s2 be as before, and define s[, s'2 similarly for s'. If s' is not an

extension of s then f(s) < f(s2) < f(s'), while if 5 is an extension of s' then

f(s) < f(s[) < f(s'). The claim follows. This is well-known to imply that Lo

(and hence L) is not scattered.   D

(2.13) For each infinite cardinal k , TK does not admit a scattered linear decom-

position of width < k .

Proof. Let (L, W) be a linear decomposition of TK of width < zc . We put,

for t e V(TK), It = {I e L: t e W¡}. By (LI), (L2), and (L3), each It is a
nonempty closed interval of L. We shall construct a mapping /: 2<0> —> V(TK)

such that

(i) if s' e 2<a} is an extension of s , then 7/(j<) ç 7/(í),

(ii) if s, s' e 2<œ have the same length and s ^ s', then 7y(j) n Ifi^ = 0 .

Define / of the null sequence to be itself and let us assume that we have
already defined / on 2<n such that it satisfies (i) and (ii). Let s e 2<n-2<n~x,

let 7Y be the set of all neighbours of f(s) in TK and let a = inf(If^s)), b =

sup(7/^ç)). Since \Wa U Wb\ < zc it follows that there exists a set N' Q N

with |TV'| = zc such that a, b £ It and hence I, ç 7y(j) for all t e N'. If
/ e f){It: t e N'}, then TV' ç W¡, contrary to the fact that (L, W) has width

< k . Hence Ç\{It: t e TV'} = 0 and thus (by completeness) there exist vertices

to, t\ e N' such that 7,0 n 7,, = 0 . Let s¡ he the concatenation of s and (i),

and let f(s¡) = t¡ (i = 0, 1). This completes the inductive definition of /. It
follows from the construction that / satisfies (i) and (ii).

Now we put F(s) = 7y(j) and it follows that F thus defined satisfies (i) and

(ii) of (2.12). Hence L is not scattered, as desired.   D

The implication (ix) => (i) of (2.3) now follows by combining (2.1)(iii) and

(2.13).

3. Escapes of countable order

In this section we prove (1.2), (1.4), and (1.5). To complete the proof of

(1.4) it is enough, by (2.1), to prove the following.

(3.1) A graph is rayless if and only if < N0 cops can search it.

Proof. If the graph contains a ray P then the robber can remain uncaptured by

staying in a component which contains infinitely many vertices of P. For the

converse assume that G is rayless. We must describe a winning strategy for the

cop player. Let X0 = 0 and let 7?0 be the robber's response, and assume that

Xq, ... , Xn have already been chosen in such a way that X¡ = {vx, ... ,v,},

where vx, ... , v¡ is a path in G, and v¡ is adjacent to a vertex in R¡, where

R0, ... , Rn are the robber's responses. Choose a vertex vn+x e R„ adjacent to

v„ (if zz = 0 choose vx e 7?0 arbitrarily) and put Xn+X = {vx, ..., vn, vn+x}.

It follows that if R„ <£ Xn+X , then vn+x is adjacent to a vertex in 7?„+i . Since

G is rayless there is an n such that R„ ç X„+x , that is, the cop player wins.   D
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Our next objective is to prove the full version of (1.5), the following.

(3.2) For a graph G, the following conditions are equivalent:

(i) G contains no minor isomorphic to Fn0,

(ii) G contains no minor isomorphic to T2,

(iii) G contains no subgraph isomorphic to a subdivision of T2,

(iv) G has no massive escape of order No,

(v) G admits a scattered tree-decomposition of width < No azzo" adhesion

<N0,

(vi) G admits a well-ordered decomposition of width < N0 azzo" adhesion

<N0,

(vii) G admits a linear decomposition of width < N0 and adhesion < N0.

Implications (i) => (ii) => (iii) and (vi) => (vii) are easily seen, and (v) => (vi)

follows from (4.6). In this section we prove (iii) => (iv) => (v) and (vii) =$• (i).

We start with five lemmas.

(3.3) Let a be an escape of order zc > N0 z'zz a graph G, let X, Y e [V(G)]<K

and let C ç a(X) be an X-flap. Then C ç o(Y) if and only ifCnY = 0.

Proof. If C n Y ¿ 0 then clearly C £ a(Y). So assume that C n Y = 0.
Then C is a (X\J F)-flap; and hence C ç o(XuY) ç o(Y) by the second and
first escape axiom.   D

Let us recall that if 77 is a connected subgraph of a graph G and a is an

escape in G of order zc , then 77 is said to be major if F(77) n(lu a(X)) ^ 0

for every X e[V(G)]<K .

(3.4) Let G be a connected graph, let o be an escape in G of order N0, let

P be a connected subgraph of G, and let Xx, X2, ... be a sequence of finite

subsets of V(G) such that

(i) Xi+X ç X, U a(X¡) and a(XM) ç a(X¡) for all i > 1,
(ii) every vertex in X, n X(+1  is major, for all i > I,

(iii) P intersects every X,   (i = 1,2, ...).

Then P is a major subgraph of G.

Proof. We first prove the following.

(1)       If u e f)l>x a(X,) is adjacent to v e V(G) - n,->i a(X¡), then
v is major.

For v £ o(X¿) for some i > 1 ; hence v £ a(X¡+x), by (i), and therefore

v e X,; nX,+i , because it is adjacent to zz 6 o(X¡) na(X¡+x). Hence v is major
by (ii).

Suppose, for a contradiction, that P is not major. In particular, no vertex

of P is major and so P is infinite by (ii) and (iii). There exists a finite subset

Y' of V(G) such that V(P) ç Y' U C for some F'-flap C which is disjoint
from rj(F'). It follows that V(P) nC/0 because F is infinite. Let Y be
the set of all v e Y' which are adjacent to a vertex in C. Then C is a F-flap,

and is disjoint from a(Y) by (3.3). Since C is not a subset of f|,>i "'(X,-) by

(iii), and no vertex of C is major, it follows from (1) that Fnf|,>i o(X¡) = 0 .

Since Y is finite, (i) implies that there exists n such that Yno(X„) = 0 . Then

it follows from (3.3) that a(X„) ç a(Y) and so Cncr(X„) = 0 . Hence, by (i),

V(P) n xn+x ç c n (X„ u a(Xn)) n xn+x cxnn xn+x,
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and so, by (ii) and (iii), P intersects Xn+X in a major vertex, and hence F is

major, a contradiction tocr(F)nC = 0.   D

(3.5) Let G be a graph, let a be an escape in G of order k > N0, azzo" let zc' < zc

be a regular cardinal. Then for every X e [V(G)]<K' there exists Y e [V(G)]<K'

such that Y ç X U a(X), a(Y) ç a(X) and every vertex in X n Y is k'-major.

Proof. For each v e X ,le\ Xv e [V(G)]<K' he such that v i Xv u a(Xv) if

v is not zc'-major and let Xv = 0 otherwise. Let X' = X U \Jv€X Xv ; then

|X'| < zc' since zc' is regular. Let Y he the set of all v e X' which are adjacent

to a vertex in a(X').

(1) YCXUo(X).

For let y e Y - X. Since y is adjacent to a vertex in a(X'), it follows that

y e a(X' - {y}) ç a(X) by (3.3) and the first escape axiom.

(2) a(Y)Ca(X).

For every y-flap C ç a (Y) intersects a(X'), by the second escape axiom,

and hence C is an X'-flap. Thus a(Y) = a(X'). But a(X') ç a(X) by the
first escape axiom.

(3) Every vertex in X n Y is k' -major.

For let v e X n Y. Since v has a neighbour in a(X') ç o(Xv) it follows

that v e XVU a(Xv), and so v is zc'-major by definition of Xv .

The result now follows from (1), (2) and (3).   D

Let a he an escape of order No in a graph G and let X, Y he finite subsets
of V(G). Recall that Y is later than X if |F| < |X|, Y ç X U <r(X), and
a (Y) C <t(X) . This relation is transitive, as is easily seen.

(3.6) Let G be a graph and let a bean escape in G of order No. Let X, Y be

finite subsets of V(G) such that Y ç X U a(X) and o (Y) ç a(X), and assume

that there is no set X' ç V(G) later than X with |X'| < |X|. Then there exist

\X\ disjoint paths between X and Y.

Proof. Suppose not. Then by Menger's theorem there exists a set Z ç V(G)

with \Z\ < \X\ which intersects every path between X and Y. Choose such

a set Z with \Z\ minimum. Then Z ç Xu<t(X), and since Z is not later

than X it follows that a(X) <£ a(X). By (3.3) there exists a Z-flap C ç a(Z)
which intersects X. Since Z separates X and Y we deduce that C n Y =

0, and hence C ç a(Y) by (3.3). But a(Y) ç a(X), and CnX / 0, a
contradiction.   D

(3.7) Lei a be a massive escape of order No in a graph G, let Z be a finite

subset of V(G), and let D ç a(Z) be a Z-flap. Let T be a tree with \V(T)\ =
No. Then G has a minor isomorphic to T whose nodes are major subgraphs

contained in D.

Proof. Let the vertices of F be numbered tx,t2, ... in such a way that for

every zz > 1 , exactly one of tx, t2, ... , tn is adjacent to t„+x. (Such a num-

bering exists; for let V(T) = {vx, v2, ...}, let tx — vx , and inductively for

i > 1, let tj+x = Vj where j is minimum such that Vj / tx, ... , t, and vj
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is adjacent to one of tx, ... , t¡.) Let k > 0 be an integer. A pair (W, X) is
called a k-minority if

(i) & = (Cx, ... , Ck) is a sequence of /c disjoint finite connected sub-
graphs of G with V(Ci)CD for 1 < i < k,

(ii) X ç Z U a(Z), and er(X) ç a(Z), and X is terminal,

(iii)  V(d) f)X¿0 and F(C,) n a(X) = 0 for 1 < z < zc,
(iv) for 1 < / < j < k, if /, and i,- are adjacent in F, then some edge of

G has one end in V(C¡) and the other in V(Cj).

Let Z' be a terminal set later than Z . Obviously,

(1) (0, Z') is a 0-minority.

A zc'-minority (^', X') is said to extend a k-minority (W, X) if (writing

^ = (d ,..., Ck) and W = (C[,..., C'k,)), k < k', Q is a subgraph of C¡
for 1 < z < zc, X' ç X U er(X), and a(X') ç o(X). A zc'-minority (g", X')

is said to properly extend a zc-minority (£P, X) if it extends (W, X) and every

vertex in X n X' is major.

(2) Let zc > 0 be an integer, and let (W, X) be a k-minority. Then

there exists a (k+ l)-minority (W, X') which properly extends

(%,X).

For let W = {Cx, ... , Ck} and let i be such that I < i < k and /, and tk+x
axe adjacent. Choose u e V(C¡) n X and let v e o(X) be a neighbour of u,
which exists, because otherwise X - {u} is later than X by (3.3), contrary to

the fact that X is terminal. Since u e D and v f Z we deduce that v e D.

(If k = 0 we choose v e o(X)nD arbitrarily.) Let Y = Xu{v} and let Ck+X
be the subgraph of G with V(Ck+x) = {v}, E(Ck+x) = 0. From (3.5) there
exists a finite set Y' ç V(G) such that Y' ç Y U o(Y), o(Y') ç o(Y) and
every vertex in Y' n Y is major. Let X' be a terminal set later than Y'. We

have o(Y) ç ct(X) from the first escape axiom, and hence

x' ç y u fj(y') c y u (T(y) g x u a(X) ç z u <x(z),
ct(X') ç ct(F') ç o(Y) ç ff(X) C rj(Z).

To finish the proof of (2) we need two more claims.

(3) Every path joining Z and X' intersects X.

For let C be an X-flap. If C n X' ^ 0 then C ç a(X) because X' ç
XUfj(X), and if CnZ ^ 0 then C £ rr(X) by (ii). Thus no X-flap intersects
both Z and X', and (3) follows.

(4) There exist \Y\ disjoint paths between Y and X'.

For there is no U later than Y with |L| < |X| + 1 = \Y\, because X is
terminal. Hence (4) follows from (3.6).

Choose paths as in (4), minimal. Choose v¡e Yn V(Cj) fox j = I, ... , k +

1, and let F7 be that of the paths from (4) which uses Vj. Since X' ç yurj(y)

it follows that V(Pj) ç y u er(y). It also follows that each Pj is contained

in D (for Vj e V(Cj) ç D, and no other vertex of F, belongs to X; and
so V(Pj) r\Z = 0 by (3), and hence V(Pj) ç D) and F, is disjoint from
a(X') (for otherwise by the minimality of F,, some X'-flap included in o(X')
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would intersect Y). Let C] = C} U F, and let g" = {C[, ... , C'k+l} . If

j,j'e{l,...,k+l} axe distinct then V(C'j) n V(C'r) = 0 because V(Pr) c

a(X) u {v7} and F(Cj) n o(X) = 0 . It follows that (g", X') is a (k + 1)-

minority which properly extends (f, X), thus proving (2).

From (1) and (2) there exist disjoint connected subgraphs Cx, C2, ...  con-

tained in D, and finite subsets Xx, X2, ... of V(G) such that

(a) X/+i ç X, U o~(Xj) and each vertex in X, n Xi+X is major,

(b) o(Xi+i)Ço(Xi),
(c) Ci intersects every X¡ fox j - i ,i+l, ...
(d) for I < i < j, if ti and t¡ are adjacent in F, then some edge of G

has one end in V(C¡) and the other in V(Cj).

It follows that CX,C2, ... form the nodes of a minor isomorphic to F, and

every C, is major by (3.4).   D

The implication (iii) => (iv) of (3.2) follows from the next result.

(3.8) Let a be a massive escape of order N0 in a graph G, let Z be a finite

subset of V(G) and let C ç a(Z) be a Z-flap. Then there exists a subgraph T

of G contained in C isomorphic to a subdivision of T2 such that every ray of
T is a major subgraph.

Proof. By (3.7) we may choose a minor H of G isomorphic to F2 in which

every node is major. Then it is easy to produce a subgraph F of G isomorphic

to a subdivision of F2 in such a way that every ray of F intersects infinitely

many nodes of 77. Hence every ray of F is major.   □

The following corollary will be used in a later paper.

(3.9) Let a be a massive escape of order No in a graph G. Then there exist
infinitely many pairwise disjoint major rays in G.

Now we begin the proof of the implication (iv) => (v) of (3.2).

(3.10) Let k be an infinite cardinal, and let a be an escape of order k in a

graph G. Let X be an ordinal and let {Xa}a<x be a sequence of subsets of V(G)

such that

(i) Xß Ç Xa U a(Xa) for a< ß <X, and

(ii) a(Xß) C a(Xa) for a<ß<X.

Let S = ()a<x a(Xa). Then there exists a well-ordered decomposition (X, W) of

G\S with W = (Wa: a < X) such that

(a)  Wa n Wa+X = Xa for all a<X,

(h) o(Xa)-S = \Ja<ß<x Wß - Wa for all a<X, and

(c)  Wx = \Ja<kC)a<ß<xXß.

Proof. We put 77 = G\S, and for 0 < a < X,

Wa=Ç] [Xß u a(Xß)] n [V(H) - o(Xa)]
ß<a

with the convention that cx^) = 0. We must verify that (X, W) satisfies

(W01)-(W03), and (a), (b), and (c).
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We first verify (W02). Let 0 < a < ß < y < X ; then

WanWyç f][Xs u o(Xs)] n [V(H) - a(Xa)}
S<y

ç f)[X0(Ja(Xä)]n[V(H)-a(Xß)] = Wß,
ö<ß

by (ii).
To verify (W03) let a < X be a limit ordinal, and let ß < a . Then

f|   IFy =   f|   f][XôUo(Xs)]n[V(H)-o(Xy)]
a>y>ß a>y>ßa<y

ç fi [Xs U o(Xâ)] n [V(H) - a(Xa)] = Wa.
ô<a

To verify (WOl) we first observe that for v e V(H), if a < X is the least

ordinal such that v fi a(Xa), then v e Wa. Therefore (Jaoi ^ = V(H) •

Now let u, v e V(H) he adjacent and suppose that there is no a < X such that

u, v e Wa. By (W02) we may assume that a < ß for every a, ß < X such

that ueWa,v eWß. Choose ß < X with v eWß , and let

a = sup{y < X: u e Wy}.

Then u e Wa by (W03), v $ Wa and a < ß . It follows that u i XaUrj(Xa)

(since u fi  Wa+X and v e a(Xa), a contradiction, since u, v are adjacent.

This proves (WOl).
To verify (a) we have

Wa n Wa+X = f| [Xß u a(Xß)] n [V(H) - a(Xa)]
ß<a

n[Xauo(Xa)]n[V(H) - cT(Xa+x)]

= Xa,

by (i), (ii).
To verify (b) let first v e o(Xa) - S. Then v £ cr(Xß) for some ß with

X > ß > a, and we may assume that ß is the smallest such ordinal. Then

v eWß - Wa. Conversely, for X> ß > a,

Wß-WaC [(Xa U a(Xa)) n V(H)] -Xa = a(Xa) - S.

To verify (c) we have

Wx=(>\[XßöCJ(Xß)]-f]o(Xß)
ß<X ß<X

= U

by (i) and (ii).   □

C\{XßUo{Xß))n   f|   Xß
ß<a a<ß<X

= u n *>
a<Xa<ß<X

(3.11) Let a be a nonmassive escape of order N0 in a graph G. Then there exist

a finite set Y ç V(G), a set S ç a(Y) which is the union of some (possibly none)
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but not all Y-flaps in a(Y), an integer k > 0, and a well-ordered decomposition

(a, W) of G\S such that:

(a) Y Ç X¡, |X,-| = k, and there exist k disjoint paths in G\S between X,

and Xi+X   (i = 0,1,...), where Xi = W¡nWi+x   (i = 0, 1, ...),
(b) a(Xi) -S = U,->¿ Wj-Wi  (z = 0,l,...),
(c) Wm = Y.

Proof. Let us choose a finite set Xo ç V(G) with |X0| minimum such that

there is no later terminal set. There exists a sequence X0, Xx, ... of distinct

subsets of V(G) such that Xi+X is later than X, for every i = 0, I, ... .

(1) There is no Y later than Xo with \Y\ < |X0|.

For otherwise Y would contradict the choice of Xo .

It follows that

(2) |X,| = |X,+1|   for i = 0,1,....

Let k be such that |X,| = zc for i = 0, 1, .... Let Y = [jn>0 f|,>„ X, ; then

there exists an zz > 0 such that Y ç X, for every i > n , and we may assume

that zz = 0. Let S = f|,>0 o{X¡) ; it follows that YnS = 0 and that if v e S is

adjacent to u e V(G), then u eYuS (because if u £ cf(Xj0) then u $ o(Xj)
for every j > j0 , and hence ueY). Hence S is a union of y-flaps.

(3) a(Y)-S includes a Y -flap.

Since 0 yí Xx -X0 and Xx ç X0Urj(X0), there exists an X0-flap C ç tr(X0)

not contained in S. Then C ç C for some y-flap C ç a(Y) by the first

escape axiom. Since C £ S it follows that C n S = 0 , as desired.

(4) There are k disjoint paths in G between X, and Xi+X for i = 0, 1, ... .

For there is no Z later than X, with \Z\ < |X,-|, because such a Z would

be later than X0 , contrary to (1). Hence (4) follows from (3.6).

Since S is a union of y-flaps and Y ç X¡• n Xi+X , we deduce

(5) There are k disjoint paths in G\S between X, azza" Xi+X for

i = 0, 1,....

The existence of the desired well-ordered decomposition now follows from

(3.10) with k = N0, X = oo.   D

The following is (iv) => (v) of (3.2).

(3.12) If G has no massive escape of order No, then G admits a scattered

tree-decomposition of width < N0 and adhesion <N0.

Proof. For the purpose of this proof let us call a tree-decomposition normal, if

it is scattered and has width < N0 and adhesion < N0 . As in the proof of (2.1)

we deduce that

(1)        If X ç V(G) is finite and every component of G\X has a normal

tree-decomposition, then the whole graph does.

Suppose for a contradiction that G is a graph with no massive escape which

does not admit a normal tree-decomposition. For each finite set X ç V(G), let
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us define o(X) to be the union of all X-flaps C such that the restriction of G

to C does not admit a normal tree-decomposition.

(2) a is an escape of order N0 .

For the first two escape axioms can be verified as in the proof of (2.1), and

the third escape axiom follows from the assumption that G does not have a

normal tree-decomposition and from (1).

By assumption, a is not massive and therefore there exist a finite set Y ç

V(G), a set S ç V(G), and a well-ordered decomposition (w, W) of 77 = G\S

as in (3.11). Since V(H) contains at least one y-flapfrom a(Y) and subgraphs

of graphs with normal tree-decompositions also have such decompositions, we

deduce

(3) H does not admit a normal tree-decomposition.

For i > 0, let 77, be the subgraph of 77 induced by W¡, and let X, =
W, n Wi+X .

(4) Every 77, admits a normal tree-decomposition for i = 0, 1,2, ... .

For V(H¡) = Wtç V(G)-o(X,) by (3.1 lb), and hence (4) follows from (1).
Now let (T', W) be a normal tree-decomposition of 77,. Let F be the tree

obtained by taking the disjoint union of T' (i = 0, 1, 2, ...) and joining some

vertex of T' to some vertex of F,+l for each i > 0 ; and for each te V(T) let

U, = W/ U X,_! U X,, where i is such that te V(T') (and where X_i means

0), and let U = (U,: t e V(T)).
(T, U) is a normal tree-decomposition of 77.

We first verify that (F, U) satisfies (Wl) and (W2). We have

(J   UtD\J   [J    W/ = (JV(Hi) = \JWi = V(H),
tev(T)        i>0tev(T>) />o ;>o

where the last equality uses the fact that Ww ç Wr¡, which follows from (a)
and (c) of (3.11). Now let u,v e V(H) be the endpoints of an edge of 77.

Then u,veW¡ for some i > 0; hence u,v eWtl for some i e V(T') and

thus u, v e Ut. Hence (F, U) satisfies (Wl). To verify that it satisfies (W2)

let tx, t2, h e V(T), let tj e V(T'>) (j = 1,2,3) and let t2 lie on the path
between tx and t^ in F. By symmetry we may assume that ix < i3, and so

i[ < ¿2 < h. If i'i = ¿3 then z'i = i2 = z'3 = i say and

Ut] n Uh = (Wt\ u x,_, u Xi) n (W¿ u x,_, ux,) ç wt[ ux,_, uX,- = uh,

and if ix < ii then

utl n uh = (w;; u x,,., u x„) n (w¿ u x,3_, u x,-3)

ç Wix n IF,3 ç x„ n x,/+1 n • • • n X,3_, ç U,2.

Thus, (T, U) satisfies (W2). It follows directly from the construction that T

is scattered and that \Ut\ < No for every t e V(T). Now let to, tx, ... be
an infinite path of F. If there exist integers m, n > 0 such that t¡ e V(T")

for every i > m, then [ U^o n7>/ Utj\ < N0 and liminf,^oo \Ut¡ n Utj+¡\ < N0

because (Tn, W") is a normal tree-decomposition. If such integers zn,zz do
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not exist then there exist infinitely many integers i > 0 with the property that

U eV(TJ) and ti+x eV(TJ+x) for some integer ; > 0. Then

ut¡nutM çWjnwJ+x=Xj,

and hence IimM,-«, \Uti n Uti+l\ < k < N0 and \{JZoP\j>iUi,\ < k < ^o,
where k = \X0\ = \XX\ = ■ ■ ■ . This completes the proof of (5).

Now (3) and (5) contradict each other. Thus our assumption that G is a

graph with no massive escape which does not admit a normal tree-decomposition

is false, and hence no such graph exists.   G

Next we turn to the implication (vii) => (i) of (3.2).

(3.13) Fn0 does not admit a linear decomposition of width < N0 .

Proof. Suppose for a contradiction that (L, W) is a linear decomposition of

width < N0 of F = FNo. For each t e V(T), let I(t) = {/ e L: t e W,}.
Thus each I(t) is a closed interval in L. Let to be the null sequence, and

suppose that we have already defined a path of T with vertices to, tx, ... , tn in

order, such that I(t0) 2 1(h) 2 • ■ - 5 I(t„). Let x, y he inf(7(i„)), sup(7(i„))
respectively. Now for each neighbour t of tn in T, I(t)rM(tn) ^ 0 by (LI),

and yet I(t) n {x, y} ^ 0 for only finitely many such t, since Wx u Wy is finite.

Thus there is a neighbour t„+x of tn (distinct from t„-X, if zz > 1) such that

I(tn+i) Q I(tn) ■ This completes the inductive definition of to, tx, t2, ... . Since

L is complete and I (to) 2 7(ii) D ... , there exists / G L such that / 6 I(t„)

for all zz > 0, that is, tn e W¡ for all zz > 0. But this is impossible since W¡

is finite, and so there is no such (L, W), as required.   D

The last implication of (3.2), namely (vii) => (i), now follows from (2.10) and

(3.13).
Our next objective is to prove (1.2). We start with a lemma which is a

strengthening of (i) => (ii) of (1.4). If a is an escape of order No in G, a ray

F in G is a-balanced if every subray of F is major.

(3.14) Let G be a graph and a an escape in G of order No. Let Xo be a

finite subset of V(G) and let C ç rr(X0) be an X0-flap. Then there exists a

a-balanced ray P of G such that V(P) c C.

Proof. There are two cases.

Case I. For every finite X C C, every (X0 U X)-flap C ç <t(X0 U X) n C

contains a major vertex.

Choose a major vertex vq e C and let 7?0 be the 0-edge path with V(R0) =

{vo} . Inductively, suppose that we have defined distinct major vertices Vo,

vx, ... ,v„ e C and a path R„ from vo to v„ with V(R„) ç C, passing

through all of v0, vx, ... , vn in order. Since v„ is major, it has a neighbour in

fj(X0 u V(R„)), for otherwise vn $ X U a(X) where X = X0 U V(Rn) - {v„} .

Let C„ be an (X0 U V(R„))-ñap in er(X0 U V(R„)) containing a neighbour

of vn. Since C„ n X0 = 0 and C„ has a neighbour in C (namely v„) it

follows that Cn ç. C . Thus there is a major vertex v„+x e Cn ; let Rn+X he the

concatenation of R„ and a path from vn to vn+x contained within C„U{v„}.

This completes the inductive definition. Now R = Rq U 7?i U R2 U • • • is a ray

passing through infinitely many major vertices, and hence 7? is a -balanced; and

V(R) ç C, as required.
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Case II. There exists a finite X C C, and an (X0 U X)-flap C ç a(X0 U X) n C

which contains no major vertex.

Let 77 be the subgraph of G induced by C ; for a finite set Y ç V(H)
we define x(Y) = a(Xo U X u Y) n C. Then t is an escape of order No
in 77 with no major vertex. Let Y0 he a nonempty subset of V(H) ; from

(3.5) there exists a sequence Yo,Yx, ... of finite subsets of V(H) such that

y,+i U x(Yi+x) c x(Yj) for i' = 0,l,.... If v e Y¡ is adjacent to a vertex in

a(Y¡), then there exists a path Q joining v to a vertex of Yi+X, adjacent to

a(Yi+x), suchthat V(Q)-{v} ç a(Yi)-a(Yi+x). (This follows by examining a

minimal path within {v}\Ja(Y¡) from v to a(Yi+x).) It follows that there exists

a ray P, intersecting every Y¡   (i = 0, 1,...). By (3.4), P is cr-balanced.   D

Now we can prove (1.2), which we restate.

(3.15) Le? G be a connected graph and k an infinite cardinal. If T is a subgraph

of G which is a K-balanced tree, then there exists a unique escape a in G of

order k such that

, ,       for every X e [V(G)]<K and every X-flap C,Cc a(X) if and
[*>       onlyif\CnV(T)\>K.

Conversely, for every escape a of order k in G there exists a subgraph T of G

which is a K-balanced tree and such that (*) holds.

Proof. If F is as stated, then it is easy to verify that a defined by (*) satisfies

the escape axioms. Conversely, let a he an escape in G of order zc . A subgraph

T of G which is a tree is called a-balanced if |F(F)| > 1 and for every edge
e of F, both components of T\e have at least zc vertices and are both major

subgraphs, unless zc = No, in which case F is also permitted to be a a-balanced

ray (defined earlier). From (2.8) if zc > No, or from (3.14) if zc = N0, we deduce

(1) There exists a a-balanced tree.

If Tx, T2 are a-balanced trees, we write Tx < T2 if F2 is not a ray, and

either Tx is a proper subgraph of F2 or Tx is a ray with an infinite subray

contained in F2. By Zorn's Lemma there exists a maximal a-balanced tree T.
We claim that F is as desired. Let X e [V(G)]<K and let C Ç a(X) be an

X-flap.

(2) If \V(T) n C\ > k then there exists an edge e of T such that

an infinite component of T\e is contained in C.

This follows easily when F is a ray because then zc = No . So assume that F

is not a ray and suppose that (2) fails. Then for every edge e of F with at least

one endpoint in C there exists a path Pe in F containing e with endpoints

u, v such that u, v e X, u, v belong to different components of T\e and

P\{u, v} is contained in C. Let Me = {u, v}. Since there exist zc edges as

above and |X| < zc, there exist cf(zc) edges for which Me is the same, and

hence there exist two edges, e and e' say such that Me = Me< and Pe ^ Pe> .

This is impossible, because F is a tree.

(3) If \V(T) n C\ > k then C ç a(X).

For let e be as in (2). Every infinite component of T\e is major, and hence

C ç a(X).

(4) IfCCa(X) then |F(F)nC| >k.
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For suppose that C ç a(X) and \V(T) n C\ < k . Let Y = X U (V(T) n C) ;
then there exists a F-flap C ç a(Y) n C. If zc > N0 then there is a zc-nova S

in C as in (2.8), and if zc = N0 then there is a a-balanced ray 5 contained in

C by (3.14). Let F be a path joining a vertex t e V(T) to a vertex 5 e V(S)

and otherwise disjoint from F U S. If S is a ray we define S' to be the path

obtained from S by deleting the finite component of S\s, and we define S' = S

otherwise. We define V analogously. Let T" = V u F u 5" ; it is easily seen

that F" is a a-balanced tree, contrary to the maximality of F under < .

The theorem now follows from (3) and (4).   □

We give a characterization of massive escapes of order No in the spirit of

(3.15). We omit the proof, because it is similar to that of (3.15), using (3.8)

instead of (2.8) or (3.14).

(3.16) Let G be a connected graph and let a be an escape in G of order N0.

Then a is massive if and only if the tree T from (3.15) cazz be chosen in such

a way that it contains no infinite path tx,t2, ... , where each t¡ has valency 2

in T.

Finally, we prove a lemma which will be used in a later paper. Let G be a

graph and a an escape of order No in G. A finite set FC V(G) is said to be

free if there is no finite set X ç V(G) with |X| < \F\ such that F na(X) = 0 .

(3.17) Let G be a graph and a an escape in G of order N0. A set F ç V(G)

is free if and only if there is no X ç V(G) later than F with \X\ < \F\.

Proof. If F is free then there is clearly no such set. Conversely let F be not

free and let X be such that

(i)  l*l<l*ï>
(ii) Fna(X) = 0,

and subject to (i) and (ii),

(iii)  |X| is minimum.

We claim that X is later than F . From (ii) and (3.3) we deduce that a(X) ç

a(F) ; we must show that X ç F U a(F). Let v e X. By (iii), a(X - {v}) ¿
a(X), and so by (3.3),  v  is adjacent to some  u e a(X) ç a(F).   Hence

deFU o(F) , as required.   D

The following is a strengthening of (3.5) when k = N0 .

(3.18) Let G be a graph and let a be an escape of order N0 z'zz G, azza" let X

be a finite subset of V(G). Then there exists a free set Y ç V(G) such that
Y ç X u a(X), a(Y) ç a(X), azza" every vertex in Xc\Y is major.

Proof. By (3.5), there exists a finite subset Y of V(G) suchthat Y ç XUa(X),
a(Y) ç. a(X), and every vertex in X n Y is major. Let us choose this Y with

| y | minimum. If Z is later than Y then

X n Z ç x n (Y U a(Y)) C (X n Y) u (X n a(X)) = X n Y,

and so there is no Z later than Y with \Z\ < \Y\. By (3.17), Y is free, as

required.   D

(3.19) Let G be a graph and let a be an escape of order N0 z'zz G. A finite set

F C V(G) is free if and only if there are \F\ disjoint major paths of G, each

with an end in F .
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Proof. Let Hx, ... , H\F\ he disjoint major subgraphs, each intersecting F,

and let X ç V(G) be such that |X| < \F\. Then X n V(H¡) = 0 for some
1 < i < \F\ ; hence V(H¡) ç a(X) and thus F n a(X) / 0 . Hence F is free.

Conversely let F be free. By (3.18) there exists a sequence X0 = F, Xj,

X2, ... of subsets of V(G) such that Xn+X ç X„ U a(X„), a(X„+i) ç a(X„),

every vertex in X„ C\Xn+x is major, and each X„ is free. Hence |X0| < |Xj| <

• •• . From (3.6) there exist disjoint paths Px, ... , P\F\, each with an end in

F and intersecting every X„ (zz = 0, 1, ...) ; and from (3.4), each F, is
major.   D

4. Major escapes

In this section we shall state and prove an expanded form of (1.6). To state

our results for excluding TK as a subdivision we need a more general type of

"tree-decomposition", which we now introduce. A well-founded tree is a pair

T = (V(T), <), where V(T) is an arbitrary nonempty set, whose elements are

called the vertices, and < is a partial ordering on V(T) such that for every

pair t,t'eV(T) their infimum inf(i, t') exists and for every te V(T) the

set {t' e V(T): t' < t} is well-ordered. The supremum of order types of these

sets is called the height of F. For tx, t2e V(T) we define T[tx, t2] to be the

set {/ e V(T):   either inf(tx , t2) < t < tx or inf(z,, t2) < t < t2}.

If R is a tree and r e V(R), let us define tx < t2 (for tx,t2e V(R)) to mean

that tx lies on the path between r and t2. It is easily seen that F = (V(R), <)

is a well-founded tree and conversely every well-founded tree of height < œ

arises in this way. Moreover, T[tx, t2] = R[tx, t2] for every tx, t2 e V(R), as

is easily seen. We call (V(T), <) the well-founded tree associated with R and
r. Let 77 be the well-founded tree associated with F2 and r e V(T2), where

r is the only vertex of F2 of valency 2. We say that a well-founded tree F is

scattered if there is no 1-1 and inf-preserving mapping ip: V(B) —> V(T). If

F is a well-founded tree associated with 7? and r, then F is scattered if and

only if 7? is scattered in the sense introduced earlier.

A well-founded tree-decomposition of a graph G is a pair (F, W), where F
is a well-founded tree and W = (Wt: t e V(T)) satisfies (Wl), (W2) and

(W3)        if C ç V(T) is a chain and c = sup C G V(T), then f)ieC wt =

Wc.

We say that (F, W) has width < zc if

u n *>
tec t'ec

t'>t

< k    for every chain C ç V(T).

The tree-decomposition (T, W) is called scattered if F is scattered, and is

said to be of height a if F is of height a . Let 7? be a tree, let r e V(R) and
let F be the well-founded tree associated with 7? and r. Then to every tree-

decomposition (R, W) there corresponds a well-founded tree-decomposition

(T,W) of height < to and vice versa. It is easy to verify that the conditions

in the definitions of widths are the same, and hence (R, W) has width < zc if
and only if (F, W) has width < zc .

Now we can state the full version of (1.6).
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(4.1) For a graph G and a cardinal k > N0, the following conditions are equiv-

alent:

(i) G contains no subgraph isomorphic to a subdivision of TK,

(ii) G has no major escape of order k ,

(iii) G admits a scattered well-founded tree-decomposition of height < cf(zc)

azzo" width < k ,

(iv) G admits a scattered well-founded tree-decomposition of width < k ,

(v) G admits a well-ordered decomposition of width < k ,

(vi) G admits a scattered linear decomposition of width < k .

If k = No then these conditions are moreover equivalent to

(vii) G admits a linear decomposition of width < N0,

(viii) G admits a scattered tree-decomposition of width < No.

Implications (iii) =>• (iv) and (v) => (vi) => (vii) are trivial, (vi) =>• (i) follows

from (2.11) and (2.13), and for zc = No (vii) => (i) follows from (2.11) and
(3.13). Finally, for zc = No conditions (iii) and (viii) are equivalent by our

earlier remark about well-founded tree decompositions of height < co. We

now prove (i) =>• (ii) => (iii) and (iv) =$■ (v).

The implication (i) => (ii) follows from the next result.

(4.2) Let k be an infinite cardinal. If G has a major escape of order k , then

G contains a subgraph isomorphic to a subdivision of TK , such that every vertex

of valency > 2 of this subgraph is major.

Proof. This follows from (2.6) by letting p = zc+ and l(t) = k for all / G
V(TK).   D

Now we begin the proof of the implication (ii) =s> (iii) of (4.1).

(4.3) Lei zc be an infinite cardinal, let G be a connected graph and let a bean
escape in G of order k , and assume that there is no major vertex. Then there

exists a well-ordered decomposition (cf(zc), W) of G such that

(a) I üß<a \~\ß<ß'<Awß' n wß'+i)\ < k for every a < cf(zc),

(b) a(Wa n Wa+X) = \Ja<ß<cf{K) Wß-Wa, and

(c) Wcf{K) = 0.

Proof. Let X = cf(zc) and let {Ka}a<x he a nondecreasing sequence of regular

cardinals < k with supremum k . We shall construct a transfinite sequence

{Xa}a<x of subsets of V(G), with |XQ| < zc for all a < X, as follows. Let

Xo ç V(G) with |X0| = 1, and assume that a < X and Xß has already been

constructed for all ß < a. If a is a successor ordinal, say a = ß + 1, we

let Xa be the set " Y " of (3.5) with X = Xß and zc' chosen to be a regular

cardinal such that \Xß\ < zc' and zc^ < zc' < zc ; and if a is a limit ordinal we

let Xa = \Jß<a [)ß<ß'<aXß' • Then the following conditions hold:

(1) |XQ| < zc , for every a < X,

(2) Xa C Xß U a(Xß) for ß < a <X,
(3) a(Xa) ç a(Xß) for ß < a < X, and

(4) for ß < a < X, every vertex in Xa nXß is zc^-major.

These conditions are obviously satisfied except for (3) for limit a, which we

now prove. Let a be a limit ordinal and ß < a, and let C ç a(Xa) he an Xa-

flap. Let T = U<5<a X-6 ■ Then there exists by the second escape axiom a T-flap
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C C a(Y) n C. We claim that no u e C is adjacent to a v e Y - Xa . For

otherwise v e X¿-X¿- for some S < S' < a. Since u e C C a(X¿f by the first

escape axiom, and v £ Xs,, it follows that v e Xs na(Xs,) ç X¿ n a(X¿) = 0 ,

a contradiction. Hence no m G C is adjacent to a vertex in Y - Xa . Therefore

C = O ç o(Y) ç a(Xß) by the first escape axiom, as desired.

(5) Xx = 0 •

For every vertex in Xx is zc^-major for every ß < X by (4), and hence major.

But no major vertex exists.

(6) C}a<ka(Xa) = 0.

For otherwise there would be some u e f\a<x c(Xa) adjacent to some v £

f|Q<xO'(Xa). Let a < X he such that v £ a(Xa) ; then v e Xß for all ß with
a < ß < cf(zc), and hence v e Xx, contrary to (5).

The result now follows from (1), (2), (3), (5), (6), and (3.10) applied to the

sequence {Xa}a<x.   D

Now we prove the implication (ii) => (iii) of (4.1).

(4.4) If G has no major escape of order k , then G admits a scattered well-

founded tree-decomposition of height < cf(zc) arid width < k .

Proof. For the purpose of this proof, a scattered well-founded tree-decomposi-

tion of height < cf(zc) and width < zc will be called a normal decomposition.

Suppose for a contradiction that G is a graph with no major escape of order zc

which does not admit a normal decomposition. For X G [V(G)]<K , we define

a(X) to be the union of all X-flaps C such that the restriction of G to C

does not admit a normal decomposition. As in (2.1) or (3.12) it can be verified

that a is an escape of order zc in G, and so is not major. Hence there exists

a set Xo G [V(G)]<K and a component 77 of G\X0 which contains no major

vertex and such that F(77) ç a(X0). Hence

( 1 )        77 does not admit a normal decomposition.

For X G [V(H)]<K , let x(X) be the union of all X-flaps of 77 which do not
admit a normal decomposition; it follows that x is an escape in 77 with no

major vertex. Let (cf(zc), W) be the well-ordered decomposition of 77 (relative

to t) as in (4.3), and for a < cf(zc) let 77Q be the subgraph of 77 induced by

Wa.

(2)        Every Ha admits a normal decomposition.

For F(77Q) = Wac V(H) -x(Wan Wa+X) by (4.3b).
Let (Ta, Ua) be a normal decomposition of 77„ and let /„ be the least

element of Ta (a < cf(zc)). Let F be the well-founded tree with V(T) =

Ua<cf(K) V{Ta) in which t < f if either t, t' e V(Ta) for some a < cf(zc) and

t < t' in Ta , or t = ta and t' e V(T^) for some a < ß < cf(zc). We put, for
te V(Ta),

U, = Uf u (Wa n Wa+X) u [J    f)   (Wß, n Wß,+X) c Wa,
ß<aß<ß'<a

and put U = (U,:te V(T)). By (4.3a), \U,\ < k for every t e V(T).

(3) (T, U) is a normal decomposition of 77.
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For it follows directly from the construction that F is a well-founded tree

of height < cf(zc), and (Wl) and (W2) are verified as in (5) of (3.12) (we omit

the details). To verify (W3) let C ç V(T) be a chain and let c = supC. If
there exists r0 e C such that {t e C: t > r0} ç V(Ta) for some a < cf(zc)

then n,ec ut = uc by the fact that (Ta, Ua) satisfies (W3). Otherwise let

A = {y<cf(zc): CnV(Ty)¿0},

and let a = sup A, ß = min A. Then ß < a, a < cf( zc) (because C has a

supremum) and ce V(Ta). It follows that

Ç]Utçf]W?.ç   f|   Wyf)Wy+xcUc,
t€C ye\ ß<y<a

where the second inclusion follows from (W02) and (W03). This completes the

proof of the fact that (T, U) is a well-founded tree decomposition. Evidently

it is scattered. It remains to prove that it has width < zc. To this end let

C CV(T) be a chain. If there exists r0 e C such that {teC:t>r0}ç V(Ta)

for some a < cf(zc) then \\Jtecf\t'€C,t'>t ^'1 < K because (FQ, Ua) has width

< zc. Otherwise let A, a, ß be as above. If a < cf(zc) then supC = ta and

UiecHcecof Uf Q Uta, while if a = cf(zc) then

un^^un wylcwd(K)=0.
tec t'ec yeA /eA

''>' y">y

In both cases | \JteC (]t,eC ,,>t Ut>\ < k , as desired. This proves (3).

Conditions (1) and (3) contradict each other and therefore no such graph

exists, as required.   D

Let T = (V(T), <) be a well-founded tree. A trunk in F is a nonempty
subset P ç V(T), totally ordered by <, such that if v e P and u < v

then u e P. Now let te V(T). We denote by br(t) the well-founded tree

({/ G V(T) : t' >t}, <), and if t, t' e V(T) we say that t' is a successor of t
if t' # t, t <t' and there is no t" e V(T) - {t, t'} such that t < t" < t'. Let

F be a trunk in F and / G F. We denote by P(t) the set of all br(t'), where

t' £ P is a successor of t.

We need Laver's [4] characterization of scattered well-founded trees, as fol-

lows. Let <9o be the class of all one-vertex well-founded trees, and for an ordinal

a > 0 let ZTa he the class of well-founded trees F not in U^<a &ß sucn that

there is a trunk F in F such that P(t) ç U/?<q^/î f°r every t e P. There is a

unique minimal such F, and it is called the spine of T e^a. Laver's theorem

[4] is the following.

(4.5) Let f7~ be the class of all scattered well-founded trees. Then ET = \Ja^on^a-

For a scattered well-founded tree F, the unique a such that F e ffa is

called the razzzc of F.
The next result yields the implication (iv) =>■ (v) of (4.1).

(4.6) Let k be an infinite cardinal, and let G be a graph.

(i) If G admits a scattered well-founded tree-decomposition of width < k ,

then G admits a well-ordered decomposition of width < k .
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(ii) If G admits a scattered tree-decomposition of width < k and adhesion

< k , then G admits a well-ordered decomposition of width < k and

adhesion < k .

Proof, (i) Let (T, W) be a scattered well-founded tree-decomposition of G

of width < zc . We proceed by transfinite induction on the rank of F. The

theorem obviously holds if the rank of F is 0, so we assume that the rank of F

is > 1 and the theorem holds for all graphs which admit such a decomposition

(V, W) with T of smaller rank.
Let F be the spine of F and let F = {pa}a<x> where for a < ß < X,

Pa < Pß in the ordering of F. For a < X, let Na = {t e V(T): t > t' for
a successor t' ^ F of pa} and let Ga be the subgraph of G induced by the

set \J{Wt - WPa: t e Na} . By the induction hypothesis each Ga is a disjoint

union of graphs each of which admits a well-ordered decomposition of width
< zc . Hence GQ itself admits a linear decomposition (La, Xa) of width < zc

such that La is a well-ordering. Let LA be a one-element linear ordering, say

Lx = {zrz}. We may assume that all the La (a < X) axe mutually disjoint.

Let L be the well-ordered sum L1 + L2 + ■ ■ ■ + Lx. Then L is Dedekind
complete, and is a well ordering. For / g L- {m} , let us define X¡ = WPa \jXf ,

where a is such that I e La ; and let Xm = \Ja<Ji C\a<ßKx Wpß • Finally we put

X = (X/ : / g L). We claim that (L, X) is a linear decomposition of G of

width < k .

Indeed, the statement about width follows immediately, and so it remains to

prove that (L, X) satisfies (L1)-(L3). To verify (LI) we have

U*/2(J \JxruwPa = \jv(Ga)uwPa
leL a<X ¡eLa a<X

= IJ U W^WPa=   (J   W, = V(G).
a<Xt£Na t€V(T)

Now let u, v be endpoints of an edge of G. Then u, v e Wt for some

t e V(T) by (Wl). There exists an ordinal a < X such that either t = pa , in

which case u, v e X¡ for every I e La, ox t > t' for a successor t' £ P of

pa, in which case zz, v e V(Ga) U WPa and thus u, v e Xf u WPn ç X¡ for

some / G La, by (LI) applied to (La, Xa). This proves (LI).

To verify (L2) let a < b < c in L, and let a e La ,b e L? ,c e U. If
a = y then

xanxc = (wPaux«)n(wPauxac) c wPa uxab = xb,

and if a < y then

Xanxcc   (J   wtn\Jw,cwPßcxb.
t>Pa t>Py

t~¿Pa+\

This verifies (L2).
To verify (L3) it suffices, since L is a well-ordering, to show that if a, b e L

and a < b, and b has no predecessor in L (that is, for all I < b there exists

/' with / < /' <b) then f)a<i<b X¡ ç Xb . Let a e La, b e L? ; then a < ß . If

there exists ceL$ with c < b , then

fl X,c  f) x, = wPfu H xfcwPßyjXßb=Xb
a<l<b c<l<b c<l<b
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because b has no predecessor in L^ and (L&, W$) satisfies (L3). We assume

that there is no such c. Thus b = min(L^), and a < ß . If ß is a successor

ordinal, say ß = y + 1, then sup(Ly) is the predecessor of b in L, a contra-

diction. Thus ß is a limit ordinal. We claim that f]a<y<ß WPy ç Xb. For if

b = m then this is true by definition of Xm ; while if b ^ m then ß < X and

R   W^ÇW^CX,
a<y<ß

since (F, W) satisfies (W3) and Pß = s\ip{py: a < y < ß}. This proves our

claim that f)a<Y<ß WPy ç Xb . But

fï   X,=   f| (XanX,)C   f)   WPyCXb
a<l<b a<l<b a<y<ß

as required. This proves (L3), and hence (L, X) is a linear decomposition of

G of width < zc .
Now L is a well ordering; let its order type be an ordinal y , and let /: y —> L

be an order-preserving bijection. Now since m = sup(L), it follows that y is

a successor ordinal, y = ß + 1 say. For 0 < a < ß, define Ya = X^a), and

let y = (Ya: a < ß). Thus (ß, Y) is a well-ordered decomposition of G of

width < zc . This proves (i).
(ii) Now let (F, W) he a scattered tree decomposition of G of width <

zc and adhesion < zc. We can regard F as a well-founded tree and apply

the construction from (i). We claim that the well-ordered decomposition thus

produced has adhesion < zc .

Indeed, let / G L. If / has a predecessor then the required condition fol-

lows easily from the fact that (T, W) has width < zc . If / does not have a

precedessor then (since X < co) either there exist /' < / and a < X such that
/" G La for every I" e L with /'</"</, or / = m . In the former case

we apply the induction hypothesis, and in the latter case the required condition

follows from the fact that (T, W) has adhesion < k .   G

Finally, we mention without proof a variant of (3.15) and (3.16). A tree F is

called TK-balanced if for every edge e of F, both components of T\e contain

a subtree isomorphic to a subdivision of TK .

(4.7) Let k be an infinite cardinal and let a be an escape in a graph G of order

k. Then a is major if and only if the tree T in (3.15) cazz be chosen to be

TK-balanced.

5. Escapes and ends

Our objective here is to discuss a natural partial order of the set of escapes of

order k , and when zc = No to describe a connection with the "ends" of G. If

zc is a cardinal, let a(X) = 0 for all X e [V(G)]<K ; we call a the non-escape

in G of order zc . It is convenient to augment the set of all escapes of order

zc by the non-escape of order k ; thus, we are now really concerned with the

functions a satisfying the first two escape axioms. Let us call such a function

a a strategy (of order zc). (Thus, the only strategy of order k which is not an

escape is the non-escape of order zc .)
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There is a natural partial ordering of strategies. If ax, a2 are strategies of

order zc in G, we say that ax broadens a2 if a2(X) ç ai(X) for all X G

[V(G)]<*.

(5.1) The broadening partial ordering of strategies of order k is a lattice.

Proof. If X is a set of strategies of order zc , we define

a(X)= \Ja'(X)      (Xe[V(G)]<K).
a'el

Then a is a strategy, and is the join of the elements of I. Since there is also

a zero element (namely, the non-escape), it follows that the partial ordering is

a lattice.   D

If 7?i and 7?2 are rays in a graph G, we say they are parallel if for every

finite XÇ V(G), the unique X-flap C with Cr\V(Rx) infinite also has infinite
intersection with V(R2). This is an equivalence relation, and its equivalence

classes are called the ends of G. This concept was introduced by Halin [3].

If E is an end, let us define a(X) to be the unique X-flap C with CnV(R)
infinite for some (and hence every) 7c g F, for each finite X ç V(G). This

function a is an escape of order No , and is a minimal nonzero element (that

is, atom) of the lattice of (5.1) for zc = N0 . For any escape a of order N0 , we

denote by ê'(a) the set of all ends E suchthat a broadens the corresponding

atom. Thus, an end E belongs to f(a) if and only if some member of E is

a-balanced. In general, a set &~ of ends is closed if for each end E £ 3~ there

is a finite XC V(G) andan X-flap C suchthat CnF(7?) is infinite for some

Re E, and C n V(R) is finite for every member 7? of every end in ¡F. It is

easily verified that the collection of all closed sets of ends forms a topology on

the set of ends.

(5.2) If a is a strategy of order No in G, then %(o) is closed.

Proof. Suppose that E £ %>(o). Then a does not broaden the corresponding

atom, and so there is some finite X ç V(G) such that no X-flap in a(X) has

infinite intersection with any member of E . Choose an X-flap C ot a(X) such

that C n V(R) is infinite for some R e E ; then C n V(R) is finite for each

member 7? of each end in %?(o) since C %\ a(X), and so <£(a) is closed.   D

(5.3) If SF is a closed set of ends, then there is a strategy a of order No such
that g (a) = ¥.

Proof. Let a he the join of the atoms corresponding to the members of &.

Then a is a strategy of order No , and & ç Jf(a) ; it remains to prove equality.

Let E he an end not in &". Since & is closed there is a finite X ç V(G) and

an X-flap C suchthat CnV(R) is infinite for some ReE, and CnV(R) is

finite for every member R of every end in fF. By definition of a, C <j- a(X),

and so E £ %(o), as required.   D

(5.4) If ax,a2 are different strategies of order N0, then %(ax) ± %(a2).

Proof. Let X Ç V(G) be finite with ai(X) ^ a2(X). By symmetry, we may
assume that there is an X-flap C ç aj(X) with C £ a2(X). By (3.14), there
is a ax -balanced ray 7? with V(R) ç C. Let E he the end with ReE. Then
E e %(ax) since R is ai-balanced, and E $ %?(a2) since C £ a2(X). Thus
ir(a,)^(a2).   a
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From (5.2), (5.3), (5.4) we deduce

(5.5) The function I? is a bijection between the set of all strategies of order No

azza" the set of all closed sets of ends.

Consequently, every strategy of order N0 is a join of atoms. (This is also

implied by (3.15).)
As a corollary of (3.15) and (5.3) we deduce

(5.6) Let ,9~ be a closed set of ends of a connected graph G. Then there is a

subgraph T of G which is a tree, such that for each finite X ç V(G) and every

X-flap C, C includes a ray of T if and only if C includes some member of

some end in SF.

In particular, if we let & be the set of all ends, we deduce

(5.7) For every connected graph G there is a spanning tree T such that for every

finite X ç V(G) and every X-flap C, C includes a ray of T if and only if C
includes a ray of G.

This is a weak form of an old conjecture of Halin [3], which we have recently

shown to be false [7]; the following.

(5.8) Conjecture. For every connected graph G there is a spanning tree F

such that for each end E of G there is exactly one end F of F with F ç E.

6. Variations of the game

In this section we investigate what happens to the cops-and-robber game when

the robber is invisible. This makes it no longer a full knowledge game, and

luck now plays a role. We are concerned with—in which graphs can the cops

guarantee to capture a lucky, invisible robber? Another way to view this game,

suggested by the referee, is: the cops are required to submit the sequence of cop

moves in advance, and the robber will gain knowledge of this sequence before

the game begins. Can the robber use this information to survive infinitely long,

or can the cop search sequence be constructed so that the robber will be captured

at some finite step no matter what he does?

Let us state the game more precisely. Let G be a graph, and let zc be a

cardinal. We say that < zc cops can blindly search the graph G if there exists

a sequence 0 = X0, Xx, ... of subsets of V(G) such that

(i) |X,| < zc for every i > 0,
(ii) for every i > 0, either X, ç Xi+X or Xi+X ç X,, and

(iii) there is no sequence Ro, Rx, ... of (nonempty) subsets of V(G) such

that Ri is an X,-flap and R¡ n Ri+X =£ 0 for every i > 0.

It is shown in [1] that < k cops can blindly search a finite graph G if and only
if G has "path-width" < k - 2. To state a result for infinite graphs we need the

following definition. Let (F, W) be a tree-decomposition of a graph G, and

let to e V(T). We call the triple (T, to, W) a rooted tree-decomposition of

G. Let k be a cardinal. We say that a rooted tree-decomposition (T, to, W)

of a graph G is < zc narrow if | U{^: dist(r, to) = n}\ <k for every integer

zz >0.
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(6.1) Let G be a graph, and let k be a cardinal. Then < zc cops can blindly

search G if and only if G admits a < k narrow rooted tree-decomposition

(T, to, W) such that T is rayless.

For if G admits a < zc narrow rayless rooted tree-decomposition, then it is

easy to show that < zc cops can blindly search G. Conversely, it can be shown

that if < zc cops can blindly search G, then they can do so "monotonely", that

is, the sequence X0, Xx, ... satisfies X, n Xk ç Xj for all k > j > i > 0
(compare to (2.3) of [1]). From this the required tree-decomposition is easy to

obtain. We omit further details.

For zc infinite we deduce the following two corollaries.

(6.2) Let k be a cardinal with cf(zc) = w. Then < k cops can blindly search

G if and only if \V(G)\ <k and < k cops can search G.

(6.3) Let k be a cardinal with cf(zc) > w. Then < k cops can blindly search

G ifandonlyif\V(G)\<K.

There is also a transfinite version of this searching game, as follows. A blind

search in G is a transfinite sequence (Xa)a<x of subsets of V(G), where X

is an ordinal, such that Xo = 0, for every ordinal a either Xa ç Xa+X or

Xa+i Q Xa, and Xa = C\ß<a\fß<y<aXy for every limit ordinal a < X. Let zc

be a cardinal. We say that a blind search (Xa)a<x has width < k if |XQ| < zc

for every a < X. If X = (Xa)Q<¿ is a blind search, we define 7?o(X) = V(G),
and for a > 0 let 77a(X) be the set of all v e V(G) such that there is a path

in G between v and a vertex in C)ß<a\jß<y<aBy(X) avoiding Xa. We say

that X is successful if Bx(X) = 0 , and we say that < zc cops can transfinitely
blindly search the graph if there exists a successful blind search of width < zc .

(6.4) Let k be a cardinal. Then < zc cops can transfinitely blindly search G if

and only if G admits a well-ordered decomposition of width < k .

The proof is similar to the proof of (6.1). Again, we omit the details. For

infinite zc we deduce from (1.6)

(6.5) Let k be an infinite cardinal. Then < k cops can transfinitely blindly

search a graph G if and only if G contains no subgraph isomorphic to a subdi-

vision of TK.

The reader may perhaps ask what happens to the regular cops-and-robber

game if the cops are allowed to search transfinitely. This game turned out to

be useful in characterizing graphs with no minor isomorphic to the complete

graph of cardinality zc . See [6].

7. UnDECIDABLE STRUCTURE THEOREM

One might expect a structure theorem of the form "a graph contains no minor

isomorphic to FNl if and only if it admits a well-founded tree-decomposition

(T, W) of width < N!, where F contains no minor isomorphic to FNl ." Such

a theorem indeed exists, but only under an additional set theoretic assumption.

We now explain this fact.

Let F be a well-founded tree. We say that a set K ç V(T) is convex if for

every t,t',t" e V(T) such that t' e T[t, t"], t,t" e K implies t' e K. Let
{Ka}aeA he a collection of disjoint convex subsets of V(T) ; we define Ka < Kß
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if t < t' for some t e Ka and t' G Kß . Then ({Ka}aeA, <) is a well-founded

tree, called a znz'zzoz- of F. Since FNl can be regarded as a well-founded tree, the

statement " F has a minor isomorphic to T#x " is well defined. The following

is implied by (1.3).

(7.1) Let G be a graph. If G contains no minor isomorphic to FN,, then

G admits a well-founded tree-decomposition (T ,W) of width < Nj, where T

contains no minor isomorphic to F¡<,.

The question is about the converse. A well-founded tree F is called a Suslin

tree, if F is uncountable, but every chain and every antichain in F is countable.

The Suslin hypothesis is the following statement:

(SH)        No Suslin tree exists.

It is known that (SH) is independent of ZFC, and even of ZFC + CH,
or ZFC + -'CH. It turns out that the converse to (7.1) depends on (SH), as

follows.

(7.2) The converse to (7.1) holds if and only z/(SH) is true.

Indeed, the comparability graph of a Suslin tree admits such a tree-decompo-

sition, but contains a minor isomorphic to F«, . We omit further details.
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