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THE GEOMETRIC STRUCTURE OF SKEW LATTICES

JONATHAN LEECH

Abstract. A skew lattice is a noncommutative associative analogue of a lattice

and as such may be viewed both as an algebraic object and as a geometric ob-

ject. Whereas recent papers on skew lattices primarily treated algebraic aspects

of skew lattices, this article investigates their intrinsic geometry. This geometry

is obtained by considering how the coset geometries of the maximal primitive

subalgebras combine to form a global geometry on the skew lattice. While this

geometry is derived from the algebraic operations, it can be given a description

that is independent of these operations, but which in turn induces them. Var-

ious aspects of this geometry are investigated including: its general properties;

algebraic and numerical consequences of these properties; connectedness; the

geometry of skew lattices in rings; connections between primitive skew lattices

and completely simple semigroups; and finally, this geometry is used to help

classify symmetric skew lattices on two generators.

Recall that a band is a semigroup satisfying the idempotent law: xx = x.

Upon examining bands which are multiplicative subsemigroups of rings, one

uncovers classes of bands which also possess an idempotent countermultipli-

cation. This leads one to define a skew lattice to be an algebra with a pair of

associative idempotent binary operations, the join and the meet, which are con-

nected by a set of absorption laws (see 1.1). While skew lattices of idempotents

in rings remain important sources of motivation, the results of [10-12] make

it clear that skew lattices can sustain mathematical life on their own. Perhaps

the most natural way to think about a skew lattice is as a noncommutative ana-

logue of a lattice. As such, a skew lattice is not only an algebraic object, but

also a geometric object. Thus far most of the research given in [10-12] has
emphasized the algebraic side of skew lattices. The purpose of this paper is
to investigate their geometric aspects and in particular the role of the natural

partial order in determining their algebraic structure, much as a lattice is deter-

mined by its natural partial ordering. It is not our goal, however, to reinvent

lattice theory. Hence the geometry of a skew lattice will be studied relative to

the fixed structure of its underlying lattice. Saying this entails an implicit refer-

ence to the fundamental Clifford-McLean Theorem which in effect provides a

first sketch of a skew lattice: a congruence is defined on each skew lattice (called

natural equivalence) which induces its maximal lattice image and whose equiv-
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alence class are the maximal rectangular subalgebras of the skew lattice. (For

details see 1.1 below and [10, 1.7].)
Our approach to skew lattice geometry is based on primitive skew lattices

which, by definition, have precisely two maximal rectangular subalgebras. In

the first section primitive skew lattices are studied by means of a natural de-

composition of each equivalence class into cosets. There exists between each

coset of the upper class and each coset of the lower class a coset bijection which

is induced by the natural partial ordering. This coset decomposition together

with the family of coset bijections provides the intrinsic geometiy of the prim-

itive skew lattice, which in turn determines its algebraic behavior (see 1.5, 1.6).

Upon introducing coordinates one discovers that the data describing this coset

geometry generalizes the data used in the Rees matrix description of completely

simple semigroups. This leads to a connection between a subclass of primi-

tive skew lattices and the class of completely simple semigroups. Examples of

primitive skew lattices encountered in rings are all of this type.

An arbitrary skew lattice, provided it is not rectangular, may be viewed as

being covered by its maximal primitive subalgebras. This leads one to consider

how the various primitive geometries collectively form a global coset geometry

on the entire skew lattice, which may in turn yield its algebraic structure. To do

so, however, requires some preliminary developments which are of independent

interest. Thus the second section begins by defining the natural graph of a skew

lattice. It turns out that the connected components of a skew lattice form a

congruence partition. Thus one obtains in Theorem 2.6 a complement to the

above Clifford-McLean Theorem: the maximal connected subalgebras of a skew

lattice form a congruence partition which induces the maximal rectangular image

of the skew lattice. Next, the properties of being piecewise [disconnected and

being homogeneous are defined and briefly discussed. The section concludes

by "checking out" concepts and results encountered in the first two sections on
classes of examples from rings.

The main application of connectedness occurs in the third section where it

is used in 3.1 to define orthogonality of a given pair of equivalence classes in a

mutually comparable third class. Theorem 3.3 asserts that any two equivalence

classes are orthogonal in both their join class and their meet class; moreover

individual joins and meets of pairs of elements from each class are determined

by this orthogonality relationship. The algebraic structure of an arbitrary skew

lattice is thus determined by its maximal primitive subalgebras and a global

coset geometry is made possible. This geometry has numerous algebraic and

numerical consequences which are explored in 3.4-3.6. These consequences

are completely unlike anything occurring in either lattice theory or the theory

of bands, and should serve to emphasize the profound structural differences

existing between skew lattices and either bands or lattices. Next, partial skew

lattices on quasi-ordered sets are introduced. Here the join and meet are defined

only for elements comparable under the given quasi-order. The point of view

which we adopt is that partial skew lattices are natural mathematical objects.

Indeed they may be viewed as noncommutative partially ordered sets. (The

full set of idempotents in any ring forms a partial skew lattice in at least three

different ways, two of which are mentioned in 3.8(H).) Thus an obvious question

is raised: what are the precise conditions under which a partial skew lattice defined

on a quasi-ordered set naturally induces a full skew lattice structure on the set?
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This question receives a simple answer in Theorem 3.10. This is, perhaps, the

result coming closest to the structure theorems for bands given by Petrich in [ 15]

and Warne in [19], although it is clearly more geometric in character than the

theorems given by the other authors. Partial skew lattices may in turn be viewed

as quasi-ordered sets which are covered by primitive skew lattices. Thus to

complete the picture, attention is focused on determining when such a primitive

covering induces a partial skew lattice structure on the quasi-ordered set. The

answer, given in Theorem 3.12 in terms of coset projections, directly generalizes

the picture of normal bands given by Yamada and Kimura in [20]. The section

concludes with a discussion of partial skew lattices for which coset bijections

between comparable equivalence classes form a category under the standard

composition of partial bijections. Theorem 3.16 contains several pertinent facts

about such categorical partial skew lattices.

The final section consists of further examples and results which apply and

illustrate the theory of the first three sections. Skew chains in rings are studied

in 4.1-4.5. Next, several classes of skew lattices are briefly discussed in 4.6-4.8.

The paper concludes by classifying symmetric skew lattices on two generators
in 4.10-4.12.

Detailed background on skew lattices may be found in [10]. Both [8 and 17]

are good sources of information on bands. Information on completely simple

semigroups may be found in [2, 8, 13] or [16].

1. COSETS AND COORDINATES

1.1. A skew lattice is an algebra (S, V, A) where both v and A are associa-

tive, idempotent binary operations which jointly satisfy the absorption identities:

x A (x V y) = x = x V (x Ay)   and   (x Vy) A y - y = (x Ay) Vy.

Given that the operations are associative and idempotent, these identities are

equivalent to the following dualities: xVy = x iffxAy = y and xVy = y iff

x A y = x . Every skew lattice has a natural partial ordering defined by x > y

iffxAy=y=yAx,or dually, xVy = x = yVx. Given nonempty sets,

L and R, the product L x R becomes a skew lattice upon defining (x, y) V

(x', y') = (x', y) and (x, y) A (x', y') = (x, y'). Any isomorphic copy of such

a skew lattice is said to be rectangular. Recall from [10, 1.7] that the maximal

rectangular subalgebras of a skew lattice form a congruence partition, with the

induced quotient algebra being the maximal lattice image of the given skew

lattice. The actual congruence, called natural equivalence, is given by x = y if

both xVy Vx = x and yVxVy = y or dually, xAyAx = x and yAxAy = y .

1.2. A primitive skew lattice is a skew lattice with precisely two equivalence

classes. If A and B denote the two classes, then A > B means that A is

the higher class. In this case, by a coset of A in B is meant any subset of

form A A b A A for b in B , and for any a in A its image in B is the subset

a A B A a = {b in B\b < a}. Cosets and image sets in A are defined in

dual fashion. To explain their role, it is helpful to recall that skew lattices are

biregular, that is, both V and A satisfy the identity: xuvx = xuxvx. (See

[10, 1.15].) A useful alternative to this identity is the regularity implication: if
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x, y, z are equivalent, then xuvz = xuyvz. We now present the following

basic lemma.

Lemma 1.3. Let S be a primitive skew lattice with equivalence classes A > B.

Then
(i) B is partitioned by the cosets of A. In detail, b is in AAbAA for all b

in B, and if x is in AAbAA, then AAxAA = AAbAA.
(ii) The image set in B of any a in A is a transversal of cosets of A in B.

Dual remarks hold for cosets and image sets of B in A. Furthermore:

(iii) Given cosets, B V a V B in A and AAbAA in B, there is a natural

bijection of cosets with x in B V a V B corresponding to y in AAbAA iff
x > y.

(iv) The meet and join operations are determined by the coset bijections.

Proof. By absorption b = (a V b) A b A (b V a) so that b is in AAbAA. Given
x in AAbAA, say x — mAb An for m, n in A, then regularity implies that

for all a, a' in A , a A x A a! = a A b A a'. Thus (i) is seen. We next verify (iii).

Let a in A and b in B be given. Then for each x in BVaVB, x > xAbAx

and we just saw that xAèAx = xAyAx for each y in AAbAA. Thus >

induces a function between cosets and by the dual argument this function is in

fact a bijection. (ii) follows immediately from (iii). To see (iv), let a in A and

b in B be given. Then aAb = a'Ab in B where a' - a A b A a is the unique

image of a in the coset of A to which b belongs. Likewise b A a = b A a'.

The cases aV b and by a are handled in dual fashion.

1.4. The above lemma leads to a general construction. But first recall that

a skew lattice is right handed if it satisfies the identity xAyAx = yAx and

hence also its dual xVyVx = xVy. These identities essentially assert that
in each equivalence class x A y = y and x V y = x . Left handed skew lattices
are defined by the opposite identities. In what follows a right [left] handed

primitive skew lattice is simply called right [left] primitive. Due to biregularity,

every primitive skew lattice factors as the fibered product of a right primitive skew

lattice with a left primitive skew lattice over the two element lattice, with both

factors being unique to within isomorphism. (See [10, 1.14-1.16].) Both left

and right primitive skew lattices may be constructed from the following class
of neutral objects.

1.5. A P-graph consists of a pair of partitioned sets, A = (JA¡ and B =

U Bj, for which the cells from both partitions have a common cardinality,

together with a fixed set of cell bijections </>7, : A¡ —► Bj. P-graphs are denoted

by pairs of the form (A¡, Bj). For small orders, F-graphs are easily drawn.

i v        r ^   N
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In this diagram the cells are indicated by the double bonding and the bi-

jections are indicated by the broken lines. Given a F-graph (A,, Bj) with

A = [J A¡ and B = [j Bj , we induce a right primitive structure on A UB as fol-
lows. The operations restricted to A or B are trivial: x Ay = y and xVy = x .

Given x in A¿ and y in Bj, then again x A y = y and x V y = x ; however,

y Ax = (j)ji(x) and y Vx = </>"•'(y). A right primitive skew lattice P[A¡, Bj] is

thus obtained with equivalence classes A > B, with cosets being the A¡ and the

Bj, and with the coset bijections being the </>j¡. Upon dualizing the definitions

of V and A one obtains the left primitive dual, P'[A¡, Bj]. By Lemma 1.3, it

follows that to within isomorphism, every right [left] primitive skew lattice is

obtained in this fashion. If 2 denotes the lattice Io, then the discussion of this
section up till now may be summarized as follows:

Theorem 1.6. If P is a primitive skew lattice, then it has a fibered product de-

composition, P = [Ai, Bj] x2 P'[Ck, D¡], where (A¡, Bj) and (Ck, D¡) denote
P-graphs. Both P-graphs are unique to within isomorphism of P-graphs.

1.7. We introduce coordinates. Let / and J be nonempty sets, let u :

GxC -» C be an action of group G on set C, and let 6 : J x / —> G be a map.

Partition A = IxC into cells {z} x C, partition fi = /xC into cells {j}x C,

and given ;, i define <t>j¡ : {i} xC -> {;'} x C by </>,,(/, c) = (;', 6(j, i)c). We
thus obtain a F-graph.

The right primitive skew lattice constructed from this F-graph is denoted by
P[I, J, u, 6]. Both the F-graph and the skew lattice are normalized at (i, j)

if 8[{J} x / U 7 x {/}] = 1 in G. If P is a given right primitive skew lattice,

then an isomorphism F = P[I, J, u, 6] is called a coordinatization of P. The

left handed dual to P[I, J, u, d] is denoted P'[I, J ,u, 0].

Theorem 1.8. Any right [left] primitive skew lattice can be given a normalized
coordinatization.

Proof. Let F be a right primitive with classes A > B, with coset decomposi-

tions A = U A¡ and B = {JBj, and with coset bijections <f>j¡ : A¡ -* Bj. Pick
a coset from each class, say A0 and Bo. For each pair i, j define the permu-

tation 6(j, i) on Ao by 6(j, i) = «^/¿Vv'i^ö/Voo- Let G be any permutation

group on Ao containing all the 8(j, i) and let u : GxA0-*A0 be the natural

action. If / and / are indexing sets for the A¡ and Bj respectively, then de-

fine the bijection a : P —> P[I, J, u, 6] on cosets by a\A¡ = {i} x f/>ö0Vo; and

a\Bj = {j} x (pj0x . These restrictions of a commute with the coset bijections so

that a is an isomorphism of skew lattices. Finally, the constructed skew lattice
is clearly normalized at (0,0).

1.9. A special case of coordinatization occurs when G = C and u: GxG ->

G is group multiplication. In this case the data reduces to the indexing sets, /

and /, the group G and a map 6 : J xi -» G. The resulting skew lattice is de-

noted by P[I, J, G, 6], or in the left-handed case by P'[I, J, G, 6]. If F is
a primitive skew lattice, then an isomorphism of F with either P[I, J, G, 6]

or its dual is said to be a coordinatization with group translations. Such a coordi-

natization can always be chosen to be normalized. It is well known that the data

[I, J, G, 8] is precisely what is needed to carry out the general construction of
a completely simple semigroup: with the given data define a multiplication on
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I x G x J by (i, a, j)(i', b, j') = (i, ad(j, i')b, j'). The completely simple
semigroup thus constructed is denoted by S[I, J, G, 6]. This "coincidence"

suggests that primitive skew lattices which are coordinatized with group trans-

lations can be constructed from completely simple semigroups. To see this let

S be a completely simple semigroup and pick an idempotent e in S. Both

Se and eS decompose into maximal subgroups with the group eSe being the

intersection. If we ignore the minor inconvenience of nonempty intersection

(which is easily repaired), then Se u eS can be turned into a right primitive

skew lattice with classes Se > eS and with cosets being the maximal sub-

groups. One need only indicate the coset bijections: for idempotents / in Se
and g in eS, then the coset bijection between the corresponding subgroups,

4> : fSf -» gSg, is given by <(>{s) = gsg. If S = S[I, J, G, 6] with 6
normalized at i = 0 and j = 0, then upon choosing e = (0, 1, 0) the right

primitive skew lattice constructed in this fashion is a copy P[I, J, G, 6]. For

upon picking s = (i, a, 0) in fSf, where / = (i, 1, 0), and idempotent

g = (0, 1, j) we calculate gsg = (0, 6(i, j)a, j) which is essentially the rule

for (j) : {/} x G -» {j} x G. For example, let / = J = G = Z2, the field of
order two, where the group structure is the field addition and 6 is just field

multiplication. Then the F-graph of P[Z2, Z2, Z2, 6] is given in the diagram
of 1.5. This graph is deformed in the semigroup S[Z2, Z2, Z2, 6].

o*

X*

Here the group in the lower left corner does double duty as a coset in both

classes.

2. Connectedness

2.1. The natural graph of a skew lattice S is the undirected graph (S, E)

given by the natural partial ordering of S. Thus the vertices are the elements

of 5 while {x, y} forms an edge of the graph when either x > y or y > x .

The skew lattice is connected if its graph is connected. In general, a component

of S is any connected component of its graph. Clearly each component has

nonempty intersection with each equivalence class of S. Moreover, for the

case when S is the primitive skew lattice F, then each component of F has

nonempty intersection with each coset. This leads us to say that a primitive

skew lattice F is disconnected if in any, and hence every, coset of F distinct

elements of the coset belong to distinct components.   F is degenerate if it is
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both connected and disconnected, in which case x > y holds between all x

in the higher class and all y in the lower class. By a coset component of F is

meant the intersection of a coset of F with a component of F. The situation

for primitive skew lattices is summed up in the following theorem whose rather

easy proof is left to the reader.

Theorem 2.2. Let P be a primitive skew lattice. Then the components of P

are the maximal connected subalgebras of P and the component partition of P

is a congruence partition for which the induced quotient algebra is the maximal

rectangular image of P. Moreover the coset components of P form a congruence

partition for which the induced quotient algebra is the maximal disconnected

image of P. Finally, if P is disconnected, then it factors as the product of a

degenerate skew lattice with a rectangular skew lattice.

2.3. Let F be right primitive with normal coordinatization P[I, J, u, 9].

Then F is connected when K, the subgroup generated by d[J x /], acts tran-

sitively on its set. In general the components of F correspond to the orbits of

K. Thus F is disconnected when 6[J x /] = 1. Suppose that F is normally

coordinatized with group translations, say by P[I, J, G, 6]. In this case the

components of F correspond to the subgroup cosets of K in G, so that con-

nectedness occurs when 6[J x I] generates G. Upon passing to the associated

completely simple semigroup, connectedness corresponds to the idempotents

generating the semigroup, while disconnectedness corresponds to the idempo-

tents forming a subsemigroup.

In this paper, a connected graph with each vertex having degree two is called

a simple circuit when finite, and an infinite simple path when infinite.

Theorem 2.4. Let P be a right primitive skew lattice. Then the natural graph

of P is a simple circuit precisely when P has a coordinatization with group

translations of the form P[Z2, Z2, Z„ , 8] for some n > 1 where 9(j, i) = ji

for i,j in {0, 1}. The graph is an infinite simple path precisely when P has

a coordinatization P[Z2, Z2, Z, 6] where again 6(j, i) = ji, in which case

P is an infinite primitive skew lattice on four generators. (All infinite primitive
skew lattices need at least four generators.)

2.5. Returning to the general case of an arbitrary skew lattice S, the skew

lattice is said to be bounded if it has both a maximal and a minimal equivalence

class, in which case both classes combine to form the boundary algebra of S,

denoted Bd(5). More generally, if B > C is a comparable pair of equivalence

classes in S, then the interval [C, B] is the subalgebra obtained from the

union of B and C with all intermediate equivalence classes. We now present

the complement to the Clifford-McLean Theorem.

Theorem 2.6. The components of a skew lattice S are its maximal connected

subalgebras. Moreover, the partition of S into components is a congruence par-

tition for which the induced quotient algebra is the maximal rectangular image

of S. If S is also bounded with boundary algebra Bd(S), then the inclusion

Bd(5) ç S induces an isomorphism of maximal rectangular images.

Proof. The theorem holds when S is primitive. So assume 5 is bounded with

maximal class A and minimal class Z . Then Bd(5) = Al)Z decomposes into

its components A¡ U Z,. An element x in S is said to belong to component
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A¡uZ¡ if A¡\JZi is the unique boundary component such that there exist u in

Ai and v in Z, such that u > x > v . For any y in S such that either x > y

or y > x it is clear that y belongs to the same boundary component as x.

Hence the inclusion Bd^) ç S does induce a bijection of components. Let x

belong to ^,UZ, and y belong to ^;UZ7. Pick u in /I, and w in ^ so that
w > xVy Vx and tu > yMxyy. Thus «Vit; > (xVy Vx)V(y VxVy) = xVy and

xVy must lie in the component of S containing (AíUZ¡)\/(Aj\jZj) . Likewise

x A y lies in the component containing (A¡ U Z¡) A (A¡ U Zf). The bounded

case of the theorem now follows from the primitive case. In general, any two

elements connected in a skew lattice are also connected in some interval. The

general case of the theorem follows from the fact that every skew lattice is the

directed union of its intervals.

2.7. A skew lattice is piecewise connected [disconnected] if each of its maximal

primitive subalgebras is [disconnected. Clearly piecewise connected implies

connected; however, a skew lattice can be simultaneously connected and piecewise

disconnected with all its maximal primitive subalgebras having infinitely many

components. For let X denote the set of infinite 0-1 binary sequences which

are eventually 0, and for each integer n > 0 let Xn be a copy of X. Let S

be the right-handed skew lattice with classes Xo > Xx > ■■■ determined by

letting each primitive subalgebra Xm > Xn have unique lower coset X„ with

the upper cosets in Xm consisting of sequences sharing a common prefix of

length n - m and with the coset bijections being maps deleting these prefixes.

Since all sequences eventually vanish S is connected. Since each lower class is

infinite, each maximal primitive subalgebra is disconnected with infinitely many

components. On the other hand, any connected skew lattice having a maximal

primitive subalgebra with finitely many components must also have a connected

maximal primitive subalgebra.
2.8. A skew lattice is homogeneous if it factors as the product of a rectangular

algebra with a connected algebra. Any primitive skew lattice which can be co-

ordinatized with group translations is homogeneous. In particular, disconnected

primitive skew lattices are homogeneous. A skew lattice S is called binormal if

both x V S V x and x A S A x are sublattices for all x in S, in which case the

components of S are precisely the maximal sublattices of S. Schein proved

that binormal skew lattices are homogeneous with lattice components. (See [18];

this also follows from the Clifford-McLean theorem and Theorem 2.6.) The

maximal binormal image of a skew lattice is the quotient algebra induced from

the intersection of the component congruence with natural equivalence. Binormal

skew lattices form a subvariety of skew lattices.

2.9. Let A be a ring with E(A) denoting its set of idempotents. In this

paper all rings have units. For any idempotent e the F-set of e is the set

R(e) = e + eA(l - e) = {x\ex = x, xe = e).

The F-sets partition E(A) into its maximal right rectangular bands. They are

naturally ordered upon setting R(e) > R(f) whenever ef = f, or equivalently

xy = y for all x in R(e) and y in R(f) . If R(e) > R(f) but R(e) ¿ R(f),
then we write R(e) > R(f) and call the pair a primitive pair of F-sets. Recall

the binary operations defined on A: xV y = x + y-xy and x A y = xy. Using

these operations, every primitive pair of R-sets forms a maximal right primitive

skew lattice in A . Assuming e > f for the displayed representatives, this skew
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lattice is denoted by P[e, f]. P[e, f] has the coordinatization P[I, J, C, 8]

described as follows: I = (e - f)A(l - e), / = fA(e - f), C = fA(l - e)
and 8 : J x I —► C is just restricted multiplication. Using the decompositions

eA(l -e) = I + C and fA( 1 - /) = J + C, the isomorphism of P[e, f] with
P[I, J, C, 8] sends e+i+c to (i, c) and f+j+c to (z', c). Fac/z P[e, f] is

thus homogeneous; it is also connected when JI = fA(e-f)A(\ -e) generates

C = fA(l - e). Hence each P[e, f] is connected when the ring is simple. The

pieces of P[e, /] are seen in the matrix diagram:

/ fA(e-f) fA(l-e)

0      ' 0 '    (e-f)A(\-e)

0 0 . \-e

2.10. Adjacent to the skew lattice P[e, f] lies a completely simple semi-

group. If g denotes / + ( 1 - e), then the companion semigroup S = S[e, f]

is the multiplicative subsemigroup of A given by S-g + I + C + J where

I, J, and C are as in the above paragraph. S is easily seen to be com-

pletely simple. In particular, S g = g + I + C has g + I for its idempotents,

gS = g + C + J has g + J for its idempotents, and the maximal subgroup

at g is gSg = g + C . Given x = g + i + c in the subgroup of idempotent

g + i in S g and given idempotent h — g + j in gS, multiplication yields

hxh = h + c + ji. Thus the right primitive skew lattice constructed on S g U gS

is just a copy of P[e, f]. As evidence of the naturalness of this correspondence,

observe that if d > e > f is a chain in E(A), then under standard subset mul-

tiplication, S[d, e]S[e, f] = S[d, f] in A . It follows from 3.16 below that in
contravariant fashion P[e, f]P[d, e] = P[d, f].

2.11. We pass to a significantly larger class of skew lattices inside a ring.

A right handed skew lattice S in (A, V, A) is affine if for every finite set of

equivalent elements xx, ... ,x„ in S, each affine combination kxxx-\-\-knxn

belongs to their common equivalence class, where kx + ■ ■ ■ + k„ = \ and the

ki lie in K, the center of A . Given a right-handed skew lattice S the affine

closure of S in A is the set of all affine combinations of equivalent elements

in S. The affine closure is easily seen to be the minimal affine skew lattice in

A containing S. For any e > f in E(A), P[e, f] is affine. It is not hard

to show that the affine primitive subalgebras of P[e, f] containing e > f are

precisely the subalgebras of the form (e + M + C) U (f + N + C) where here

M, N, and C are K-submodules of (e- f)A(l-e), fA(e-f) and fA(l-e)
respectively and for which NM ç C. Most types of right-handed skew lattices

in rings considered in [ 10 and 11 ] are affine. For such skew lattices we have the

following results.
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Theorem 2.12. If A is a ring and S is an affine right-handed skew lattice in

(A, V, A), then all the components of S are affine. If S is also bounded, then
it is homogeneous.

Proof. First assume S is bounded with boundary Bd(S) = (e + M + C) U

(f + N + C) as in the above paragraph. If C is the submodule generated

by NM, then the necessarily affine component of Bd(S) containing e > f is

(e + M + C')U(f + N + C). Let S' denote the corresponding component of S

and let x and y lie in a common class of S'. Then for any v in f + N + C,

both vx and vy lie in f + N + C also. If a + b = 1 in center K, then

ax + by > v(ax + by) = avx + bvy. Since f + N + C is affine, avx + bvy lies

in f+N + C and hence ax + by lies in S' which is thus seen to be affine.

Next note that for all x in S and c, d in C, ex = 0, xd = d , and cd - 0.

Thus for all x, y in S and c, d in C :

(x + c) A(y + d) = (x Ay) + d   and   (x + c)V (y + d) = (xVy) + c.

Thus every translate S' + c for c in C is also a (necessarily affine) component

of S ; moreover, any two such translates are equal, S' + c = S' + d, precisely

when c-d lies in C . Let F be a transversal of the C'-cosets in C ; then the

bijection of S with S' xT sending each x in S to the unique pair (x', c) in

S' x T for which x = x' + c is an isomorphism by the above identities. That

all components of S are affine also in the unbounded case follows again from

S being the directed union of its (necessarily affine) intervals.

Corollary 2.13. Let A be a ring and let S be a connected, right handed skew

lattice in (A, V, A). Then the affine closure of S is also connected.

3. Orthogonality and partial skew lattices

3.1. Consider the general situation of three equivalence classes, A, B, and
C, such that C is comparable to both A and B. By a class component of

A in C is meant the intersection of a component of A U C with C. One

similarly defines a class component of F in C. We say that A and B are

orthogonal in C if each class component of A [of B ] in C is contained in

a unique coset of B [of A] in C. The orthogonality of A and B in C is

equivalent to asserting that each x in A is covered by a coset of B in C, that

is, the image set of x in C is a subset of this coset of B , and likewise each y

in B covered by a coset of A in C. If A and B are orthogonal in C, then

each coset of A in C has nonempty intersection with each coset of B in C ;

moreover, all such coset intersections have common cardinality. For let A x, A2

be cosets of A in C ; let Bx, B2 be cosets of B in C ; and let 4>x, (f>2 denote

coset bijections from Ax and A2 onto a common coset in A. The bijection

4>214>X : Ax —> A2 and its inverse (j>\~l(f>2 keep individual elements in the same

class component of A in C . Orthogonality implies both bijections restrict to

an inverse pair of bijections of Ax nBx with A2nBx. A similar argument shows

that A2 n Bx is in bijective correspondence with A2 n B2 , so that the assertion
is verified. (We thus visualize C to be a doubly partitioned rectangle arising

from a horizontal partition by one class of congruent rectangles, the ^-cosets,

and a vertical partition by a second class of congruent rectangles, the F-cosets.)

3.2. What happens when J is the join class of A and B , and M is their

meet class? If x in A and y in F are given, then yAxAy=yA«Ay for
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any u in M such that u < x. Consequently, each x in A is covered by a

fixed coset of F in M ; likewise each y in 5 is covered by a coset of A in

M. Thus A and B are orthogonal in their meet class M ; dually, they are

orthogonal in their join class J. Since x A y = (x A v A x) A (y A u A y) for any

x in A, y in B, and u, v in M, where u < x and v < y, it follows that

x A y = x' A y' where x' < x and y' < y in M are the unique images in the

cosets covering y and x respectively. To sum up:

Theorem 3.3. Let A and B be equivalence classes in a skew lattice. Then A

and B are orthogonal in both their join class J and their meet class M. For

each x in A and y in B, x A y = x' A y', where x' in M is the image of x

in the unique coset of A covering y, and likewise y' in M is the image of y

in the coset of B covering x. The computation of x\l y is determined in dual

fashion.

3.4. The double partition of either J or M by ^-cosets and F-cosets is

illustrated in the following diagram in which the partition is shown to be refined

by the coset partition which J and M directly induce on each other.

i i i
i i i

i i i
i i i

i i i
i i i

To see when the double partition coincides with the partition by J - M

cosets, recall that a skew lattice is symmetric if commutativity is unambiguous:

xV y = yv x iffxAy = yAx. Symmetric skew lattices form a subvariety of

skew lattices. The examples in rings studied in [10 and 11] are all symmetric.

Theorem 3.5. A skew lattice is symmetric if and only if for any two equivalence

classes, A and B: (i) the partition of the join class J by intersections of A-

cosets with B-cosets equals the partition by cosets of the meet class M ; (ii) the

dual assertion holds for the meet class M.

Proof. First assume that in J and M, ^4-cosetsand F-cosets intersect to J-M

cosets. Let a in A and b in B be given with aVb = bwa. By orthogonality,

a A b and b A a lie in an A - B coset intersection. Thus a A b and b A a lie in

a common 7-coset, and since awb > a Ab, b Aa, it follows that a A b = b A a .

Similarly aAb = bAa implies a\/b = bva. Suppose instead that more than

one /-coset in M lies inside the intersection / of an ,4-coset with a F-coset.

Thus there exists j in J having at least two distinct images in /. Form a

nonsymmetric subalgebra /' U A' U B' U M' inside subalgebra S' = j A S A j
by letting /' = {j} , M' = j AIA j and setting A' [B'] equal to the image of
M' in A n S' [in F n S'] under a single coset bijection of S' from M' to the
intermediate class. While all pairs of elements from A' and B' join commute,

not all pairs meet commute.
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3.6. If C and D are comparable equivalence classes in 5, then by the coset

cardinality of C and D, denoted c[C, D], is meant the common cardinality of

all the cosets of Cl)D. Returning to the previous situation of classes A, B, J ,

and M, it is clear that J is finite if both c[J, A] and c[J, B] are finite, in

which case |7| divides c[J, A]c[J, B]/c[J, M], with equality holding when
S is symmetric. The dual assertion holds for M. It follows that the union of

all finite classes of a skew lattice is a subalgebra; similarly, for a fixed prime p

the union of all finite classes having p-power order is a subalgebra. Skew lattices
for which all classes have prime power order arise in finite dimensional algebras

over finite fields. It is clear that a skew lattice is finite if its underlying lattice is

finite and there exist finite classes Ax, ... , An which form a set of generators on

the lattice. By 2.4, a finitely generated skew lattice need not be finite, even when

its underlying lattice is finite. Orthogonality also implies that if A and B are

finite classes with relatively prime orders, then A and B elementwise commute

and generate a finite piecewise disconnected subalgebra, Al) B U J U M, with

c[J, M] = 1, |/| = c[J, A]c[J, B], and \M\ = c[M, A]c[M, B]. In a finite
dimensional algebra over a field, all cosets in an affine skew lattice have finite

dimensions as hyperspaces, to be denoted d[J, A], d[J, B], etc. One thus has

dim(/) = d[J, A] + d[J, B] - d[J, M] and dim(M) = d[M, A] + d[M, B] -
d[J,M].

3.7. We significantly extend the context of our discussion. To begin, let

(S, >) be a quasi-ordered set. The quasi-order > partitions S into equivalence

classes which are partially ordered as follows: A > B iff a > b for all a in

A and b in B . A partial skew lattice on (S, >) is a quadruple (5, >, V, A)

where v and A are partial binary operations defined whenever both elements

are comparable under the quasi-order, and such that the union of any chain

of equivalence classes is a skew lattice under V and A , with equivalence class

structure the same as that given by (S, >). That V and A are both associative
on totally quasi-ordered subsets is referred to as linear associativity. One con-

sequence of linear associativity is middle associativity: if m < x, y < p , then

(x V p) V y = x V (p V y), since both sides equal (x V p) V (p V y), and likewise

(x A m) A y = x A (m A y).

3.8. Examples, (i) A degenerate partial skew lattice structure may be imposed

on any quasi-ordered set by giving each equivalence class a rectangular structure

compatible with the class cardinality and between strictly comparable elements

a t> b setting aM b = a = by a and aAb — b = bAa. (ii) Let A be a
ring with idempotents E(A). The right quasi-ordering of E(A) is defined by

x >r y iff xy = y. The standard partial skew lattice on (E(A), >r) is given

by the standard operations: xVy = x + y-xy and x A y = xy . Dually one

defines the left quasi-ordering of E(A) by x >¿ y iff yx = y . Thus there are

two standard partial skew lattice structures on the idempotents of A ; however

the complementation map, xc = 1 - x, gives an affine dual isomorphism of the

two partial algebras, (iii) Let 5 be a skew lattice. The natural quasi-ordering

of 5 is defined by x >p/ y iff x V y V x = x , or equivalently, y A x A y = y .
The canonical partial skew lattice of S is (S, >N, V, A), with the original

operations restricted to elements comparable under the quasi-order. Theorem

3.3 implies that every skew lattice is determined by its canonical partial algebra.

3.9. When is a given partial skew lattice (S, t>, V, A) canonical for some

skew lattice?   Two conditions are obviously necessary.   The quasi-order has
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to be a quasi-lattice, that is, its equivalence classes must form a lattice under

the induced ordering. In addition, each pair of equivalence classes must be

orthogonal in their join and meet classes. Given these two conditions the partial

operations on S may be extended to full operations on S with the join defined

as xVy = (xVtfVx)V(y V/?Vy) for any p > x and q > y, where p and q lie in

the join class of x and y , and the meet is defined as xAy = (xAwAx)A(yAmAy)

for any m < x and n < y in the meet class of x and y. The full algebra

(S, V, A) is called the algebraic closure of (S, >, V, A).

Theorem 3.10. A partial skew lattice is the canonical partial algebra of a skew

lattice if and only if the quasi-order is a quasi-lattice and any pair of equivalence

classes are orthogonal in both their join and meet classes, in which case the skew

lattice is the algebraic closure.

Proof. Necessity is clear. For sufficiency we show the algebraic closure to be a

skew lattice. So let x, y be given. Then x V y = x' v y' for some x', y' in

the join class of x and y, with x < x' and y < y'. In the partial algebra,

x A (x V y) = x A (x' V y') = x A (x V x' V y') — x. The other cases of absorption

are similarly verified. Suppose that x, y <s . By middle associativity, x Vy =

x V q V p V y for all p > x and q > y in the join class of x and y. Choose q

so that y<c7<yVsVy. Then using linear associativity:

(xVy)Vs = (xV<5fV/>Vy)Vs = (xV<7)V/?V(yVsVy)Vs

= (x V q) V (y V s V y) V s = x V (y V s).

We similarly obtain all other cases of outer associativity: if r < x, y <s, then

also 5V(xVy) = (sVx)Vy, rA(xAy) = (rAx)Ay, and (xAy)Ar = xA(yAr).

With the available forms of conditional associativity, it is now easy to verify

associativity. For instance, if s lies in the join class of x, y, and z , then both

(x Vy) V z and x\/ (y\/ z) are seen to equal x V[y V (z Vs Vx) Vy] V z . Thus

the algebraic closure is a skew lattice and the theorem follows.

3.11. The major remaining question is properly posed as a question about

partial skew lattices: when does a primitive covering of a quasi-ordered set (S, >)

determine a partial skew lattice? So suppose a rectangular skew lattice structure

has been assigned to each equivalence class of (S, >) and to each strictly compa-

rable pair of classes A > B a primitive skew lattice structure has been assigned

which agrees with both rectangular structures and the class ordering. If x t> y

in 5 with x in A and y in B, then define xVy,yVx,xAy, and y A x

to be as given in A U B. The resulting partial algebra, (S, >, V, A), obeys the

idempotent laws and conditional absorption laws for comparable elements. The

question thus becomes: under what conditions does linear associativity hold in

(S, >, V, A) ? To answer this, consider the pair of classes A > B . If Bj is a

coset in F , then by the lower coset projection of A onto B, is meant the map

Pj : A —> B projecting each element in A to its unique image in Bj. Clearly this

map has the form Pj[a] = a A b A a for any b in Bj. Likewise for each upper

index i, there is an upper coset projection, q¡,of B onto A¡ considered to be a

function into A . If A = B, then set p = q = \A . Let Proj [ (S) [respectively

Proj 1 (S) ] denote the family of all lower [upper] coset projections between

comparable classes of S. If composites of successive pairs of lower [upper]

coset projections are always coset projections, then Proj [ (S) [Proj 1 (S)]

forms the category of lower [upper] coset projections.
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Theorem 3.12. The partial algebra (S, >, v, A) induced from a primitive cov-

ering of a quasi-ordered set (S, >) is a partial skew lattice precisely when both

the family of lower coset projections, Proj [ (S), and the family of upper coset

projections, Proj 1 (S), form categories under ordinary composition.

Proof. Suppose we are given a primitive covering of (S, >) for which Proj [ (S)

and Proj 1 (S) form categories under ordinary composition of functions. Given

comparable classes A > B > C in S, pick a in A, b in F, c in C and set

d = b Ac Ab in FuC. Using only primitive operations and projections:

a A (b A c) = a A (d A c) = (a A d) A c = pd[a] Ad Ac — pd[a] A c

and

(a Ab) Ac = (pb[a] Ab) Ac = pc(Pb[a] Ab) Ac

= PcPb[a\ A Pc[b] Ac= PcPb[a] A c

where pb : A —> B, pc : B —> C, and pd : A —> C denote the coset projections

containing b, c, or d in their image. By assumption, either pd = pcpb or their

images are disjoint in C. Pick a in A such that a > b; then pcPb[a\ = Pc[b] =

d. Thus the images of pd and pcpb overlap so that pd = pcpb and aA(bAc) =

(aAb)Ac for all a in A . That aA(cAb) = (aAc)Ab follows from the fact that
both sides must equal (aAc)A(cAb). Moreover, (c A a) A b = c A (a A b) since

both sides easily reduce to c A b. All other instances of associativity amongst

a, b, and c in both A and V are checked in a manner similar to one of the

cases already considered. Conversely, if (S, >, V, A) is a partial skew lattice,

then conditional biregularity yields (aAb Aa) AcA(a Ab Aa) = aA(bAcAb)Aa

for a> bt> c and thus pcpb = pbAc/\b • Hence Proj t (S) forms a category; in

similar fashion so does Proj 1 (S).

3.13. Remarks, (i) Theorem 3.12 generalizes the picture given in [20] of a

normal band as a small category of homomorphisms between rectangular bands.
Whereas in a normal band there is exactly one coset projection from a higher

class to a lower one, in the general case of a partial skew lattice there are multiple

projections, but all with disjoint image sets in the lower [or upper] class. If S is

a skew lattice, then one has x Vy = q[x] \fq'[x] and xAy = p[x] Ap'[x], where

q, q' are projections into the join class and p, p' are projections into the meet

class, with the precise projections determined by orthogonality, (ii) The small

category of homomorphisms between rectangular bands which forms a normal

band is itself the image of a functor from a meet semilattice to the category of

rectangular bands. While this does not extend to partial skew lattices in general,

there is a class of exceptions. A skew lattice S is normal if each principal subal-

gebra xASAx is a sublattice. In this case given any comparable pair of classes,

the lower class forms a unique coset and there is a unique lower coset projection

between the two classées. As a consequence, one can obtain a close analogue of

the Yamada-Kimura Theorem which pictures the entire skew lattice as created

from a lattice domained functor. (See [12, Theorem 1.6]. The skew Boolean
algebras studied in [11] are necessarily normal.) (iii) The interrelation between

quasi-orders and [partial] skew lattice structures which they may support is a

recurring theme in noncommutative lattice theory. (See [6, 9, and 18].) This

type of interrelation has played an important role in semigroup theory. Early in

the development of topological semigroups, naturally totally quasi-ordered com-

pact semigroups were studied by a number of authors. (For historical remarks
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see [7].) Natural quasi-orderings of the set of idempotents E(S) of a regular S

have received considerable attention, especially since Nambooripad in [14] gave

an abstract characterization of E(S) in terms of the natural quasi-orders which

is independent of any reference to the ambient semigroup. (His approach has

some similarities to Schein's approach to pseudolattices in [18].) Partial bands

defined on partially ordered sets appeared in Warne's work on bands in [19].

While each quasi-ordered set supports a partial skew lattice structure, the au-

thor knows no general answer to the question: which quasi-ordered sets support

a skew lattice structure? A partial answer is implicit in 4.7 below.

3.14. Do coset bijections naturally form a category under the composition of

partial bijections? Not always. Let the right-handed skew lattice S be the union

of three equivalence classes Rx > R2 > F3, each a copy of the real numbers.

Let the cosets for Rx > R2 have the form [m, m + 1), the cosets for R2 > F3

have the form [n - 1/2, n + 1/2), and the cosets for Rx > F3 have the form

[m, m+l) in Ft and [«-1/2, « + 1/2) in F3. In all cases the coset bijection

takes an element to the unique element sharing the same decimal part. Thus 4.2

goes to the number of the form n + .2. Upon composing coset bijections one

obtains "half bijections for Rx > F3 as well as empty bijections. In general,

nonempty composites of coset bijections refine coset bijections between the outer

classes, and cosets which the outer classes induce on each other refine cosets of
the middle class in the outer classes.

3.15. A partial skew lattice (S, >, V, A) is categorical if nonempty compos-

ites of coset bijections are coset bijections. In this case we define the category

of coset bijections, denoted CSB(5, >), as follows: its class of objects is the

set of equivalence classes of S endowed with their rectangular structure and

with the identity maps being their identity morphisms; for strictly comparable

classes A > B the morphism set consists of the coset bijections between A

and B plus (in the case of empty composites) an A- B labelled copy of the

empty partial bijection; composition is ordinary composition of partial bijec-

tions with empty composites given the appropriate labelling to avoid confusing

empty partial bijections in different morphism sets.

Theorem 3.16. The following hold
(i) A partial skew lattice is categorical iff for any given x = p > q > r,

(x A r A x) V q V (x A r A x)

= [(x A r A x) V p V (x A r A x)] A q A [(x A r A x) V p V (x A r A x)].

(ii) Categorical skew lattices form a subvariety of skew lattices.

(iii) In a ring, any partial skew lattice of idempotents using the standard join

and meet operations is categorical.

(iv) In a ring A the complementation map, xc — 1 - x, induces a dual

isomorphism of CSB(F(v4), >R) with CSB(E(A), >L).

Proof. To see (i), observe that the chain p > q > r is a typical piece of a

nonempty composition of coset bijections, x A r A x is a typical member of

the coset of the outer classes at r, (x A r A x) v p v (x A r A x) is the image of

x A r A x in the top coset containing p , and the conditional identity is what is

needed to insure that the correspondence (x A r A x) V p V (x A r A x) —> x A /• A x

is the result of a composite bijection involving middle cosets containing q.
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In a skew lattice the conditional identity is easily replaced by a rather lengthy

unconditional identity and (ii) follows, (iii) follows from (i) and (iv) is trivial.

4. Further examples and results

4.1. A skew lattice with totally ordered equivalence classes is called a skew

chain. A skew chain with n + 1 equivalence classes is said to have length n .

Skew chains of finite length directly generalize primitive skew lattices with the

latter being the skew chains of length one. We examine the structure of skew

chains arising in rings. To begin, let en > •■• > eo be a chain of idempotents

of length n in ring A. The right extension of e„ > ■ ■ ■ > eo, to be denoted

P[en, ... , eo], is the skew chain which is the union of the F-sets R(e¡). For

the primitive case, n = 1, recall that the structure of P[e, f] is encoded in a

bilinear map 8 : B x A —> C which yields a coordinatization, P[A , B, C, 8],

of P[e, f]. In the general case, the structure of P[e„ , ... , eo] is given by the

following «-fold generalization of what occurs in the primitive case.

4.2. Construction. A bilinear complex over commutative ring K is a doubly

indexed family of A"-modules D = {D¡j\0 < i < j < n + 1} connected by a

triply indexed family of AT-bilinear maps u = {uljk : D¡j x Djk —> Dik\0 < i <

j < k < n + 1} . Elements of Di} are denoted by a¡j, b¡j, ... and evaluations

uijk(aij > bjk) are denoted by a¡jbjk . (D, u) is coherent if for all i < j < k < I
associativity holds: (aijbjk)ck¡ — a¡j(bjkcki). In this case set S = 1¡RP , where

Rp = ©{A/1 i < P < j} for 0 < p < n. Each subunion Rp U Rq where
p < q may be given a right primitive structure with Rp < Rq as follows.

First set Cpq = ©{Ayl* < P < Q < j), APq = ©{A;|f < i < q < j), and
bpq = ©ÍA/|í < P < j <a) ■ Clearly Rp = Cpq © Bpq and Rq = Cpq ® Apq .
Next let upq : Bpq x Apq -» Cpq be the matrix product: upq(^2bij, Y,ak¡) =
Y^,j=k bijCiki where the bi}ak¡ with common outer indices are added in their

module summand. upq is a K-bilinear map which imposes a right primitive

skew lattice structure on Rp U Rq . The various primitive subalgebras together

form a primitive covering of S and since (D, u) is coherent, this covering

yields a skew chain of length n , to be denoted S[D, u]. This construction is

called the n -fold bilinear construction. Observe that for n — 0 one obtains

a rectangular algebra on DqX and for n — 1 one obtains the right primitive

algebra P[DX2, DoX, A)2, "012] • Thus this construction indeed generalizes the

standard coordinatization procedure for affine right primitive skew lattices in

rings; however the full justification of this construction depends upon the fol-

lowing considerations.

4.3. Let A be a ring for which A" is a subring of the center and let e„ > ■•■ >

eo be a chain of idempotents in E(A). Setting en+x = 1 > en and e_x - 0 < e0 ,

we form a coherent bilinear complex as follows: let D¡j = (el-ei-X)A(e]-ej-,)

for 0 < i < j < n + 1 , and let each u,jk be given by ring multiplication for

i < j < k . This complex is called the canonical bilinear complex of the chain

e„> ■■■ > e0.

Theorem 4.4. Let A be a ring for which K is a subring of the center and let

(D, u) be the canonical bilinear complex induced from the chain of idempotents

en > • ■ ■ > eo ■ Then the skew chain S[D, u] is isomorphic with the right ex-

tension P[en , ... , eo]- Moreover, to within isomorphism every coherent bilinear

complex is obtained canonically from a finite chain of idempotents in a ring.
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Proof. The isomorphism is defined on classes Rp —> R(ep) by Y,aij ~> ep +

Y, ciij , where the first sum is direct summation in Rp and the second sum is ring

addition. Given any coherent complex (D, u), extend D to a square indexed

array of AT-modules by setting each Du = K and setting D¡¡ = 0 when i > j.

Accordingly extend u by letting the wj;; and u¡jj be scalar multiplication and

letting the remaining new uijk be zero maps. Associativity must hold in the

extended complex. Let A be the ring of formal (n + 2) x (n + 2) matrices

[a¡j], with a¡j in D¡j for 0 </,/<« + 1. The matrices have the obvious

addition; using the uijk they may be multiplied in the usual matrix fashion. Set

ep - [d(p)ij], for 0 < p < n, where d(p)¡j =1 if i - j < p but 0 otherwise.
The canonical complex induced from en > •■• > eo is a copy of the original

(D,u).

4.5. Thus we may, in effect, answer questions about skew chains in rings by

analyzing coherent bilinear complexes. We do so as follows:

(i) The n-fold bilinear construction produces a piecewise disconnected skew

chain S[D, u] iff each uijk = 0. On the other hand, a skew chain S[D, u]

is piecewise connected iff [D, u] is generated by its superdiagonal modules, i.e.,

each Djj is generated by the u-product A,;+i ■ • • Dj-\,j ■

(ii) Given a superdiagonal indexing of Ä^-modules Fq\, ... , FH>n+\ a co-

herent bilinear complex (F, u) is freely constructed from them by first setting

Fij = F,>¡+1 ® • • -®Fj-\ j , where ® denotes the tensor product, and then letting

Uijk '■ Fij x Fjk -* Fik be the tensor map. The induced skew chain S[F, u] is

piecewise connected. An example of the free construction occurs when each F¡j

is K for i < j and each uiik is just multiplication for i < j < k . In this case

(F, u) is a copy of the canonical bilinear complex induced from e„ > ■ ■ ■ > eo ,

where 1 > en > ■ ■ ■ > eo > 0 is any maximal chain of subidentity matrices in
g(n+2)x(n+2)

(iii) Let Co,n+i be the submodule of A),«+i generated by the various u-

products F>o,íÁ,/i+i where 0 < i < n + 1 . Then upon setting Cy = D¿j in all

other cases, the subcomplex (C, u') induces the component algebra S[C, u'] of

S[D, u]. Because .S[D, u] is homogeneous, all its components are isomorphic
copies of S[C, u'].

4.6. One can easily generalize the concept of a skew chain and thus obtain

a class of algebras which includes piecewise connected skew lattices. Recall

that the center of a skew lattice S coincides with the union of all singleton

equivalence classes; an equivalence class is reducible when it is either the join

or meet class of incomparable classes. A generalized skew chain is a skew lattice

whose reducible classes lie in its center and thus its nontrivial classes lie in

Irr(S), the union of the irreducible classes of S. Trivially, all skew chains

are generalized skew chains. Due to orthogonality, all piecewise connected skew

lattices are generalized skew chains. Generalized skew chains are always freely

determined by their irreducible part. To understand the latter, consider a typical

Irr(iS'). Two classes A > B in Irr(5) are said to be separated if there is a

reducible class of S between them, in which case A u B must be a degenerate

subalgebra. Separation between A and B will occur when there is a third class

in S comparable to A or F, but not to both. Thus Irr(S) is partitioned into

basic skew chains: skew chains which are maximal subject to having pairwise

inseparable classes; moreover, Irr(5) is freely determined by its basic skew

chains.
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Theorem 4.7. Let T be a lattice. To each basic chain in Irr(F) assign an

overlying skew chain. Let lrr(S) be the union of these overlying skew chains and

extend the skew chain operations so that comparable pairs of classes in lrr(S)

lying in distinct skew chains form degenerate subalgebras. Then lrr(S) is a

partial skew lattice whose partial operations can be extended uniquely to give

a generalized skew chain structure on S = lrr(S) U (T - Irr(F)), having as

irreducible part, Irr(S), and having as basic skew chains the assigned over-lying

skew chains. S is piecewise connected precisely when the assigned skew chains

are piecewise connected. All generalized skew chains [piecewise connected skew

lattices] may be obtained in this manner.

4.8. While piecewise disconnected skew lattices have rather trivial primitive

subalgebras, their global structure need not be trivial. Moreover, piecewise dis-

connected skew lattices form a subvariety of skew lattices. Indeed, these skew

lattices may be characterized by the implication: if x = x', y = y', and x > y,
then yVx'Vy>xAy'Ax; this implication is then easily turned into a pair

of lengthy identities. Normal skew lattices are piecewise disconnected as is any

symmetric skew lattice on two generators.

4.9. The growing list of varieties of skew lattices raises the question: what

can be said about the lattice of varieties, or at least about suitable chunks of this

lattice? In the case of bands this question has been answered by several authors.

(See [1 and 3-5].) Petrich in [14] classified varieties of bands determined by

identities in at most three variables; the corresponding classification for skew

lattices could be a formidable task. A related problem is that of describing

finitely generated free skew lattices in a given variety. It is known that finitely

generated bands are finite, whereas the free lattice on three generators is infinite.

It turns out that the free [symmetric] skew lattice on two generators is infinite.

We conclude this paper with a classification of all symmetric skew lattices on

two generators. To this end let 2 denote the lattice 1 ° , let R denote the right
rectangular skew lattice on {a, b} and let L = R* denote its left-handed dual.

Theorem 4.10. The categorical symmetric skew lattices with two generators are

copies of one of the following: R,L,RxL,2,Rx2,Lx2,RxLx2,Rx2x
2, L x 2 x 2, and R x L x 2 x 2, the free categorical symmetric skew lattice on

two generators.

4.11. Note that all skew lattices listed in the theorem are binormal. To

classify the noncategorical cases we begin by letting Sm,, , for 1 < m , n < oo ,

be the right handed skew lattice with join class J = {0+ , 1 + } , meet class M =

{0~ , 1~}, and incomparable classes A and F where: A = Z2m if m is finite,

A = Z if m is infinite; likewise, B = Z2n if n is finite and F = Z otherwise.

All elements of B are denoted in prime form (e.g. 6' ) to distinguish them from

elements in A . The natural ordering of Sm,„ is given by 0+ > 2z, (2j)' > 0~~

and 1+ > 2/ + 1, (2j + 1)' > 1" . 7-cosets in A and F have the form
{2z - 1, 2z'} and A/-cosets in both classes have the form {2i, 2i + 1}. Sw „

is the right-handed skew lattice determined by this coset geometry. Observe

that Sm,„ is generated by pairs of elements of the form {2z, (2j + 1)'} or the

form {(2z)', 2j + 1}. Observe also that if one switches the J and M coset

decompositions of either A or F , then the new skew lattice is isomorphic with

the old. Finally observe that Si, i  is just a copy of R x 2 x 2. Upon letting
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Tm„ denote the left handed dual of Sm,„ and letting S[m, n;p,q] denote

the fibered product Smt„x2x2TPiq we have

Theorem 4.12. Every noncategorical symmetric skew lattices on two generators is

a copy of one of the following: Sm, „, LxSm, n , Tp, q, RxTp _ q , or S[m ,n;p,q]

where 3 < m+n, p+q < oo. S[oo, oo ; oo, oo] is the free symmetric skew lattice

on two generators; it has four components, none of which are finitely generated;

its components are all isomorphic, but S[oo, oo ; oo, oo] is not homogeneous.

Proof of 4.10, 4.12. Let S be symmetric with generators a and b lying in

classes A and F respectively. We need only treat the case in which S is right

handed (see [10, 1.14-1.16]) and A is incomparable with F . In general, right
handed symmetry is equivalent to the identities (xAy)vxVy = yVx and

xAyA(xVy) = y Ax . It follows that J = {avb, bva} and M = {aAb, bAa),
with the coset bijection given by: a V b -> b A a and bv a —► aAb . Moreover,

A is generated by {a} U / U M while B is generated by {b} U J U M. Thus if

a and b commute one has a copy of 2x2; otherwise S is forced to have the

form Sm _ „ , which in the case m = n = 1 is a copy of R x 2 x 2. Clearly Soo, oo

is the free right-handed symmetric skew lattice on two generators. Since both

of its components are isomorphic, but need infinitely many generators, Soo, oo

cannot be homogeneous.

Corollary 4.13. In a symmetric skew lattice every pair of elements generates a

piecewise disconnected subalgebra. If the skew lattice is also categorical, then

the subalgebra is binormal. (Categorical symmetric skew lattices having three

generators need not be binormal; by Theorem 2.4, those with four generators

need not be piecewise disconnected.)
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