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PSEUDOCOMPACT AND COUNTABLY COMPACT ABELIAN
GROUPS: CARTESIAN PRODUCTS AND MINIMALITY

DIKRAN N. DIKRANJAN AND DMITRII B. SHAKHMATOV

Abstract. Denote by S the class of all Abelian Hausdorff topological groups.

A group G 6 S is minimal (totally minimal) if every continuous group iso-

morphism (homomorphism) i: G —> H of G onto H G S* is open. For

6Ef let k(G) be the smallest cardinal x > 1 such that the minimality of

Gx implies the minimality of all powers of G . For S C S , S ^ 0 , we set

k{€) = sup{ic(G): G G &} and denote by a(<S) the smallest cardinal x > 1

having the following property: If {G, : i G /} C ¿í , 1^0, and each subprod-

uct n{G/: i G J} , with J C I, J ^ 0 , and \J\ < z, is minimal, then the
whole product n{G/: ' £ ^} is minimal. These definitions are correct, and

k(G) < 2W and k(£) < a{S) < 2W for all G G S and any S C S , S # 0 ,

while it can happen that k{&) < a{ß) for some € C S . Let f = {G G ̂ : G

is countably compact} and ,9s = {G G ̂ : G is pseudocompact}. If G G 'S is

minimal, then G x H is minimal for each minimal (not necessarily Abelian)

group H ; in particular, G" is minimal for every natural number n . We show

that a(í?) = a», and so either k(W) = 1 or k(W) = a>. Under Lusin's Hy-

pothesis 2°'i = 2W we construct {G„ : n G N} C 3° and H G & such that:

(i) whenever n G N , GJ is totally minimal, but G"+1 is not even minimal, so

K{Gn) = n+l ; and (ii) H" is totally minimal for each natural number n , but

Ha is not even minimal, so k(H) = w . Under MA + -CH , conjunction of

Martin's Axiom with the negation of the Continuum Hypothesis, we construct

G G 5a such that GT is totally minimal for each x < 2W , while G2<" is not

minimal, so k(G) = 2W . This yields a(&>) = k{&) = 2M under MA + -^CH .

We also present an example of a noncompact minimal group Gí ?, which

should be compared with the following result obtained by the authors quite

recently: Totally minimal groups ffe^ are compact.

0. Introduction

All topological groups considered in this paper are assumed to be Hausdorff.

A topological group G is said to be minimal (totally minimal) if every contin-

uous group isomorphism (homomorphism) / : G —► H onto a topological group

H is open [SI, DP]. Clearly every compact group is totally minimal and ev-

ery totally minimal group is minimal. In the converse direction, Prodanov and

Stoyanov [PS1] showed that minimal Abelian groups are precompact.
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A difficult problem in the theory of minimal topological groups, set by Cho-

quet, is to determine when minimality is preserved by Cartesian products.

Doitchinov [Do] showed that the product of two minimal (Abelian) groups

need not be minimal. Stoyanov [S3] introduced the notion of a perfectly mini-

mal group, this is a minimal group G such that for every minimal group H the

product G x H is minimal. It was proved earlier by Stephenson [S2] that every

minimal group which is a union of its compact subgroups is perfectly minimal

(see Theorem 1.2 for a generalization of this result).

Clearly all finite powers of a perfectly minimal group are minimal. It was

shown in [S3] that this cannot be extended to infinite powers. In the same

paper Stoyanov established that all powers of an Abelian group G are mini-

mal provided that Gc is minimal (here and in the sequel c stays for denoting

the cardinality of the continuum). Dikranjan improved his result as follows:

Whenever {G¡: i e 1} is a nonempty family of topological Abelian groups, the

product n{^': ' € ^} is minimal provided that each subproduct ni^: ' S 7} ,
with J C I, J ^ 0, and |/| < c, is minimal (announced in [D]; see also [DS1,

Theorem 3.7] or [DPS, Theorem 6.2.6] for a proof). This justifies the following

0.1. Main definition, (i) For a topological Abelian group G let k(G) be the

smallest cardinal r > 1 such that the minimality of GT implies the minimality

of all powers of G.
(ii) For a nonempty class S of topological Abelian groups define k(S) =

sup{/c(C7): G£S}.
(iii) For a nonempty class € of topological Abelian groups denote by a((S)

the smallest cardinal x > 1 satisfying the following condition: Whenever

{G¡: i £ 1} C &, 1^0, and each subproduct U{Gi- '"€/}, with J c I,
J t¿ 0, and |/| < t , is minimal, then the whole product Y\{G¡•: i: £ 1} is also

minimal.
(iv) Let a = a(S?) and k = k(&) , where 9 is the class of all topological

Abelian groups.

Observe that if all powers GT of a topological Abelian group G are min-

imal, then k(G) = 1 ; otherwise k(G) coincides with the smallest cardinal t

for which GT fails to be minimal. This is the reason why k(G) was called

the critical power of minimality of G in [DS1] (see also [DPS, Chapter 6.3]).

Cardinals k(G), k(S) , and k were introduced in [DS1], cardinal a was con-

sidered (although in somewhat different form) in [D], and was defined for the

first time, jointly with a((S), in [DPS, Exercise 6.5.31]. The next proposition

clarifies interrelations between the cardinals defined above.

0.2.   Proposition, (i) a < c and k < c.

(ii) If & and 31 are nonempty classes of topological Abelian groups and
S ç 3t, then a(S) < a(3¿) and k(€) < k(31) ; in particular, a.(€) < a and
k(€) < k .

(iii) If S is a class of topological Abelian groups and G £ S, then k(G) <
k(€) ; in particular, k(G) < k .

(iv) k(€) < a(&) for every nonempty class @ of topological Abelian groups;

in particular, k < a.

Proof, (i) follows from results of Dikranjan and Stoyanov cited above, and

(ii)-(iv) immediately follow from Main Definition 0.1.   □
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Since the definitions of a(S) and k((S) are similar to each other, the natural

question arises of whether the inequality in Proposition 0.2(iv) can be strength-

ened to the equality. Theorem 1.11 answers this question in the negative, thus

justifying the introduction of both cardinals into our considerations.

The problem to exactly determine the cardinal k was posed (without us-

ing k) by Prodanov and Stoyanov [PS2]. It was shown in [DS1] that k =

«({separable metrizable Abelian groups}) and moreover, for every cardinal t

satisfying 2T = c a separable metrizable minimal group G with k(C7) > t

was constructed; in particular, this yields that k > œ. In the present pa-

per we study the cardinals a(W), a(3), k(^) , and k(3) , where f and 3°

denote the classes of countably compact Abelian groups and pseudocompact

Abelian groups, respectively. (Recall that a topological space X is countably

compact [F] iff any countable open cover of X admits a finite subcover, and it

is pseudocompact [H] iff every real-valued continuous function defined on X is

bounded; compact spaces are countably compact and countably compact spaces

are pseudocompact—these facts together with supplementary information about

countably compact and pseudocompact spaces, including, in particular, exam-

ples which show that neither of the above implications is reversible, can be

found in [E, Chapter 3.10].)
It requires some effort to construct a noncompact, countably compact (or

even pseudocompact), minimal topological group. Examples of noncommu-

tative, countably compact, noncompact, minimal groups were given by Com-

fort and Grant [GG] and Guran [G]. The first example of a pseudocompact,

noncompact, totally minimal Abelian group was constructed by Comfort and

Soundararajan [CS] (see also [CRb]), and examples of countably compact, non-

compact, minimal Abelian groups seem to be unknown (see Corollary 1.6 for

such an example). It should also be noted that countably compact, totally min-

imal Abelian groups are compact [DS3].

The results are announced in § 1, the proofs of the main theorems are given

in §3, and some preliminary facts and technical tools are given in §2. We denote

by N the set of natural numbers, and by Zp the ring, as well as the compact

additive group, of p-adic integers. The rest of the notation, used in §3, is

introduced in §2.
Most of the results in this paper were announced in [DS2].

1. Results

The theorems which are given, but not proved, in this section will be proved

in §3.

Recall that a topological space X is co-bounded if each countable subset of

X has compact closure in X .

1.1.   Definition, (i) oj-3§ denotes the class of all «-bounded groups.

(ii) W denotes the class of all Abelian groups which can be represented as

a union of its countably compact subgroups.

(iii) fê denotes the class of countably compact Abelian groups.

(iv) 3 denotes the class of pseudocompact Abelian groups.

One can easily see that üí-31 ç W ç %" and W C 3 .

Our first theorem generalizes in the Abelian case the result of Stephenson

[S2] mentioned in the introduction.
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1.2. Theorem. Each minimal group G£W is perfectly minimal.

1.3. Corollary. Finite products of minimal groups from the class §" are mini-

mal. In particular, if G £<§" is a minimal group, then the group G" is minimal

for every natural number n .

Proof. The proof is by induction on the size of the product.   G

1.4. Corollary. If G is a minimal, countably compact Abelian group, then G"

is minimal for every natural number n .   D

Since oj-33 ç g" , the next theorem demonstrates that finite products cannot

be replaced by infinite ones in the first part of Corollary 1.3.

1.5. Theorem. Let p be a prime number. Then there exists a sequence {G„ : n

£ N} with the following properties:

(a) each Gn is an co-bounded (hence countably compact), dense subgroup of

Zf,
(b) for every n £ N and for each cardinal x the group Gn is perfectly minimal,

and
(c) n{G«: neN} is not minimal.

Countably compact, totally minimal Abelian groups are compact [DS3]. Our

next corollary shows that "totally minimal" cannot be weakened to "minimal"

here.

1.6. Corollary. There exists an co-bounded (hence countably compact), non-

compact, Abelian group G so that each power Gr of G is perfectly minimal.

Proof. Let {G„: n £ N} be the sequence from Theorem 1.5. Since n{<^«: n e
N} is not minimal, it cannot be compact. So at least one of the G„'s is not
compact. Now take this Gn as G .x    D

1.7. Theorem.  u(oo-3J) = a(W) = a(W) = w.

1.8. Corollary.  K(W)<ao.

Proof. Combine Theorem 1.7 with Proposition 0.2(iv).   D

1.9. Corollary. If the countable power Gw of a countably compact Abelian

group G is minimal, then Ga is minimal for every cardinal a, i.e., k(W) <

co.   □

In view of Corollaries 1.4 and 1.9, for the class W we have either k(^) = 1

or k(W) — oo, depending on the answer to the following question.

1.10. Question. Is Gm minimal for a countably compact, minimal Abelian

group G?

Our next theorem demonstrates that the inequality k(S) < a(S) in Propo-

sition 0.2(iv) cannot be replaced by the equality.

'By carefully examining the proof of Theorem 1.5 one can easily see that in fact each Gn  is

not compact.
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1.11. Theorem. There is a class & of topological Abelian groups with k(S) <

a(€).

Proof. Set ¿f = {G„: n £ N}, where {Gn: n e N} is constructed in Theorem

1.5. It is clear that a(&) > oo. Conversely, since S ç %, it follows that

a(S) < a(W) < oo (Proposition 0.2 and Theorem 1.7), so a((S) = oo. On the

other hand, K(Gn) = 1 for every n £ N, so k(S) = 1.   D

Now we turn to the pseudocompact case. Our aim will be to show that in

the passage from countably compact groups to pseudocompact ones the situ-

ation with a and k changes entirely (compare Corollaries 1.3 and 1.9 with

Corollaries 1.13-1.15 and 1.17-1.19).

1.12. Theorem. Let x and a be cardinals, 1 < x < a < c. Assume that

o > oox is a regular cardinal and 2a = t. Then for every prime number p

there exists a pseudocompact dense subgroup G of the group Z"p suchthat Gk

is totally minimal for every I < x, but Gr is not minimal, so k(G) = x.

It is worth noting that the additional set-theoretic assumptions in 1.13, 1.14,

1.16, and 1.17 below are known to be consistent with ZFC, the usual Zermelo-

Fraenkel axioms of set theory.

1.13. Corollary. Suppose that 2W' =c. Then for every natural number n there

exists a pseudocompact Abelian group G such that Gn is totally minimal, but

Gn+X is not even minimal, so k(G) = n + 1.

Proof. Put t = n + 1 and a — oox in Theorem 1.12.   D

1.14. Corollary. Suppose that 2W| = c. Then there exists a pseudocompact

Abelian group G such that G" is totally minimal for every natural number n,
while Gw is not minimal, so k(G) = oo.

Proof. Set x = oo and o = oox in Theorem 1.12.   D

Further, the following result holds (roughly speaking, k(G) for a pseudo-

compact group G can be anything you wish, satisfying, of course, the unique
restriction k(G) < k < c ; see the Introduction).

1.15. Corollary. Let a > 1 be an ordinal. Then it is consistent with ZFC that

there exists a pseudocompact Abelian group G such that G* is totally minimal

whenever k < ooa, but GWa is not minimal, so k(G) = ooa .

Proof. Using the forcing technique one can construct a model OT of ZFC in

which Martin's Axiom holds and c = ooa+2 [K]. Then 2COa+t = c in 971 and it

suffices to put t = ooa , a — ooa+x, and apply Theorem 1.12.   D

1.16. Theorem. Assume that 2<°l = c. Let o be a cardinal satisfying o < c

and 2T = c for each infinite cardinal x < a. Then for every prime p there exists

a dense pseudocompact subgroup G of Zp suchthat Gx is totally minimal for
every x < o, but Gc is not minimal, so k(G)>o.

1.17. Corollary. Assume 2W< = c. Then 2K^ > c; in particular, k(3) > oox.

Proof. Denote by a the smallest cardinal X with 2A > c. It is clear that oox <

a < c, so 2T = c for every infinite cardinal x < a . By Theorem 1.16 there is a

G £ 3 with k(G) > a . Therefore k(3) > k(G) > o and 2K<^> > 2" > c.   G
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Let MA + ->CH denote the conjunction of Martin's Axiom together with

the negation of the Continuum Hypothesis. This additional set-theoretic as-

sumption is known to be consistent with the usual axioms ZFC of set theory

[K].

1.18. Corollary. Suppose MA + -<CH. Then there exists a pseudocompact

Abelian group G such that Gx is totally minimal for each X < c, but Gc is

not even minimal, so k(G) = c.

Proof. Under Martin's Axiom, 2r = c for each infinite cardinal x < c [K].

Set a = c in Theorem 1.16, and let G be as in the conclusion of Theorem

1.16. Then k(G) > c. On the other hand, k(G) < k < c by Proposition 0.2(i),

(iii).    G

1.19. Corollary. Assume MA + ^CH. Then a(3) = k(3) = c.

Proof. Combine Corollary 1.18 with Proposition 0.2.   G

1.20. Question. Do all results of 1.12-1.19 hold without any additional set-
theoretic assumptions beyond ZFC?

The group G in Theorem 1.16 satisfies w(G) = cox , i.e., it has the minimal

possible weight for a pseudocompact noncompact group.

1.21. Question. Is it possible to construct the group G as in Corollary 1.15

with the additional restriction w(G) = oox ?

By examining Proposition 0.2 and Theorem 1.10 one can suggest the follow-

ing

1.22. Question. Let o and x be cardinals satisfying 1 < a < x < c. Is there

any class S of topological Abelian groups with a(@) = x and k(S) =a1

2.  PRELIMINARIES

We denote by G the completion of a topological Abelian group G.

Let G be an Abelian group and let A be a subset of G. We denote by (A)

the subgroup of G generated by A. If (A) is free, the subset A is said to

be independent. Each independent subset of G is contained in a maximal one,

and all maximal independent subsets of G have the same cardinality, which

will be denoted by r(G) (it is called usually the free-rank of G).

Let R be a commutative ring with unit and let M be a unital .R-module.

An element x £ M is said to be nontorsion if r • x ^ 0 whenever r is a

nonzero element of R ; M is said to be torsion-free if every nonzero element

of M is nontorsion. For a nonempty subset A of M and B C M we set

[A:B] = {r£R: rB ç A}.
We denote ordinal numbers by small Greek letters and follow current set-

theoretic usage by considering any ordinal a as the set of all its predecessors,

i.e., the segment [0, a). Thus a £ ß is understood as a < ß . We also identify

the cardinal numbers with the first ordinal having the corresponding cardinality.

For a function / we denote by dorn / and rng / the domain and the range

of /, respectively. If X is a set and o is a cardinal, we define

X<a = {h : h is a function, dorn h £ a,  mgh ç X),

[X]<a = {F CX: \F\ <o).
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For h £ X<a and f £ Xa we write h ç f if h(ß) = f(ß) for each ß £ dorn h .
We list now, in the above notation, the following easy to establish facts.

2.1. Fact. Let A ^ 0, B and C be subsets of M, and let {By : y < a} be a
family of subsets of M. Then:

(a) [A: [j{By: y < a}] = f){[A : By]: y < a}; therefore [A : B] =
f){[A : {b}]: b £ B} if B ± 0 and [A : 0] = R otherwise,

(b) [A : C] + [B : C] ç [(A + B) : C] and [(-A) : C] = -[A : C] ; in
particular, [A : C] is a subgroup of the additive group of R whenever A is a

subgroup of the underlying Abelian group of M, and

(c) if b is a nontorsion element of M, then \[A : {b}]\ < \A\, and so

\[A : B]\ < \A\ provided that B contains a nontorsion element of M.

The following fact is well known (see [HR]).

2.2. Fact, (a) \H\ = max{r(H), oo} for every torsion-free Abelian group H.

(b) For every prime number p the set of invertible elements of the ring Zp

is Zp\pZp and \Zp\pZp\ = \ZP\ = r(Zp) = c.   G

Our next fact will be used frequently in §3. Although it is a particular case

of a much stronger result which holds not only for topological groups but also

for topological spaces, for the reader's convenience we give its proof here.

2.3. Fact. Let p be a prime number and let a be a regular uncountable car-

dinal. Then a dense subgroup G of Zp is pseudocompact provided that for

every h £ Z<" there exists a g £ G with h ç g .

Proof. According to a theorem of Comfort and Ross [CRs] (see also [C, Theo-

rem 6.4] for an easy proof) G is pseudocompact iff each nonempty (/¿-subset

of G — Zp intersects G. So to check this suppose that x £ U = f]{Un : n £ N},

where every Un is open in G. Then each Un - x is an open neighborhood of

0 in Z"p , so Zp^y" ç U„ - x for some y„ < o (here for y < a we identify Zap^y

with the subgroup of those h £ Zp which satisfy h(ß) = 0 for every ß < y).

Since cf(a) = a > oo, it follows that y = sup{y„ : n £ N} < o. On the other

hand, ZpXy ç ZapXy" ç Un - x for any n e N, thus

(1) x + ZapXyCU.

Consider h £ Zpa defined by dorn h = y and h(ß) = x(ß) for each ß < y.

By hypothesis there exists a g £ G with h ç g, and this yields g - x £ Zp^y.

By virtue of ( 1 ) we get g £ U .   G

The following minimality criterion will be adopted in our proofs in §3.

2.4. Minimality criterion. Let p be a prime number, a and x arbitrary non-

zero cardinals, and G a dense subgroup of Zap . Then:

(a) Gx is minimal iff [G : C] ¿ {0} for each subset C of Zap with \C\ < x,
and

(b) GT is totally minimal iff [G : C]\pZp ^ 0 for each subset C of Zp with

\C\<x.

Proof. Let us note that ¿7 = Zap , so (GT)~ = (G)T = (Zap)x. In what follows the

Zp-module structure of this group will also be used. We present the proof of

the following fact only for the sake of completeness.
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2.5. Fact. Suppose that A is a cardinal, / £ Zlp , f ± 0, and N is the smallest

closed subgroup of Zp that contains /. Then N is the cyclic Zp -submodule

of Zkp generated by /, i.e., N = {a ■ f: a £ Zp}. Moreover, the mapping

n: Zp —> N defined by a -» a • f is an isomorphism between topological groups

Zp and N, i.e., N^ZP.

Proof. The- ring Zxp has the natural structure of a topological Zp-module, so n

is continuous. Since f ^ 0, some of the Zp -coordinates of /, say fa for some

a £ X, differ from 0. Since Zp has no zero divisors (see, for example, [DPS,

Theorem 3.5.5]), the map a -> a- fa from Zp to Zp is an injection, and hence

so is n . On the other hand, n is obviously a group homomorphism from Zp

onto n(Zp). Thus, n is a group isomorphism between Zp and n(Zp). Being

a one-to-one continuous mapping defined on the compact space Zp, n is a

homeomorphism between Zp and n(Zp). Being compact, n(Zp) is a closed

subgroup of Zp. Since f £ n(Zp) and N is the smallest closed subgroup of

Zxp containing /, it follows that N = n(Zp).   G

(a) => Assume that GT is minimal and fix a subset C of Zap with \C\ < x.

In view of Fact 2.1(a) it is not restrictive to suppose that \C\ = x. Consider an

f £ (Zap)x such that rng/ = C ; clearly / / 0. Let N be the closed subgroup

of (Z"p)x generated by /. By the minimality criterion given in [SI], there exists

a nonzero x £ N n Gx. In view of Fact 2.5, x = a • f for some a £ Zp , and

of course, a ^ 0. Now note that a £ [G : C].

(b) =>■ Assume that GT is totally minimal. Because of the total minimality

criterion given in [DP] (see also [DPS, Theorem 4.3.3]), with C, f, and N as in

(a) => , we can claim that NnGr is dense in N. Since N = ZP by Fact 2.5, the

subgroup pN is the maximal closed, proper subgroup of N, hence the element

x can be chosen now with the additional property x £ pN. So the element

a £ Zp from (a) =*• now satisfies a £ pZp . Therefore [G : C]\pZp ^ 0. The

necessity in (a) and (b) is proven.

(a) •<= Assume that the condition in (a) holds. According to the minimality

criterion from [SI], to establish the minimality of GT it suffices to prove that

(2) 7Vnc?V{0}

for every cyclic Zp-submodule N of (ZapY . Let / be a generator of N. Then,

for C = rng/ ç Zap , (2) is clearly equivalent to [G:C]¿ {0}. Since \C\ < x,

the result follows.
(b) <= Assume that the condition in (b) holds. According to the total mini-

mality criterion used in (b) =>■, to establish the total minimality of G instead

of (2) the following must be checked in the notation of (a) <= :

(3) N n C7T is dense in N.

Since \C\ < x and (3) is equivalent to [G : C]\pZp ± 0, the condition in the

hypothesis can be applied.   G

3. Proofs of the main theorems

Following [DS1] denote by 38 the class of all topological Abelian groups

G having the following property: For every prime number p, if x £ G is

nontorsion and the subgroup topology induced on  (x) ~ Z by the topology



PSEUDOCOMPACT AND COUNTABLY COMPACT ABELIAN GROUPS 783

of G coincides with the p-adic topology, then x is contained in a compact

subgroup of G.

3.1. Lemma.  W c 33 .

Proof. Suppose that Ge?'. Let p be a prime number and let x e G be such

that the subgroup topology on (x) ~ Z coincides with the p-adic topology.

Then (x) is metrizable, and so is H, the smallest closed subgroup of G that

contains x. Indeed, since (x) is first countable and dense in the (regular)

space H, it follows that H is also first countable [E, Exercise 2.1.C(a)], but for

topological groups first countability coincides with metrizability [B, Ka]. Now

use the hypothesis of our lemma and choose a countably compact subgroup N

of G containing x . Then Hq = H n N is a closed subgroup of N, and so it

is countably compact. Since countably compact, metrizable spaces are compact

[E, Theorem 4.1.17], and Ho is metrizable as a subspace of the metrizable space

H, we conclude that Ho is compact. Now note that x £ H0 .   O

Proof of Theorem 1.2. Lemma 3.1 implies that G £ 33 , and the result follows

from [DS1, Proposition 1.4].   a

Proof of Theorem 1.5. Define K = Z"' and let F ç Zpl be the I-product, i.e.,
the set of those / £ Zp ' for which there exists a ß £ oox (depending on /)

such that f(a) = 0 whenever ß < a < oox [Cs]. One can easily see that F is

a subgroup of Zp' , and so Gn = pnK + F is also a subgroup of Zp' for every

n £ N. Let us prove that {C7„ : « e N} is the required family. Fix an n £ N

and consider Gn.

(i) Since F is co-bounded (see, for example, [C, Theorem 6.10]) and K is

compact, the product K x F is «-bounded. The mapping <p: K x F —> K,

defined by <p(x, y) = pn • x + y for (x, y) £ K x F, is continuous, so Gn -

(p(K x F) is «-bounded as a continuous image of an co-bounded space.

(ii) Note that for each m e N

(4) PmGnCGn    iff   n<m,

which yields that Gxn is perfectly minimal for each cardinal x [D] (see also

[DS1, Corollary 3.6] or [DPS, Corollary 6.1.17]).
(iii) By Lemma 3.1, {G„: n £ N} ç co-33 ç g" C 33. Since (4) holds

for each n £ N, we can apply [DS1, (a)<3>(c) of Theorem 2.4 and Lemma

2.1.d)] to conclude that Yl{G„ :neN} is not minimal (see also [DPS, Theorem

6.2.7]).   G

Proof of Theorem 1.7. From Lemma 3.1 it follows that oo-33 ç W ç W ç
33, so a(oo-3§) < a(ff) < a(W) < a(3§) by Proposition 0.2(h). Theorem
1.5 implies a(oo-33) > oo, and the inequality a(33) < oo follows from [DS1,

Theorem 4.1] (see also [DPS, Theorem 6.2.7]).   a

In the proof of the remaining theorems two algebraic lemmas will be needed.

No recourse to topology is made there.

3.2. Lemma. Suppose that R is a ring with unit, M is a torsion-free R-module,

G and H are subgroups of the additive group (M, +) of the R-module M, X

is an independent subset of (M, +), and r(H) < \X\. Define

S = {r£R: [(G + r-H):X]\[G:X]¿0}.

Then |5|<max(w, \X\, \G\).
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Proof. Set t = max(oo, \X\, \G\) and X = (X)\{0}. For every h£H define

Th = [(A-X + G): {h}],    where A = \J{[G : {x}] : x £ X},

and set T = (j{Th: h £ H\{0}}. Since M is torsion-free and 0 £ X, from

Fact 2.1(c) it follows that \A\ < x, and therefore

\A • X + G\ < max(oo, \X\, |G|) = t.

Applying Fact 2.1(c) once more, we conclude that \Th\ < x for every h £

H\{0}. Since \H\ < max(oo, r(H)) (Fact 2.2(a)) and r(H) < \X\ < x, one

obtains that \H\ < x and hence \T\ < x. So to prove our lemma it suffices to
show that S ç T. Fix an r £ S. From the definition of S it follows that there

exists an a £ R such that a£[(G + r-H): X]\[G : X].
Since a £ [(G + r • H) : X], for every x £ X we can choose a gx £ G and

an hx £ H such that

(5) a-x = gx + r-hx.

Since r(H) < \X\, one can find distinct elements xq, ... , x^ £ X and integers

no, ... , Hk such that Y^=on¡hXi — 0 and n¡ ¿ 0 for some j < k. Then

/ k \ k k

a- ¡Y nixi    =Yni'a'Xi = ¿2n'' (gx' + r ' hx¿
\i=0 ) ¡=0 (=0

k / k \ k

= Y "'Sx, + r-[Y nih*t   = ¿2 n^x, e G.
i=0 \i=0 I        ;=0

Since X is an independent set,   2~I/=o n¡xi ^ 0 ; hence X!¿=o "/'-^í e -^ and

On the other hand, from (5) and a fi [G : X] it follows that hx- ^ 0 for
some x* 6 X. Then

r • hx* = a • x* - gx. £ A- X + G,

and therefore r £ Thx, . Now hx» / 0 yields r £ T. So S ç T.   G

3.3. Lemma. Suppose M is a torsion-free R-module over a ring R with unit,

G, H, and Y are subsets of M, and G n Y = 0. Let

P = {r£R: (G + r-H)r\Y ¿ 0}.

Then \P\ < max(oo, \G\, \H\, \Y\).

Proof. For each h £ H define Qh = [(Y - G) : {h}] and let Q = \J{Qh: h e
/f\{0}}. From Fact 2.1(c) it follows that \Qh\ < max(oo, \G\, \Y\) for each
h £ H\{0} , so \Q\ < max(w, \G\, \H\, \Y\). Now to finish the proof it suffices

to show that P ç Q. Fix an r £ P. Then there are g £ G, h £ H, and y £ Y
with y = g + r • h . Therefore, r £ Qh . Note that h ^ 0, since otherwise we

would have g = y contradicting G n Y = 0 .   G

A nonlimit ordinal ß + n , where ß is a limit ordinal and n £ N, is said to

be odd (even) if n is odd (even).
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We begin first with the proof of Theorem 1.16 which is technically easier

than that of Theorem 1.12.

Proof of Theorem 1.16. The symbol 1 denotes the element of Z"' having the

unit 1 £ Zp as all its coordinates. If y £ oox, then ny denotes the canonical

projection of Z£" onto Zp Ay.

Using our cardinal assumption we can enumerate the set [Zp']<<7 by odd

nonlimit ordinals less than c, and the set Zp £Ul by even nonlimit ordinals less

than c. Let

(6) [Z^1 ]<a = {Fa : a < c, a is an odd nonlimit ordinal}

and

(7) Zp0*1 = {ga: a < c, a is an even nonlimit ordinal}

be such enumerations. Set F_x = 0 for convenience.

For every a < c we will construct by transfinite recursion a subgroup Ga of

Zp ' satisfying the following conditions:

(1Q)   if ß <a, then GßCGa,

(2a)   \Ga\<c,
(3a)  if a is an odd nonlimit ordinal, then

(Zp\pZp)n[Ga:Fa]¿0,

(4a)   if a is an even nonlimit ordinal, then ga Ç g for some g £ Ga , and

(5Q)   ny(Ga) n ny((\)) = {0} whenever y £ oox.

The above conditions are trivially fulfilled if we put C7_i = {0} .

Inductive step. Let a be an ordinal, 0 < a < c, and suppose that for ß < a

all subgroups Gß satisfying (l^)-(5^) have already been defined. We consider
three cases.

Case 1: a is a limit ordinal. In this case it suffices to define Ga - \}{Gß : ß G

a}.

Case 2: a = ß + 1, a is odd. Define Ha = (Fa) and

Py = {a € Zp : ny(Gß + a • Ha) n ^((1)) ¿ {0}}

for each y £ oox . Then \Ha\ < \Fa\+oo < c. Fix a y £ oox . From (5^) it follows

that R = ZP, M = ZpAy, G = ny(Gß), H = ny(Ha), and Y = ny((l))\{0}
satisfy the assumptions of Lemma 3.3. This yields \Py\ < c, taking into account

(2ß) and the equality ny(Gß + a • Ha) - G + a- H. So for P - (j{Py : y £ oox}
we obtain |P| < c, and we can choose an element a £ Zp\(pZp U P) (see

Fact 2.2(b)). Now, by our choice, conditions (lQ)-(5a) would be satisfied for

Ga = Gß + a - Ha.
Case 3: a = ß + 1 is an even nonlimit ordinal. Applying the argument from

Case 2 to Gß and Ha = Y = (1), we get an element a £ Zp\pZp such that, for

G'a = Gß + a-(l),

(8) nr(G'a) n ny((l)) = {0}   whenever y £oox.

Consider the element / e Z™1 defined by

f( )= Í a~x'ga(y)   ifyedom£a,

\ 1 otherwise.
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Let Ga = Gß + a • (f). Then properties (1Q)-(3Q) are trivially satisfied, and

(4a) follows from ga ç a • / £ Ga . It remains to check (5Q).

For y £ oox fixed, there is a y* £ oox such that y* > y and y* £ oox\domga .

If ny(Ga) n ny((l)) ± {0} , then also

(9) nr(Ga)nnr((l))¿{0}.

By the definition of / and the choice of y*, nr(f) = nr(l), so

nr(G'a) = nr(Gß + a • (1)) = nr(Gß) + a ■ nr((l))

= nr (Gß) + a- nr ((f)) = nr (Gß + a- {/)) = nr (Ga).

Now (9) implies

nr (G'a) n nr «1» = nr (Ga) n nr ((1)) # {0},

which contradicts (8). The inductive step is finished.

Now define G = IJÍ^: a < c} . Since (5a) with y = 0 holds for all a < c,
we conclude that

(10) C7n(l) = {0}.

If Gc were minimal, then G must be perfectly minimal [S3] (see also [DS1,

Corollary 3.6] or [DPS, Corollary 6.1.17]); on the other hand, (10) implies that
G is not perfectly minimal [S3] (see also [DPS, Theorem 6.1.8], where item d)

fails). Thus Gc is not minimal. From (3„) for all a < c, (6), and Minimality

Criterion 2.4(b) it follows that Gx is totally minimal for each X < a . Further-

more, properties (4Q) for a < c, (7), and Fact 2.3 yield the pseudocompactness

of G.   a

Proof of Theorem 1.12. The symbol 1 denotes the point of Zap having the unit

1 6 Zp as all its coordinates. Fix an independent set {c¿ : S £ x} in Zp (this is

possible because of x < c and Fact 2.2(b)). Now set c¿ = c¿ • 1 for ¿er and
C = {eg : ô £ x} . An immediate consequence of our choice is the following

3.4.    Claim. For each y £ a,  ny(C)  is an independent subset of Zp     and

\ny(C)\ = x<c.    G

According to our cardinal assumption, we can enumerate the set [Zp]<x by

odd nonlimit ordinals less than c, and the set Z<CT by even nonlimit ordinals

less than c. Let

(11) [Zp]<x = {Fa : a < c, a is an odd nonlimit ordinal}

and

(12) Zpa = {ga : a < c, a is an even nonlimit ordinal}

be such enumerations. Set F-X = 0 for convenience.

Now for every a < c we will construct by transfinite recursion a subgroup

Ga of Zp and a set Ya ç Zp satisfying the following conditions:

(la) if ß < a, then Gß ç Ga and Yß C Ya ,

(2a) \Ga\<c and |ra|<c,

(3Q) ny(Ga) n ny(Ya) = 0 for each y £ a ,

(4Q) if a is an odd nonlimit ordinal, then

(Zp\pZp)n[Ga:Fn]¿0,
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(5a)   if a is an even nonlimit ordinal, then ga ç g for some g £ Ga , and

(6a)   if y £ a , b £ Zp\{0}, à £ x, and b • ny(c¿) £ ny(Ga), then b • c^ 6 Ya
for some p £ x.

Before starting the recursion let us mention the following

3.5. Claim. If Ga and Ya satisfy (3Q) and (6a), then [ny(Ga) : ny(C)] = {0}

for each y £ o .

Proof. Suppose the contrary, and let b £ [ny(Ga) : ny(C)]\{Q) for some y £ a .

Since 0 £ x, b ■ ny(co) £ ny(Ga). Then, according to (6Q), there exists a

p £ x such that b • c^ £ Ya, and so b • ny(cß) £ ny(Ya). Now (3„) yields that

b-ny(cß) £ ny(Ga) ; thus, b £ [ny(Ga): ny(C)], a contradiction.   G

Basis of induction. Set G-\ = {0} and 7_i = 0 for convenience. Then

(l_i)-(6_i) are satisfied trivially.

Inductive step. Let a be an ordinal, 0 < a < c, and suppose that for all ß < a

subgroups Gßc.Zap and sets YßCZap satisfying (lß)-(6ß) have already been

defined. We consider three different cases.

Case 1: a is a limit ordinal. Define Ga = \J{Gß : ß £ a} and Ya = \J{Yß : ß £
a}. Then conditions (1Q), (2Q), (4a), and (5Q) are trivially satisfied. For the

verification of (3Q) and (6a) the following lemma can be applied.

3.6. Lemma. Suppose that a < c and, for every ß < a, Gß and Yß satisfy

(lß)-(6ß)- Then Ga = \J{Gß: ß £ a} and Ya = \J{Yß: ß £ a} satisfy (3Q)
and (6Q).

Proof. Assume / £ ny(GQ)nny(Ya) for some y £ o . Then there are ßx, ß2 £ a

with / £ ny(Gßl) and / £ ny(Yß2). So for ß = max(/?i, ß2) we would have

/ e 7iy(Gßl) n ny(Yß2) ç ny(Gß) n ny(Yß) + 0,

contradicting (3^). This proves (3a).

As for (6„), suppose that y £ a , b £ Zp\{0} , ö £ x, and b-ny(cg) £ ny(Ga).
Since Ga = \J{Gß : ß £ a} , it follows that b • ̂ (c^) £ ny(Gß) for some ß £ a.

Now (6ß) implies b ■ c^ £ Yß ç Ya for some p. £ x .   G

Case 2: a = ß + 1, a is odd. Define Ha = (Fa), and

Py = {a£Zp: ny(Gß + a-Ha)nny(Yß)^0),

Qy = {a£Zp: [ny(Gß + a • Hn) : ny(C)] ± {0}}

for every y £0 . Then \Ha\ < max(oo, \Fa\) < c.

3.7. Claim.  \Py\ < c and \Qy\ < c for each y £ a .

Proof. Fix a y £ a. From (3ß) it follows that R = Zp, M = ZpXy, G =
ny(Gß), H = ny(Ha), and Y = ny(Yß) satisfy all the assumptions of Lemma

3.3, which yields

\Py\<maK(w,\Gß\,\Ha\,\Yß\)<c,

because G + a • H = ny(Gß + a • Ha). On the other hand,

r(ny(Ha))<r(Ha)<\Fn\<x = \ny(C)\,
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and 7t,,(C) is an independent subset of Zp    (see Claim 3.4). So R, M, G, H
as above and X = ny(C) satisfy the assumptions of Lemma 3.2. This gives

where

\Sy\ <max(c<;, |7iy(C)|, \ny(Gß)\) <max(a>, |C|, \Gß\) < c,

Sy = {a £ Zp : [ny(Gß + a-Ha): ny(C)]\[ny(Gß) : ny(C)] # 0}

Since (3ß) and (6^) hold, [ny(Gß) : ny(C)] = {0} (Claim 3.5); thus, Sy = Qy

and \Qy\ = \Sy\<c.   G

Let O = [){PyilQy : y £ a) . Then a < c and the above claim imply |0| < c,

and since \Zp\pZp\ = c (Fact 2.2(b)), we can choose an a £ Zp\(pZp u <t>).

Define Ga = Gß+a-Ha . By our choice, |Ga| < c, Gß ÇGa, and a £ [Ga : Fa],

so (1Q), (2a) for Ga, and (4a) hold. We have also

3.8. Claim. ny(Ga) n ny(Yß) = 0 and [ny(Ga) : ny(C)] = {0} for each y £
a.   G

To define Ya we need the following

3.9. Lemma. Beyond the hypothesis of Theorem 1.12 suppose additionally that

G c Z°p and [ny(G) : ny(C)] = {0} for every y £ a. Then there exists an

Xç\Zap such that

(i) |X|<max(cr,|G|),

(ii) ny(G) n ny(X) = 0 whenever y £o, and

(iii) if b £ Zp\{0}, y £ a, S £ x, and b • ny(c¿) £ ny(G), then b -cp £ X
for some p £ x.

Proof. Fixa y £ o anda S £ x. Since ny(c¿) / 0, for By ô = [ny(G): {ny(c¿)}]

we would have \Byj\ < \ny(G)\ < \G\ (Fact 2.1(c)). Hence if one defines
B = \J{By,g : y £o , ô £ x} , then \B\ < max(a, \G\) (recall that x < a). Since

[ny(G) : ny(C)] = {0} whenever y £ o , for b £ B\{0} and y £ o we can find

a ö(b, y) £ x with b • ny(cs(b,y)) & ny(G). Since x < a and cr is a regular

cardinal, there are 'Z(b) ç a and ôb £ x such that 2Z(b) is cofinal in a and

ôb — S(b, y) for any y £ 1Z(b). First of all note that

(13) b • ny(cSb) £ ny(G)   for each y £ o.

Indeed, 2Z(b) is cofinal in a, so for any y £ a we can find a Ç £ I.(b) with

y < t,. Then b • nc(c¿b) £ n^(G), and consequently b • ny(csb) i ny(G).

Now for X = {b ■ côb: b £ B\{0}} we have \X\ < \B\ < max(er, |C7|),
and (13) implies (ii). To check (iii) observe that if b, y, and S satisfy the

assumption of (iii), then b £ Byj and so b £ B\{0} ; now it remains to apply

the definition of X.   G

To finish the inductive step in Case 2, using Claim 3.8, apply Lemma 3.9 to

G = Ga and define Ya = YßöX, where X is constructed in Lemma 3.9. Then

(1Q) for Ya is trivial; condition (2a) for Ya follows from o < c, (2^), and

Lemma 3.9(i); (3Q) holds because ny(Ga) n ny(X) = 0 (Lemma 3.9(h)) and
ny(Ga) C\ny(Yß) = 0 (Claim 3.8); and (6Q) follows from Lemma 3.9(iii).

Case 3: a — ß + 1 is an even nonlimit ordinal. Since x > 1, we can apply to

Gß,Yß , and Ha = (1) the argument from the above case to obtain a subgroup
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G'a = Gß+a-(l) (with a £ Zp) and a subset Ya D Yß of Zap such that \Ya\ < c,

(14) ny(G'a) n ny(Ya) = 0   for each y £o,

and

ify£o, b£Zp\{0}, Ô£x, andb-ny(cs)£

ny(G'a), then b • Cp £ Ya for some p £ x.

Consider the element f £Zap defined by

f(]=ia~l-Sa(7)   ify£domga,

\ 1 otherwise.

Let Ga = Gß + a-(f). Conditions (la), (2a), and (4a) are satisfied in a trivial

way, and (5a) follows from ga ç a • f £ Ga . Let us verify (3Q). For y £ a

fixed, choose a y* £ cr\dom ga with y* > y . Note that

nr(Ga) = nr(Gß + a- (f)) = nr(Gß) + a • nr((f))

= nr(Gß) + a • 7ty.((l» = nr(Gß + a • (1)) = nr(G'a).

Now (14) implies

nr(Ga)nnr(Ya) = nr(G'a)nnr(Ya) = 0,

which yields ny(Ga) n ny(Ya) = 0 because y < y*.

As for (6Q), assume that y £ a , b £ Zp\{0}, S £ x, and b-ny(cs) £ ny(Ga).

Choose a y* £ o\domga with y* > y. Then b • nr(c¿) £ nr(Ga) — nr(G'a),

and (15) implies the existence of p £ x for which b • cß £ Ya .

Finally, define G = Gc = \J{Ga: a < c} and Y = Yc = [){Ya: a < c}.
Lemma 3.6 implies that conditions (3C) and (6C) hold for Gc and Yc, hence

[G : C] = [Gc : C] = {0} according to Claim 3.5. Thus Gx is not minimal

by Minimality Criterion 2.4. On the other hand, (11), condition (4a) for all

a < c, and the same criterion yield total minimality of Gx for every X < x.

Pseudocompactness of G follows from (12), condition (5a) for all a < c, and

Fact 2.3.   G
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