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ROSENLICHT FIELDS

JOHN SHACKELL

Abstract. Let <f> satisfy an algebraic differential equation over R. We show

that if <j> also belongs to a Hardy field, it possesses an asymptotic form which

must be one of a restricted number of types. The types depend only on the order

of the differential equation. For a particular equation the types are still more

restricted. In some cases one can conclude that no solution of the given equation

lies in a Hardy field, and in others that a particular asymptotic form is the only

possibility for such solutions. This therefore gives a new method for obtaining

asymptotic solutions of nonlinear differential equations. The techniques used

are in part derived from the work of Rosenlicht in Hardy fields.

1. Introduction

Let X be the ring of germs of £f °° real-valued functions defined on deleted

neighbourhoods of infinity in R. A subfield of X which is closed under differen-

tiation is called a Hardy field (see [3, 7, 1]). If /is a nonzero element of a Hardy

field, the requirement that f possess an inverse forces f to be either ultimately

positive or ultimately negative. If g is another element we can define / > g to

mean that / - g is ultimately positive. Thus a Hardy field possesses a natural

ordering which reflects the asymptotic behaviour of the elements.

Hardy showed [5] that one obtains a subfield of X by closing R(x) under

the operations / —> exp(f) and / -» log\f\ (as well as field operations). This

field, which we will denote by %f, is clearly closed under differentiation and

is thus a Hardy field. Of course it is this example which gave the name to the

class.
In [5], Hardy also discussed the representation of asymptotic growth, using

iterated exponentials and logarithms, initiated by du Bois-Reymond [4]. Define

e0 and lo to both be the identity function, x, and for r > 1, let

er = exp(<?r_i), lr = log(/r_i).

Here, and throughout the paper, we will use the letter e to stand for any element

of X which tends to zero (as x —► oo); so e will not necessarily be the same

function at each occurrence. The expressions

(1) ex(l2(5 + e)),    e2(l2(2 + e)),    e3(l3(l+e)),
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for example, may each be used to represent the growth (as x —* oo) of elements

of %f. We note, as Hardy did implicitly, that the expressions in (1) could each

describe the growth of the same element of %? but with decreasing precision.

As a still cruder measure of growth, one could ask whether, if/belongs to a

Hardy field and tends to infinity, there must exist an zz such that

(2) In < fi(x) < en

for sufficiently large x. This is false for arbitrary elements of X by the theorem

of du Bois-Reymond, but holds for elements of %? (see [4, 5]). In fact, much

more is true in %?. In [10] an algorithm is given for expressing elements of ^

which tend to infinity in the form

(3) es(lPo°---lPkk{c + e)),

where Po, ■■■ , Pk arid c axe constants. Analagous expressions for other ele-

ments of %? can similarly be obtained and the e can be recursively estimated

in like fashion.
In a general Hardy field, (2) may fail for every zz , as shown in [2]. But for

an important subclass, namely the Hardy fields of finite rank [9], one can do

much more. Let fF be such a field and let 4> be an element of &~ which tends

to infinity. Rosenlicht proved in [6] that under these circumstances there exist

nonnegative integers zz and m such that

(4) <f> = en(lm(l+E)).

As we shall see in the next section, it is an easy consequence of Rosenlicht's

work that a similar estimate exists for the e .

If 4> belongs to a Hardy field and satisfies an algebraic differential equation of
order k over R, then R(<f>, <f>', ... , ^(/c)) is a Hardy field of rank not exceeding

k (see [9, Proposition 5]). Hence <f can be expressed in the form given by (4).

From a computational point of view one would like to be able to determine,

firstly, whether a given differential equation has some, or all, of its solutions

lying in a Hardy field. Secondly, if a solution, <j>, does lie in a Hardy field we

would like an algorithm to compute its asymptotic form. The form given in

(4) will be rather coarse for the purpose (though not without interest) unless we

can compute an asymptotic form for the e .

In §2 we collect together a number of definitions and results from the papers

[6]-[9] of Rosenlicht. These provide the foundation for what follows. In §3

we take the first step towards strengthening (4). Theorem 5 is the main result

here. The heart of the paper lies in §4. The major results are Theorem 6 and

Theorem 7. The techniques used in §§3 and 4 are to a certain extent parallel to

(and based on) those used by Rosenlicht. However our viewpoint throughout is

more computational. In §5 we show how the estimates of the previous section

may be applied to establish possible asymptotic forms for solutions of a given

algebraic differential equation or, in some cases, to prove that no nonconstant

solution of the equation lies in a Hardy field.

The author would like to thank Max Rosenlicht for providing the original

inspiration for this work through his papers [6]-[9], and also for simplifying

the proof of Theorem 5.
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2. Some results of Rosenlicht

In this section we collect together some basic definitions and theorems from

[6]-[9]. These will provide a technical foundation for the later sections and also

help to motivate them.

Let fF be a Hardy field. We shall generally use !F* to denote nonzero

elements of &. If a and b belong to 9r*, we write a x b if a(x)/b(x) tends

to a nonzero, finite limit. Then x is easily seen to be an equivalence relation on

ff*. We denote the equivalence class of a by v(a) and the set of all equivalence

classes by T . The set T is an abelian group under the multiplicative operation

inherited from fF*. Next we write v(a) > v(b) if a(x)/b(x) —► 0 as x -> oo.

This defines a total ordering on T making it an ordered group. We use the

notation a ~ b to mean that a(x)/b(x) —» 1. The following is from [7].

Theorem 1 (Rosenlicht). Let ff be a Hardy field.  Then there exists a map v

from £F* onto an ordered abelian group, T, such that

(1) if a, b e^*, then v(ab) = v(a) + v(b);
(2) if a e ff*, then v(a) > 0 if and only if a(x) has a finite limit as x-km;
(3) if a, b e 9r*, and a + b e!F*, then v(a + b) > min {v(a), v(b)} with

equality if v(d) ^v(b);
(4) if a,b e 9~*, and v(a), v(b) ¿ 0, then v(a) > v(b) if and only if

v(a')>v(b')\
(5) if a, be y* and v(a) >u(b)^0, then v(a') > v(b');
(6) if a, be 9r*, a ~¿>, and v(a) (=v(b))¿0, then a'~ b'.

Let /and g he two infinitely increasing elements of a Hardy field SF (i.e.,

/and g tend to infinity). We say that /and g are comparable if there exist

positive integers zz, m such that / < g" and g < fm. The notion may be

extended to elements tending to zero and to minus infinity by specifying that /

and f~x he comparable, and likewise/and -/, for all infinitely-increasing/

in !F. We also specify that any two elements which tend to a nonzero finite

limit be comparable. (This is a trivial, but notationally convenient extension of
Rosenlicht's definition.) Comparability is then an equivalence relation on ¡F*

and the equivalence classes will be called comparability classes. We write y(f)

for the comparability class of/

If/and g are infinitely-increasing elements of &, we write y(f) > y(g)

if / > g" for all zz e N; it is easy to see that this only depends on the

comparability classes. We also specify that v~x(0) be the smallest comparability

class. Thus y is defined on the whole of SF* and the comparability classes are

totally ordered. The number of different comparability classes of !F~* minus

one (or equivalently the number of comparability classes of y \ u~x(0)) is

called the razzzc of SF. The following is taken from [9].

Proposition 1 (Rosenlicht). Let !F c & be Hardy fields and let r be the tran-

scendence degree of ¥? over ¡F.  Then rank "§ < rank SF + r. In particular,

if 4> belongs to a Hardy field and satisfies an algebraic differential equation of

order k over SF, then the rank of £F(§ ,<$,... , cf>W) is at most k + rank ÏF.

The next result is concerned with the adjoining elements to a Hardy field. It

comes from [7].
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Theorem 2 (Rosenlicht). Let F be a Hardy field and let f(Y), g(Y) e y[F],
where Y is an indeterminate. Let y e X and suppose y(x) satisfies y'(x) =

f(y(x))/g(y(x)) on a positive half line on which g(y(x)) is nonzero. Then

y(v) is a Hardy field.

It is worth remarking that the rank of y (y) does not exceed the rank of fF

by more than one. This is a direct consequence of Proposition 1.

It follows from Theorem 2 that if cf> belongs to a Hardy field y then y

may be enlarged (if necessary) to a Hardy field containing log|</>¡ and exp(0).

Moreover, since 1 e y, we may enlarge SF to contain x, logx, exp(x), etc.

So if 4> belongs to a Hardy field, comparisons like er((t>) < ln make sense. In

fact we shall frequently write such inequalities without making specific reference

to the Hardy field which contains the exponentials and logarithms.

The following result is also essentially due to Rosenlicht.

Theorem 3 (Rosenlicht). Let fF be a Hardy field of finite rank r and let 4> be
an infinitely-increasing element of ¡F. Then there is an integer s with \s\ < r

such that for all integers n > r

(5) <f> = en(ln-s(l+e)).

Moreover, e belongs to a Hardy field of rank no greater than r + 2n - s + I and

so a similar expression exists for e.

Proof of Theorem 3. That 4> can be expressed in the form (5) is just The-

orem 1 of [6]. Then e = ln(4>)/l„-s - 1 and so e belongs to a Hardy field by

Theorem 2. The statement about the rank of this Hardy field then follows from

Proposition 5 of [9] as indicated above. This completes the proof.

Theorem 3 is interesting but in some ways is less than one would desire. The
estimate on the right of (5) is rather crude, corresponding only to the coarsest

of the forms in (1). Moreover, the greater the rank, the worse the estimate. So

the estimate for e may be significantly less accurate even than that for <j>. If we

knew that l„(<t>) belonged to y, matters would be much improved. Proposition

6 of [9] gives some hope for this because it asserts that if / e ¡F and / —> oc ,

then y contains an element asymptotic to log/, provided that ¡F contains

elements of comparability class smaller than that of /. But how do we know

that y does contain such elements? One of the main results of the present

paper is concerned with giving a much sharper version of (5) with generally a

corresponding improvement in the estimate for the e .

Next let Q denote the field of rational numbers and let fF c f* he two Hardy

fields. There is a natural, order-preserving embedding of ordered abelian groups

v(SF*) ^-> v(&*). If ^ is taken to include all zzth roots of positive elements of

y, then each element of v(SF*) is divisible in v(%*) by each zz / 0, and so

v(fF*) is a subgroup of an ordered vector space over Q. The dimension of the

Q-vector space generated by v(HF*) is called the rational rank of y [8].

The rational rank of y is at least the rank of y and is no more than the

transcendence degree of y over its field of constants. Moreover, if 0 satisfies

an algebraic differential equation of order k over y then the rational rank of

y(<7Í, (/)',... , </>("') is not greater than k plus the rational rank of y. These

results and also the following are from [8].
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Theorem 4 (Rosenlicht). Let y be a Hardy field which contains R. There is a

smallest Hardy field & D y such that \t\c e & whenever t e &* and ceR.

Moreover, rank y < rank^ < rational rank y.

Since we shall often need to take real powers of elements, Hardy fields of finite
rank which contain R and have the property that |i|e is an element whenever /

is a nonzero element and c e R, will be of particular importance to us. It seems

appropriate to call such objects Rosenlicht fields. It is clear from the above that

if <t5 belongs to a Hardy field and satisfies an algebraic differential equation over

a Rosenlicht field then <f> belongs to a Rosenlicht field.

3. Asymptotic growth

Our principal aim in this section is to establish a stronger version of Theorem

3. We begin with two technical lemmas.

Lemma 1. Let SF be a Hardy field and let a and b belong to y* with v(a) and

v(b) both nonzero. Then

(i) v(a'fa) = u(b'/b) if and only if y(a) = y(b),
(ii) v(a'/a) > v(b'/b) if and only if y(a) < y(b).

Proof of Lemma 1. That v(a!/a) = v(b'/b) implies y(a) = y(b) is just
Proposition 4 of [9]. Suppose then that y(a) = y(b). We may take a and b to

be infinitely-increasing and then there is an zz e N such that a < bn . Hence

loga < nlogb and so z^(loga) > v(logb). It then follows from Theorem

1(4) that v(a!¡a) > v(b'fb). Since a and b axe interchangeable in the above

argument, v(a!/a) = v(b'/b).

Now suppose that y(a) < y(b). We can deduce, as above, that v(a! ¡a) >

v(b'/b). But v(a'/a) and v(b'/b) cannot be equal, since then y(a) = y(b).

So v(a!¡a) > v(b'¡b). Conversely if v(a!¡a) > v(b'¡b), then y(a) = y(b) and

y(a) > y(b) give contradictions by (i) and the part of (ii) already established,
respectively. Hence y(a) < y(b) and this completes the proof.

Our next result is in effect a strengthening of Theorem 3. At first sight, the

gain is small, but it is important for what follows.

Theorem 5. Let 4> be an infinitely-increasing element of a Rosenlicht field !F.

Then there exist nonnegative integers s and m, a positive real number d, and an

element <j>x of X, such that

(i) <t> = es(ldm<f>x),

(ii) y(fa) < y(lm),
(iii) if s > 0, m > 0, and d = I, then v(4>x) ̂ 0,
(iv) <f)X is an element of the Rosenlicht field generated by x, lx, l2, ... , lm,

li(<f>),... ,ls(4>),and9-.

Proof of Theorem 5. The following proof is due to Rosenlicht. It replaces a

longer and clumsier proof by the author.

It follows from Theorem 3 that there exists an element cj)X in some Hardy

field such that <f> = ^(/^(/>i) with m,s e N, d e R+, and y((px) < y(lm).
Take such an expression with 5 minimal. If u(4>x) — 0, then (f>x ~ c for some
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constant c. If in addition 5 > 0, m > 0, and d = 1, then

<¡> = es-x((el^) = es-i(lcm_xlt:x)

and y(l^fx) < y(lm-\) ■ But this contradicts the minimality of s. We have

therefore established (i), (ii), and (iii). Since (iv) is an easy consequence of (i),

this suffices to prove Theorem 5.

4. Rank bounds and nested forms

In Theorem 5 we have not given any bounds for m and 5 in terms of the

rank of y. Of course the bounds of Theorem 3 also apply here. However

we shall establish a much better bound in this section. Secondly we need more

information about <f>x. Ideally we would like <j>x to belong to y. What we

can show, and for our present purpose it is nearly as good, is that ¡F contains

an element asymptotic to <f)X .
It will be important to be able to compare the growths of iterated exponentials

and this is the purpose of the next lemma.

Lemma 2. Let fand g be infinitely-increasing elements of a Hardy field and sup-

pose, without loss of generality, that f > g. Suppose also that n > 1 and write

hn = e„(f) - en(g) and H„ = (f-g)ex(g)e2(g)---en(g). Then
(i) hn —> oo if and only if Hn -> oc,
(ii) hn —► 0 if and only if Hn —► 0 and in this case hn ~ 77„ ,
(iii) hn tends to a positive finite limit if and only if 77„ does so, and here also

hn ~ 77„.

Proof of Lemma 2. The proof is by induction. We have

hi=ex(f)-ex(g) = (ex(f-g)-l)ex(g).

If / - g —> 0 then ex(f - g) - I ~ / - g, and so hx ~ 77i .  On the other
hand, if / - g does not tend to zero,  77i   must tend to infinity and, since

ex(f - g) - 1 > (/- g), so must hx . Thus the result holds when n = 1 .

Suppose then that the result holds for a particular value, zz. Then

h„+i = en+x(f) - e„+x(g) = {ex(en(f) - e„(g)) - l}en+x(g)

= {ex(hn)- l}en+x(g).

As before, ex(h„) - 1 > h„ and if h„ -» 0, then ex(hn) - 1 ~ hn ~ 77„, by
the induction hypothesis. So, if hn —> 0 , then h„+x ~ Hnen+X(g) - Hn+X . If

hn -f> 0, then 77„ -f> 0 by the induction hypothesis and then both h„+x and
77„+1 tend to infinity. This completes the proof of Lemma 2.

Our next lemma is concerned with the order relation between the compara-

bility classes of two elements each of the form es(l%,<j)X).

Lemma 3. Let (j>x and <$>2 belong to a Hardy field, let m, n, s, and t be nonnega-

tive integers, and let c and d be positive real numbers. Suppose that y(f>\) < y(lm)

and y((p2) < y(ln) ■ Suppose also that if c — 1 then v(4>2) / 0 and if d = 1
then v(<f>x) ^ 0. Then

(I) y(es(ldm4>\)) = y(e,(lcn<í>2)) if and only if either

(i)  s = t = 0 and m — n, or
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(ii) s = t = 1, m = n, c = d, and v(<j>x) = v(<f>2), or

(iii) s = t > 2, m — n, c = d, and

H = (4>x-h)lcnex(l^2)e2(l^2)...e^2(l^2)

has a finite limit.

(II) y(es(li(j)X)) > y(et(lc„(f)2)) if and only if either

(i) s - m > t - n, or

(ii) s - m = t - n, s > t, and either d > 1, or 4>x —► co and d = 1 or

(iii) s - m = t - n, s < t, and either c < 1 or </>2 —► 0 azzzi c = 1, or

(iv) s = f > 1, m — n, and either d > c or 4>\I4>2 -* oo and d = c, or

(v) s = t >2, m = n, d = c, and 77 —> oc, where 77 ¿s as given in (I) (iii).

Proof of Lemma 3. We prove the sufficiency of the conditions first starting

wth (II)(i).   Suppose s - m > t - n and that s > t.   Then m < n + s -

t and so y(lm) > y(ln+s-t) ■ Hence y(ls(es(li4>\))) > y(ls(et(lcn(j>2))) and so

y(es(li<f>x)) > y(et(lcn4>2)). If s </,then m + t -s < n and so y(l,(es(li4>x))) >

y(lt(et(lcn<¡)2))). Hence y(es(ldm<f>x)) > y(e,(lcn(j)2)) in this case also. Thus (II)(i)

is sufficient.

Now suppose s - m = t - n and s > t. Then v(ls(et(lcn<t>2))) = v(ln+s-t) =

v(lm). Therefore

(6) v ßWfW) = v M*
ls(e,(l^2)) J        \ lm

However, lm~x4>x tends to infinity if d > 1 or d — 1 and 4>x —» oo. Since

5 > 1, this will entail that y(es(ln\4>\)) > y(et(lcn<f>2)) and so (II)(ii) is sufficient.

Furthermore, lifx4>\ tends to zero if d < I or d = 1 and 4>x —* 0 and then

y(es(ln\(j)X)) < y(et(lc„(f)2)). On interchanging es(li(f>x) and e,(lcn(¡>2) we see that

(II)(iii) is sufficient also.

Next suppose that s - t and m — n. If s = 0, then es(lf„(/)X) — ldl4l\ arid

Ct(lcn<i>i) = Imfa ■ Hence (I)(i) is sufficient. If 5 > 1, then

(V)
ls(es(ldM) _ ,d_c.       ,

h(et(ltf2))

The right-hand side of (7) tends to infinity if d > c or if d = c and ^>xl<j>2 -»
oo. Since 5 > 1, this shows that (II)(iv) is sufficient. If 5 = 1 , c — d, and

v((j>x) = v(<t>2), then the right-hand side of (7) tends to a nonzero, finite limit

and hence y(ex(l„\<t>\)) - y(ex(lcn()>2)) ■ Thus (I)(ii) is sufficient.

Finally consider the case when s = t > 2, n — m , and c = d. Then

m h(es(ldm<t>\)) _¿Vi(/¿(/m) ,c ]C   ,,
(8) lx(et(lM) - J-^^-ex^-2^)-es-2(lnh)).

If 5 = 2, the expression on the right of (8) is ex(lcn(<j)X - 4>2)) which tends to

infinity if lc„(<j>x - <p2) —> oo and to zero if lcn((j>x - (f>2) —> -oo ; otherwise it

tends to a nonzero finite limit. It follows that (II)(v) and (I)(iii) are sufficient

when 5 = 2.

If 5 > 2, we apply Lemma 2 to the right-hand side of (8), giving that

lx(es(ld,(j)X))/lx(el(lfl(l)2)) tends to infinity if 77does and to a nonzero finite limit
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if 77 tends to a finite limit. This shows that (II)(v) and (I)(iii) are sufficient.

Thus all the conditions are sufficient to give the desired conclusion.

If in (II) we interchange es(l^(j>x) and et(lcn<f)2) we obtain an analogous set

of conditions, which we will refer to as (III), for y(es(ldn(j)X)) < y(et(lcn(f)2)).

Now since the cases d — 1, v(^{) = 0 and c = 1, v((¡>2) — 0 are specifically

excluded, a routine check shows that (I), (II), and (III) between them exhaust

the possibilities. It then follows that (I) and (II) are necessary. For example,

if y(es(l„\4>\)) = y(et(lCn<t>i)) then one of the conditions (I) must hold, for if not

then one of (II) or one of (III) would have to hold, giving a contradiction. This

completes the proof of Lemma 3.

The following result is proved in a similar fashion, though it is considerably

simpler.

Lemma 4. Let cj)X belong to a Hardy field. Lets, m, and j be nonnegative integers

and let dbea positive real number. Suppose that if d = 1 then v (4>x ) ^ 0. Then

y(es(ldn(j)X)) = y(lj) if and only if s = 0 and m = j, while y(es(ldl(f)X)) > y(lj)
if and only if one of the three following conditions holds:

(i) m<s + j;

(ii) m = s + j,s>0, and d > 1 ;
(iii) m = s + j,s>0,d= I, and <f>x —> oo.

The next result is perhaps the centre of gravity of the paper; it assumes

the existence of an element of the type given by Theorem 5 and deduces the

existence of various comparability classes.

Theorem 6. Let SF be a Rosenlicht field and let <p e SF. Suppose that (f> =
es(lm(t>\) • where y(^>x) < y(lm), d e R+, and if s > 0, m > 0, and d = 1, then
^(^l) ¥" 0. Then there exists an integer a > 0 and elements To,Tx, ... ,Ta

of y with the following properties:

(i) y(Ti)>y(Yl+x) for i = 0,... , a- 1.
(ii) Ifd^l or if s = 0, then a = s + m+ I;  otherwise a = s + m .

(iii) Each T, may be expressed as a rational function of a finite set of real pow-

ers of 4>, <(>', ... , 0(,) with real coefficients. Conversely, </>(,) may be similarly

expressed as a rational function of a finite set of real powers of To, Fx, ... , T¡.

Both of these rational functions are computable.

(iv) The set {y(To), ... , y(Ta)} contains the following comparability classes:

if s > 0, it contains y(ex(ldl(f)X)), ... , y(es(ldn<t>x)); if m > 0, it contains

y(lo), ... , y(lm-1 ) ; it contains y(<px), and if d ^ 1 or if s = 0, it also contains

y(L).

Proof of Theorem 6. The proof will be divided into a number of cases.

There is however some common ground between them. In [9], in particular in

Theorem 1 and Proposition 6, a similar technique is used.

For any pair of infinitely-increasing elements/and g of y, we write f ~ g

if for every real 8 > 0, gx~s < f < gx+s. Clearly / « g if and only if

log/ ~ logg, and then, provided that v(f) ^ 0, it follows that /'// ~ g'/g
by Theorem 1(6). A generic method of producing suitable r,'s is then as follows:
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Suppose we already have Tj with r) « et(l„\4>\), t > 2. Then logTj ~

et-\(ldm<$>\), and so

^~(*,-i(/Jj>i))'

= er_1(/^1)--^.(/^i)/0"1/r1---C(^V.rf + /^'1).

Since y(0i) < y(/m), Lemma 1 and Theorem l(i) imply that v((j>[/(f)X) >

u(l~x), and so from (9)

(10) =/ ~ et-i(ldm<j>i)---ei(ldm<l>i)l^l-x ■■•l-]_lli-ï<t>id.
1 j

Suppose in addition that we have already defined elements no, ... , nk of SF

with t]i ~ /"' for i = 0, ... , k and that y(nk) > y(e,-X(ld,4>x)). Then we

let r,+1 = r^r-'z/-1  •z/-1. It follows that either rj+1 « /¿¿  if y(4+1) >

y^-ii/^O) or r;+1 »e,_i(/^i) if y(lk+x) < y(et-X(ld1(f>x)). Note that the
latter two comparability classes cannot be equal because of Lemma 4 (the case

m = 0 is trivial). If r,+i « £,, then r>+1/Ty+i ~ -^V-'-'t+i and

so we take z/fe+1 = -F^rj^i/"1 •• • n^x ; then z/¿+I ~ /£*,. We then take

rj+2 = r;+1z/¿+11 so that either r,-+2 « e,-X(ld,<f)X) or r;+2 « /¿"+'2. If, on the

other hand, r,-+i « et-X(li<t>\) and í > 2, we take Tj+2 = -F^Fj;1,»/-1 ■ ■ ■ rj^1

and, since y(lk) > y(e,-X(li4>x)), it follows that y(lk+x) > y(et-2(ld,(f>x)) and

hence that Tj+2 « l^K . Then nk+x is defined as before.
In practice we shall generally use a slightly different construction which makes

better use of elements already defined. In addition 'end' cases will need special
attention. We give details of the cases s > m > 0 and m > s > 0 only. Other

cases are similar to, or degenerate versions of, one of these. For full details see

[11].
We shall write fA for the logarithmic derivative of an element / of X, so

that /* =/'//.

Case 1: s > zzz > 0. By Lemma 4, y(<j>) — y(es(ldn(j)X)) > y(/0). We therefore

take r0 = <t>. For i = 0,... , s — m — 1, we take r/+i = rf . Suppose

0<z'<5-m-2 and T, « es-i(l^,<f>x) ; of course, for i = 0, we know this. By

(10),
YMr.es-i.i(ldm<l>i)---ei(li(f>i)lQ-x---l-\/m-x<¡>id,

and, by Lemma 4, y(es-i-X(ldl(t>x)) > y(lo), since s - i - I > m . Hence r,-+i «

es-i-X(ldl4>x) and so, by induction, T, « es-i(lm<f>x) for z = 0, ... , s - m - 1.

From (10) again we have

(11) rs.m^em(li<f>i)---ei(ldmh)löl--^-ildm-lhd.

Case la: d > 1 or z7 = 1 azzúf </3i —► oo. In this case, Lemma 4 implies that

rs-m « em(/£0i). We take r,_m+1 = r£_m so that

(12) rs.m+l^em-l{lÍ4>i)---ei(lUi)lol---l-l.ilí-l4>id.
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From Lemma 4, Fs-m+x « /0 ' . It follows that T^_m+1 ~ -/0 ' . Hence we take

Ts-m+2 = -Ts-m+i/rf-m+i ■ Then, from (12),

rJ_m+2~eM_1(/^1).--e,(/^1)/i-1---/-i1/^-Virf«em-1(^1),

by Lemma 4.
Suppose 0 < z < m - 1 and that rs-m+2¡-X and r5_m+2, have been defined

with rs_m+2,-i « /-\ and Ts_m+2i « <?m_,-(/^i). Then

^1JJ 15-m+2i-l '0    M '¡-1

and

(14)        rf_m+2(.~em_í_1(/^1)---í'1(/^1)/0-1---/-i1^V.^

We take

(15) r»-m+2i+l = -is-m+lil*s-m+H-V

It then follows from (13) and (14) that

r,_m+2/+, ~ en-i-iVUi) • ■■ex(ldm(f>x)lfx ■ ■ ■ l-x__ildm-xfad « /,-',

by Lemma 4. Then r^_m+2j+1 ~ -/¿"' • • • l~x and so we take

(16) rJ_OT+2,+2 = -FJ_m+2i/ri_m+2/+1.

Then

Ts-m+2i+2 ~ em.i-i(ldm4>i)- ■■ex(ldm4>x)l-+\ • ■ • l-l_ildm-l4>id

« em-i-i(li(f>i),

by Lemma 4.

Thus by induction we can define Ts_m+X, ... , Ts+m-2 with the desired prop-

erties. If we take i — m - I in (15) we get ri+m_i « l~x_, . We then set

rs+m = -Tf+m_2/(drf+m_l)-idm-xh.

If d =  1, then rj+m ~ 4>x .   Otherwise  Ts+m « l'jn~x   and hence  T^m ~

(rf-l)/0-,-./-,.Then

C/^-iiCi)-^'
We therefore take

rJ+m+1 = ri+m(rf+m/(i - d)T%m_x)d-x ~ 0,.

A routine check then establishes that (i)-(iv) hold in this case.

Case lb: d < 1 or d = I and 4>\ —* 0. Here (11) and Lemma 4 give r5_m «

/0_1 . Hence Yf_m-/"' and so we take rs_m+i = -Ys-m¡Yf_m . Again (11)

and the lemma may be used to deduce that Tj_m+i « em(l„\§\) ■

Suppose that 0 < i < m - 1  and that rj_„,+2i  and rj_m+2,+i  have been

defined with ri_m+2l•« /,"' and Ys_m+2i+x « em_,(/^,).
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We take

*s-m+2i+2 = -1 s-m+2i+\lX s-m+2i-

As before, Ts-m+n+2 « l~\ and we take

Fi-m+2i+3 = -Fí_m+2,+1/rí_m+2.+2 « em-i-X(lm<pX).

This accounts for the definitions of Ts_m+X, ... , rj+m_i. Then we set

rs+m = -rf+m_xi(drf+m_2)~idm-x<Px.

If d — 1, then of course Ts+m ~ 4>x . Otherwise, Ts+m « ldfx and we take

rJ+m+1 =rs+m(Tj%j(i -d)rf+m_{)d-x -0..

Conditions (i)-(iv) are then satisfied.

Case 2:  m > s > 0. We take To = </>A « /q-1 and for i = 1,... , m - s — 1

we take T, = -Fo/rA_1. Then

r/~cf_i(/^i)-«1(/^,)/i-1-/-i1/Ä-Virf«/r1-

Case 2a: a" > 1 or a" = 1 azza" </>] —» oo. In this case, Lemma 4 implies that

y(<f>) > y(lm-s) and hence we take Tm-S = <f> and rm_J+1 = -r0/r^_s_{ «

/"I,. Similarly we take rm_s+2 = -r0/TA_i+| « ^(/^O . Then for i = 1,

... , s - 2, we define

(17) rm_i+2/+i = -rm_J+2l/rm_J+2(._,

and

i m-j+2i'+2 = —I m-s+2il* m-s+2i+\-

Then rm_J+2i+i « /~li+j and rm_i+2i+2 « éW-i^i). We define rw+s_i

by taking z = s - 1 in (17), so that Tm+i_i « /~^, . Then we set

rm+J = -rA+i_2/(í7rA+J_1) ~ /£~Vi-

If O* ̂ 1 , we take

rm+J+i = rm+J(rw+i/(i -d)rm+s_l) _1 ~<j>x,

and here too (i)-(iv) are satisfied.

Case 2b:  d < 1 or d = 1 azza* </>i -► 0. Now y(</>) < y(lm-s) and so we take

rm_s = -r0/rA_s_, « /-is and rm_i+1 = 4>. Then for i = 1, ... , s - 1 , we
take

1 m-i+2; = —I m_s+2(-_i/I m_i+2,-2

and
r — —Va IVa
l m-s+2i+l  -      l m-s+2i-\ll m-s+2i'. •

Then let

rm+î = -rm+í_,/(oTm+í_2) ~/m   tf>

and, if o" t¿ 1, let

rm+í+1 = rm+í(rA+í/(i -d)r%+s_x)d-x ~</>,.

One checks (i)-(iv) as before. This completes the proof of Theorem 6.
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Theorem 6 allows us to strengthen Theorem 5 in two ways. First, the exis-

tence of the r,'s implies a rank bound. Second, provided v((f>x) ̂  0, we can

treat (j>x in the same way as we did <j>. If </>x tends to a nonzero finite limit,

then it is trivial that y contains elements asymptotic to (f>x since R c y, but
this fact gives us no information about the asymptotic behaviour of (p\ (beyond

the fact that <j>\ -> 0).
For / an element of a Hardy field and s an integer, define Es(f) to be

es(f) if s > 0 and (e-s(f))~l if s < 0. Let 4> he an element of a Hardy field
with v(4>) t¿ 0. A nested form for <j> will be a finite sequence {(s,, m,, a",,

<f>i), i = 1, ... , k} with the following properties:

(a) For each i, s, is an integer, m¡ a nonnegative integer, d¡ a positive

real number, and </>, an element of a Hardy field.

(b) <t> = ESx(ldm\<t>x) and </»,_, =ESl(lt<t>i) fox i = 2, .... k,
(c) y(<j)i) <y(lm¡) for i = 1, ... , k.
(d) «/(&) = 0.
(e) dk t¿ 1 unless sk - 0 or mfc = 0.

The following is an easy consequence of the definition and Lemma 4.

Proposition 2. Lei {(s,, m¡, d¡, <f>¡), i= I, .... k} be a nested form for

some 4>. Then for i = I, ... , k - I,

w,-+i > max{m, + I, m¡ + si+x}

and if mi+x = m¡ + s¡+x, then di+x < 1.

The next result gives the promised strengthening of Theorem 5.

Theorem 7. Let £F be a Rosenlicht field of rank r. Let <f> be a positive element

of ¡F with v(<f>) 7^0. 77zezz <j> has a nested form {(s,, zzz,, d,-, (¡6,), I < i < k}

such that
k

(18) Y\si\ + ôk + mk<r,
;=i

where 8k = 0 if dk = 1 azza" mk = 0, azza" ¿* = 1 otherwise. Moreover, there

exist elements To, ..., Tj, of !F such that the following properties hold:

(i)  * = E?=i M + <** + »»*•
(ii) Tiaczz T, may be expressed as a rational function of a finite set of real pow-

ers of <$>, (j)', ... , </>(') wz'zzz rea/ coefficients. Conversely, <f>^ may be similarly

expressed as a rational function of a finite set of real powers of To, Tx, ... , T¡.

Both of these rational functions are computable.
(iii) For i = 0, ... , S - 1, we have y(T¡) > y(r,-+i). Also y(Ti) = y(l).
(iv) The set of comparability classes of the T¡ 's is equal to

mk+6k-\ k   If/I

y(l) u   (J   y(i,)u\J\Jy(et(l%4>j)).
(=0 j=\ t=\

Of course if 0 e SF* with v(4>) — 0, then Theorem 7 may be applied to

±((f) - limr/j). We call I the length of the nested form.
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Proof of Theorem 7. For j = 1, ... , k , we define 8¡ by áy = 0 if d}■ = 1

and zzz; = 0, and ¿/ = 1 otherwise. We write t¡ = \s¡\ + 8¡. By Theorem 5,

sx , mx, dx , and (¡>x exist such that 0 = ESx(l?n\4>x). If v(<f>x) = 0, then {(sx,

mx, dx , 00} is a nested form for 0, as conditions (c) and (e) of the definition

are given by (ii) and (iii) of Theorem 5. Theorem 6 then implies the existence

of T0, ... , Ttx+mx with suitable properties.

If z^(0[) ̂  0, we may apply Theorem 5 to either ri|+m, or rr|w  according

to whether z^(r,l+mi) < 0 or not. Thus ril+m, = ES2(l^2y/2) for suitable choices

of S2, ZZÎ2 , 0*2, and y/2 . Theorem 6 then guarantees the existence of elements

r¿, ... , F¿ of y satisfying (i)-(iv) of that theorem. The comparability

classes of these elements will include y(/n), ... , y(/m,+á,-i) but will otherwise

be distinct from the comparability classes of the r,'s, since y(0i) < y(lmx) ■

Hence we may relabel Txmt+S¡ , ... , Txa¡ as rfl+m,+J , ... , r|i|!+Í2+m2 and then

7(ro) > y(Tx) > ••• > y(TM+h+ni2). Since T,x+m¡ ~ 0,, there is a 02 ~ y/2

such that 0i = ES2(li2(p2). If v(<f>2) = 0, then {(s,, mx, dx, 0,), (s2, m2,

d2, <f>2)} is a nested form for 0 and properties (i)-(iv) of the statement of the

theorem are easily seen to hold. Otherwise we apply Theorem 5 to F|i||+,2+m2

and continue as above. In this way we obtain a sequence {(s7, m¡, d¡, 0;),

j = 1, ... , k} and the process will continue until some v((f>k) is zero. It

is clear that this must happen after a finite number of steps since (18) must

continue to hold and {zn;} is strictly increasing; moreover, tj > 1 . So 0 has

a nested form. The inequality (18), the existence of the T/s, and properties

(i)-(iv) are then clear from Theorem 6 and the above method of construction

of the nested form. This completes the proof of Theorem 7.

5.  AN APPLICATION TO ALGEBRAIC DIFFERENTIAL EQUATIONS

Suppose that y satisfies an algebraic differential equation of order r over

R. If R(v, y', ... , yw) is a Hardy field, then its rational rank is no greater

than r and hence, by Theorem 4, it is contained in a Rosenlicht field ,F of

rank < r. If y is positive and v(y) ^ 0, then y must possess a nested form
as given by Theorem 7. In other cases the theorem may be applied to —y or

to ±(y - limy) as appropriate. (We do not consider here the case when y is
constant.)

For small values of r, (18) constitutes a severe restriction on the possible

nested forms and it becomes feasible to consider possible cases individually.

Let 0 be a nested form of length 1, where X < r, and consider first the case

when X — r. Then we may define To, ... , Tr as in Theorem 7. We write

0 and its derivatives in terms of the T/'s and substitute into the differential

equation. We refer to the equation thus obtained as the T-equation. In the In-

equation, y(Tr) = y(l) but otherwise the comparability classes of the r,'s are
distinct from each other and from the comparability class of the constants. So,

in particular, the coefficient of the leading product of To , ... , Tr_ i must be

asymptotically zero, which implies a condition on the parameters of the nested

form. If this condition is unsatisfiable, then the particular nested form under

consideration cannot occur.

Next suppose that 1, < r . Then we define To , ... , Tz- x as in Theorem

7.   An inspection of the proof of Theorem 6 shows that in all cases, either
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Tj;_i ~ Alm\ or Tj;_i ~ Alm\ ' , where A is some nonzero constant. In the

present situation dk will be a parameter to be determined, so these cases may

be treated similarly to each other. We relabel T^-i as Tz-i and define Tz,

... , Tr as follows. Let £ denote an element of the Rosenlicht field generated

by 0 which is asymptotic to -loh ■ • • lmk-i • By Theorem 6, we can easily give

such an element in terms of To , ... , i£_2 . Then for i = 0, ... , r - X, we

define Tz+i = CíFe+j-i)' . Then (for the case when T^-i ~ Almf)

f^i~Adk(dk-l)---(dk-i-\)ld¿-i.

We can then rewrite 0, ... , 0(r) in terms of T0 , Tx, ... , r2_ i, T^, ... , Tr

and substitute into the differential equation for y. Then we can use the fact that

y(r0), ... , y(Tx-2), y(ïi_i) are all different, and the known asymptotic forms

of fx-i, ... , Tr ,to obtain equations for the parameters of the nested form. As

before, these may in some cases be unsatisfiable, leading to the conclusion that

the nested form under consideration cannot occur for solutions of the given

differential equation. For some equations, all the possible nested forms may

be eliminated, giving the conclusion that the equation has no (nonconstant)

solutions lying in a Hardy field.
We next illustrate the above argument by looking in greater detail at second-

order equations over R. Suppose then that 0 satisfies such an equation. Since

8k = 1 unless mk = 0 and, by Proposition 2, m¡ > i - 1, the inequality (18)
implies that k < 2. Possibilities are therefore {k = 2, si=s2 = 0, Wi=0,
zrz2 = 1 } or { k = 1, Si = 0, mx < 1 } or { k — 1 , Si < 2, mx = 0}. Note in

particular that we cannot have k - sx = mx = I since then 8X = 1 and (18)

will be violated. Moreover, the case zc = l,si=2,zrzi=0is only possible

if dx — I. Let A stand for a nonzero constant and C for a constant. The
possible asymptotic forms for 0 are then:

(I) C + xd'ldl(A + e) with C = 0 if dx>0 oxif dx=0 and d2>0;

(II) C±ex(xd>(A + e)) with C = 0 if A>0;
(III) ±e2(xL4 + e)) with A>0;
(IV) C ± 7?_2(x(/l + e)) with A > 0. We calculate the r,-'s in a selection of

cases. Full details are to be found in [11].

Case (I)(i): 0 = C + xd'ldl(A + s), dx ¿ 0, d2 ¿ 0. We take r0 = 0 - C and

(19) r, =r0(rf/di)d>~id*A.

Then, as in Theorem 6,

(20) r2 = r1(a,1rf/a*2rA)^~^

Next, we calculate 0,0', and 0" in terms of T0 , Tx , and F2 . Of course

(2i) 0 = ro + c,

and therefore 0' = F0 . Hence from (19) (using the fact that T^ = T'0/To), we

have

(22) 0' = i/1ro-1Mr;M.
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Differentiating (22) gives

0" = (di - l)(Tx/To)l/d'T0 + (Tx/To)l^-lT\,

and then substituting for T'0 and r'( from (19) and (20) gives

(23) 0" = dx(dx - l)rl(r2/dír2í/dl + d2T\r2ldiT]ld^ld'Tx2ldl.

Case (I)(ii): 0 = C + xdl(A + e), dx ¿ 0. Here the rank of R(0) (i.e.

R(0, 0', 0",...)) is equal to 1. Accordingly, we define f0 = 0 - C, Ti = F0,

and f2 = f\.
Case (I) (iii): 0 = C + ldl(A + e), d2^0. Now an analysis similar to the above

leads to the formulae

(24) 0 = C + r2Ff * ,

(25) 0' = a2ro(0-c) = a2ror^r2,

and

(26) 0" = fl-fFoT, rfT2 - d2T2T-x-d*T2.

Case (II): 0 = C ± f.x(xd[(A + e)), dx > 0. The case when a"i = 1 is similar to

(I)(ii). For a*i t¿ 1, the equations for 0 and its derivatives are

(27) 0 = ±ro + C,        0' = ±dxT0Tx,

and

(28) 0" = ± U2r0r? + dx(dx - l)T0Tx (J2-) ¿l~' J.

It is understood that one must have a consistent choice of + or - sign in these

equations.

Similar formulae hold in Cases (III) and (IV).

5.1 Examples. We apply the results of the above analysis to the equation

0" + X(f> = 0, X e R. Of course, the solutions of this equation are exceedingly

well known, but it nonetheless illustrates the method quite well.

We start with Case (I)(i) and substitute (21) and (23) into the differential

equation. This gives us the T-equation

(29) dx(dx - l)r¿_2MFÍM + d2T0'2/d,T2l/d'~l/d2Tl2/d2 + X(T0 + C) = 0.

If dx > 0, then C = 0 and the leading term is XTq . Hence X — 0. If

dx^l, the leading term becomes dx(dx - l)ro"2MFiM (since T~x'dl ~ l~x).

If dx = 1, the only remaining term is o^ro'T2-1^ 2T^ 2 • ^n neither case can
(29) be satisfied.

Similarly, if dx < 0 the leading term is XC which must therefore be zero.

The next largest term is XT0 and hence X = 0. The leading term then becomes

again o'i(a'i - l)T{0~2^ T2'' ' and as before the T-equation cannot be satisfied.

Thus Case (I)(i) cannot occur.
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In Case (I)(ii), the rank, r, of R(0) is one less than the order of the dif-

ferential equation. Hence we work with To, ... , Tr. Here r = 1 and

T0 = 0 - C = xd'(A + e). Thus Tx = T'Q = dxxd^~x(A + e) ~ dxx-xT0 and

f2 = T\ ~ dx(dx - l)x_2r0. On substituting into the differential equation, we

obtain

(30) f2+A(fo + C) = 0.

On using the fact that T2 ~ dx(dx - l)x~2r0, we see that X = 0 and hence

dx(dx - l)x_2io = 0. This is possible if dx = I. So we obtain a possible

asymptotic form for 0 when X — 0, namely 0 = x(A + e).

Similar calculations to those in I(i) show that Case (I)(iii) cannot occur (see

[11])-
Now for Case (II). When dx ^ I, the T-equation is

(31) d2xToT\ + dx(dx - l)ToT~^Tf~x + X(T0 + C) = 0.

The leading term is d2ToT\ if a"i > 1 or if X = 0, and XTq otherwise, since

Ti ~ Axdi~x. In neither case can the leading coefficient be asymptotically zero.

Thus (31) is unsatisfiable.

If o"i = 1, we work with r0 and its derivatives. We have Tx = F0 ~ AT o

and T2 = T'¿ ~ A2T0 . The T-equation is then

(32) A2T0 + X(T0 + C) ~ 0.

If A is negative, we see that To —» 0 and hence C is forced to be zero. Thus,

whatever the sign of A, we require A2 + X = 0. This is impossible if X > 0 but if

X < 0 we obtain two possible asymptotic forms for 0, namely ex(x(\/-X + e))

and ex(-(x(xfzX + £))).
Similar calculations to those already given show that Cases (III) and (IV)

cannot occur. We have thus rediscovered the following facts:

(a) If X > 0, 0" + A0 has no nonconstant solutions lying in a Hardy field.

(b) If X = 0, the possible asymptotic form for 0 is x(A + e).

(c) If X < 0, two possible asymptotic forms are  ex(x(xf=X + e))  and

ex(-x(x/=X + e)).

Finally we take a brief look at how the techniques apply to the soliton equa-

tion

(33) 0" + 0 + A03 = 0.

We may assume that X ̂  0. Cases (I), (III), and (IV) are easily eliminated. For

Case (II), when dx ^ I, we substitute (27) and (28) into (33). This gives

(34) ¿froT2 + dx(dx - ^ToT'^Tf^ + To + C + X(T0 + C)3 = 0,

where we have absorbed the ± into C.

Suppose first that C ^ 0 so that A < 0. In that case, we must have X =

-l/C2 and then To is a factor. Hence

(35)       d2T2x + dx(dx - orj'^r^ - 2 - 3r0/c - t20/c2 = o.
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If 0*1 > 1 then Ti -+ oo and 1 - g-frr < 1 • But then the term d2T2 dominates

the left-hand side of (35), and so this case cannot occur. If o"i < 1, then T] —> 0

and (35) is impossible since all terms except '2' tend to zero. If C = 0 and

A < 0, a similar analysis shows that (34) cannot be satisfied, while, if A > 0,

the term T$ dominates (34), again giving a contradiction.

Consider now the case when dx = 1. Here we take Tx — T'Q and r2 = T\ ,

so that r2 ~ ^2To . The equation (33) then yields

(36) ^2ro + ro + c + A(ro + c)3 = o(r0).

If C/O, then as before X = -l/C2 and the coefficient of T0 on the left-

hand side of (36) is A2 - 2. So A = -y/2 and, provided X < 0, a possible
asymptotic form for the solution of (33) is

(37) -^L ± e*(-v^+<0.
v     ; y/^X

If C = 0 and A < 0, then (A2 + l)T0 dominates the left-hand side of (36),
which is not possible, and, if A > 0, then XTq similarly dominates (36). Thus

we have the conclusion that if X > 0, no solution of the soliton equation (33)

can lie in a Hardy field, while for X < 0 a possible asymptotic form is given by

(37).
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