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THE LAGRANGIAN GAUSS IMAGE
OF A SURFACE IN EUCLIDEAN 3-SPACE

MAREK KOSSOWSKI

Abstract. We describe a correspondence between special nonimmersed sur-

faces in Euclidean 3-space and exact Lagrangian immersions in the cotangent

bundle of the unit sphere. This provides several invariants for such nonim-

mersive maps: the degree of the Gauss map, the Gauss-Maslov class, and the

polarization index. The objectives of this paper are to compare these invariants

in the cases where the underlying map immerses or fails to immerse and to

describe the extend to which these invariants can be prescribed.

1. Introduction

Given an immersion i : M -» E3 of a compact orientable surface into Eu-
clidean 3-space, there is a unique associated exact Lagrangian immersion into

the cotangent bundle of the 2-sphere, 1: M -> T*S2* -^ S2*. The Gauss map
G: M —> S2* of the immersion can then be recovered from the composite

G = p o i. Conversely, given an exact Lagrangian immersion j: L -* T*S2*

of a compact orientable surface into the cotangent bundle of the sphere, there

exists a smooth but not necessarily immersive map j' : L -* E3 with Gauss map

defined by p ° j : L -* S2*. Thus, we have a correspondence between smooth

maps of surfaces in Euclidean space which may fail to be immersive yet admit
a smooth global Gauss map, and smooth exact Lagrangian immersions into the

cotangent bundle of the sphere. It follows that invariants for the Lagrangian

Gauss image in T*S2* also belong to the underlying map into E3. This yields

the following global invariants for such maps: the G-degree, the Gauss-Maslov

class, and the polarization index. The objectives of this paper are to compare
these invariants in the cases where the underlying map into E3 immerses or fails

to immerse (Theorems 2-4) and to describe the extent to which these invariants

can be prescribed. In particular, Theorem 4 indicates that any integer and inte-

gral cohomology class can be realized as the G-degree and Gauss-Maslov class

of a Lagrangian Gauss image. As an application we find new global restrictions

on the critical values of the Gauss map for an immersion in E3 (see [K2]).

We also find obstructions to global solutions of spherical Monge-Ampère PDE

(see [K3]). For example, if j: L -» E3 has constant mean curvature at every

immersive point then the Lagrangian Gauss image j: L -> T*S2* has trivial
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Gauss-Maslov class. Similarly, if j : L -> E3 has constant negative Gauss cur-

vature at every immersive point then the polarization index of j is carried by

a cohomology class.

The paper begins with an informal description of the correspondence between

nonimmersive maps into E3 and their Lagrangian Gauss image in T*S2*. This

is followed by an informal definition of the contact collar over an embedding

i : M —> E3. This construction is used to convert exact Lagrangian immersions

in T*M into exact Lagrangian immersions in T*S2*. This in turn provides us

with explicit geometric examples of nonimmersive maps into E3 whose invari-

ants are readily computed. These informal definitions will enable the reader to

understand the content of Theorems 1-4. The reader who wishes to study the

proofs of Theorems 1 -4 will find a detailed discussion of this correspondence

and related constructions in the Appendix. The author would like to thank

M. Adams, R. L. Bryant, R. B. Gardner, R. Harvey, C. McCrory, T. Shifrin,
and R. Varley for inspiration.

2. Preliminaries

We let ( , ) denote the inner product on E3. Let n : r*E3 —> E3 denote the

cotangent bundle of E3 with canonical projection n and canonical 1-form ndc.

Since E3 carries a flat connection, we have a horizontal projection p: T*E3 -»

E3*, which is defined by parallel translation. Now via double dualization we

have an associated horizontal canonical 1-form pdc. Let S2* c E3* denote
the unit sphere. The set p~x(S2*) is a product E3 x S2* . In the Appendix we

show that p~x(S2*) is a contact manifold with respect to the 1-form n6c, which

admits a symplectic transverse section h: T*S2* —> p~x(S2*) c T*E3. The map

poh: T*S2* -» S2* c E3* agrees with the canonical projection T*S2* -» S2*,
which we also denote by p. Throughout this paper, / : M —» E3 will denote

a smooth immersion and j: : L —> E3 will denote a smooth but not necessarily

immersive map.

Given a smooth immersion z: : M —» E3 with unit normal n , we get a map

fj: M -> p~l(S2*) c T*E3 defined by fj(m) = (n(m), -) e ^*m)E3. Projection

of r) into the transverse section h(T*S2*) defines the Lagrangian Gauss image

i: M —> T*S2*. Now if we are given a pdc-exact Lagrangian immersion j: L —»

T*S2* then there exists a lift to the contact manifold p~x(S2*) which pulls

the 1-form ndc back to zero. The 7r-projection of this lifted map defines an

associated map j:L-»E3, whose S2*-valued Gauss map is given by p ° j .

(For details see the Appendix.)

The following is a convenient way to construct Lagrangian immersions into

T*S2*. Given an embedding i: M —> E3 there is an associated contact collar

icc: T*Mx(-e, e) —> r*E3. This is an embedded contact manifold with respect

to the 1-form ndc. Now, given a smooth exact Lagrangian immersion k: L —►

T*M, there exists a lift to icc(T*M x (-e, e)) c T*E3 which pulls the 1-
form ndc back to zero. The ^-projection of this lift defines a smooth map

j:: L —> E3. The Lagrangian Gauss image of this latter map can be geometrically

constructed from the lift. In this case we say that j: L —> E3 is generated

by k: L —* T*M via the contact collar on i: M —> E3. (For details see the

Appendix.)
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3. The invariants

If j^: I x [0, 1] -> T*S2* is a homotopy through pdc-exact Lagrangian

immersions, then there exists a homotopy jß: L x [0, 1]->E3 through smooth

maps with well-defined Gauss maps Gp = p o jß. We will say that jß is an

EL-homotopy. (For example, the sphere in Figure 4 of the Appendix has Gauss

image a section of p: T*S2* -» S2*. Thus, its Lagrangian Gauss image is EL-

homotopic to that of the standard round sphere in E3.) Given a Lagrangian

immersion j : L -> T*S2* which is the Gauss image of j : L -> E3, let Cp c L

denote the locus where the differential of the Gauss map G = p o j has rank

less than 2, and let Q c L denote the locus where j : L -> E3 has rank less

than 2. We will now discuss several invariants of the Lagrangian Gauss image.

(a) The G-degree. The degree of the composite G = p o j is denoted by ±G-

degree £ Z and is defined up to sign. Recall that a global smooth normal vector

field n: L -> S2* induces an area 2-form dA(r\) = (nx-, -), which is defined

on L - Cj , and (in general) fails to define a global orientation on L.

So if we fix an orientation on L, then we may decompose L-C as L+UL~ .

The úM( ̂ -orientation agrees (resp. disagrees) with the fixed orientation on L+

(resp. on L~). If n £ S2* is a regular value for G then we denote the number

of G-preimages by S*(n), the sheet number at n . (For example, the sphere

in Figure 2 of the Appendix has L - Cj as a pair of disks with G-degree 0,

whereas the sphere in Figure 5 has L - Cj as a pair of disks with G-degree

2.) Recall that in general Cj can have nonzero measure in L (see Appendix,

(II)(b)(i)).

Theorem 1. If j: L —» E3 is such that Cj has measure zero in L then:

(i) ±An(G-degree) = ¡L_c K dA(n).

(ii) jL+ \K\ dA(n) - jL_ \K\dA(n) > minS» .
(iii) (Gauss-Bonnett) If j is an immersion then ±G-degree = #(L)/2 and

for all regular values n £ S2*, S*(n) > 1 + genus(L).

(iv) If the Lagrangian Gauss image of j: L —> E3 is generated by k: L —»

T*M via the contact collar on i: M —> E3 then G-degree = ±â%(M)/2,

where S is the degree of the composite k: L —> T*M —► M.

Proof. On L - Cj the pull back 2-form n*dS agrees with K dA(n). K and
dA(n) are not denned on Cj. Since ±47r(G-degree) agrees with the integral of

n*dS over L we have part (i). For part (ii) one need only note that the left-

hand side agrees with the integral of S*(n) over S2*. Part (iii) is classic. For

part (iv) consider the homotopy kM: L —> T*M, p £ [0, 1], defined by pk(x),

where multiplication is in the fiber. The map ko has image in the zero section

of T*M and fails to be an immersion. Because kp is exact we have associated

functions Sp-. L —> R, /i e [0,1], and hence lifts to AFF(Z^) as defined in

the Appendix. This in turn defines maps jß: L —> E3 with Lagrangian Gauss

images j: L -> T*S2* and Gauss maps Gß: L -» S2* for all p £ [0, 1]. We
need only compute the degree of Go. But since so is the zero function, we

have that jo = i: o n o k , where n o k is the composite k: L —» T*M —► M. It

follows that the Gauss map of jo is given by Go = G o n o k , where G is the

Gauss map of the fixed embedding / : M —► E3. In other words, the Gauss map

Go factors through the Gauss map of the embedding via the map n o k . The

proof is complete.
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Remarks. Notice that if j: L -> E3 is generated by k: L -» T*E2 via a contact

collar on a hyperplane i : E2 -> E3 then the argument of part (iv) above implies

that the G-degree of j is 0. We note in passing that the self-intersection

number of j: L -» T*S2* is 2(G-degree)2. Thus, if ;': L -> E3 is an immersion

then this self-intersection number is \(x(M))2.

(b) The Gauss-Maslov class. Recall that at every point of T*M we have the

Grassmann of oriented Lagrangian 2-planes which lie in the tangent space to

T*M. This Grassmann fibers over a circle (see [GS, A]). Now at every point

of T*M we have the tangent space to the fiber which is Lagrangian. It follows

that this principal circle bundle over T* M admits a global section and hence is

trivial. This yields a map LG2T(T*M) —> Sx, and hence, via a Lagrangian im-

mersion, k : L —► T* M, a cohomology class on L. This defines the Maslov class

[m] of k. In the special case of the Lagrangian Gauss image j: L -> T*S2*,

we refer to this class as [Gm], the Gauss-Maslov class. Given k : L —► T*M, its

Maslov class can be geometrically computed by way of graph(rc): L -» M x R

and intersection with subcotangent bundles T*SX —► T*M (see [Kl]). (For

example, the profile curves for the tori in Figures 7 and 8 of the Appendix cor-

respond to such an intersection. For these tori the Maslov class is carried by a

standard generator for HX(T2, Z), and the period is determined by the num-

ber of cusp pairs in the profile curve.) Formally the Maslov class is computed

by choosing a horizontal Lagrangian distribution and an adapted Hermitian
structure on T(T*M). The tangent spaces to L then correspond to unitary

vector bundle endomorphisms of T(T*M) over L and the complex determi-
nant models the map LG2T(T*M) —► Sx .

Theorem 2. If the Lagrangian Gauss image of j: L -> E3 is generated by

k: L —» T*M via the contact collar on i: M —► E3 then the Maslov class [m]
for k: L —> T*M agrees with the Gauss-Maslov class [Gm] for j: L —> T*S2*.

Furthermore, if j is an immersion then the Gauss-Maslov class is trivial.

Proof. For the first part we need only construct a conformai symplectic vector

bundle isomorphism O between the pull back 4-plane bundles k*T(T*M) and

j*T(T*S2*) over L which induces an isomorphism between the Lagrangian 2-

plane subbundles fc, ( TL) and j* ( TL), and which also maps the tangent spaces

to r*Af-fibers to a Lagrangian distribution transverse to the r*5'2*-fibers. We

now assume familiarity with part (II)(a) of the Appendix.
Now, given k: L —► T*M, we get k x (-s): L —► T*M x (-e, e) ~ AFF(X^)

over V, which is tangent to the symplectic 4-plane bundle ANN over L. This

ANN is the 4-plane distribution on AFF(X^) c T*E3 which is annihilated by
z'*c(7röc) + dt. It inherits a natural symplectic structure from i^d(ndc). Recall

that XdlX is the characteristic vector field for the 1-form ndc and is transverse to

AFF(X^). Now construct the dil-cone on k(L) and intersect it with p~x(S2*)

to get the conormal bundle of j = n o f). Projecting fj(L) C p~x (S2*) along the

trajectories of Xnor yields j , the Lagrangian Gauss image of the given map j .

This correspondence maps k(L) c T*M to j(L) c T*S2*. We claim that this

correspondence extends to define the desired vector bundle map O.

First T(T*M) along k(L) can be symplectically identified with ANN over
the image of k x (-s) (since y/f"1 is a contact-flow on AFF(X,)). Next ANN
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over the image of k x (-s) in AFF(X^) can be conformally identified with the

annihilator of n6c in T(p~l(S2*)) over rj(L) by projecting along the trajec-

tories of y/flX (since y/flX is a conformai symplectomorphic flow). Finally, this

4-plane distribution can be symplectically identified with T(T*S2*) over j(L)

by projecting along the trajectories of y/for (since y/f101 is a symplectomorphic

flow). The composite of these maps is the desired vector bundle isomorphism

O. It should be clear to the reader that tangent spaces to T* Af-fibers are carried

by <I> to a Lagrangian distribution transverse to the T* S2* -fibers, and we have
the first part.

For the second part we need only note that given an immersion i : M -* E3

we may identify i(M) with the zero section z : M —> T*M. In other words, the

immersion is generated by z: M -> T*M via the contact collar on ¡:jW-»E3,

which completes the proof.

(c) The polarization index. Here we assume that the Gauss map G = p o j of

j : L —> E3 satisfies the following transversality conditions: The differential of

the Gauss map has rank > 1 with differential G* transverse to Ei and Zi, i

in J2(L, S2*) (see [GG, B]). Thus the locus Cp where p o j has rank 1, is a

disjoint union of embedded closed curves marked by a finite number of cusp

points {cp} c Cp . At these cups points G restricted to Cp is not immersive.

However, the corresponding image curves G(CP) in S2* have well-defined lim-

iting tangent directions at the cusp points. Now choosing n £ {S2* — G(CP)}

we get the stereographic projection map st: S2* -{«}-> E2, and hence a well-

defined C^-Gauss map g: Cp -» RP1 for the curve sto G: Cp -» E2 . We orient

the Cp so that in E2 the double covered side of G(CP) lies counterclockwise

to the tangent of G(CP) (see [Kl]). The polarization index, PI(«), is defined

to be the degree of the C^-Gauss map g.

Theorem 3. If the Lagrangian Gauss image of j: L -» E3 satisfies the above
conditions then the following hold for all regular values n £ S2* :

(i) Pl(n) + 2S*(n) = X(L)-
(ii) PI(h) < x(L) - 2\G-degree\.

(iii) If j is an immersion then PI(«) < -4genus(L).

Proof. If we delete a small uniformly covered neighborhood U of n in S2*

then p: T*(S2* - U) —> S2* - U can be identified (via stereograph projection)

with p: T*B -» B , where B is a large open disk in E2 centered at the origin.

It follows that ](L) n T*(S2* - U) can be identified with a Lagrangian p6c-

exact immersion j: L -\JD2 —> T*B, where the number of disks D2 deleted

from L agrees with S*(n). Next j*pdc = ds, where s : L - \JD2 -+ R. This

defines graph( ]) : L-\AD2 -+ßxR, where graph( ]) = (n o f), s). Over the

complement of a smaller open ball B-B', the set graph(7')(L) agrees with the

graphs of a collection of smooth functions (i.e., graph(j)(L) n [(B - B') x R] =

Uferaph/}(£')] » i = 1, • -., S*(n), f: B - B' -> R). Now we smoothly attach
5#(«)-edge disks to the graphs of the f as in Figure 1. Adjoining this mod-

ification to graph (j) over B yields a graph of a multivalued function on B

with no periods and hence an exact Lagrangian immersion L —» T*B —> B.

Next, choose a regular value for the C^-Gauss map g: Cp -> RP1. This

yields a linear function /: E2 -* E.  Now pull back this linear function over
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Figure 1

L —► T*B -* B. Because of the round edge-disks over B - B' we have a pair

of index 1 critical points on each attached disk. Since PI(«) agrees with the

sum of the indices at critical points in p~x(B'), we have part (i). Part (ii)

then follows since S*(n) > |G-degree|. Part (iii) follows from part (ii) since

S*(n) > [1 +genus(L)] for any immersion. We are finished.

Theorem 4. Given a compact orientable surface L, a £ Z+ , and [x] £ Hl (L, Z),

there exists a smooth map j : L -> E3 with immersed Lagrangian Gauss image

j: L —> T*S2*, such that \G-degree\ = a and [Gm] — \x].

Proof. By Theorem 1 of [Kl] we know that there exists a 7t0c-exact immersion
k: L —> T*E2 with Maslov class [m] agreeing with the given [t] . Now use

the contact collar on a hyperplane embedding / : E2 —> E3 and Theorem 2 to

yield a smooth map j' : L —► E3, with Gauss-Maslov class given by [t] and

G-degree 0. Now we need only take the connected sum of j'(L) and a-copies

of the 2-sphere given in example (II)(c) Appendix (see Figure 5 there) to get a

modified map j : L —* E3 with G-degree agreeing with a . We are finished.

Remarks. We note that by deforming the image, of the above generating

Lagrangian immersion k: L —► T*E2, closer to the zero section we shrink

the total area (counted with multiplicity) of the S2*-valued Gauss image of

j':L-»E3. It follows that the map j : L —> E3 constructed in Theorem 4 can

be adjusted to satisfy the conditions of Theorem 4, and

I  \K\dA(n)- [   |/:|i/^(r7) = |G-degree| + e

for any e > 0 sufficiently small.
We also note that Theorem 4 could be proved by constructing the graph of

the Lagrangian Gauss image in S2* x R (using Theorem 1 of [Kl]) and then

applying the lemma in the Appendix. This approach has the advantage that

it could be used to control the image of the singular locus G(CP) in S2*. In

particular, one could construct j':L->E3 as above with G(CP) simple.



THE LAGRANGIAN GAUSS IMAGE OF A SURFACE 797

4. Applications

The simplest application of the above construction is to identify restrictions

on the G-image of Cp in S2*. For example, an embedded pair of concentric

simple closed curves in S2* cannot occur as the image of G(CP) for a surface

of positive genus since, regardless of orientation, there would be an n £ S2* for

which PI(«) > 0. See [K2] for additional restrictions.

We can also use the above to find homotopy obstructions for solutions to

spherical Monge-Ampère PDE. A differential ideal generated by one smooth 2-

form (Û) on p~x(S2*) = (T*S2* xR, n9c) defines a PDE for maps ;': L -» E3

via the condition that i): L -> p~x(S2*) annihilate both ndc and the auxiliary

(Q). If one chooses local graph coordinates for j and corresponding coordi-

nates on S2*, (p, q) -» (p, q, 1)/(1 + p2 + q2)1/2, then this condition will

be locally represented by a classical Monge-Ampère type PDE (see [K3]). The

construction of symplectic and cotangent characteristic varieties, as discussed

in [K3], adapt directly to this setting. It follows that if:

(i) Í2 is elliptic then the [Gm]-class must be trivial on any solution;

(ii) £2 is elliptic and the cotangent characteristic variety is uniformly de-

generate then ±G-degree = S*(n) on any solution;
(iii) Q is hyperbolic with cotangent characteristic variety nondegenerate

then for all n £ S2* the polarization index, PI(n), is carried by a

cohomology class on L - G~x(n).

The proofs are direct adaptations of the arguments in [K3]. As applications of

the above we need only note that many of the classical PDE for surfaces in E3

define spherical Monge-Ampère PDE. For example, if j : L -> E3 has constant

mean curvature at every immersive point then j: L —> T*S2* annihilates a

global elliptic differential ideal. Hence, the Gauss-Maslov class must be trivial.

Similarly, if j : L -» E3 has constant negative Gauss curvature at every immer-

sive point then ): L -» T*S2* annihilates a global hyperbolic nondegenerate

differential ideal. Hence, the polarization index is carried by a cohomology class

as in (iii).

Appendix

(I) The Lagrangian Gauss image and related constructions. Let n: PE3 -> E3

denote the cotangent bundle of E3 with canonical projection n and canonical

1-form ndc. Since E3 carries a flat connection, we have a horizontal projection

p: r*E3 -» E3* which is defined by parallel translation. Via double dualization

we have an associated horizontal canonical 1-form pdc. Thus we may write

r*E3 = E3 + E3* with n and p the respective projections onto summands, so

that d(ndc) = ~d(p6c) defines the canonical symplectic structure to on T*E3.

A typical element of T*E3 will be denoted by (vx, ): TXE3 —► R, where

vx £ rxE3. The Legendre symplectomorphism Leg: T*E3 —> T*E3, defined

by Leg((vx , -)) = ~((xv , -)), interchanges vertical and horizontal projections.

Furthermore, nOc = Leg*(-pdc). The inner product ( , ) induces the dual

norm \\ ||,: E3* -> R. This yields a pull back function p*(\\ ||„): T*E3 -» R with
Hamiltonian vector field Xn0T and flow y/,nor. The inner product also induces

a diagonal inner product function dip: T*E3 —> R, defined by dip((i>^, -)) =
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(v, x). Notice that the set dip = 0 in T*E3 is preserved by Leg. The R-

action y/fxX: (vx, -) = t(vx , -) on T*E3 is conformally symplectomorphic with

generating vector field denoted by XdlX.

(a) The conormal subbundle. Now let i: M —> E3 be a smoothly immersed,

compact, oriented surface with unit normal vector field r\ and associated Gauss

map G: M —► S2 . Given such a surface we get the conormal subbundle of T*E3

over i(M),

/cn:     MxR   ->    T*E3

(Dl) In in

i:    M ->    E3,

where zCn(w,s) = s(n(m),~) £ T*E3 for m £ M and séR. This is an

immersed Lagrangian 3-fold in T*E3 which annihilates ndc (i.e., /*na> = 0 =

i*(ndc)). Notice that icn(m, 0) = i(m) for all m £ M ,so that intersecting the

/cn-image with the 7t-zero section reproduces the given immersed surface.

(b) The subcotangent bundle. Given an immersed surface we also get a sub-

cotangent bundle of T*E3 over i(M),

iK:    T*M   -»   T*E3

(D2) 1 » 1 »
i:      M     -    E\

where a covector /: TmM -> R at m £ M is assigned the ambient covector

/a: ri(m)E3 -> R at i(m) such that la(r\(m)) = 0 and /fl = / on TmAf. That

is, z'sc^m) = lfim) • By its very definition the 1-form ndc on T*E3 pulls back

over z'sc to the canonical 1-form on n: T*M ^> M. Hence, isc is a symplectic

immersion.

(c) The contact structure of p~x(S2*). Now consider the round unit sphere S2*
at the origin in E3*. The /)-preimage p~x(S2*) is a level set of the Hamiltonian

function p*(\\ ||»): T*E3 -► R. Now for any point (v0, -) in 52*, the p-ñber
p~x((v0,-)) is a horizontal E3 to which the Hamiltonian vector field Xnor is

tangent. Furthermore, the ^«-projection of Xnox, restricted to p~x((vo, -)), is

parallel to v0 £ T0E3. Consider the 2-plane subbundle of p~x(S2*) whose fiber

at (vo,-) is the subspace in p~x((vo, -)) perpendicular to vq . Since the flow

y/f101 preserves each p-ñber, this 2-plane bundle is a global transverse section

for y/?°T on p~x(S2*). We claim this vector bundle is symplectomorphic to the

cotangent bundle of the sphere. (It will be denoted by h: T*S2* -* T*E3, with
projection p: T*S2* -* S2*.) To see this, first notice that this 2-plane bundle

lies in dip = 0 and recall that dip = 0 is preserved by the Legendre symplec-

tomorphism. Now if we take /' : S2 —► E3 to be the round sphere at the origin,

and observe that the associated subcotangent bundle /sc: T*S2 -* T*E3 lies in

dip = 0, then we see that Leg transforms isc(T*S2) into p~x(S2*), preserving

the linear structure of the fibers and co. The canonical 1-form ndc is trans-

formed to -pdc. Since, as a subset of T*E3, this 2-plane bundle agrees with

{dip = 0} n {p*(\\ ||*) = 1} , we have our claim. Notice that, on p~x(S2*), we

have the Lie derivatives L^nor(7t6»c) = 0 and n6c(Xn01) - 1. Thus, p~x(S2*)

with the 1-form n0c is a contact manifold with canonical vector field Xn0T

and global transverse section h(T*S2*) c p~x(S2*) (i.e., contact equivalent to

(T*S2*) x R with 1-form h*(ndc) + dt).
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(d) The Lagrangian Gauss image. We now define the Lagrangian Gauss image

of an immersion / : M -» E3 as follows:

First, intersect the conormal bundle icn(MxR) with the preimage p~x(S2*).

Since XdlX is tangent to the conormal bundle, this intersection is transverse and

is a section of n: M x R —► M. Thus, it defines an immersion i): M —>

p~x(S2*) c T*E3, such that i)*(nöc) = 0. Notice that tj(m) can be written as

(n(m), -) £ T*,mjE3, where n is the unit normal for the given immersion. It

follows that nof) = i, and that nttXnor evaluated at i)(m) is parallel to n(m).

Hence, Xn0T is not tangent to i)(M) in p~x(S2*).

Second, consider the immersed 3-fold y/fm o r): M x R -> p~x(S2*) c T*E3

defined by y/?ox(i)(m)), m £ M, t £ R. Since í)*oo = di)*(n6c) = 0, this is

a Lagrangian solution to the Hamilton-Jacobi PDE p*(\\ ||») = 1. Recall that

h(T*S2*) is a global transverse section for the flow of y/?or on p~x(S2*). Thus,

the intersection of y/fot o f¡(M x R) and T*S2* Si h(T*S2) in p~x(S2*) is a

smooth Lagrangian immersion of M which we denote i: M -» T*S2*.

This defines the Lagrangian Gauss image of the given immersion i : M —> E3.
Since ^nor preserves the /^-fibers (i.e., poy/Jj°x = p), we can recover the classic

Gauss map via G = p o i : M -> S2*. The Lagrangian Gauss image of an

immersion z: Af -> E3 is />0c-exact (i.e., i: M -> T*S2* satisfies ¡*(p6c) =

df, where /:M-»R). To see this recall that rj*(n6c) - 0 implies that the

periods of the 1-form (y/fm o ̂ )*(zrÖc) on M x R are all zero. Now d(ndc) =

oo = -d(pdc) implies that ndc and -pdc differ by the exterior derivative of a

function on T*E3. Thus, the 7T0c-periods on the /?0c-periods agree on MxR.

We now show that this correspondence is essentially reversible.

Lemma. Given a smoothly immersed, compact, orientable, pdc-exact, Lagrangian

immersion j: L -» T*S2*, there exists a unique smooth l-parameter family of
smooths maps jx : L —► E3 , X g R, with Gauss map G = p o j .

Proof. Given j: L —> T*S2* c p~x(S2*), pdc-exact, consider the Lagrangian

3-fold y/for o ]: L x R -» /^'(S2*) defined by y/f0T(](l)), I £ L, leR. We
need only show that there exists a smooth section of L x R, ? : L —» R, such

that the pull back of ndc over f): L -> /?_1(52*), r/(/) = V^ÜV)), / e L, is

zero. This is because 7r o fj : L —> E3 has a natural conormal bundle defined by

the union of 7i-fiber rays through points of the ^-image (i.e., the image of the

map L x R —> T*E3, (I, X) -» A • //(/), I £ L, X £ R), and hence has a Gauss

map defined by G = poi) = poj.

To show that there exist such sections recall that p~x(S2*) with the 1-form

ndc is a contact manifold with transverse section h: T*S2* -* T*E3. Since

]: L -> r*^2* is /?öc-exact, it is ^öc-exact. Thus, (hoj)*ndc = ds, s: L^R,

and wX°Ts(hoj): L -* p~x(S2*), defined by yf^s{h{]{l))), I £ L, X £ R, is the
one-parameter family of sections we seek.

(II) Examples.

(a) Contact collars over embedded submanifolds of E3. Given a smoothly em-

bedded orientable surface z: M —> E3 and a smooth exact Lagrangian immer-

sion k: L —> T*M, whose image lies sufficiently close to the zero section, we

will show there exists a smooth map j: L —► E3 with well-defined immersed
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Lagrangian Gauss image j: L -> T*S2*. We begin by modifying the subcotan-

gent bundle construction. This modification will be called a contact collar. Let

Xn denote the smooth vector field on E3 which: has support lying in a tubular

neighborhood U of i: M —» E3 ; agrees with the unit normal along i(M) ; on

a smaller e-tubular neighborhood V c U agrees with unit normal vectors to

the surface parallel transported along normal lines. (So that on V the vector

field Xn is of unit length, and tangent to a line normal to M.) This vector

field has a flow *F, on E3 which prolongs to a flow y/f = Ç¥t)* on T*E3 with
generator Xm.

Now let n: G2(E3) —> E3 denote the Grassmann bundle whose 7t-fiberat x £

E3 is the set of oriented 2-planes in TXE3. It carries the tautological differential

ideal (n0c), where a vector tangent to G2(E3) at a 2-plane is annihilated by

(ndc) if and only if its ^»-projection lies in the 2-plane. (As a bundle it can be

identified with the complement of the zero section in n : T*E3 —► E3 modulo the

action of the flow y/flX. The differential ideal generated by n6c on r*E3-{0}

then agrees with the tautological ideal.) Since y/f is a prolongation, it is a

vector bundle automorphism of T*E3 and hence descends to define a flow,

also denoted by y/j"1, on G2(E3).

Now, given an embedding i : M —> E3, we get

zc:     T*M   -►   G2(E3)
(D3) In In

i:      M     -»     E3,

where a covector /: TmM —* R at m £ M is assigned the subspace annihilated
by the ambient covector Ia: r,(m)E3 —> R at i(m), such that la(n(m)) = 1

and I = Ia on TmM. Notice that the image of zc lies in KFF(Xrj), the set

of covectors at points in V cE3 which yield value 1 when paired with Xn.

This is an affine 2-plane bundle which is transverse to XdlX. Hence, it will serve

as an incomplete model for G2(E3) over V. Under this embedding ndc is

pulled back to i^ndc, the canonical 1-form on T*M. Now we compose this

map with the prolonged flow to get the contact collar of i(M) over V c E3 :

icc = wr°ic:     T*Mx(-e,e)   -     G2(E3)
(D4) In In

T,o¡:       Mx(-e,e)      ->    FcE3.

The image also lies in AFF(Z^). On n~x(V) the pull back i*c(ndc) takes the

form (i*pndc) + dt.

Now if we are given an exact, compact, Lagrangian immersion k: L —> T*M

such that (¿¡cok)*ndc — ds, s: L —► R, |s| < e, then k x (-s): L —» T*M x R

yields an immersive composite f) = y/™ o k: L -» AFF(X^) c T*E3, //(/) =

V^|(/)(fc(0)> / e L, which satisfies (f})*(ndc) = 0. It follows that j = no

i) : L -> E3 has conormal bundle given by the union of 7z>fibers through points

of the Tj-image in T*E3 (i.e., the image of the map L x R —> r*E3, (/,!)—»
A • ?7(/), I £ L, X £ R). We call this the dil-cone on /c(L). Hence, this 7 has
a well-defined immersed Lagrangian Gauss image.

For the converse, given a smooth map j: L —> E3 with well-defined Gauss

map G whose image lies in the tubular neighborhood V, the tangent plane to

j(L) at / £ L is defined to be the kernel of (v0, -) in E3 where G(l) = (v0, -).
If these tangent planes do not contain Xn then there is an associated Lagrangian
map k : L —> T*M. Regularity conditions on j are needed in order for k to be
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immersive (see [A, Kl] and example (b)(ii) below). Examples (c) and (d) below

will illustrate these constructions. We note in passing that the subcotangent

and contact collar construction do not require a Euclidean structure. That is, if

i: M —» R3 is an embedding and X is a vector field on R3 transverse to M

then there exist maps as in diagrams (D1)-(D4).

(b) Coordinate models, (i) Constructions of § 1. Let us illustrate the above in

terms of local coordinate representatives. If (x, y, z) are orthonormal linear

coordinates on E3 then let (x, y, z, p, q, r) be the associated cotangent co-

ordinates on r*E3, so that n6c is represented by pdx + qdy + rdz ; p9c is

represented by xdp+ydq+zdr; p*(\\ ||») is represented by (p2+q2+r2)xl2 ; dip

is represented by px + qy + rz; and y/jior is represented by (x + tp, y + tq, z +

tr,p,q,r). Note that Lx™nOc = d(p*\\ ||„) and nec(Xnot) = (p*\\ ||„)2.

Now if an immersion of an open domain i: D c R2 -> E3 is given by

i(u, v) = (x(u, v), y(u, v), z(u, v)) with E3-unit normal given by (p(u, v),

q(u, v), r(u ,v)),(u,v)£DcR2, then l(u, v) is given by (x-tp, y-tq, z-

tr, p, q, r)(MiW), where t(u, v) = px + qy + rz. Soif i(u,v) parametrizes a

piece of the round 2-sphere centered at the origin then n o ¡(u, v) = (0, 0) and

G(u ,v) = po i(u, v) = i(u, v). Thus, n o ¡ can be singular while G(u, v) is

a diffeomorphism. If a Lagrangian immersion j: D —> T*S2* is represented by

](u, v) = (x,y, z,p, q, r),UtV) with p2 + q2 + r2 = 1 , px + qy + rz = 0, and

]*oo = 0, then

(pxu + qyu + rzu)du + (pxv + qyv + rzv)dv = ds(u, v)

and j(u, v) is given by (x - sp, y - sq, z - sr). So if ](u, v) parametrizes

a piece of the round 2-sphere in 7t_1(0, 0, 0) then s is constant and j(u, v)

parametrizes a piece of a round sphere in E3. Now if (u, v, a, b) are the
coordinates on T*D which represent the covector (adu + bdv , -) then

z'sc(w, v , a, b) = (x, y, z, axu + bxv , ayu + byv , azu + bzv).

Furthermore, if we choose (nonlinear) local coordinates on E3 so that an im-
mersion is represented by i(u, v) = (u,v,0) and Xn is represented by dz

then in associated cotangent coordinates on T*D and T*E3 the contact collar

is represented by zcc(w ,v,a,b,t) = (u,v,t,a,b, 1), and AFF(X)/) is rep-

resented by the set r = 1. Since ndc is represented by pdx + qdy + rdz, we

have that the pull back icc(ndc) is represented by adu + bdv + dt = i¡cndc + dt.

Notice that in the special case when k : D —► T*D is the zero section, k(u, v) =

(u, v, 0, 0), then fj = y/™ o k(u, v) = (u, v , 0, 0, 0, s) and hence fj repro-

duces the conormal of the given embedding.

(ii) Nonimmersive maps. The classical examples of smooth nonimmersive

germs j: R2 —> R3 are as follows. Edges: j(u, v) = (u,v2, JQV 2vf(u, v)),

with nonzero normal field (*, -/, 1). Here the map j: R2 —> T*S2* is im-

mersive at (0, 0) if and only if fv(0, 0) # 0. Tails: j(u, v) = (u,v3 -

uv , Jq(3v2 - u)f(u, v)) with nonzero normal field (*, -/, 1). Here the map

j: R2 -> T*S2* is immersive at (0, 0) if and only if fv(0, 0) / 0. Notice
that as one crosses a curve of singular points where the rank of jr. is 1 (i.e.,

Cj c R2) then the orientation induced by the nonzero normal field changes.

(From the Arnold viewpoint [A], these maps are C°°-generic, whereas from the
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Mond viewpoint [M], they are not. A simple example of a germ j : R2 —► R3

without a Gauss map is the Cross Cap j(u, v) = (u, v2, uv).)

(c) Spheres. Consider the nonimmersive maps of revolution j: S2 —> E3 given

by Figures 2-5. We assume the profile curves are such that, at singular points,

j is locally equivalent to the edges of example (b)(ii). The cusp points in the

profile curve correspond to the closed edge curves Cj c S2. Notice that upon

crossing these curves the orientation induced by the global normal field changes.

In Figure 2 the dashed line corresponds to a hyperplane embedding z : E2 —> E3,

and the tangent space to the sphere is everywhere transverse to Xn. It follows

that this sphere is generated by a Lagrangian immersion k: S2 —> T*E2 via

the contact collar on the hyperplane. Similarly, in Figure 3 the dashed line

corresponds to an embedding i : S2 —► E3, and the nonimmersed sphere is

generated by a Lagrangian immersion k: S2 —> T*S2. If we delete the edge

curves in Figures 4 and 5 then the surfaces are locally convex. Thus, for Figure

4 the Gauss map is a diffeomorphism, and in Figure 5 the Gauss map is a local

diffeomorphism on the complement of the edge points.

(d) Tori. Consider the nonimmersive maps of tori j: T2 -> E3 given in Figures

6-9. Both of the tori in Figures 6 and 7 are generated by Lagrangian immersions

k: T2 —> T*E2 via a contact collar. Figure 8 is generated by k: T2 —> T*T2,
where i: T2 —► E3 is the standard torus of revolution. In contrast, the map

T2 —> E3 corresponding to Figure 9 does not have a well-defined Gauss map.
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