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THE WEIL-PETERSSON SYMPLECTIC STRUCTURE
AT THURSTON'S BOUNDARY

A. PAPADOPOULOS and r. c. penner

Abstract. The Weil-Petersson Kahler structure on the Teichmüller space !T

of a punctured surface is shown to extend, in an appropriate sense, to Thurston's

symplectic structure on the space Jl'^¡ of measured foliations of compact

support on the surface. We introduce a space Ji ^q of decorated measured

foliations whose relationship to J! &~q is analogous to the relationship between

the decorated Teichmüller space 3~ and ET . Jl &~0 is parametrized by a

vector space, and there is a natural piecewise-linear embedding of J( !?§ in

J!' ¡Fq which pulls back a global differential form to Thurston's symplectic

form. We exhibit a homeomorphism between !T and J! tF§ which preserves

the natural two-forms on these spaces. Following Thurston, we finally consider

the space ^ of all suitable classes of metrics of constant Gaussian curvature on

the surface, form a natural completion y of y , and identify ^ - y with

J! &o . An extension of the Weil-Petersson Kahler form to %f is found to

extend continuously by Thurston's symplectic pairing on Ji 3§ to a two-form

on F itself.

Introduction

The aim of this note is to establish a relation between the Kahler structure
of the Weil-Petersson metric (see [Wo] for instance) on the Teichmüller space

y of a punctured surface and Thurston's piecewise-linear symplectic structure

(see [Pal] for instance) on the space JÍ f?o of measured foliations of compact

support on the surface. Roughly, the former is the imaginary part of the natural

L1 pairing of harmonic Beltrami differentials on the surface, while the latter
is connected to the algebraic intersection of homology cycles on the surface.

That these two structures are related is strongly suggested by the work of [Go],

and our main result is that the Kahler structure on !T limits, in an appropriate

sense, to the symplectic structure on Thurston's boundary for Teichmüller space.

That the Kahler structure so extends to the boundary has been the subject of
some interest (see [Bo] for instance) for several years. We emphasize that our

arguments apply only in the case of punctured surfaces.

In fact, we shall be dealing with the decorated Teichmüller space ff, whose
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892 A. PAPADOPOULOS AND R. C PENNER

definition (to be recalled below) requires that the underlying surface have at

least one puncture. We shall give a global parametrization of this space, where

the set of parameters is the collection of all real (not necessarily nonnegative)
weights on the edges of some branched one-submanifold in the surface. These

parameters are intimately connected with both the "A-length" coordinates [Pel]

on Í7~ and the "horocyclic foliation" coordinates [Th] on !T. Actually, the

branched one-submanifolds we must consider are a slight generalization of train

tracks, and the usual construction of a measured foliation from a measured train

track leads naturally to a space of "decorated measured foliations" Ji ¿Fo on

the surface^ Our parametrization will be seen to induce a homeomorphism

between ET and Jt' S?o, and, by manipulating known formulas, we shall find

that this homeomorphism preserves the natural two-forms.

Recall [FLP] that Thurston's boundary of f7~ is the space 9a &o of pro-

jective classes of measured foliations of compact support on the surface. To

understand the sense in which the Kahler structure on ET extends to the sym-

plectic structure on Thurston's boundary, we must consider a space y , which

is roughly the collection of all classes of suitable metrics of constant Gaussian

curvature on the surface. (A precise definition will be given in §5 below.) The

space y is canonically homeomorphic to the product of ST with an open ray

]0, oo[, and rather than compactifying ÏT by adjoining ¿P SFo > we imagine ad-

joining JI' S?o itself to ^"x ]0, oo[ along ¿7" x {0}. The Kahler form on ÏT

extends to y , and known regularity properties [Pa2] of Thurston's compacti-

fication in this setting allow us to conclude that this form extends naturally to

the symplectic form on Jf ^o ■
We regard as basic the connections that have evolved here between the deco-

rated Teichrhuller theory and the Thurston theory. As a consequence, once the

relations between various concepts and constructions are in place, the proofs

of the results are not difficult. At the same time, this basic connection suggests
several interesting future projects, some of which are discussed in §6 below.

1. Notations and definitions

Let F = Fg denote a fixed smooth genus g surface with 5 > 0 distinct

points removed, where we assume that F has negative Euler characteristic; let

P denote the set of removed points. Let ff — E7~(Fsg) denote the Teichmüller

space (see [Ab] for instance) of all complete finite-area hyperbolic structures on

F so that about each puncture is a (deleted) neighborhood which is isometric

to the quotient of {z = x + \/-Ty : y > 1} by a parabolic transformation of the

upper half-plane {z = x + \/-ïy: y > 0} which fixes infinity. The decorated

Teichmüller space ET = ¿7~iFg) is the total space of the natural bundle over

y, where the fiber over a point is the collection of all s-tuples of horocycles

in F, one horocycle about each puncture. The tuple of hyperbolic lengths of

the horocycles give coordinates on the fibers, and provided that each of the

distinguished horocycles is sufficiently small (in fact, see [Sh], it is sufficient

that the hyperbolic length of each horocycle is at most unity), one imagines a

point of ¿7~ as the surface with boundary obtained from F by deleting the

corresponding horoballs.

An ideal triangulation A in F is by definition a CW decomposition of the
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closed surface F U P into triangles whose zero-skeleton exactly coincides with

P. Given any complete hyperbolic metric on F (which represents an element

of y), we can associate to A a well-defined collection of geodesies in F run-

ning between the punctures, where the collection of disjoint bi-infinite geodesies

represents the homotopy class of A. We shall fix an ideal triangulation A of

F once and for all for the entirety of this paper.

Given a point F £ y and an edge a of A, we can associate a positive

real number as follows. Straighten a to a geodesic for the hyperbolic metric

underlying F and lift it to the metric universal cover of F. Since a runs

between punctures of F, this lift is asymptotic to a pair of parabolic fixed

points of the Fuchsian group underlying F, and there is a well-defined horocycle

centered at each of these points corresponding to the distinguished horocycles on

F . Let ô denote the signed hyperbolic distance between these two horocycles

taken with a positive sign if and only if the horocycles are disjoint. Finally,

define the X-length of a for F to be

A(a;f) = N/2exp(á).

In fact, the tuple of A-lengths of edges of A give global coordinates of F [Pel,

Theorem 3.1], and the pull-back to !T of the Weil-Petersson Kahler two-form

won/ under the forgetful projection is given by [Pe2, Theorem A.2]

(|)        ô) = -2^ dloga A dlogè + dlog<? Adlogc + dlogc Adloga,

where the sum is over the component triangles T of F -A, and the A-lengths

of the edges of T are a, b, c in a (counterclockwise) order compatible with

the orientation on T induced from the orientation on F .

Dual to the ideal triangulation A c F is a graph embedded in F together

with some extra structure. Indeed, the formal Poincaré dual of A is a one-

dimensional CW-complex G embedded as a strong deformation retract of F ;

furthermore, the orientation of F induces a cyclic ordering in the natural way

on the three hooks incident on each vertex of G. A one-dimensional CW-

complex together with this extra structure is called afatgraph, and for our pur-

poses, we may consider the fatgraph G = G(A) associated to our fixed ideal

triangulation A as embedded in the fixed surface F . It is often convenient to

imagine A-lengths as defined on the edges of G, where the A-length of an edge

of G is simply the A-length of its dual edge of A.
We adopt the standard notation and terminology of [FLP] for measured fo-

liations; let J'&o = Jf!Fo(Fg) denote the space of all equivalence classes of

measured foliations with compact support in F, and let 3°&o = &&oiEsg)

denote the quotient of Jf' &o under the natural action of the positive real num-

bers R+. Furthermore, let Jf 9^ = Jf9'0+(F^) denote Jf'90 together with
the empty foliation topologized so that a neighborhood of the added point is

homeomorphic to the cone from the empty foliation over 0° % • Adding the

empty foliation to Jf ^o amounts to adding the zero functional to the image

of Jf f? - {0} in the function space R-f (using the notations of [FLP], which

we recall in §5 below), and taking the topology induced from the weak topology

on the function space. We also adopt the standard terminology and notation

of [PH] for train tracks in F and ask the reader to recall the construction
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(see [PH, Construction 1.7.7] for instance) of a measured foliation or measured

lamination in F from a suitable measured train track in F .

To close this section, we give a short exposition of Thurston's symplectic form

on Jf SFo ■ Recall (see [Ph, §7] for instance) that the piecewise-linear manifold

Jf fFo admits an atlas whose charts are associated to maximal trivalent train

tracks in F . If x c F is such a train track, let V(x) denote the vector space

of assignments of real numbers to the branches of x which satisfy the switch

conditions, and let E(x) c V(x) denote the collection of all (nonnegative and

not identically zero) measures on x. Thus, E(x) is the image of a chart in the

atlas mentioned above and is identified with a subset of Jf f?o in the usual way;

V(x) is furthermore naturally identified with the tangent space to Jf ¡?o at any

point in the interior of E(x).
Relative to these identifications, Thurston's symplectic form on Jf ^o is

given by the pairing

/: V(x)x V(x)-+R

uxv^-^Tdeti^^    u(-ba)
UXV "2^det{v(aa)   v(ba)

where the sum is over all the switches o of x, det denotes the two-by-two

determinant, aa and ba denote the two branches of x incident on o whose

one-sided tangents at a point in the same direction, and, near a, aa (ba

respectively) lies to the right (left respectively) of the tangent line to x at o
oriented so that the common one-sided tangent vector to a„ and ba points

in the positive direction. Thus, given tangent vectors u,v£ V(x) based at a

point w interior to E(x), we have

t(u, v) = - \Y dw(aa) Adw(ba) (u,v),

where the sum is as before. Invariance under change of chart (namely, invariance

under splitting, shifting, and isotopy), nondegeneracy, and other properties of

this form are discussed in [Pal, Pa2, Pa4, part 2 and PH, §3.2].

2. The dual null-gon track and decorated measured foliations

Associated to the ideal triangulation A, we now define the dual null-gon

track x = t(A) , which is closely related to the fatgraph G dual to A. In each

component T of F - A, the track x n T is as in Figure 1, so there is one

triangle complementary to x for each triangle complementary to A. x is a
train track in the usual sense except that it has exactly s (recall that s is the

number of punctures of F = Fg) complementary components which are once-

punctured null-gons (that is, once-punctured topological disks in F with ^'

smooth frontier); such a complementary region is prohibited in the usual theory.
The reader will notice that the null-gon track x is derived from the fatgraph G

by "blowing up" each vertex of G into a triangle in the natural way.

Lemma 2.1. Every measured foliation of compact support is carried by the null-

gon track x.

Proof. It is convenient to consider laminations (see [PH, §§1.6 and 1.7] for

instance) instead of foliations, and we may choose for the purposes of this
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Figure 1

small large

Figure 2

proof a hyperbolic structure on F. It suffices to show that any measured

geodesic lamination L of compact support in F is carried by x. To see this,

first observe that L must be transverse to (the geodesic representative of) A in

F since it has compact support. If T is a component of F - A, it is therefore

evident that L n T is carried by x(~)T, and one easily concludes that L itself
is carried by x, as desired,   a

The frontier of a punctured null-gon component of F - x is a puncture-

parallel curve immersed in the track, and we call such a curve a collar curve of

t ; there is one collar curve of x for each puncture of F . Since the homotopy

class of a collar curve is independent of the choice of track x = x(A), we may

simply refer to a curve in F which is homotopic to a collar curve of x as a

collar curve in F| itself. The assignment of a (not necessarily nonnegative) real

number to each collar curve of x is called a collar weight on the track, and we

may also refer simply to a collar weight on the surface itself.

Notice that the branches of x are of one of two types: a branch b of x

either lies entirely inside some component of F - A (and lies in the frontier

of some triangle among the components of F - x), or perhaps b meets some

edge of A. A branch of the former type is called small and of the latter type

is called large, see Figure 2. A small branch is contained in exactly one collar

curve, while a large branch may be contained in either one or two collar curves

of x.
We refer to an assignment of (not necessarily nonnegative) real numbers

to the edges of the null-gon track x as a measure on x provided that this

assignment satisfies the switch conditions which are familiar from the train

track theory, and we let V(x) denote the vector space of all measures on the
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null-gon track x. Observe that p £ V(x) is uniquely determined by its values on

the small branches alone, and the switch conditions are equivalent to a family

of coupled linear constraints on these parameters. Explicitly, if c is a large

branch whose closure contains the switches vx ^ v2, and a¡ and b¡ are the

small branches of x incident on v¡ for ¿ = 1,2, then

piax) + pibi) = pic) = pia2) + pib2).

This constraint is called the coupling equation associated to the large branch c.

On the other hand, the values of the measure p on the large branches alone

uniquely determine p ; in fact, these values of p give unconstrained coordinates

on F(t) . Indeed, adopting the notation of Figure 1 for the various branches

of t inside a component of F - A, we find

p(a) = \{p(b) + p(c) - p(a)},

(tt) Piß) = \{p(a) + Pic) - pib)},

P(7) = \{pia) + P(b) - P(c)} .

Now, if p is a nonnegative measure on x, then the usual construction of a

(partial) measured foliation from (t, p) gives a well-defined equivalence class

of measured foliations on F ; such a measured foliation will typically contain

some collection of annuli foliated by collar curves of F, and deleting these

foliated annuli then determines a well-defined (but possibly empty) class of

measured foliation of compact support on F . Thus, a nonnegative measure on

the null-gon track x canonically determines an element of Jf 3^+ together with

a nonnegative collar weight, where the weight associated to a collar curve is sim-

ply the total measure of a transverse arc connecting the boundary components

of the corresponding foliated annulus.
More generally, suppose that p £ F(t) is not necessarily nonnegative, and

let a denote a collar curve of x. The set of switches of x decomposes a into a

collection of arcs, and the measure p associates to each such arc a real number;

let {ci,..., c„} denote the collection of real numbers associated to the small

branches of x that compose a. We define the collar weight of a to be

Wa = min{cx, ... , cn);

we make such an assignment of collar weight to each collar curve and so deter-

mine a collar weight on x itself.

Let us modify the original measure p on x by defining p'ib) = pib) - Wa

if b is contained in the collar curve Wa whenever b is a small branch of x.

Since p satisfies the coupling equations, p' extends uniquely to a well-defined

measure on t . Furthermore, the measure p' £ V(x) derived in this way from

p is nonnegative, and the measured foliation associated, as before, to p' has

identically vanishing collar weights, so the corresponding measured foliation is

of compact support.

The discussion above determines a map Yl: F(t) —» Jf&¿+ , and it is easy

to check that n is continuous; moreover, n is surjective by Lemma 2.1. Fur-

thermore, we have found that a measure p £ Vix) determines both a (possibly

empty) measured foliation Ylip) £ Jf 9^ and a collar weight on F ; we are

led to define the space Jf ^o = J? ^oiFi) of decorated measured foliations as
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the space of pairs (f?, fê), where SF £ Jf 9^ and ^ is a collar weight on

fS1 g •

We summarize our discussion so far in

Proposition 2.2. The space Vix) gives global coordinates on Jf ^o, and there

is a canonical fiber bundle Yl: Jf SFo —> Jf 9^ > where the fiber above a point is

given by the set of all collar weights on F.

There is a well-defined diagonal action of the full mapping class group M C =

MCiFg) of F on Jf 9ro, where the action on collar weights is induced by the

permutation of punctures, and MC acts in this way as a group of bundle iso-

morphisms of n. Furthermore, the bundle admits an MC-equivariant section

a: Jf 9^ —* Jf 9ro determined by the condition that each decorated measured

foliation in the image has identically vanishing collar weights. The restriction

a of this section of Jf 9% c Jf 9^ may be thought of as a piecewise-linear

embedding of the piecewise-linear manifold Jf % into the linear manifold

(vector-space) Jf^o-

3. The pairing on decorated measured foliations

We identify Jf &"o with F(t) and define a differential two-form z in coor-

dinates on Jf ^o as follows. If p £ K(t) , then we define

(tit) i = -~Yd^A dn + dnAdÇ + dÇAdÇ,

where the sum is over all triangles T complementary to î in F, and £, n,

and C > respectively, denote the //-values of the three small edges of x in the

frontier of T in a (counterclockwise) order compatible with the orientation of

T induced from the orientation of F .

To give a topological interpretation of z, fix a tie-neighborhood 7V(t) of x

in F , and let u and v be (nonzero) tangent vectors to Jf % based at a point

interior to £(t) ; as before, we may regard u, v £ Vix). Define a (null-gon)

track xu by removing the branches of x on which u vanishes (amalgamating

into a single branch whenever a pair of branches is incident on a resulting biva-

lent vertex); u gives rise to an element of K(tm) in the natural way. Similarly,

derive the measured track xv from v . Embed xu and xv in 7V(t) in such a

way that these tracks are in general position with respect to one another and

are furthermore transverse to the ties of 7Y(t) . Arguing in analogy to [Pa2, §3],

one finds that

z(w, v) = Yap(u> v)>

where the sum is over all points p of xu n xv, and if p is contained in the

branch b (respectively c) of xv (respectively xu), then aPiu, v) — ±u(b)v(c).

To compute the sign of aPiu, v), consider an open neighborhood U of p in

ÍV(t) • By construction, there are exactly two (opposite) distinguished compo-

nents of U—(xuUxv) which meet the tie through p ; choose one such component

£/» ; see Figure 3 (next page). Now consider small tangent vectors vu (and vv

respectively) to xu (and xv respectively) at p whose exponentials lie in the

frontier of i/„. The sign of ap(u,v) is taken to be positive if ivu,vv) is a
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U* u*

Figure 3

positive basis for the tangent plane to F at p and negative otherwise. No-

tice that this specification of sign is independent of the choice of distinguished

component U*.

Remark. Actually, z is induced locally by homology intersection numbers of

cycles on a two-fold branched cover of F ; see [Pa4, Appendix 2] for details.

Lemma 3.1. Suppose that u,v £ Vix) and Yl(u) £ Jf 9^ is the empty folia-

tion. Then i{u, v) = 0.

Proof. Since I1(m) is the empty foliation, the measured track xu splits to a

collection of weighted collar curves in F . Just as for /, one sees easily that

z is invariant under splitting, shifting, and isotopy, and hence we may take xu

disjoint from xv . By the topological interpretation of z given above, it follows

that z(m , v) - 0, as was asserted.   D

Proposition 3.2. Thurston's symplectic form t on Jf 3^ is the pull back a*(z)

if i on Jf 9ro ■

Proof. To begin, we consider a family of train tracks in F derived from the

null-gon track x as follows. Fix attention on some collar curve y of t. This

curve is the boundary of a null-gon component of the null-gon track. On this
curve y , there are a certain number of small branches of x. Remove from x

exactly one small branch contained in y (amalgamating branches as before),

as indicated in Figure 4. Thus, the punctured null-gon component of F -

x corresponding to y becomes a once-punctured mono-gon complementary

component of the resulting null-gon track. Performing this operation once on

each collar curve of x produces an honest train track in F . Performing these

operations in all possible ways for the various choices of one small branch from

each collar curve of x produces a family of maximal train tracks {xk}f in F .

Each xk determines a cell E{xk) c Jf 9q in the usual way. It follows directly

from Lemma 2.1 that the union of the cells \Jk=i Eixk) covers Jf 9%.

By Lemma 3.1, / agrees with a*{i) on the union of the interiors of the

Eixk). To finish the argument, we must show that for any ^ £jf 9%, there is

an ideal triangulation A' and a train track x' derived as above from the null-gon

track t(A') with ^ in the interior of E(x'). To see this, choose a pseudo-
Anosov map (see [FLP] for instance) y/: F —► F whose unstable foliation lies

in the interior of E(xk) for some k - 1, ... , K (and so that & is not in
the class of the stable foliation of y/). By well-known properties (see [FLP] for

instance) of the dynamics of the action of pseudo-Anosov maps on Jf 9^ , there

is some N (depending on 9r), so that y/N(9r) lies interior to E(xk). Finally,

take x' = y/~NiTk) > which is a train track associated to the ideal triangulation

A' = y/~NiA), as desired.   G
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Figure 4

It is remarkable that Thurston's symplectic form is actually the pull back of

a smooth differential form under a piecewise-linear embedding.

4. The homeomorphism between decorated spaces

To begin, we recall [Th] Thurston's parametrization

9^& : uS —► J cTq

of 9" by horocyclic foliations. Suppose that g is the hyperbolic metric on F

associated to some marked Riemann surface in 9~. Define a measured foliation

9% ig) of F as follows. Each component T of F-A (with its metric induced

from g) is isometric to an ideal triangle, and we consider the three pencils of

horocycles centered at the ideal vertices of T. There is a unique foliation of T

whose leaves are segments of these horocycles and so that the complement of the

support of the foliation is a small triangular region inside T whose boundary

consists of three such horocyclic segments meeting tangentially at the frontier

of T ; see Figure 5 (next page). These foliations of the components of F - A

combine in the natural way to produce a foliation 3%ig) of F itself.

Of course, 9%ig) is not compactly supported in F, but there is a well-

defined compactly supported partial sub-measured foliation 9¿ig) which is

obtained from 9%ig) by simply deleting all of the closed leaves of 3%ig)
which are puncture-parallel. Thurston proves [Th, §9] that the map 3& is in

fact a homeomorphism.   (This also follows from the fact that ¿-lengths are

coordinates on 3~ ; however, Thurston's argument includes the more general

case of arbitrary maximal laminations, not just ideal triangulations.)

Remark. In this construction, there is a leaf of 3%ig)-3^ig) of greatest hyper-

bolic length about each puncture, and we may think of this as giving a section

of the decorated bundle 9~ —> 3~. In the case of once-punctured surfaces, this

section corresponds to taking the largest embedded horoball about the punc-

ture. Also, notice that the empty foliation corresponds to the "center of the cell

^(A)," which is an arithmetic Riemann surface; see [Pel, §6].

From the definitions, we observe that the total transverse length with respect

to 3¿ig) of an edge of A is just the g-length of a subarc of the edge running

between certain horocycles. Recalling the definition of A-lengths, we are led to

define a map

3~ -» V(r)

f^P,



900 A. PAPADOPOULOS AND R. C PENNER

Figure 5

where pib) = 21ogA(è* ; F) for each large branch of x with dual edge b* in A.

Here we are tacitly using the fact observed before that the values of a measure

on the large branches of x alone uniquely determine the measure.

Remark. The reader may notice the disappearance of a summand - log 2 from

the natural definition of the measure on x associated to an element of 3~ ; here

we are simply changing the lengths of all the horocycles by an overall factor V2

to simplify computations. Furthermore, the reader familiar with the decorated

Teichmüller theory will observe that the values of p on the small branches are

simply the logarithms of corresponding "h-lengths."

Identifying  F(t)  as before with Jf3~o, we have thus described a map

3^: 9~ -* Jf ^o which covers Thurston's map 9\ discussed above.

Proposition 4.1. The homeomorphism 9^ preserves the natural two-forms iwhere

on the domain, the two-form is the pull back œ of the Weil-Petersson Kahler two-

forms oj on 9~, and on the range, the two-form is the form i).

Proof. If suffices to consider separately the contributions to the two-forms from

a single component T of F - A, and we adopt the notation of Figure 1 for

the branches of x n T. Let us also adopt the convention that Xix) = Xix ; F)

denotes the A-length of the edge of A dual to the large branch x of x for

F £ 3~, and set Xix) = dlogA(jt) for convenience. Equations (tt) and (ttt)

give that the contribution to z corresponding to T is

- i{[l(¿>) + 2(c) - 1(a)] A [lia) + lie) - lib)]

+ [Xia) + lie) - lib)] A [lia) + lib) - lie)]

+ [lia) + lib) - lie)] A [lib) + lie) - lia)]}

= -2[X{a) A lib) + lib) A lie) + lie) A lia)],

which is the contribution œ corresponding to T according to equation (t).   ü

Corollary 4.2. The homeomorphism 9Á pulls back Thurston 's symplectic pairing

on Jf3ó to the Weil-Petersson Kahler two-form co restricted to 9~ - 9rA~x

iempty foliation).
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5. The extension of the two-form

Let y = yiF$g) denote the Yamabe space of all complete finite-area metrics

on F of constant Gaussian curvature, modulo push-forward by orientation-

preserving diffeomorphisms of F which are isotopic to the identity. Each class

of metrics in y is represented by the scalar multiple of an underlying con-

formal hyperbolic metric of constant curvature -1. Thus, y is canonically

homeomorphic to 3rx]0, oo[, where, if g is the hyperbolic metric represent-

ing an element of 3", then ig, x) 6^x]0,oo[ corresponds to the class of

the metric xg (which has constant Gaussian curvature -x2). We henceforth

identify y with 9~x. ]0, oo[ in this way and let n:y—> 9~ denote the map

induced by projection ig, x) h-> g onto the first factor.

Following [FLP], we let S? = 9^iF^) denote the set of all isotopy classes

of simple closed curves in F which are neither null homotopic nor puncture-

parallel, and define a map

r.y ^w.f

where lg(x) denotes the ^-length of the ^-geodesic in the homotopy class

X € S? (note that R+ denotes here the set of nonnegative real numbers). Thus,
if g£y corresponds to {nig), x) £ 3rx ]0, oo[, then 1(g) = I ((nig), x)) =

xl({nig), 1)). Of course, one also has a map

J :Jf9r0+ ^Rf

where 1(9?, x) denotes the geometric intersection number of 3~ and x £ ¿7.
The image of the empty foliation is, by definition, equal to the zero-functional.

The fundamental facts [FLP, Expose 8, §2] are that each of / and J are

embeddings with disjoint images, and a "convergence criterion" (which we will

not need) is given in order that the image under / of a sequence in y converge

to an element in the image of /. Define a "completion" y of the Yamabe

space y in R^ by setting

F = Wu/(^+)

and identifying y with ¡iff). In fact, passing to the quotients by the re-

spective homothetic actions of R+ on R^ - {0} , y and Jf 3%, one obtains

Thurston's compactification 9~ \J 30 &o ~W ~ {°}/R+ of ^ « y/R+ by
0>3ro^Jf3ro/R+.

We will rely below on an alternative convergence criterion (see [Pa3, Theorem

3.7]), as follows.

Convergence criterion. Fix an ideal triangulation A of F, and suppose that

(gn, x„) is a sequence in y » ^"x]0, oo[ so that g„ is eventually disjoint

from any compactum in 3^ and x„ tends to zero, then I((gn, x„)) converges

to Ji3~) in the topology of R+ if and only if the sequence x„3&ign) converges
to 3e in the topology of Jf 3%.

Now, define a map
h:y ^Jr3rQ+x[0,oo[

ig,x)* ix3rAig),x).
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According to Thurston's horocyclic coordinatization of 3", the map h is an

injection with image Jf ^x ]0, oo[, and by the convergence criterion above,

h extends to a homeomorphism

h:y'^J3~0+ x[0,oc[,

where the image of the set of ideal points y - y is the subset Jf 3^ x

{0} c Jf'3q+ x [0, oo[. In fact, if we let K: J'3r0+ c Jf 3^ x [0, oc[ denote

the natural inclusion identifying Jf 3\f with Jf 3~0+ x {0} and regard the

embedding J above as an inclusion J: Jf 3^ c y, then the convergence

criterion moreover implies that K = h o J .
Recall that co denotes the Weil-Petersson Kahler two-form on 9", and define

a two-form

co' = x~2n*ico)

on y. Also, let /' denote the pull back of Thurston's symplectic form on

Jf3o to Jf 3qx ]0, oo[ under the projection onto the first factor. According

to Corollary 4.2, the homeomorphism h respects the forms co' and /'.

Insofar as /' extends continuously to Jf3ox[0,oo[ (again by pulling back

/ under projection onto the first factor), we find that co' extends continuously

to a two-form co' on y whose restriction y - y - {0} « Jf 9% is exactly

Thurston's symplectic pairing.
We summarize with

Theorem 5.1. The Weil-Petersson Kahler two-form co on 3" induces a two-form

co' on y which extends continuously to y' « y\iJf'9q . This extension restricts

to Thurston's symplectic form t on Jf'3q « y - y - {0} .

For the purpose of helping the reader, we recollect in the following two di-

agrams the space that we were involved in, and the forms which were defined

upon them.

Jf 9ro   i

co   9r-9r-xiö)-y Jf9\   t

yco'-> y to'

9To) Jf 9^+ x [0, oo[   /'

6. Concluding remarks

To close, we briefly discuss some open problems which arise from the inves-

tigations of this note. Of course, one might hope to prove a result analogous to

Theorem 5.1 for closed surfaces using Thurston's general horocyclic foliation

coordinates.

Given the connections that have arisen here between the decorated Teich-

müller theory and the Thurston theory, the translation of ideas and construc-

tions from one theory to the other should be fruitful.
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For instance, a Whitehead move on an ideal triangulation A corresponds to

a composition of a split and a collapse (that is, the inverse of a split) on the dual

null-gon track t(A) . The effect of a Whitehead move on A-lengths is given by

a "Ptolemy transformation," and one can derive a representation of the action

of the mapping class group MC (see [Pel, §7]) on A-length coordinates for 9^

with respect to A as a group of tuples of rational maps. Our identification here

of y with Jf9ro suggests that the determination of the type (namely, pseudo-

Anosov, periodic, or reducible) could perhaps be discerned directly from the

representing rational maps. A more enterprising project would be to discover the

invariant projective foliations or the dilatation for pseudo-Anosov maps directly

from the representing rational maps. This is in contrast to known solutions to

these problems (see [Be] for instance) which take the form of algorithms which

are shown to terminate.

Other problems which seem interesting are to relate the AfC-invariant cell

decomposition of 3~ (see [Pe 1, §5]) to the train track polyhedral cover of ¿P 9o ,

and to discover a sense in which the space of projective classes of decorated

measured foliations provides a Thurstonesque compactification of 3^ itself.

We wonder also whether the train track theory might be useful in solving the

fundamental arithmetic problems (see [Pe2, §7]) in the decorated Teichmüller

theory and ask for a geometric interpretation of the "simplicial coordinates" in

terms of train tracks. One also observes that cohomology classes (for instance,

the Morita-Mumford classes [Mo]) on the moduli space 3~/MC give rise to
AfC-invariant structures on Jf 9^, and we ask for topological interpretations
of these invariant structures in analogy to the interpretation given here of the

Weil-Petersson Kahler structure (which is essentially the first Morita-Mumford
class) as induced by homology intersection numbers of cycles on the surface.

Finally, it would be interesting to analyze the section of the decorated bundle

3~ —> 9~ which is associated to Thurston's map 3^ (see the first remark in

§4); computing this section in ¿-lengths could be interesting and might simplify

certain computations in the decorated Teichmüller theory.
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