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WEAK TOPOLOGIES FOR THE CLOSED SUBSETS
OF A METRIZABLE SPACE

GERALD BEER AND ROBERTO LUCCHETTI

Abstract. The purpose of this article is to propose a unified theory for topolo-

gies on the closed subsets of a metrizable space. It can be shown that all of

the standard hyperspace topologies—including the Hausdorff metric topology,

the Vietoris topology, the Attouch-Wets topology, the Fell topology, the locally

finite topology, and the topology of Mosco convergence—arise as weak topolo-

gies generated by families of geometric functionals defined on closed sets. A key

ingredient is the simple yet beautiful interplay between topologies determined

by families of gap functionals and those determined by families of Hausdorff

excess functionals.

1. Introduction

From the point of view of analysis, the favorite topology for the (nonempty)

closed and bounded subsets of a metric space (X, d)—especially the closed

and bounded convex subsets of a normed linear space—is the Hausdorff metric

topology. For A and B closed and bounded, the Hausdorff distance between

them is defined by

Hd(A, B) = max I supd(a, B), supd(b, A) \ ,
(a£A b£B )

= inf{e > 0: A C Se[B] and B c Se[A]},

where SE[F] is the e-enlargement of the set F, i.e., Se[F] = {x £ X: d(x, F)

< e}. Denoting the Hausdorff excess [CV] supfteÄ d(b, A) of B over A by

ed(B, A), we may write Hd(A, B) = max{ed(A, B), ed(B, A)} .
The Hausdorff distance so defined makes sense for arbitrary closed sets as

well, and yields an infinite valued metric on the nonempty closed subsets CL(X)

of X [CV, KT]. For closed sets we have the formula [Co]

Hd(A,B) = mn\d(x, A) - d(x, B)\,
xex

so that Hausdorff metric convergence of a sequence of closed sets (An) to A

amounts to the uniform convergence of (d(-, An)) to d(-, A).
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But there is a problem with this metric in the more general setting: it is obvi-

ously too strong. In the plane, one would like the sequence of lines (L„) where

L„ has slope 1/« and y-intercept 0 to converge to the x-axis. This, of course,

fails for the Hausdorff metric induced by the Euclidean metric. Various weaker

convergence notions/topologies for closed sets have been considered over the

past thirty years, with variable success: Kuratowski convergence and the associ-

ated Fell topology; Wijsman convergence (pointwise convergence of (d(-, A„))

to d(-, A)) and the associated Wijsman topology; Mosco convergence and the

associated Mosco topology. Only recently has a completely acceptable replace-

ment (at least in the convex case) for the Hausdorff metric been investigated:

the metrizable topology of uniform convergence of (d(-, A„)) to d(-, A) on

bounded subsets of X. Given x0 £ X, a local base for this topology [Be2,

BDC, AP, ALW] at A £ CL(X) consists of all sets of the form

S„L4] = {F£ CL(X) : F n Sn[x0] C Sx/n[A] and A n Sn[x0] C Sx/n[F]}

(n£Z+).

In the setting of convex analysis, this topology reduces to the Hausdorff metric

topology for closed and bounded convex sets [BL1], is stable with respect to

duality [Be3, Pe], and is well suited for approximation and optimization. In

view of its seminal study in [AW], we call this the Attouch-Wets topology xav/d,

although it has been often called the bounded Hausdorff topology [AP, Pe].

In the last few years, a significant development in the study of topologies on

the closed subsets of a metric space has been the presentation of many basic

topologies as weak topologies. Given a topology x on CL(X), one seeks a

family {y/¡: i £ 1} of extended real functionals on CL(X) such that x is the

weakest topology for which each y/¡ is continuous. Here are some typical results

within this general framework.

If X is a metrizable space and {d, : i £ 1} is the family of all compatible

metrics, then the Vietoris topology [Mi, KT, En] is the weakest topology x on

CL(X) such that for each x £ X and i £ I, A —* d¡(x, A) is r-continuous

[BLLN, Theorem 3.1]. Thus the Vietoris topology is the weak topology deter-

mined by {di(x, •): x £ X and i £ 1}. The Fell topology [At, Fe, KT] on
CL(X) is Hausdorff if and only if X is locally compact, and in this context

there exists a compatible metric d (specifically, one such that each closed d-

ball that is a proper subset of X is compact) such that the Fell topology is

the Wijsman topology determined by d, i.e., the weak topology generated by

{d(x, •): x £ X} [Be4, Theorem 2]. The topology of Mosco convergence on

the closed convex subsets of a Banach space X, compatible with Mosco con-

vergence [At, Mo, BF] of sequences [Bel, Theorem 3.1] is Hausdorff if and only

if X is reflexive [BB]. In this case, the Mosco topology is the weak topology

generated by the family of functionals {Dd(-, K): K weakly compact and con-

vex} [Bel, Theorem 3.3], where d is the distance functional associated with

the norm of X, and

Dd(A, B) = inf{d(a, b):a£A,b£B} = infd(b,A),
b€B

is the gap between two closed sets A and B relative to the metric d . Moreover,

there exists a renorming of X with associated metric d (one such that the dual

norm has the Kadec property) such that the Mosco topology is generated by
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{d(x, •) : x £ X} [BF, Be7]. If X is an arbitrary normed linear space, then the

weak topology on the closed convex sets determined by {Dd(-, C): C closed

and convex} coincides with the weak topology determined by {d(x, •): x £

X} U {s(y, •): y £ X*}, where s(y, A) = sup{(y, a): a £ A) is the value of the

support functional for the set A at y [Be5]. The weak topology determined by

support functionals alone on the closed convex sets alone is studied in [SZ1].

Here, we systematically study topologies on CL(X) induced by gap func-

tionals and excess functionals where one set argument is fixed, varying both the

set and metric over prescribed classes. In particular, we show that the Hausdorff

metric and Attouch-Wets topologies both fit within this framework in a similar

way. One point of departure for this work is the d-proximal topology x¿d on

CL(X) introduced in [BLLN], which may be defined as the weak topology on

CL(X) determined by the family of gap functionals {Dd(-, F): F £ CL(X)}.
A second point of departure is a certain weakening od of xSSNd, considered re-

cently in the context of convex analysis and optimization, by two different sets

of authors [AAB, SP].

Definition. The bounded d-proximal topology od on CL(X) has as a local base

at A £ CL(X) all sets of the form

QA[n ;ax,a2,...,ak] = {F£ CL(X) : F n Sn[x0] C Sx/n[A],

andVz'</c, d(a¡,F)< l/n}

where {ax, a2, ... , a^} is a finite subset of A and n £ Z+ .

As we shall see, this topology is the weak topology determined by {Dd(-, B) :

B £ CL(X) and B bounded}, a result which has been obtained independently

and concurrently in sequential form by Sonntag and Zalinescu [ZS2] (private

communication). We then form natural duals for the ¿/-proximal and bounded
d-proximal topologies, both in terms of their local presentations and in terms of
the lattice-theoretic approach to hyperspaces as promoted by Levi and Lechicki

[FLL, LL], and show that these topologies are weak topologies determined by

Hausdorff excess functionals. Putting these together yields the Hausdorff metric
and Attouch-Wets topologies.

2. Preliminaries

As stated in §1, CL(X) will denote the nonempty closed subsets of a metric

space (X, d). We need to review some basic facts about hyperspace topologies,

i.e., topologies on CL(X). In view of the results mentioned in §1, a basic

topology on CL(X) is the Wijsman topology xWi [Wi, Co, FLL, LL, BLLN,
Be6], which is the weakest topology x on CL(X) such that for each x £ X,

the functional A —> d(x, A) is r-continuous. This topology is a function space

topology, in that Xwd is the topology that CL(X) inherits from C(X, R),
equipped with the topology of pointwise convergence, under the identification

A <-> d(-, A). Similarly, the Hausdorff metric (resp. Attouch-West) topology is

the topology that CL(X) inherits from C(X, R), equipped with the topology
of uniform convergence (resp. uniform convergence on bounded sets), under

the identification A <-> d(-, A).
Another basic class of hyperspace topologies are the hit-and-miss topologies.

To introduce these, we need some notation. For E c CL(X), we introduce the
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following subsets of CL(X) :

E~ = {A£CL(X):ADE^0};

E+ = {A£CL(X):AcE};

E++ = {A£ CL(X) : there exists e > 0 with S£[A] c E}.

A set in E~ hits E, whereas a set in E+ misses Ec. A set in E++ really

misses Ec ! Using this notation, we list some standard hit-and-miss topologies:

(1) The Vietoris topology xy [Mi, KT, En] on CL(X) has as a subbase all

sets of the form V~ where V is open, and all sets of the form W+

where W is open;

(2) The Fell topology xp [Fe, KT] on CL(X) has as a subbase all sets of
the form V~ where V is open, and all sets of the form W+ where W

has compact complement;

(3) For X a normed linear space, the Mosco topology xM [Bel, BB, Be7]

on the weakly closed sets has as a subbase all sets of the form V~ where

V is norm open, and all sets of the form W+ where W has weakly

compact complement.

Notice that in (2) and (3), W+ = W++ for the given class of sets W. If

in (1), we replace W+ by W++, as W runs over the open sets, we obtain

the so-called d-proximal topology x¿d studied in [BLLN]. This topology has a

presentation as a weak topology, alluded to in § 1 : the úf-proximal topology is the

weakest topology x on CL(X) such that for each F £ CL(X), A —> Dd(A, F)
is T-continuous [BLLN, Theorem 3.2]. Analogously, the Mosco topology is the
weakest topology x on the weakly closed subsets of a reflexive Banach space

such that for each weakly compact set K, A —> Dd(A, K) is T-continuous,

where d is the metric induced by the norm [Bel, Theorem 3.3]. These two

results are special cases of a general phenomenon that we now describe.

Definition. Let Q be a class of nonempty closed subsets of a metric space

(X, d). We say that Q is stable under enlargements if for each A £ Q and

a > 0, we have cl5Q[^] e Q.

Within CL(X), we distinguish these classes:

K(X) = the nonempty compact subsets;

CLB(X) - the nonempty closed and bounded subsets;

Evidently, CLB(X) and CL(X) are stable under enlargements, as is K(X)

provided closed and bounded subsets of X are compact. In a normed linear

space, the convex sets, the connected sets, and the starshaped sets are stable

under enlargements. If the space is reflexive, then the weakly compact sets also

have this property.

We need to consider semicontinuity of functionals defined on hyperspaces.

Let T be a topological space. Recall that /: T —* [-oc, oo] is called lower

semicontinuous provided for each a £ R, {t: f(t) < a}, is a closed subset of

T. We call / upper semicontinuous provided —/ is lower semicontinuous.

Theorem 2.1. Let (X, d) be a metric space, and let Q be a class of closed

subsets that is stable under enlargements and that contains the singleton subsets

of X. Let n be a subset of CL(X).   Then the topology xx  on Fl having as
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a subbase all sets of the form V~ where V is open, and all sets of the form

(Ec)++ where E £ Q, is the weakest topology x on FÍ such that for every

E € Q, A —> Dd(A, E) is x-continuous.

Proof. Let Tweak be the weak topology so described. We first show Tweak Dti-

Suppose A en. If A £ V~ where V is open, we can find a £ A and e > 0

with Se[a] C V. Then {F £ Yl: d(a,F) < e} = {F £ Yl: Dd(F, {a}) < e} is
a rweak-neighborhood of A, and {F £ Yl: d(a, F) < e} = -SJ^]- c V' . On
the other hand, for each E £ Q, we have (Ec)++ = {F £ Yl: Dd(F, E) > 0} £

Tweak • This proves Tweak D xx .

For the other inclusion, it suffices to show that F —> Dd(F, E) is Ti-

continuous on n for each E £ Q. For upper semicontinuity, fix A £ Yl and

e > 0. Pick a £ A with d(a, E) < Dd(A, E) + e/2. Then if F € (S£/2[a])~ n
n, we have Dd(F, E) < Dd(A, E) + e. Lower semicontinuity of the gap

functional holds if Dd(A,E) = 0. Otherwise, write Dd(A,E) = a > 0
and let e £ (0, a) be arbitrary. Then since Q. is stable under enlargements,

((clS'a-4[.E])c)++ is a t,-neighborhood of A , and if F £ ((c\Sa-e[E])c)++ , we

obtain Dd(F, E)>a-e.   □

For emphasis, we state as corollaries these special cases.

Corollary 2.2. Let (X, d) be a metric space. Then the d-proximal topology on

CL(X), having as a subbase all sets of the form V~ where V is open, and all

sets of the form W++ where W is open, is the weakest topology x on CL(X)

such that A —► Dd(A, F) is x-continuous for each F £ CL(X).

Corollary 2.3. Let (X, d) be a reflexive Banach space. Then the Mosco topology

Xm on the nonempty weakly closed subsets of X, having as a subbase all sets of

the form V~ where V is norm open, and all sets of the form W+ where W

has weakly compact complement, is the weakest topology x on the weakly closed

subsets such that A —» Dd(A, K) is x-continuous for each weakly compact subset

K ofX.

Proof. By weak lower semicontinuity of the norm, for each a > 0, we have
clS^AT] = {x £ X: d(x, K) < a} weakly closed whenever K is weakly com-

pact. Thus by reflexivity, weak compactness of K yields weak compactness

of cl5Q[/C]. Finally, if A is weakly closed, and K is weakly compact and

A n K / 0, then A £ (Kc)++, again by weak lower semicontinuity of the

norm.    □

3. Local and global presentations of ad

Lemma 3.1. Let (X, d) be a metrizable space, and let A £ CL(X). The fol-
lowing families also constitute local bases for the bounded d-proximal topology

ad at A:

(i) All sets of the form SA[B; e; ax, a2, ... , ak] = {F £ CL(X) : F n B c
Se[A], and Vz < k, d(a¡, F) < e}, where [ax, a2, ... , ak} c A and

B is bounded;
(ii) All sets of the form AA[B ; e; xx, x2, ... , x^] = {F £ CL(X) : Vx £

B,  d(x, A) - e < d(x, F) and Vz < k,  d(x,, F) < d(x¡, A) + e},
where {xx, x2, ... , x^} c X and B is bounded.
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Proof. Let {ax, a2, ... , ak} c A and let n £ Z+ be given. With B = Sn[x0]

and e = 1/« , we have QA[B; e; ax, a2, ... , ak] = Q>A[n; ax, a2, ... , ak].
Now let B be bounded, e > 0, and {ax, a2, ... , ak} c A be given. If
F £ AA[B ; e; ax, a2, ... , ak], then for every x £ FnB, we have d(x, A)-e <

d(x, F) = 0 so that x £ S£[A]. This proves that AA[B ; e ; ax, a2, ... , ak] c

QA[B; e; ax, a2, ... , ak]. Finally, let B be bounded, e > 0, and points

{xx, x2, ... , xk} c X be given. Choose for each i < k a point a¡ £ A

with d(Xi, a¡) < d(x¡, A) + e/2. There exists m £ Z+ such that l/m < e

and B c Sm[xo]. Choose m0 > m so large that F n Smo[xo] ̂  0 for each

F e $>A[mo ;ax, a2, ... ,ak] (we may for example, take mo > m so large that

Smoi-Xo] 3 Sil^i]) • Set n = 2m + w0+ 1. We claim that <î>A[n ; ax, a2, ... , ak]

C AA[B; e; xx, x2, ... , xk].

Fix F 6 <f>A[n ; ax,a2, ... , ak]. For each z < k , we have d(a¡, F) < l/n <

1 /2m < e/2 so that

¿(*!, -F) < d(x¡, a¡) + d(a¡, F) < d(x¡, A) + e.

For each x £ Sm[x0] take zx£ F with d(x, zx) < d(x, F) + l/3m . Since F

hits Smo[xo], we have

d(xo, zx) < d(xo, x) + d(x, zx) < m + (m + m0+ 1) = n.

Since FnS„[xo] C Si/„fyl], there exists ax £ A with d(ax, zx) < l/n < l/3m .

Thus, we have

d(x, A) < d(x, ax) < d(x, zx) + d(zx, ax)

<d(x,F) + ^- + ^-<d(x,F) + ^.
3m     3m 3m

This proves that Vx £ Sm[xo], we have d(x, A)-l/m < d(x, F), whence Vx £

B , d(x, A)-e < d(x, F). This proves that F £ AA[B ; e; xx, x2, ... , xk].   D

We intentionally work with the different presentations of ad throughout this

paper, as the situation dictates. The next two results are representative scenarios

in this regard.

Corollary 3.2. Let (X, d) be a metric space. Then ad D xWd ■

Proof. Fix A £ CL(X). Given xelandoO, A^[{x}; e; x] = {F £
CL(X): d(x,A)-e < d(x, F) < d(x, A) + e} = {F £ CL(X): \d(x, F) -
d(x,A)\<e}.   D

As Xtvd is Hausdorff, the same must be true for the stronger od .

Corollary 3.3. Let (X, d) be a metric space. Then

(i) ad c xav/d on CL(X) ;

(ii) If (A)) is a net in CL(X)  ad-convergent to a totally bounded closed set

A, then A = TaWrf-lim^.

Proof, (i) Fix x0 £ X, and fix A £ CL(X), and let 0^[«; ax, a2, ... , ak] be
a ad-neighborhood of A. Choose m > n so large that {ax, a2, ... , ak} c

Sm[xo] • We clearly have Zm[A] c Q>A[n ; ax, a2, ... , ak].

(ii) Fix xo £ X and n £ Z+ . By total boundedness, choose {ax, a2, a-$, ... ,

ak} in A with A c SX/2n[{ax, a2, a¡, ... , ak}]. We then have Zn[A] D

<S>A[2n ; ax, a2, ... , ak]. Thus, (Ax) must be in ~Ln[A] eventually, so that

A = xav/d-limAx.   ü
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It can be shown that pairwise coincidence of the topologies xwid, od , and

xWd occurs if and only if bounded subsets of X are totally bounded. This

fact, as well as necessary and sufficient conditions for first countability, second

countability, and metrizability, as well as a description of the properties of
the underlying metric that determine the bounded d-proximal topology, are

presented in [BL2]. As we will introduce several new topologies in this paper,

it would be distracting (and tedious) to pursue a complete analysis here.

We now turn to global presentations of ad .

Theorem 3.4. Let (X, d) be a metric space. The topology ad is the weakest

topology x on CL(X) such that for each closed and bounded subset B of X,

the gap functional A -> Dd(A, B) is x-continuous on CL(X).

Proof. For B £ CLB(X) fixed, we first show that F — Dd(F, B) is (T--
continuous. Fix A £ CL(X) and let e > 0. There exists a £ A such that

d(a, B) < Dd(A, B) + e/2. Now &A[B ; e/2 ; a] is a ad-neighborhood of A ,
and Dd(F, B) < Dd(A, B) + e for each F in the neighborhood. This proves
o¿-upper semicontinuity of F —> Dd(F, B) at A. Lower semicontinuity is

obvious if Dd(A, B) = 0; so, suppose Dd(A, B) = a > 0. Let e £ (0, a)
and ax £ A be arbitrary. We claim that for each F in the ad-neighborhood

AA[Sa-£[B] ; e; ax] of A, we have Dd(F, B) > a - e .

Fix F £ QA[Sa-£[B]; e;ax]. We claim that F nSa-£[B] is empty. Other-
wise, taking x £ FnSa-£[B], we have x £ S£[A], so that AnS£[Sa-£[B]] ^ 0,

contradicting Dd(A, B) — a. This means that Dd(F, B) > a - e , establishing

ad-lov/er semicontinuity of the gap functional at A . Thus if Tweak is the weak-

est topology t on CL(X) such that F —> Dd(F, B) is T-continuous for each

closed and bounded set B , we have od D Tweak .

To show that od c Tweak, we show that if (Aß) is a net in CL(X) Tweak-

convergent to A , then A = ad- lim Aß . To this end, let QA[B; e; ax, a2, ... , ak]

be a (^-neighborhood of A , where B is bounded and {ax, a2, ... , a„} C A .

For each i < k we have

0 = Dd(A, {a¡}) = limDd(Aß, {a¡}) = lim^a,-, Aß).
M II

Thus, there exists an index po such that for each p > po and each i < k,
we have d(a¡, Aß) < e . It remains to show that eventually, Aß n B c S£[A].

Suppose to the contrary that Apr¡ B <t S£[A] for each p in some cofinal set

of indices M. For each p £ M, pick xß £ Aß n B with d(xß, A) > e . Then
B' = clíx^: p £ M} is closed and bounded and Dd(A, B') > e. However,

limßDd(Aß, B') > e is impossible, since Dd(Aß,B') = 0 frequently. This
contradicts A = Tweak-lim^ . Thus, eventually, AßnB c Se[A] must hold, and

we have shown that eventually Aß £ QA[B ; e ; ax, a2, ... , ak] must hold.   D

One consequence of Theorem 3.4 is that the topology ad is completely regu-

lar, for any weak topology induced by a family of functions into uniform spaces

has a natural compatible uniformity. We also remark that in the last theorem,

there is really no need to require that the sets B be closed as well as bounded,

since for any B, we have Dd(A, B) = Dd(A, cl B).
Gap functionals determined by a fixed closed argument need not be od-

continuous or even Taw,-continuous, as the following example shows.
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Example. In the plane with the usual metric, let F = {(x,y): y = 1}, let

An = {(x, y): y = x/n) and let A = {(x, y): y = 0}. Then A - TaWrf-limyl„

and Dd(F, A) = 1, whereas for each n , Dd(F, A„) = 0.

Corollary 3.5. Let X be a reflexive Banach space. Then the bounded d-proximal

topology when restricted to the weakly closed nonempty subsets of X is finer than

the Mosco topology.

Proof. The Mosco topology is generated by a smaller family of gap functionals,

namely those determined by the weakly closed and norm bounded subsets of

X.   D

It can be shown that the bounded d-proximal topology coincides with the

Mosco topology if and only if the underlying space is finite dimensional [BL2].

As a result of Theorems 2.1 and 3.4, we may represent od as a hit-and-miss

topology.

Theorem 3.6. Let (X, d) be a metric space. Then a subbase for the bounded

d-proximal topology consists of all sets of the form V~ where V is open, and
all sets of the form (Bc)++ , where B is closed and bounded.

In view of Theorems 3.4 and 3.6, the topology od is indeed an analogue of

the d-proximal topology xôd introduced in [BLLN]. Now x¿d is the weakest

topology on CL(X) such that A -> p(x, A) is continuous, where p ranges

over the metrics that define the same uniformity as d and x ranges over X

[BLLN, Theorem 3.7]. Put somewhat differently, xsd = sup{rn/,: p is uniformly

equivalent to d}, where the supremum is taken in the lattice of hyperspace

topologies. Does od admit such a presentation? Our next result resolves this

affirmatively.

Theorem 3.7. Let (X, d) be a metric space and let A = {p: p is a metric

uniformly equivalent to d that determine the same bounded sets as d). Then
ad is the weak topology on CL(X) determined by {p(x, •): x £ X,  p £ A} .

Proof. Let tweak be the specified weak topology. Clearly, if d and p are

uniformly equivalent, then for each A c X, we have A^+ = Ap~+. Thus, if

in addition, d and p determine the same bounded sets, then Theorem 3.6

guarantees that od = op . Since by Corollary 3.2, xw„ C ap , we obtain rweak c

od.
For the other inclusion, we recall that for each open V , the set V~ belongs

to each Wijsman topology [FLL, Proposition 2.1]. So, it remains to show that

(Bc)^+ £ Tweak , whenever B is a closed and bounded subset of X . We dispose

of some special cases. If B = X, then (Bc)^+ = 0 , which is in each Wijsman

topology. If B = {x} for some x, then with respect to each p, (Bc)+p+ =

(Bc)+d+ = {F £ CL(X): p(x,F) > 0}, which again is in xWp for each p. It

remains to consider the case that B is not a singleton, and B ^ X.

Fix A £ (Bc)^+ ; we will produce p £ A, y0 £ X, and ô > 0 such that

A £ {F £ CL(X) : p(y0, A) - Ô < p(y0, F)} C (Bc)++ .

This would show that (Bc)^+ contains a Tweak-neighborhood of each of its

points.

Our metric p : X x X —> [0, oo) will be of the form

p(x, y) = ad(x, y) + \d(x, B) - d(y, B)\,
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where a > 0. That p and d define the same uniformities follows from the

d-uniform continuity of x -> d(x, B). Since p(x, y) < (a + l)d(x, y), d-

bounded sets are p-bounded, and since d(x, y) < p(x, y)/a, /^-bounded sets

are d-bounded. Thus, p £ A. Recalling that B consists of at least two points,

the choice of a we make is a = Dd(A, B)/4diamB. Fix y0 £ B and set

ö = ad(yo, A). We intend to show that if F £ CL(X) and p(yo, A) - ô <
p(y0, F), then F£(B%+.

First note that

p(y0, A) = inf ad(y0, a) + d(a, B) > ad(y0, A) + Dd(A, B) = Dd(A, B) + ô.
a€A

Thus, p(yo, F) > Dd(A, B). This means that for each x £ F, we have

(*) ad(x,y0) + d(x,B)>Dd(A,B).

We consider two cases for x £ F : (i) d(x, y0) < 2 diam 5; (ii) d(x, yo) >

2 diam B . In the first case, by the choice of a, we get ad(x, yo) < jDd(A, B),

so by (*) we have d(x, B) > \Dd(A, B). In the second case, since yo £ B,
we have d(x, B) > diam B . Thus,

Dd(F, B) > min{{Dd(A, B), diamß},

and we have F £ (Bc)^+ . This proves that (Bc)^+ £ Tweak for each closed and

bounded subset ß of I, and we conclude that ad c Tweak .   D

One might guess from the previous results that there is a complete analogy

between the d-proximal topology and the bounded d-proximal topology ad,

upon replacing closed sets by closed and bounded sets in any theorem valid for

xsd ■ Surprisingly, this is not the case, as we now show.

Theorem 3.8. Let (X, d) be a metric space. Then the d-proximal topology is

the weak topology on CL(X) determined by the family of excess functionals

{ed(-,F):F£CL(X)}.

Proof. Let Tweak be the weak topology determined by {ed(-, F): F £ CL(X)} .
Fix A0 and F in CL(X). Upper semicontinuity of the excess functional

ed(-,F) at Ao occurs if ed(Ao,F) = oo. Otherwise, (S^o])"1"1" is a Tá¿-

neighborhood of Aq , and for each closed subset A in this neighborhood, we

have ed(A, F) < ed(Ao, F) + e . Lower semicontinuity occurs if ed(Ao, F) =

0. Otherwise, noting that ed(Ao, F) = oo is possible, let a < ed(A0, F) be

arbitrary, and choose e > 0 with a + e < ed(A0, F). Choose ao £ Ao with

d(tfo, F) > a + e . Then S£[ao]~ is a xàd-neighborhood of A0 , and for each

A £ S£[ao]~ , we have ed(A, F) > a. This proves xgd-continuity of such an

excess functional, so that x¿d D Tweak .

For the other inclusion, suppose A0 £ V~ with V open in X. Then there

exists ao e Ao and e > 0 such that S£[ao] c V. With F = {x £ X: d(x, ao) >
e} we have

Ao £ {A £ CL(X) : ed(A, F) > 0} c V~ .

If Ao £ V++ with V open, there exists e > 0 with ^[^o] cF.We then have

A0 £ {A £ CL(X):ed(A, A0) < e} c V++.

Together, these yield x¿d c Tweak.   D
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Example. For closed and bounded sets B, the functional A —> ed(A, B) need

not be o¿-continuous or even x&yid-continuous on CL(X). For example, on

the line with the usual metric, let B = {0}. Then {0} = Taw¿-lim{0, «},

lim^ooed({0, n}, B) = oo, whereas ed({0}, B) = 0.

We do not intend to study the weak topology determined by {ed(-, B): B £

CLB(X)}, for such excess functionals fail to separate unbounded sets, and a

non-Hausdorff topology results. It may be useful to study this weak topology on

CLB(X), but we do not consider subspaces of CL(X) with induced topologies

here.

4. The Attouch-Wets and Hausdorff metric topologies

as weak topologies

Of the three local presentations of the topology od we now concentrate on

the one involving sets of the form AA[B ; e; xx, x2, ... , xk], for it corresponds

naturally to a combination of upper and lower halves of hyperspace topologies

in the style of [FLL] or [AAB], as we now explain.

Recall that the Wijsman topology associated with a fixed metric d is the
weakest topology on CL(X) such that for each x £ X, d(x, •): CL(X) -+

[0, oo) is continuous. We may split this into its lower and upper halves [FLL,

LL]:

x~¡y = the weakest topology on CL(X) such that Vx , d(x, •)

is upper semicontinuous; x^y = the weakest topology on CL(X)

such that Vx, d(x, •) is lower semicontinuous.

Note that the lower (resp. upper) half corresponds to upper (resp. lower) semi-

continuity of distance functionals! A local base for x^ (resp. tj^ ) at A £

CL(X) consists of all sets of the form {F £ CL(X) :Mi < k, d(x¡, F) <
d(x¡, A) + e} (resp. {F £ CL(X) : Vz <k, d(x,, F) > d(x,, A) - e}), where
{xi, x2, ... , xk} is a finite subset of X and e > 0. On the other hand,

the Attouch-Wets topology splits into x~ and r+Wrf, where a local base for

x~vld (resp. r+Wrf) at A consists of all sets of the form {F £ CL(X): Vx e B,

d(x,F)<d(x,A) + e} (resp. {F £ CL(X):~ix£B, d(x, A)-e < d(x, F)} ,
where B is an arbitrary bounded subset of X, and e > 0. By Lemma 3.1,

ad = x^, V r+Wrf, where the supremum is taken in the lattice of hyperspace

topologies. A natural dual for ad is the dual bounded d-proximal topology ad

given by ad = x^ V x~ . In view of the above remarks, a local base for ad at

A £ CL(X) consists of all sets of the form

AA[B ; e ; Xi, x2,... , xk] = {F e CL(X) : Vx £ B, d(x, F) < d(x, A) + e,

and Vz < k, d(x,, A) — e < d(x,-, F)},

where e > 0, {xi, x2, ... , xk} c X , and B c X is bounded.

The proof of the following fact is left to the reader (see the proof of Lemma

3.1).
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Lemma 4.1. Let (X, d) be a metric space. Then a local base for the topology

a*d at A £ CL(X) consists of all sets of the form

x¥A[B;e;xux2,... , xk] = {F £ CL(X): BnA c S£[F], and

Vz < k, d(x¡, A) - e < d(x¡, F)},

where B is a bounded subset of X, e > 0, and {xx, x2, ... , xk} is a finite
subset of X.

Theorem 4.2. Let (X, d) be a metric space. Then the topology ad is the weakest

topology x on CL(X) such that for each B £ CLB(X), A -* ed(B, A) is x-
continuous on CL(X).

Proof. We first show that each excess functional is ad -continuous. Fix B £

CLB(X). We write a = ed(B, A) = supft6B d(b, A). Note that a is fi-
nite since B is bounded. Let e > 0 be arbitrary, and choose bo £ B such

that d(b0, A) > a-e/2. We claim that if F £ *¥A[Sa+e[B]; e/2; b0], then

\ed(B, A) - ed(B, F)\ < e .
Let b £ B be arbitrary. There exists a £ A with d(b, a) < d(b, A) + e/2.

This means that a £ Sa+£[B], so there exists x £ F with d(x, a) < e/2. Thus,

d(b, F) < d(b, x) < d(b, a) + e/2 <d(b,A) + e,

so that

ed(B, F) = supd(b, F) < supd(b, A) + e = a + e.
b£B b&B

On the other hand, we have

ed(B, F) = s\irod(b,F) >d(b0,F) > d(b0, A) - e/2 > a - e.
b€B

This establishes od -continuity of the excess.

Next let tweak be the weakest topology on CL(X) such that for each closed

and bounded set B, A -> ed(B, A) is continuous. First, notice that for fixed

x £ X, A£ CL(X), and e > 0,

{F £ CL(X) : d(x, F) > d(x, A) - e}

= {F£ CL(X) : ed({x}, F) > ed({x}, A) - e}.

This proves that t^ c rweak . If x~Wd <£. Tweak , then there exists a net (Ax) in

CL(X) convergent to A £ CL(X) in rweak that fails to t^-converge to A . By

Lemma 4.1, there exists a bounded set B, e > 0, and a cofinal set of indices M

in the underlying directed set such that for each X £ M, there exists ax £ AnB

with d(ax, Ax) > e. Then B0 = c\{ax'. X £ M} is a bounded subset of A,

ed(Bo, A) = 0, and limsupe^ßo, Ax) > e . This contradicts the continuity of

F -> ed(B0, F) at F = A with respect to Tweak . Thus, x~vld c rweak , so that

°d = XWd V T¡w,, C Tweak •     □

The example following Theorem 3.4 shows equally well that A —► ed(F, A)

need not be raWrf-continuous for a fixed closed set argument F . Thus such an

excess functional need not be od -continuous. For gap functionals, the weak

topology determined by {Dd(B, ■): B £ CLB(X)} is unchanged if we replace

d by a uniformly equivalent metric p with the same bounded sets. This is not

the case for the weak topology determined by {ed(B, •): B £ CLB(X)}.
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Example. If d is the zero-one metric on Z+ and p is the metric defined by

p(l, i) = 2 for i > 1 and p(i, j) = 1 for 1 < i < j, then ad ¿ a*. To see

this, for n £ Z+ , let An = {1, n + 1, n + 2, ...} and let A = {1}. It is easy
to check that for each i e Z+, we have lim^oo d(i, An) = d(i, A) so that

A = x\vd-\imAn . Also, for each e > 0 and n £ Z+ we have A c Se[A„] so

that A = T^-lim^n. Together, these yield A = od-limA„ . But p(3, A) ^

lim„_00/?(3, A„), so that (A„) fails to converge to A in o* or even in xWp.

Since x^y is weaker than z+Wrf and z^ is weaker than z~Wrf, we see that

adM ad = zaw¡í • Combining Theorems 4.2 and 3.4, we get this characterization

of the Attouch-Wets topology as a weak topology.

Theorem 4.3. Let (X, d) be a metric space. Then the Attouch-Wets topology

on CL(X) is the weakest topology x on CL(X) such that for each closed and

bounded subset B of X, both A —> Dd(B, A) and A -* ed(B, A) are x-
continuous.

Theorem 4.4. Let (X, d) be a metric space. Then the Attouch-Wets topology

zaWd on CL(X) is the weakest topology x on CL(X) such that for each metric

p uniformly equivalent to d that determines the same bounded sets as d, and

for each closed and bounded subset B of X, A -» ep(B, A) is x-continuous.

Proof. Let A be the class of metrics described in the proof of Theorem 3.7.

If p £ A, then zaw¿ = zaW/) [BDC, Theorem 3.2], so that by Theorem 4.3,
A —► ep(B, A) is zaw¿-continuous for each p e A and each closed and bounded

set B. On the other hand, the weak topology must contain the weak topology

determined by {ep({x}, •): x £ X, p £ A} = {p(x, •): x £ X, p £ A} , which

by Theorem 3.7, is ad . By Theorem 4.2, the weak topology also contains o~d ;

so, it contains ad ; so, it contains ad\l od = zaw¿.   D

Of course, we may also split the Hausdorff metric topology into its upper
and lower parts (see, e.g., [KT, p. 39]). A local base for z¿ (resp. xj¡ ) at

A £ CL(X) consists of all sets of the form {F £ CL(X): F*'c S£[A]} (resp.
{F £ CL(X): A c SE[F]}), where e > 0. Dualizing the d-proximal topology

xgd — x^ Vt¿ to get the dual d-proximal topology x^ V z^ , and keeping in

mind Theorem 3.2 and 3.7 of [BLLN], we obtain results analogous to Theorems

4.2-4.4 with essentially the same proofs.

Theorem 4.5. Let (X, d) be a metric space. Then the topology x\, V z^ is the

weakest topology x on CL(X) such that for each F £ CL(X), A —► ed(F, A)
is x-continuous on CL(X).

Note that the Hausdorff excess functional is, in this context, extended real

valued.

Theorem 4.6. Let (X, d) be a metric space. Then the Hausdorff metric topology

xnd on CL(X) is the weakest topology x on CL(X) such that for each F £

CL(X), both A —► Dd(F, A) and A —> ed(F, A) are x-continuous.

In view of our characterization of the d-proximal topology in Theorem 3.8

in terms of excess functionals, we also have

Theorem 4.7. Let (X, d) be a metric space. Then the Hausdorff metric topology

xnd on CL(X) is the weakest topology z on CL(X) such that for each F £

CL(X), both A —> ed(A, F) and A —* ed(F, A) are x-continuous.
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There is a transparent proof of Theorem 4.7 that we note. Evidently, such

excess functionals are Lipschitz continuous with respect to Hausdorff distance,

and z-continuity of the functionals with F = Ao at A = Ao gives Ao =

Hd-limAx whenever Ao = r-lim^. As noted earlier, A —> ed(A, B) for a

fixed closed and bounded set B need not be continuous with respect to the

Attouch-Wets topology.

Reasoning as in the proof of Theorem 4.4, we obtain

Theorem 4.8. Let (X, d) be a metric space. Then the Hausdorff metric topology
XHd on CL(X) is the weakest topology x on CL(X) such that for each metric

p uniformly equivalent to d and for each closed subset F of X, A -> ep(F, A)

is x-continuous.

5. More on hit-and-miss topologies as weak topologies

By Theorem 3.1 of [BLLN], the Vietoris topology on CL(X) is generated

by the family of distance functionals {p(x, •): x £ X and p is compatible

with the topology onl}. What happens if we restrict our metrics to those that
determine the same class of bounded sets? First, a definition.

Definition. Let (X, d) be a metric space. Then the bounded Vietoris topology

xi,v on CL(X) associated with the metric d has as a subbase all sets of the

form V' where V is open and all sets of the form (Bc)+ where B is closed

and bounded.

There is no loss in generality in requiring that the open sets in the above

definition be bounded to achieve symmetry in the definition.

Theorem 5.1. Let (X, d) be a metric space, and let I = {p: p is a metric

equivalent to d that determines the same bounded sets as d} . Then x¡,v is the

weak topology on CL(X) determined by {p(x, •): x £ X, p el}.

Proof. Let zweak be the weak topology determined by the prescribed family of

distance functionals. By Proposition 2.1 of [FLL], for each p £ X, x £ X, and
a > 0, the set {F e CL(X): p(x, F) < a} is contained in xbv . Now suppose

A £ {F £ CL(X): p(x, F) > a}. Choosing ß > a with p(x, A) > ß, we
have

A £ {w £ X: p(x, w) > ß}+ C{F £ CL(X): p(x, F) > a}.

Together, these show zweak c x¡,v .

For the reverse inclusion, as in the proof of Theorem 3.7, it suffices to show

that for each closed d-bounded set B and each A £ (Bc)+ , there exists p £2Z,

yo £ X, and ô > 0 with

{F £ CL(X) : p(y0, A) - ô < p(y0, F)} c (5C)+ .

Again, this is trivial if B is a singleton; so, we assume that B has at least
two points. First, separate A and B by a Urysohn function y>, and con-

struct an equivalent metric px given by px(x, y) = d(x, y) + \y>(x) - <p(y)\.

Evidently, bounded sets are not changed, and DPl(A, B) > 1. With a =

DPt(A, B)/4diamB, our desired metric p is given by

p(x, y) = apx(x, y) + \px (x, B) - px(y, B)\.



818 GERALD BEER AND ROBERTO LUCCHETTI

Then p £~L. With yo £ B arbitrary and ô = apx(y0, A), the proof of Theorem

3.7 yields

{F £ CL(X) : p(y0, A) - ô < p(y0, F)} C (5%+ C (5C)+ .   D

In view of Theorem 3.6, we have

Corollary 5.2. Let (X, d) be a metric space, and let I = {p: p is a metric

equivalent to d that determines the same bounded sets as d). Then the bounded

Vietoris topology determined by the metric d is the weak topology determined

by the family of gap functionals {DP(B, •): B £ CLB(X), p e 1} .

By Theorem 4.8, the supremum of all Hausdorff metric topologies corre-

sponding to compatible metrics for a metrizable space X is the weak topology

determined by all functionals of the form A -* ed(F, A) where F ranges over

the closed subsets of X and d ranges over the compatible metrics for the

topology of X. This supremum topology, called the locally finite topology, ad-

mits an interesting hit-and-miss presentation, as described in [BHPV] (see also

[NS]). For Q a family of subsets of X, write Q~ = {F £ CL(X): VF e Q,

fnf/0}.

Definition. Let X be a metrizable space. Then the locally finite topology xX{ on

CL(X) has as a subbase all sets of the form Q~ where Q is a locally finite

family of open subsets of X, and all sets of the form V+ where V is an open

subset of X.

Theorem 5.3. Let X be a metrizable space. Then the locally finite topology on

CL(X) is the weak topology determined by the family {ed(F, •): F £ CL(X)
and d is a compatible metric for the topology of X} .

Proof. Apply Theorem 4.8 above and Theorem 2.1 of [BHPV].   a

We now develop a bounded analog for the last result, using very different

arguments from those presented in [BHPV]. The reader is invited to construct

a proof of Theorem 2.1 of [BHPV] along these lines. First, a definition.

Definition. Let (X, d) be a metric space. The bounded locally finite topology

zWf on CL(X) determined by d has as a subbase all sets of the form Q"

where Q is a uniformly bounded locally finite family of open subsets of X,

and all sets of the form (Bc)+ where B £ CLB(X).

Theorem 5.4. Let (X, d) be a metric space. Then the bounded locally finite

topology zWf determined by d is the weakest topology x on CL(X) such that

A -» ep(B, A) is x-continuous for each B £ CLB(X) and for each compatible

metric p determining the same bounded sets as the initial metric d. Thus, xbX{

is the supremum of the Attouch-Wets topologies corresponding to metrics that

determine the same bounded subsets as d.

Proof. The last assertion is immediate from Theorem 4.4, upon proving the

first. As usual, denote the weak topology described above by zweak . We first

show that zweak C Zbif. To this end fix a closed and bounded set B and a metric

p determining the same bounded sets as d . We will show that A —► ep(B, A)

is Zbif-continuous at a fixed set Ao £ CL(X). Lower semicontinuity holds if

ep(B, Ao) = 0. Otherwise, fix e between 0 and ep(B, A0), and choose b £ B
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with p(b, Ao) > ep(B, Ao) - e/2. Then B0 = {x: p(x, b) < p(b, Ao) - e/2}
is a closed bounded set disjoint from Ao , and if A £ (Bq)+ , then ep(B, A) >

p(b, A) > ep(B, A0) - e . Upper semicontinuity is harder. For each b £ B,

choose ab £ Ao with p(ab, b) < p(b, Ao) + e/3. Now let E = {ab: b £ B}.
Evidently, E is bounded. By Zorn's lemma, there exists a maximal subset E'

of E such that for each x and y in E' we have p(x, y) > e/3 . Clearly, the

family of open balls Q = {Se/\o[x]: x £ E'} is uniformly bounded and locally

finite; in fact, the family is discrete, i.e., each point in X has a neighborhood

meeting at most one element of the family. We claim that if A £ Q~ , then

ep(B, A) < ep(B, Ao) + e . Fix b £ B . By the maximality of E', there exists

x £ E' such that p(x, ab) < e/3 . Since A meets S£/Xq[x], we have p(b, A) <

p(b, Ao) + e/3 + e/3 + e/\Q. Thus,

ep(B, A) = supp(b, A) < supp(b, A0) + e = ep(B, A0) + e.
b€B b<EB

It remains to show that zweak D r^f. By Theorem 5.1, each set of the form

(Bc)+ with B closed and bounded is in zweak, since distance functionals are

excess functionals. Now let {V¡: i £ 1} be a bounded locally finite family of

open sets, and suppose Ao £ {V,■: i £ I}~ . For each i £ I, choose x, £ Ao n V,■.
Although i —> x, need not be one-to-one, it is finite-to-one, by local finiteness.

Now let B — {x¡■: i £ 1} . By local finiteness, we can choose for each x £ B a

number ex > 0 such that the family {S^Jx]: x £ B} is discrete, and moreover,

such that whenever x £ V¡ for some index i, then S2£x[x] c V¡. Let V = {w £

X: Vx £B, d(w,x) > ex} . Then V is open so that \v}U{S2£x[x]: x £ B} is

a locally finite open cover of X. Let {gx: x £ B}l!{g} be a partition of unity

subordinated to this cover [En, p. 374], where of course g~'((0, 1]) c S^Jx]

for x £ B and g-1((0> 1]) C V. Then for each w £ S£x[x] we must have

gx(w) = 1 whereas if w £ S2£x[x], we have gx(w) — 0. Evidently, the metric

p on X defined by

p(w ,y) = d(w,y) + ^ \gx(w) - gx(y)\

x€B

is equivalent to d and determines the same bounded sets, since the indexed

sum on the right can be at most two. Clearly Ao £ {A £ CL(X) : ep(B, A) < 1}

because ep(B, A0) = 0. Also, if ep(B, A) < 1 holds for a closed set A , then
for each x £ B there exists a £ A with p(x, a) < 1. This means that

•     1 - gx(a) = \gx(x) - gx(a)\ <p(x,a)<l.

We conclude that gx(a) > 0 so that A meets iS&Jx]. Since x £ B was

arbitrary, we conclude that A meets V¡ for each i £ I. Thus,

A0£{A£ CL(X): ep(B,A) < 1} c {Vf. i£ /}" ,

completing the proof that zweak D xbX{.   D

6. Some final observations

The reader may wonder why we have not considered compact sets as potential

fixed left arguments in excess and gap functionals. The answer is simple, as may

be quickly verified: no finer topology results using compact sets rather than

singletons.



820 GERALD BEER AND ROBERTO LUCCHETTI

Although it may seem unnatural, we can mix families of generating function-

als corresponding to different classes of metrics and/or different classes of sets.

Here are some typical outcomes; the simple details are left to the reader.

Theorem 6.1. Let (X, d) be a metric space. Then the weak topology on CL(X)

determined by the family of functionals {ed(F, •): F £ CL(X)}u{Dd(B, •): B £

CLB(X)} isx^dyx-Hä.

Theorem 6.2. Let (X, d) be a metric space. Then the weak topology on CL(X)

determinedby the family of functionals {Dd(F, •): F £ CL(X)}u{ed(B, •): B £

CLB(X)} isx+HdWx-Wd.

Theorem 6.3. Let (X, d) be a metric space. Then the weak topology on CL(X)

determined by the family of functionals {ed(F, •): F £ CL(X)} U {p(x, •): x £
X and p equivalent to d} is the supremum of the Hausdorff metric topology

associated with d and the Vietoris topology.

We conclude with a table showing all the weak topologies obtainable using

distance functionals, gap functionals, and excess functionals, using a single met-

ric, a uniform class of metrics, or all metrics. For bounded set arguments, it is

understood that the metrics are expected to determine the same class of bounded

sets.

Table la. Weak topologies on CL(X) induced by families of distance

functionals, gap functionals, and excess functionals.

p « d:   the metrics p and d determine the same uniformity.

p & d:   the metrics p and d determine the same uniformity and the same bounded
bd

sets.

p ~ d :   the metrics p and d are equivalent and determine the same bounded sets.
bd

{p{x, ■): x e X) {Dp(F,-):FeCL(X)} {ep(F,-):F£CL(X)}

p = d Wijsman topology ¿-proximal topology dual ¿-proximal

topology

pxd ¿-proximal topology ¿-proximal topology Hausdorff metric

topology

all p Vietoris topology Vietoris topology locally finite

topology

Table lb

{p{x, •): x 6 X} {DP(B, -):B£CLB(X)} {ep(B, -):BeCLB(X)}

p = d Wijsman topology bounded ¿-proximal

topology

bounded dual

¿-proximal topology

pxd
bd bounded ¿-proximal

topology

bounded ¿-proximal

topology

Attouch-Wets

topology

p~d
bd bounded Vietoris

topology

bounded locally

finite topology

bounded locally
finite topology
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