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THE MARTIN KERNEL AND ÍNFIMA OF
POSITIVE HARMONIC FUNCTIONS

ZORAN VONDRACEK

Abstract. Let D be a bounded Lipschitz domain in R" and let K(x, z),

x e D, z e dD , be the Martin kernel based at x0 G D . For x, y e D , let
k(x, y) = inf{h(x) : h positive harmonic in D , h(y) = 1} . We show that the

function k completely determines the family of positive harmonic functions on

D . Precisely, for every z G dD , limy_z k(x, y)/k{xQ , y) = K(x, z). The

same result is true for second-order uniformly elliptic operators and Schrödinger

operators.

1. Introduction

Positive harmonic functions on a bounded domain D in R" enjoy two im-

portant and well-known properties: they satisfy the Harnack inequality and

allow an integral representation via a kernel function. The Harnack inequality

is usually expressed in two forms. The first one is more local and states that if

a ball F(xn, r) is contained in D, then for any positive harmonic function h

on D, and any x G B(xq, r),

]X - Xol2-h(x0) < h(x) < r"-2:,2~,LX~^f>(xo).
{r + \x-Xo\)n   v u/-       '-        (r-lx-xol)"

The second form follows from the first by the usual chain argument: For any

compact subset K of D there is a constant c such that for any positive har-

monic function h on D, h(x) < ch(y) for all x,y e K. An immediate
consequence of the inequality is that an arbitrary infimum of positive harmonic

functions in D is a continuous function satisfying the same inequality. There-

fore, one can form the family of continuous functions

ß?mi = j« : u = inf ha, ha positive and harmonic in 7)1 .

Every function in £Tm{ is superaveraging, so ^inf consists of positive super-

harmonic function which satisfy the Harnack inequality. In §2 we show that

<%"m{ is a convex cone stable for arbitrary infima and closed for the pointwise

convergence.

The second essential property of positive harmonic functions is the integral

representation. Following [Doo], let G denote the Green function on D (for

Received by the editors October 1, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 31B05, 31B10, 31C35.
Key words and phrases. Positive harmonic functions, Martin kernel.

© 1993 American Mathematical Society
0002-9947/93 $1.00+ $.25  per page

547



548 ZORAN VONDRACEK

the Laplacian) and let v be a measure with compact support Supp v c D.

The function Kv(x, y) = G(x, y)/Gv(y) is called the Martin function (or the

Martin kernel) based on v . There is a unique metrizable compactification DM

of D such that each Martin function Kv has a continuous extension (denoted

also by Kv ) to D x (DM\Sur)pv), and Kv( • , yx) = Kv( • , y2) if and only

if yi = y2. The boundary 8mD = DM\D is called the Martin boundary.
Let dlfD denote the set of minimal points z G 3mT> ■ Then for each positive

harmonic function h in D there is a unique measure p on d^D such that

h ~ h°D^Á ' > z)ß(dz). If the measure v is the point mass at xq e D, the

Martin kernel is said to be based at xn. In this case the continuous extension

of the Martin kernel to 8mD means that as y —► z in the Martin topology,

where y e D, z e ômD , we have

(1-1) lim G(x,y)/G(x0,y) = KXa(x,z).

The close relation between the Harnack inequality and the Martin kernel is

revealed in a simple case of the unit ball B = B(0, 1) centered at the origin.

The Martin boundary of B is its Euclidean boundary and the Martin kernel

is the Poisson kernel F(x, z) = (1 - |x|2)/(|z - x|"), x G B, z e dB. The

Harnack inequality for B is derived from the representation formula and reads

(1.2) ,?~!*L h(0) < h(x) < ,]~\xl h(0),       xeB.v    ' (1 + 1x1)"  v ' -   v ' - (1 -|x|)"  v '

This inequality is sharp and the bounds are attained for h — F( • , z) where

z = -x/|x| for the left inequality, and z = x/|x| for the right inequality.

In this sense, the Harnack inequality is tailor-made for balls and, moreover,

it distinguishes the center of the ball. It is not optimal for other domains.

To obtain optimal lower bounds for an arbitrary domain D, it is natural to
introduce the function

(1.3) k(x, y) = inf{A(x) : h positive harmonic in D, h(y) = 1},

where x, y G D. We will show that k is continuous function on D x D.

Obviously, k(x, y) is the greatest lower bound for a positive harmonic function

in D which is 1 at y. As in the case of the unit ball, this lower bound

is attained by the Martin kernel: there exists z = z(x, y) in the minimal

Martin boundary d^D such that k(x, y) — K(x, z)/K(y, z) where K is the

Martin kernel based at some point Xn in D. Therefore, the Martin kernel K

completely determines the function k .

For the unit ball B it is possible to explicitly compute the function k . First

note that from (1.2) it follows that k(x, 0) = (1 - |x|2)/(l + |x|)" . In order to

compute k(x, y) for any y G D, some results on conformai maps are needed.

These can be found in [Ahl]. Let J : x ^ x*, x* = x/|x|2 be the reflection

through the unit sphere. The full Möbius group M(Rn) is the group generated

by all similarities on R" together with J . Following [Ahl], for any y e M(R"),

let \y'\ be the positive number such that y'/\y'\ e O(n). Here O(n) denotes
the orthogonal group and / the Jacobian of y at the point x. For a positive

harmonic function h on B and y e M(R"), let (Tyh)(x) = \y'\("-2V2h(yx). It
is proved in Lemma 2.1 of [Leu] that Ty preserves positivity and harmonicity.
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For y G B , y ¿ 0, let

_ (1 -|x|2)(x-y)-|x-y|2y

7y{X) - i _ 2xy + |xp|y|2

where xy denotes the inner product of x and y . Then yy maps F onto itself

and yy(y) = 0. Now it easily follows that

iv_ v*r-2
fc(x,y)=;   yJtt.2k(yy(x),0).

\x   y i

Such computations are essentially done in [Leu] (see Theorem 3.2 there). After

simplifications, k can be written in the following form that we find convenient:

(t.4)   kix,y)=(l-M^J^0m^m¥,   „,„.

Regarded as a function of x, k(x, y) is a potential for every y e D. The nor-

malized functions k(x, y)/k(0, y) are equal to 1 at the origin. Direct com-

putation shows that as y approaches the point z on the boundary of B, these

normalized functions converge to the Poisson kernel: limy^z k(x, y)/k(0, y) —

P(x, z). Hence, the function k carries all informations about the cone of pos-

itive harmonic functions on B.
We show that the same is true for a bounded Lipschitz domain: knowledge

of the function k is sufficient to recover the Martin kernel. More precisely, let

D be a bounded Lipschitz domain. Then the Martin boundary ômD of D is

its Euclidean boundary and all boundary points are minimal (see [Hun]). Let

K be the Martin kernel based at xn G D. We prove that if x e D and z edD,

then

(1.5) lim^^\= K(x,z)
y^z k(x0, y)

and the limit is uniform on compact subsets of D. This can be regarded as an

analogue of (1.1), the difference being that functions x (-► k(x, y)/k(xo, y),

y e D, satisfy the Harnack inequality and are not harmonic near the boundary

3D.
A similar result can be proved for more general second-order elliptic differ-

ential operators. To unify exposition, we work in an abstract setting which is

described in the next section. Formula (1.5) for this setting is proved in §3.

In §4 we recall some of the known results which provide examples for the sit-

uation studied in §§2 and 3. In §5 we show that the function k (as in most

potential-theoretical results) reflects a dichotomy between the two-dimensional

case and higher-dimensional cases. In dimension two, k is symmetric while

the symmetry is lost in higher dimensions. This symmetry provides a result

similar to (1.5) in case infimum in relation (1.3) is replaced by supremum. In

§6 we give an interesting example of a function which is an infimum of positive

harmonic functions.

2. Convex cones of positive continuous functions

Let D be a locally compact topological space with countable basis. Then D

is metrizable and let d denote a metric compatible with the topology on D. By

'ê'(D) we denote the space of continuous functions on D with the topology of
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uniform convergence on compact subsets. Let ß? be a closed convex cone of

strictly positive continuous functions on D containing the function identically

equal to zero. We assume that ßf has a compact basis, i.e., there exists a

hyperplane S? in W(D) such that the family & = S? n ß? is compact in

fê(D) and generates ß* : SfT = {Xu : X > 0, ue&).
Let rc:i)xD-»R be defined by

(2.1) k(x,y)= inf^.
ueJr h(y)

The infimum over ß? in the definition above can be replaced by the infimum

over the basis 2?. For x, y, z in D,

(2.2) k(x, z)k(z, y) < k(x, y).

An easy argument using compactness of the basis shows that k(x, y) > 0 for

all x, y e D. We also need the following simple lemma.

Lemma 2.1. The function k is continuous on DxD.

Proof. It is easy to see that k  is continuous in x  and y  separately.   Let

{(xn , y«)} be a sequence in D x D converging to (x, y). From (2.2),

fc(x„, y„) 1
fcO7* J7")^ -T7Z-77T ^

fc(x„ , y)  ■   fc(y„ , y) '

Therefore,

Ictv    v  )k(X">yï  < k(xn>yn)  < 1_*:(■*„ , y)

iy'y"jA:(x,y)  -   k(x,y)   ~ k(y„, y) k(x, y)

Let « —» oo in inequalities above. Separate continuity gives

1 < Hminf *£-*) < limsup*^"'^ < 1
/c(x,y) A:(x,y)

which proves the lemma.    D

Let 5r° be a family of all functions « on 7) that satisfy

(2.3) u(x) > k(x, y)u(y)

for all x and y in 7). By using continuity of /c and the fact that k(x, x) = 1

for all x G 7), it follows that J/7 is a convex cone of strictly positive continu-

ous functions (unless identically zero) closed for arbitrary infima and suprema.

Furthermore, it is closed in the topology of pointwise convergence. If y is a

subset of y that is bounded at a point x e D, then it is bounded in W(D)

and locally uniformly equicontinuous. In particular, if £T is a closed cone and

y = {u e £T : u(x) = 1}, then y is a compact basis for y. Besides being

closed in W(D), y is also closed in the topology of pointwise convergence.

Indeed, if u„(x) -+ u(x) for every x e D, then boundedness of {un} at ev-

ery point implies that {un} is relatively compact. A convergent subsequence

converges to a function in y which is evidently equal to u .

Let y denote the closure in W(D) of the family {u\ Aw2A • • -am„ : u¡ eß?,

j = 1, 2, ... , n , n e N}. Then y is the smallest closed convex cone stable

under finite minima containing ß?. It is also closed for countable infima. Let

(2.4) ß?mX = {w:w = infuQ,  uae
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Since each function in ß? satisfies (2.3) by definition of k, this is also true of

¿Tinf. Hence Xinf c y and, in particular, each function in ßf'mf is continu-

ous. By Choquet's lemma, every function in ^inf is an infimum of a countable

family of functions. Since y is closed under countable infima, ß?mi c y .

To show the converse inclusion, first note that every function in y is an in-

creasing limit of functions in ß?mf. Indeed, if ae/, then u = lim u„ where

un e ß?mf. If V/ç = inf„>£ un, then {v^} is an increasing sequence in ß^mi

converging to u. Next we need the following lemma.

Lemma 2.2. Let u e ß?m{ and x e D. Then there exists v e ß? such that

v > u in D and v(x) — u(x).

Proof. Let u = infua. There is a sequence {un} c {uQ} such that u„(x) j

u(x). Being bounded at x, u„ is relatively compact. Therefore, a subsequence

{«„,} converges to a function v in fê(D). In particular, w„,.(x) -+ v(x), so

u(x) = v(x). Since un > u in D for all n e N, it follows that v > u in

D.   a

Let « be a function in y. Then u =| lim un where u„ are in ß^mf.

Fix x G D. By the lemma above, for each n e N, there is vn e ß? such

that v„ > u„ in D and v„(x) = u„(x). A subsequence {vni} converges to

a function vx in W(D). Moreover, vx(x) = u(x) and, since v„, > un¡, it

follows that vx >u on D. Let Fu = inf{v G ß? : v > u}. Then Ru e ¿finf

and Ru> u. But, for x G 7), i>* > u and ux(x) = u(x). Therefore, Ru — u,

so u e ß?mi. By putting the preceding together, we obtain

Proposition 2.3. Let ßT be a closed convex cone of strictly positive (unless zero)

continuous functions. Assume that ß? has a compact basis. Then the family
ß?mi = {u : u = inf ua, ua e ß?) is a closed convex cone, stable for arbitrary

infima and closed in the topology of pointwise convergence.

For y G D, let ß?y = {u e ß? : u(y) = 1}. Then ß?y is a compact basis
for ß? ; hence k(x, y) = inf{w(x) : u e ß?, u(y) = 1}. Let us record two

corollaries.

Corollary 2.4. Assume that 1 G ß?mf. If <p : (0, oo) —» R is a positive, increas-

ing, concave function, then cp o u e ß?mf for each u e ß?mi.

Corollary 2.5. Let I be a locally compact topological space. Assume that u :

D x Z ->• R+ has the following two properties: (i) x *-> u(x, o) e ß?mi for each

a e X, (ii) a *-> u(x, a) is continuous for each x e D. If p is a positive

Radon measure on the Borel a-algebra ofL, then the function Jz u( • , o)p(da)

belongs to Xinf.

Proof. It is enough to notice that the measure p can be approximated by pos-

itive linear combinations of point-mass measures and use the fact that ß?mi is

closed for pointwise topology.   G

3. Kernel function

Let D and ß? be as in the previous section. In addition, we assume that

D is contained in a compact metrizable space denoted by D, such that D is

the interior of D and the metric of D restricted to D is d. Let dD denote

D\D ; we call dD the boundary of D. Recall that /^{Àe/: h(x) = 1}.
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We assume that there is «o G ß? satisfying m < uq < M for some positive

constants m and M. Let Xo be an arbitrary, but fixed point in 77. In this

section we assume the existence of a function on D x dD, which we call the

kernel function. The basic hypothesis is:

(Hi) There exists a function K: D x dD -* R such that

(i) for each z e dD, x *-> K(x, z) belongs to ß?Xo,

(ii) for each x e D, z i-> K(x, z) is continuous on dD.

Note that if p is a finite measure on Borel sets of dD, then the function u

defined by

(3.1) u(x)= f   K(x, z)p(dz)
JdD

belongs to ßf (see Corollary 2.5). We shall assume that all functions in ß?

arise in this way.
(H2) For each «e/, there exists a unique Borel measure p on dD such

that (3.1) holds.
For x, y G D let ^,y = {u G X : u(y) = 1, u(x) = k(x, y)}. By

Lemma 2.2, ß?x^y is nonempty. Furthermore, it is convex, compact and closed

for pointwise convergence. We show that it contains functions of the form

x h-» K(x, z), z e dD (properly normalized).

Let u eß?x,y and p the measure representing u. Then

k(x,y) = u(x)=       K(x,z)p(dz).
JdD

Assume that A' and A" are disjoint Borel subsets of dD, such that A' U

A" = dD and p(A') > 0, p(A") > 0. Let a' = /A, K(y, z)p(dz) and

a" = JA„ K(y, z)p(dz). Then both a' and a" are positive, so one can de-

fine measures v' and v" on dD by

v = -pw   and   v   = —plA„ .

Let «' = ¡dDK(- , z)v'(dz) and u" = JdDK(- , z)v"(dz). Then u' and u"

are in ß? and a simple computation shows that u'(y) = u"(y) = 1 . Hence,

u' > k(x, y) and u" > k(x, y). Therefore, since a' + a" = 1,

u(x) = a'u'(x) + a"u"(x)

>a'k(x,y) + a"k(x,y)

= k(x, y) = u(x).

This implies that u'(x) = u"(x) = k(x, y). Hence, u' and u" are in ß?xy

and representing measures have smaller support.

Proposition 3.1. For y and x in D, there exists z = z(x, y) e dD such that

K(.,z)/K(y,z)eß?x,y.

Proof. Let u e ß?x,y and u = ¡dDK( • , Qp(dQ . If p is a multiple of a point
mass at z, there is nothing to prove. If p charges some point z e dD, take

A' = {z} in the construction preceding the statement. Then the function u'

from above is precisely K( • , z)/K(y, z). So assume that p does not charge

points. Let z g Supp/i. Then p charges every neighborhood of z in dD.

Let {A„} be a decreasing sequence of neighborhoods of z in dD such that
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Pl^L, A„ = {z} . We assume, without loss of generality, that p(dD\An) > 0 for

every n e N. Let

an = /   K(y,Qp(dQ,     vn = —p^n,     un = /   K(-, Ç)vn(dÇ).
Jà„ an JdD

Then «„ G ß?Xty for each « . By using continuity of K(y, •) it is easy to see

that for all but finitely many n e N, l/(2K(y, z)) < vn(dD) < 2/K(y, z).
Hence, the sequence {vn} is bounded. Without loss of generality, assume

that {vn} weakly converges to a positive Borel measure v on dD. Let v =

JdDK(- , Qt/(dQ = limnK(- , Qvn(dQ = lim„ u„ . Since ß?x,y is closed for
pointwise convergence, v e ß^x,y. It is easy to see that v is concentrated

on {z}. Therefore, v = cez for some positive constant c. Further, 1 =

un(y) = ¡dDK(y,QvnW) - ¡dDK(y,Qu(dQ = cK(y, z). Hence, v =
K(-,z)/K(y,z)eß?x,y.   D

The proposition above shows that the kernel function K completely deter-

mines k . To show the converse, i. e., that K is determined by k, an additional

hypothesis is needed. In view of the examples discussed in §4, this hypothesis

is more restrictive than the first two.

(H3) For all zi, z2 G dD such that z{ ^ z2,

lim       K(x, z) = 0,
(x,z)->(z,,z2)

where (x, z) e D x dD and (x, z) —» (z{, z2) un D x D.

Let us fix x G D (xo is still fixed). Recall that we have assumed the existence

of the function wn e ß? satisfying m < uq < M. Hence, for any y e D,

Uo(x)/uo(y) < M/m. Therefore, k(x, y) < M/m. For y G D, let z(x,y)
denote a point on dD such that K(- , z(x, y))/K(y, z(x, y)) eß?x,y .

Lemma 3.2. Let y -> z, z g <97). F/ze« z(x j)-»z.

Proof. Let {y„} be a sequence in D converging to z and let us denote the

corresponding points z(x,yn) on the boundary by z„ . Since 3D is compact,

we may assume that {z„} converges to some point z0 e dD. If zq ^ z, then

by (H3), limsupF(y„, z„) = 0. By the continuity of K, limA^(x, z„) =

K(x, z0) < 00 . Therefore, the sequence {K(x, zn)/K(yn , zn)} is unbounded.

On the other hand, K(x, z„)/K(yn, z„) = k(x, y„) < M/m which yields con-

tradiction. Hence z0 = z .   D

Theorem 3.3. For every z edD,

lim -r-- = A ( • , z).
y^zk(x0,y)

Proof. Let us fix x e D. Let vy and zy be points on dD such that

K(-,vy)/K(y,vy)eßrxo,y

and

Thus,

K(.,zy)/K(y,zy)eJrx,y,        yeD.

w tSttH^)  and  W^ = ̂ 0'^A(y, zy) Ä(y, üy)
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By definition of k( • , y),

K(X ,   Vy)
(3.3) > k(x, y)   and

K(y,vy)

From (3.2) and (3.3) it follows that

^^4>k(x0,y).
K(y, zy)

(3.4)
K(y, z,) > K(x, zy)

K(y,vy) - K(x,vy)
and

K(y,zy)

K(y,vy)
< 1.

z and vy —► z. The first inequalityAs y ^ z, Lemma 3.2 gives that zy

above and continuity of K give

liminf yM, * liminf fi^4 = jgïifi = 1.
y—z   ^(y,^)       y^z   FJ(x,i;y)     A(x,z)

From the second inequality in (3.4) it follows that

iimsup5^ii4<i.
y-.z   K(y, Vy)

Hence,

(3.5)

By (3.2),

lim
K(y,zy)yi _

y^zK(y,vy)
1.

k(x,y)

k(x0,y)

K(X,   Zy)l     [Ä^XQ,   Vy)

K(y, Zy)\ [K(y,vy) .

1-1

A"(X ,    Zy)
K(y,vy)

K(y,zy)

Therefore, by (3.5) and continuity of K,

k(x,y)
y"zk(x0,y)
lim limA(x, zy)—--

y-z r K(y, Zy)
K(x,z).    U

Remark. Let u be an arbitrary strictly positive continuous function on D, and

let uß? = {h/u : h e ß?}. Then uß? is another closed convex cone with

compact basis. Let uk(x, y) = inf{ti(x) : v e uß?, v(y) = 1}. Then it

easily follows that uk(x, y) = (u(y)/u(x))k(x, y). If K is the kernel function

for ßf, then UK defined by uK(x, z) = (u(xo)/u(x))K(x, z) is the kernel

function for uß?. Moreover,

lim u^X>y\=uK(x,z),
y-zMfc(x0,y)

so Theorem 3.3 holds for the cone ußf. We note that the kernel function UK

need not satisfy (H3).

4. Positive solutions of the Schrödinger equation

The motivating example for the results in the previous section was the cone

of positive harmonic functions in a bounded Lipschitz domain. Some recent

results from [Chi] and [Cra] show that the cone of positive solutions of the

Schrödinger equation also satisfies hypotheses from §3. Here we give a brief

review of these results.
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Let D be a bounded domain in R" , n > 3, and let

(4.1) A= ¿ Di(aij(x)DJ)
i,j=\

be an elliptic operator in divergence form with bounded coefficients a¡j satis-

fying Oij = Oji. We assume that A is uniformly elliptic on D, i.e., there exist

constants X and A, 0 < X < A such that

A|¿|2<£a;7(x)<^<A|¿|2

for all £ G R" and all x e D. Let q be a function on D which belongs to the

Kato class Kn(D), i. e.,

(4.2) lim sup / ,   |g|y , dy = 0.
r^x€Dj\x-y\<r\x-y\n-2

Let L = -A + q be the Schrödinger operator on D. A weak solution of Lu = 0

is a function « in the Sobolev space H¡^(D) satisfying

(4.3) - V]  / cijj(x)DiU(x)Dj(p(x)dx = / í(x)m(x)«t>(x) í/x
,. J=17D yD

for every function <p e WC°°(D). Let ßTmi denote the family of positive solu-

tions of Lu — 0. Then ß?mf is a closed convex cone in 'ë'(D) with compact

basis ßfM where xo is an arbitrary point in D. This easily follows from the

continuity theorem, Harnack's theorem and Lemma 1.1 in [Chi].
To show the existence of the kernel function for ß?mi, both the domain

D and the function q need to be specialized. We will assume that D is a
bounded Lipschitz domain. Let us first take q = 0. The existence of the kernel

function K on D x dD satisfying hypothesis (Hi) and (H2) was proved in

[Caf, Theorems 3.1 and 4.1]. (See also [Cra].) Here, dD is the Euclidean

boundary of D. We note that the fact that D is Lipschitz is not crucial for

the first two hypotheses. For an arbitrary domain one could take the Martin
boundary. The corresponding Martin kernel would satisfy (Hi) and (H2).

Regularity of D is needed only for (H3). That (H3) holds for a Lipschitz
domain follows from Lemma 2.5 in [Caf].

In the general case q ^ 0, we must choose q such that ß?mi does not consist

of the zero function only. We require that q has a finite gauge. This condition is

usually expressed using probabilistic notions. An equivalent analytic condition

is that there exists u e ß?mi with info u > 0 (see [Cra, Theorem 2.23]). With

such q there exists the kernel function KL on DxdD satisfying (Hi)-(H3)

[Cra, Theorem 5.5]. A¿ can be expressed in terms of the kernel function K for

the operator A and the conditional gauge F (the interested reader is referred

to [Cra]).
Let k(x, y) = inf{w(x) : u e ß?mi, u(y) = 1} . From Theorem 3.3 it follows

that k suffices to recover all positive solutions of Lu = 0.

5. Symmetry of k

In this section we consider positive harmonic functions for the Laplacian.

Let us recall the formula for k for the unit ball in R" given by (1.4):
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«*.,)-<i-wr* "-w2»"-'^
(|y||x-y*| + |x-y|)""

Since |y| |x - y* | = |x| |y - x* |, it follows that k is symmetric if the dimension

is n = 2, while for « > 3 it is not symmetric. For n = 2 we identify R2

with the complex plane C and let B be the unit disc. If D is a simply-

connected region in C (with at least two boundary points), then there is a

conformai mapping w : D —> B. Let w = u + iv . For / : B -* R of class

£?2 we define g : D -* R by #(x) = /(w(x)), x G D. Then g e W2(D)

and Ag(x) = |V«(x)|2(Af)(u;(x)) (e.g. [Rao, 6.19]). If / is positive and
harmonic in B, i.e., / G ß?(B), then g is positive and harmonic in D, i.e.,

geß?(D). Let k(x, y) = inf{g(x) : g e ß?(D), h(y) = 1}, x,yeD. Then

k(x,y) = inf{/(«;(x)) : / G ß?(B), f(w(y)) = 1} = k(w(x), w(y)). This

shows that k is symmetric.

Let D be a Lipschitz, simply-connected domain and denote k simply by k .

Let us define the function / on D x D in the same way as k only replacing

infimum by supremum:

i/       \ n(x)
l(x,y) = sup j—-.

he;? n(y)

It is easy to see that l(x, y) = l/k(y, x) (note the change of x and y). Since

k is symmetric, l(x, y) = l/k(x, y). Let K be the kernel function for ß?(D)

based at Xn . Then for z edD,

limi^A = limk{Xo'y)-        l
y-z/(x0,y)     y^zk(x,y)      K(x, z) '

6. Example

We conclude with two simple results for infima of harmonic functions on a
bounded domain D in R" . By ¿%*(D) we denote the cone of positive harmonic

functions on D, and let G be the Green function for D .

Proposition 6.1. Let D be star-shaped and let u = Gp be a potential from

ß?mf(D). Then p cannot have a compact support.

Proof. Assume that Supp/i is compact. Let U be a relatively compact open

set containing Supp/i such that D\U is connected. Let Xo be any point

from D\U. By Lemma 2.2, there is h e ß?(D) such that h > u in D and
/z(xn) = u(xo). Then the function h - u is nonnegative and harmonic in D\U

and (h - u)(xq) = 0. Since D\Í7 is connected, h - u = 0 in D\U. By
continuity, h = u on d U. Since u is superharmonic, u > h in U. Therefore,

u = h in D, which contradicts the fact that u is a potential.   D

Now we give an interesting example of a function in ß?mi(D). Let xp denote

the exit time from D of the «-dimensional Brownian motion (Xt, Px) and let

Ex denote the expectation with respect to Px .

Proposition 6.2. Let <j>(x) = Ex(xD). Then <p e ß*'mi(D).

Proof. First we establish this result for the ball B = B(0, r). Let xB -

inf{t > 0 : X, i B}. Then Ex(xB) = (r2 - \x\2)/n for x e B (e.g. [Rao,

4.6]). The function xnr2- |x|2 is concave on B , and therefore in ß?mi~(B).

For the general domain D, let B = F(0, r)  be a ball containing D.   Let
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<j)(x) = Ex(xd) , x e D, and y/(x) = Ex(xb) , x e B. It is well known that

A<j) = -1 in D, and Aip = -1 in B . Hence, A(\p -</>) = 0 in D, so y/ - cf>
is harmonic in D. Obviously, (¡> < y/ in D. If h = y/ - <p, then h is strictly
positive and harmonic. Since y/ e ßfinf(B), certainly y/ e ß?'mi(D). Hence,

y/ = infa ha , ha harmonic and positive in D. But then <p—y/-h = infa(ha-h)

and each ha- h is positive and harmonic in D.   D
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