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PIECEWISE SL2Z GEOMETRY

PETER GREENBERG

Abstract. Piecewise SL2 Z geometry studies properties of the plane invariant

under pl-homeomorphisms which, locally, have the form x >-» Ax + b , with

A € SL2 Z, b € Q2 , and whose singular lines are rational. In this paper,

invariants of polygons are obtained, relations with Pick's theorem are described,

and a conjecture is posed.

Introduction

The classic Pick's theorem (see [GKW]) asserts that if P is a polygon whose

vertices have integral coordinates (an integral polygon) then the number of

points of Z2 in the interior of P is area(P)-j#(9PnZ2) +1 (here # denotes
cardinality). Looking behind the proof, we are led to consider a certain graph

G\P and associated simplicial complex K\P associated to P. The complex
K\P can be thought of as the space of triangulations of P ; it turns out (1.13)

that if area(P) > 1, then K{P is a pl-disk.
One motivation for this study is to understand the geometry of integral poly-

gons and the piecewise SL2Z maps between them, that is, piecewise linear

maps which, in each "piece", have the form

(*) f(x,y) = A(x,y) + v,       AeSh2Z, veQ2.

The classifying space of the pseudogroup T of such homeomorphisms is rather

simple—roughly [Gr] a CW complex with a finite number of cells in each

dimension—and it would be interesting to see this reflected in the geometry.

We calculated in [Gr] that, in a homological sense, the only quantities of closed
integral polygons invariant under Y are the area and a sort of "length" (1.2).

Here we prove this in a stronger, geometric sense (1.3).

The group G of germs at (0, 0) of the pseudogroup F contains a group

F' which is an "algebraic delooping" of the braid group [GS]. Thinking of

r as a globalization of G, it makes sense to look for connections with the
braid groups. As was noted by Devaney in [D], if we restrict the v in (*) to

lie in Z2, then piecewise SL2 Z maps permute the points ^Z2 for each N.

Thus, if Aut[ (P, d ) denotes the group of such automorphisms of P, fixing the

boundary, there are evident homomorphisms from Auti(P, d) to certain braid

groups. (See Figure 1.)
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Figure 1. A " ¿ Dehn twist" in Aut,(P, d)

However, perhaps one should look for deeper structural relations between

Auti (P, d) and braid or mapping class groups. By taking a limit of complexes

KXNP, one arrives at a space K(P) on which Aut,(P, d) acts (1.16). The
space K(P) is analogous to the "complexes of curves" which arise in connection

with the mapping class groups.
Conversations with Javier Bracho, Stephen Halperin, and Victor Neumann

have been helpful during this work. The hospitality of the Geometry Group at

the Université de Lille is gratefully acknowledged.

1. Definitions and main results

We begin by defining certain pseudogroups of pl-homeomorphisms between

open subsets of R2. We will denote by j¡Z the subgroup of Q generated by

jf, and by AN (resp. A0) the affine extension of ^Z2 (resp. Q2) generated by

SL2 Z. A rational line (resp. integral line) is a line passing through two rational

(resp. integral) points in the plane.

1.1. Definition. A pZN homeomorphism is an orientation-preserving homeo-

morphism g: U -> V between open subsets of the plane, such that there exists

a finite set of rational lines {/,} such that g agrees with some element gc

of AN on any component C of U - ]} I,■. A pZ homeomorphism is a pZ{

homeomorphism, in which we require the lines /, to be integral.

Before discussing invariants, we establish some notation for polygonal curves.

In this paper, a polygonal curve means a curve made of a finite number of

rational line segments between rational points of R2 ; the endpoints of the

segments of an integral polygonal curve are required to lie in Z2. If v¡ e Q2,

we denote by v0 • • • v„ the polygonal curve made of segments vjpuk+l. An

(integral) polygon is a simple closed (integral) polygonal curve. We write int P

for the open set enclosed by a polygon P, and intP for the closure of int P.

Finally, W and P denote the sets of polygonal curves and polygons.
If P is a polygon, the area a(P) of intf is invariant under pZ0 maps.

There is also an invariant "length."

1.2. Proposition. There is a function L: g7 -> Q which takes positive values,

such that
(a) (invariance) IfPeW, P ÇU, and g: U -> V isa pZ^-homeomorphism,

then L(P) = L(g(P))._ _ _
(b) {subdivision) L(v0■■■v„) = L{v0■■■vk) + L{vk ■■■v„).
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(c) (homothety) L{NP) = NL{P), P e W, where NP is the image of P
under the map (x, y) —> (Nx, Ny).

(d) (no metric) If a, b e Q2, then inf(an! • • • vn^{b) - 0.

Proof. If a = (p/N, q/N), b = (r/N, 5/AT), and p, q,r, s e Z, we define

L(ab) = jf(#(j¡Z2 n £z6) - 1), where #X denotes the cardinality of a set X .

Observe that L(ab) is independent of the N used. Extend L to all of W so as

to satisfy (b). Property (a) (invariance) is a consequence of the fact that SL2 Z

preserves the lattices ^Z2, and property (c) is a quick calculation. To prove

(d), by (a) and (c) it suffices to take a = (0, 0) and b = (2, 0). Then note that

L(a(\, l/k)b) = 2/ifc.

The following theorem says that a and L are the only invariants of the

action of pZo homeomorphisms on & .

1.3. Theorem. Let P, Q e 3°, with a(P) = a(Q) and L(P) = L(Q). Let
p G P and q e Q be rational points. Then there exists a pZo homeomorphism

g: intP —> intQ such that g(p) = q.

If P, Q are integral polygons, and p, q e Z2, we may choose g to be a
pZ homeomorphism.

The proof of the theorem is somewhat involved, so we postpone it to §2. The

main idea, that of a triangulation, will now be applied to reproduce the proof

[GKW] of a theorem of Pick.

1.4. Proposition (Pick). Let P be an integral polygon. The number of points

of Z2 in int P is

a(P)-{#(Pr\Z2) + l.

(Note that #(P n Z2) = L(P)). The proof requires the following notions.

1.5. Definition. An A'-segment ab is a segment so that ab n ^Z2 = {a, b} .

An N-triangle is a triangle abca whose sides are A'-segments, and whose inte-
rior contains no points of ^Z2. If P = v0--- v„v0 is a polygon and v, g ^Z2 ,

then an AMriangulation of P is a triangulation by AMriangles.

1.6. Lemma. The length L(ab) of an N-segment is j¡. The area of an N-

triangle is -jfa\.

Proof. The first statement follows from the definition. For the second, it suffices

to take N = \ . Further, after transformation by an element of A\ , we may

choose the vertices of the triangle at (0,0), (1,0), and (a, b), where b > 0,

a, b eZ.
Consider the parallelogram P with corners (0,0), (1,0), (a, b), and (a -

1, b). It suffices to show that a(P) — 1, or that (1,0), (a - 1, b) is a basis

for Z2. But since int PnZ2 is empty, int P' n Z2 is also empty for any P' in

the tesselation of R2 by copies of P. Hence, (1,0), (a - 1, b) is a basis for
Z2.

Proof of 1.4. Let P be an integral polygon, and let V, E, and T be the
numbers of vertices, edges, and triangles in a 1-triangulation. (It will be obvious

presently that 1-triangulations exist.) Then T = 2a(P) and the number of edges
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Figure 2

on P is L(P) = #(PnZ2). Each triangle has three edges, and the edges not on

the boundary share two triangles, so

(1.7) E = ¥- + \L(P) = 3a(P) + {-L(P).

By Euler's formula, V = 1 + E - T = a(P) + \L(P) + 1. But the number of

vertices on P is L(P) so the number of vertices in intP is a(P)-^#(Pr\Z2)+l .

In order to investigate triangulations of polygons, we introduce graphs G^P

associated to integral polygons P. The vertices of G^P are A^-segments whose

interior is contained in the interior of P. If two Af-segments intersect in their

interiors, then there is an edge between two vertices and we say the A^-segments

cross. See Figure 2.

Now, if G is a graph, an independent subset of G (see [G]) is a set of

vertices {v¡} so that there is no edge between any v¡ and Vj. Let K(G)

denote the simplicial complex whose Â>simplices are independent subsets of G

of cardinality k + 1 ; write K^P for K(Gn(P)) • We consider G^P because

of the following:

1.8. Remark. A maximal independent set of G^P is precisely the set of A^-

segments, not in P, in an A^-triangulation of P.

1.9. Proposition. Let P be an integral polygon. The maximal independent sets

of GNP have 3N2a(P) - %L(P) members.

Proof. For A^ = 1, this is just equation (1.7), with the observation that P

contains L(P) edges. For general N, apply the homothety (x, y) —> (Nx, Ny)

to change an A^-triangulation of P to a 1-triangulation of NP.

A graph with the property that all of its maximal independent sets have the

same cardinality is called well-covered (see [G]). The G^(P) seem to be new

examples of well-covered graphs.

In some sense, the structure of GnP stabilizes as N gets large.

1.10. Theorem. Let P be an integral polygon. There is a number Np suchthat

if N > Np, then G^P is composed of a connected component, together with a

set of isolated vertices whose number depends only on P.

Indeed, the isolated vertices are associated to the corners of P (as we shall

see in §3 in the proof of 1.10).
Not every well-covered graph is Gi P for some polygon P. The following is

proved in §4.

be      ae

r\
ad b
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G

Figure 3

1.11. Theorem. If P is an integral polygon and a(P) > 1, then K\P is a

pl-disk of dimension 3a(P) - \L(P) - 1.

Figure 3 shows that not every well-covered G has K(G) a disk.

Let P be an integral polygon, and let Aut# P be the group of pZN homeo-

morphismsof int P. By 1.3, Auti P surjectsto Z/L(P), with kernel Auti(P, d)
the elements fixing P. Now Aut¡(P, d) is clearly related to braid groups:

as noted by Delaney in [D], an element of Auti P permutes the elements of

intP n ^Z2 , so we have homomorphisms from Auti (P, d) to the braid group

on #(intPn^Z) strings.

We now show that Auto P acts on K(P) for any integral polygon P and

that one can define the limit K(P) = lim KNP of the KNP. Thus, K(P) is a

sort of "complex of curves" [I] for the group Auto P ■

1.12. Proposition. Let P be an integral polygon. Then for all n,NeZ there

isa pl-embedding i: K^P -> KxnP. Further, for all n, m, N eZ the following
diagram commutes:

Kn/iP
/ \

KffP KpfnmP

\ /

KNmP

Proof. We first define i on vertices. If t = ab is an A^-segment, then S0(0 =

aa + (b - a)/n, ... , S„-\(t) = b - (b - a/m)b are Ar«-segments. Define i(t)

to be the barycenter of the n - 1 simplex s(t) = (So(t), ... , Sn-\(t)). Now if

t = (to, ... , tk) is a fc-simplex in Kn(P) , then i(t) is defined to be the convex
closure of the i(t¡) in the simplex s(to) * ■ ■ ■ * s(tk). Naturality follows from

the definition.

1.13. Definition. K(P) is the direct limit of the K^P, the limit taken over
the natural numbers with maps N —> nN.

1.14. Proposition. The length function extends to a function L: K(P) ^>R.

Proof. First we define L restricted to K^P. On each vertex / of K^P, we

have L(t) = L . Suppose that L is defined on (k - l)-simplices of KNP. If
t = (to, ... , tk) is a /c-simplex, then L is defined on dt. Define L to be
(k + l)/N on the barycenter of t, and extend to the rest of t by "coning off'.

It is evident that L commutes with the ¡N,nN and is therefore defined

on K(P).
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1.15. Proposition. The group AutoP of pZ0 homeomorphisms of int P acts

continuously on K(P), and L is invariant under the action.

Proof. Let g e Auto P > and let s = (so, ... , sk) be a Â>simplex in K^P. If g

is linear on each s¡, define g s to be the simplex (gso, ... , gs^). If g is not
linear on the s¡, there is some subdivision of the s¡ on which g is linear, and

can thus be defined.

2. Triangulations and pZ homeomorphisms

We begin with a simple observation.

2.1. Lemma. Let Tx and T2 be l-triangles, with vertices a¡ e T,. There is a

unique element g e A\ such that gT\ = T2 and ga\ = a2.

Proof. Composing with translations, we can assume that a\ = a2 = (0, 0).

Recall from the proof of Lemma 1.6 that the remaining sides of each of the T¡

form a basis for Z2 . The lemma follows.

Lemma 2.1 gives an interesting way to construct pZ homeomorphisms. Sup-

pose that P and Q are integral polygons with 1-triangulations which are com-

binatorially the same. Then (see Figure 4) applying Lemma 2.1 to each pair of

corresponding l-triangles constructs a well-defined pZ homeomorphism from

int P to int Q (Figure 4) which we call a simple homeomorphism.

2.2. Definition. Let P and Q be integral polygons. Then /: intP —> intß is

a l-triangulated homeomorphism if

(i) / is simple,
(ii) f is a composite of l-triangulated homeomorphisms or

(iii) int P = int P\ U int P2, int Q - int Q\ U int Q2, where P, and Q¡ are in-

tegral polygons, int Pi n intP2 = Vq---v„ , int Q\ n int Q2 = Wo---wn, with

v¡v¡+i and w¡Wi+\ 1-segments, and f: intP, —> intQ,, i = 1,2, are 1-

triangulated homeomorphisms such that f(Vj) = Wj. Then, defining /: intP

—» intß by setting f\pi = f, fis a l-triangulated homeomorphism.

2.3. Remarks, (a) Condition (iii) could be replaced by defining "immersed

polygons".
(b) l-triangulated homeomorphisms are clearly pZ\ homeomorphisms, but

the reverse is not true: let P be the triangle with vertices (0,0), (1,0), and

(0,1) (see Figure 5). The l-triangulated homeomorphisms form a cyclic group

of order 3. However, the homeomorphism pictured in the figure is pZx for all

n.
The following is evidently stronger than Theorem 1.3.

T,-*   T,

Figure 4
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(0,1) (0,1)

(0,0) (1.0) (0,0)

a = (\ln, \ln)

b = (\-2ln, \lri)

c = (l/n, 1-2/«)

(1,0)

Figure 5

2.4. Theorem. Let P and Q be integral polygons of equal area and length,

and let p e P nZ2 and q e Q n Z2. Then there exists a I-triangulated homeo-

morphism f: intP —> intg, with f(p) = q.

Conjecture. The group of pZ homeomorphisms of the interior of an integral

polygon P is the same as the group of 1-triangulated homeomorphisms. In par-

ticular, the group is finitely generated, and the group of pZ homeomorphisms

of a 1-triangle is simply the group Z/3 of rotations.

Note that the group of pZ\ homeomorphisms of a 1-triangle is not finitely
generated (see Figure 5).

Several preliminary notions are necessary for the proof. We shall write the

integral points of P and Q in counterclockwise order as p = Po,... , Pl-\

and q = qo,... , qL-i, where L = L(P) = L(Q). If a, b, and c are points
on a polygon, then a < b < c means that c follows b, which follows a, in

counterclockwise order. If 0 < i, j < L — 1, then we take j - i to mean the

element of j - i + LZ between 0 and L - 1.
If 5 is an integral polygon with vertices S C\ Z2 - {so, ■■■ , s„}, then a

side triangle is a 1-triangle of the form i1s,+iS/+2s,-, and an inner triangle is a
1-triangle of the form SjSi+\VSi, where v e intS n Z2.

2.5. Lemma. In any l-triangulation of an integral polygon, either a side triangle
or an inner triangle must occur.

Proof. Let 5 be an integral polygon with S (~)Z2 = {so, ... , s„}. Suppose

there is no inner triangle in a given triangulation. Then each SjSj+\ is the edge

of a triangle SiSi+iS/^s, with s¡ < s¡+\ < s/^ . Let / be an index minimizing

f(i)-i. If f(j) * j+2, then sj+l < f(j+l) < f(j), whence f(j+\)-(j+\) <
fU) - j > a contradiction.

2.6. Corollary, (a) If #(int5 n Z2) = 0, then any triangulation contains a side
triangle.

(b) If L(S) = 3, then any triangulation has an inner triangle.

Proof of 2 A. The proof is by induction on 2a(P). When a(P) = ¿, P and
Q are 1-triangles, and we apply Lemma 2.1. In the general case, we will apply

Lemma 2.5 to reduce the area of P and Q.

Assume first that #(intPnZ2) = 0. By Corollary 2.6, P and Q have side
triangles 7> - PiPi+iP¡+2Pi and Tq = qjqj^qf^q]. Let S be an integral
polygon with L(S) = L(P),  #(int5 n Z2) = 0, 5 n Z2 = {S0, ... , SL-{} ,
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/ ; • • \4--•-•-•-•-•-^

Figure 6

(a) (b) (c)

Figure 7. (a) Two inner triangles; (b) one inner, one

side; (c) two side triangles (begin with the inner trian-

gle, which contains all of int S n Z2 , and then add side

triangles).

which has side triangles s,s,+is;+2S/ and SjSj+lsj+2Sj (Figure 6 indicates the
construction of S).

Now use Definition 2.2(iii) and induction to construct 1-triangulated home-

omorphisms intP -> int S and int S -> int Q, which take p to S0 , and So to

q , and we are done.

If #(intP n Z2) > 0, we reason as above; the situation is more compli-

cated because P and Q have either a side or inner triangle, and we must

show that there exist integral polygons S with L(S) = L(P), #(intS n Z2) =

#(intPnZ2), which admit both sorts of triangles in all possible positions (these
5 are displayed in Figure 7). Repeating the argument above concludes the

proof.

3. Local and global structure of G(P)

Recall the graph G\ (P) (see § 1 ) whose vertices are 1-segments whose interiors

lie in the interior of the integral polygon P, and with an edge between two

vertices if the corresponding 1-segments cross. Our goal in this section is to

prove Theorem 1.10, which we paraphrase as follows: for each P there is some

NP such that, if N > NP, G\(NP) consists of a connected graph with some

isolated vertices whose number depends on P. Our approach is inspired by

ideas from analysis. As it turns out, the isolated vertices in G{(NP), N > Np ,

are associated to the corners of P ; we make a brief study of the graphs of

sectors between two rays. Then, a family of "patches"—integral polygons with

connected graphs—is produced. The proof of Theorem 1.10 involves these large

and small scales.

We begin with the small-scale picture.

3.1. Definition. A patch is an integral polygon P so that G\(P) is connected,

and, if ab is any 1-segment in R2 such that ab Dint P is nonempty, then some

1-segment in intP crosses ab.
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Let Rn k be the rectangle with corners (0,0), (n, 0), (n,k), (0, k).

3.2. Proposition. For any g e A\, gRn,k is a patch.

Proof. Since elements of A \ preserve graphs, it suffices to show that Rn k is a

patch. If ab is a 1-segment and ab n intPwi ^ 0 , then there is some square

S = (x, y)(x + 1, y)(x + 1, y + 1), (x, y + 1) whose interior is contained in

int Rn k , such that ab n int S ^ 0 . But then one of the diagonals of S crosses

ab.

3.3. Corollary (of the proof). If P is an integral polygon such that intP is the

union of interiors of squares, then P is a patch.

Such a P is called a block polygon.

3.4. Proposition. The union of two overlapping patches is a patch: Let P, P\,

and P2 be integral polygons, let P\ and P2 be patches, and let int P = int Pi u

int P2. Then P is a patch.

Proof. Since Pi and P2 overlap, there is some 1-segment whose interior is

contained in intPinintP2. Thus G\(P) is connected. If ab isa 1-segment

which has nonempty intersection with int P, then it has nonempty intersection

with int P\ or int P2 . Thus P is a patch.

Let us now discuss graphs associated to noncompact regions. If R is the clo-

sure of an open region in R2 whose boundary is the union of 1-segments, then

we denote by G\(R) the graph whose vertices are 1-segments whose interiors

are contained in int R, with an edge between two vertices if the corresponding

1-segments cross.

Consider first a half-plane, that is, R = {(x, y) : ax + by > c, a, b, c e Q}.

Applying an element of A\ , we can assume that R = {(x, y): y > 0}. Then

R — \JintPn, where P„ is the rectangle with corners (±n, 0), (±n, n). Since

each P„ is a patch, G\(R) is connected, thus:

3.5. Proposition.  R is a patch.

That is to say, if ab is a 1-segment of R2 whose interior has nonempty

intersection with the interior of R, then some 1-segment in the interior of R

crosses ab.

If v — (a, b) and w = (c, d), with a, b, and c, d relatively prime, let r

and s be the rays from (0, 0) through v and w respectively. Then the angle

A(w , v) is the region swept out by a ray sweeping counterclockwise from 5 to

r. If A(w, v) (properly) contains a half-plane it is called (strictly) concave,

and if not, convex.

Every concave angle A(w, v) is the union of two overlapping half-planes.

Applying Propositions 3.4 and 3.5, we find

3.6. Proposition. If A(w , v) is concave, it is a patch.

The image of a concave, strictly concave, or convex angle under an element

of A\ which takes (0, 0) to a point p will also be called a concave, strictly

concave, or convex angle at p .

3.7. Definition. Let A(w , v) be a strictly concave angle,and let M 6 Z, M >

0.  The M-cap for A(w, v) is the polygon P = Pm(w , v) so that intP =
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int/?i U inti?2 , where

i?i = Mv , -Mv , -Mv - Mw , Mv - Mw , Mv

and _
R2 = Mw, Mw - Mv , -Mw - Mv - Mw , Mw

(see Figure 8). An Af-cap for an angle at p is the image under some element

of A\ of an A/-cap at (0,0).

Note that since v = (a, b) and w = (c, d), with a, b and c, d rel-

atively prime, (0, 0)v and (0, 0)w are 1-segments. Hence, for example,

L(PM(w,v)) = M.
The situation for convex angles is more interesting. We will see that

G\(A(w, v)) consists of a connected piece and a number of isolated vertices.

If A(w , v) is the image under g e SL2Z of A((\, 0), (0, 1)), then we call
A(w, v) a right angle.

3.8. Lemma. Right angles are patches.

Proof. It suffices to prove A((\, 0), (0, 1)) is a patch. But A((\, 0), (0, 1))

is the union of int-Rn „ , where Rnn is the square with corners (0,0), (n, 0),

(0, n), and (n, n), and Rnn is a patch by 3.2.

3.9. Definition. Let A(w, v) be convex. A chain from w to v is a sequence

w = v0,vi, ... ,v„, vn+\ - v with Vi - (a¡, b¡), such that the rays from

(0, 0) to v¡ are in A(w, v) and occur in counterclockwise order, and such

that

det ( Ui     ,bi   ) = l,        0<i<n,
\ai+i   bi+ij -   -

that is, each A(v¡, vi+i) is a right angle.

3.10. Lemma. If A(w , v) is convex, then there exists a chain from w to v .

Proof. Applying an element of SL2Z, we can assume that v = (0,1) and

w = (a, b), with b/a < 1. Considering Farey series [R] we can write

b = Pl+Pr

a     q¡ + qr'

where 0 < Pi/q¡ < b/a < pr/qr < 1, and bqr - pra = -1 . Taking w =
Vo, Vi = (lr,Pr), and iterating, we will eventually arrive at vn = (1, 1). Setting

vn+\ = v = (0, 1) we have a chain.

As an example, take v = (0, 1) and w = (5,3). Then | = |±| and

| = 2±j , so the chain is w = (5, 3), vx = (3, 2), v2 = (1, 1), v = (0, 1).

Mw     _,—

Figure 8
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b     v.

Figure 9

3.11. Proposition. Let A(w, v) be a convex angle and w = vo, ... , vn+\ = v

be a chain. There exist N¡ such that the isolated vertices of G\(A(w , v)) are

l-segments kv¡, (k + l)v¡, 0 < k < N¡■ - 1. The complement of the collection

of these vertices is a connected subgraph of G\(A(w, v)).

Proof. By 3.8, each A(v¡, vi+l) is a patch. Further, it is clear that for each

i, there is some M¡ so that mv¡, (m+ l)v¡ is connected to Gi(A(v¡, i>,+i))

and Gi(A(v¡-i, v¡)) for m> M¡. Let N¡ be the smallest such M¡. Then the

subgraph of G\(A(w, v)) whose vertices are all but the mv¡, (m + l)i>,, m <

Nj, is connected. We must show that the vertices mv¡, (m + l)v,■, m < N¡-\,

are indeed isolated. But if ab crosses mv¡, (m + l)v¡, then a + v¡, b + v¡

crosses (m + l)v¡, (m + 2)v¿, and so on, contradicting the definition of M¡.

The N¡ in 3.11 is called the weight of the singular vector v¡, if N¡ < 1. The
number of isolated vertices in G\(A(w, v)) is ]£#,-.

Partially order the set of chains from w to v by inclusion.

3.12. Theorem. Given a convex angle A(w , v), there is a minimal chain w —

v0, ... , vn+i = v . Each v¡ has positive weight.

Proof. Let w = v0, ... , vn+i = v be a chain. We show that if a Vj has weight

0, then we can replace the chain with a subchain of cardinality strictly less.

If Ovj is not isolated in G\(A(w, v)), then some 1-segment ab crosses

Ovj . Apply an element of SL2Z so that Vj = (1,0), vj+i = (0, 1), and

Vj-\ = [n, — 1) for some n e N (see Figure 9), and take a with y coordinate

negative, and b with y coordinate positive. The 1-segment ab crosses some

number m of 0v¡. We prove, by induction on m, that the size of the chain

can be reduced.

If m = 1, then ab crosses only Ovj . From Figure 9 one sees that ab =

Vj-\Vj+\, in which case t//_i = (1, -1), so that A(vj_\, vj+l) is a right angle,
and Vj can be dropped from the chain.

Assume that m, n > 1. Then ab crosses 0u;_i, and it either crosses 0vj+i

or not. If ab does not cross 0vi+i, then âUj crosses 0vj_i ; by replacing ab

with a~Vj we can reduce m and by induction we can reduce the length of the

chain. If ab crosses both 0i>;_i and 0vj+i, then either a~v~j crosses 0w;_i,

or bVj crosses OVj+i . Either way m is reduced, and by induction the chain is

reduced.

To prove 1.10, we need a finite version of 3.12. If A(w , v) is a right angle,
the Af-square Sm(w , v) at A(w , v) is the parallelogram with corners (0,0),

Mw , Mv , M(w + v). If A(w, v) is convex, let w = v0, ... , vn+ï = v be
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W

Figure 10. 2-pencil point

the minimal chain. The polygon Pm(w , v) so that intPm = \J int Sm(v i, v¡+\)

is called the Af-pencil point at A(w, v) (see Figure 10).

3.13. Lemma. Let A(w ,v) be a convex angle, and let w - v0, ... , vn+\ = v

be a minimal chain with weights N¡. If M > maxN,, then G\(Pm(w , v))

consists of a connected component with ¿~2 N¡ isolated vertices kv¡, (k + l)v¡,

0 < k < N,;,  1 < i < n .

Proof. The M-squares Sm(v¡, v¡+i) are patches, so it suffices to show that

the vertices kv¡, (k + l)v¡, k > N,■■, are connected to the G\(Sm(v¡, v,+i))

and G\(SM(Vi-\, v¡)). With an element of SL2Z, we can take v, = (1,0),
Vi+i = (0, 1), and v¡-i = (2m + e, -1) with e = 0 or 1. It is not hard to

check that v¡ has weight N¡ = m- 1 , and that (n ; 0)(m + 1, 0) is crossed by

(2« + e,-l)(l-e, 1).

Proof of Theorem 1.10. We prove that if P is an integral polygon, then there is

some Np such that, if N > Np , G\(NP) consists of a connected component

and mp isolated vertices. Here mp = Y^j H, N¡ » tne sum over the weights of

the singular vectors associated to minimal chains of each convex angle in P.

Begin by taking N large enough so that Af-caps or M-pencil points can be

placed at each angle in P, where M is larger than max A/, (Figure 11(a)).

(a) (b) (c)

Figure 11
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Now (Figure 11(b)) enlarging N if necessary, translate the outer Ai-squares

or rectangles of the pencil points and caps along their respective sides, so that

each point in P n Z2 is contained in one of the translated squares or rectangles.
Finally, enlarge Af to an A^ so that (possibly increasing M) there is a block

polygon (recall 3.3) which overlaps the union of the squares and rectangles

(Figure 11(c)). Applying 3.4, we are done.

4. The complex KxP

The object of this section is to prove that if P is an integral polygon whose

area is at least \ , then K\P is a combinatorial disk. We know from 1.9 that

K\P is a pure simplicial complex (that is, all maximal simplices have the same

dimension) of dimension

(4.1) dim/:iP = 2a(P) + Ar(P)-2,

where N(P) - #(intP n Z2). Also, from §3, G\P often has isolated vertices,
so that K\P is a cone. With some simple examples, these remarks lead to the

suspicion that K\P is a (piecewise-linear) disk.

The proof that K\P is a disk is by induction and requires a generalization

of the idea of polygon, which we approach as follows. If K\P is a disk, it is

first of all a manifold, so that the link Lk(s) of each simplex 5 should be a

disk or a sphere. These Lk(s) can be seen as K\PS, where Ps is a generalized

polygon, called a "slit polygon."
Suppose s = (so, ... , sk), where the s¡ are 1-segments in int P. Then an m-

simplex t - (to, ... , tm) is in Lk(s) if and only if s * t = (so, ... , sk , to, ... ,

tm) is a simplex in K\P ; in other words, none of the t¡ cross any Sj. We think

then of t as a simplex in Kx Ps, where Ps is the polygon P, slit at each s,.

By a(Ps) we mean a(P) ; N(PS) is N(P) less the number of points in

intP n Z2 which are endpoints of some s¡. Then equation (4.1) holds for slit

polygons. By intPs we mean intP-IJ^M and h(Ps) = rank Hi (int Ps). If t

is a simplex in K[(PS) = Lk(s), we define (Ps), = Pst,, so we can "slit" slit

polygons. The number of components of Ps means the number of components

of int Ps ; each component of int Ps is int Q for some slit polygon Q, and we

speak of the components Qi, ... , Qn of Ps. The following remark is important

for the sequel.

4.2. Lemma. If the components of Ps are Q\, ... , Q„ , then Ki(Ps) = K\(Q\)*

Ki(Q¡) * ■••*#!«2«)-

Let P be an integral polygon, 5 a simplex in K\P, and consider the slit

polygon P¡. Then int Ps is the interior of a pl-manifold with boundary which

submerges onto intP (see Figure 12). We will call this closed manifold intPs.

By dPs is meant the component of the boundary of int Ps whose image in intP

contains P = d intP. Note that dPs can be described as a series PXP2--PnPx

of points in Z2 such that each p¡p¡+1 is a 1 -segment in counterclockwise order

(Figure 12). By an angle of Ps is meant a 3-point fragment p,P/+iP,+2 of dPs.

We will prove the following version of 1.11.

4.3. Theorem. // P is a connected slit polygon and a(P) > 1 or N(P) < 1,

then K\(p) isa pl-disk.
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intP intP

dP = abcdeflifgfea

s ~~ (^0' ^1' ^2' ^3'

Figure 12

To begin, consider the connected slit polygons with area \ or less. If a(P) —

j , then P is a 1-triangle and Ki(P) is empty. If a(P) = 1, then P is two

1-triangles joined at a face, so K\ (P) is a 0-sphere 5"° or a point, that is, a

0-disk.

4.4.   Lemma. // P is a connected slit polygon and a(P) = \ , then K\(P) is a

\-disk or a 2-disk.

Proof. Suppose first that P is not slit. Then, by Pick's theorem, either A^P) =

1, L(P) = 3 or N(P) = 0, L(P) = 5. In the former case, there is a 1-
segment from the interior vertex to each of the three vertices of P, so K\ (P)
is a 2-simplex.

Suppose that N(P) = 0 and L(P) = 5. Label the points of P n Z2 in
counterclockwise order a, b, c, d, e. By 2.6, P has a side triangle; without

loss of generality we can assume that äc is a 1-segment in intP and that

abca is a 1-triangle. Composing with an element of A\ we can assume that

a = (0, 1), 2?_=(0,0)^and c = (l,0).     _

If neither bd nor be are 1-segments in intP,then A^i(P) is the cone at the

vertex a~c of Ki(acde), which is an S° or a D° , and thus KX(P) is a 1-disk.

If at least one of bd or be is a 1-segment in intP, then one of d or e

must be (1, 1) (Figure 13); without loss of generality, put e = (1, 1), whence

d = (2, k) for some k e Z (Figure 13(a)). Then Figure 13(b), (c), (d) show
that Ki(P) isa 1-disk.

Now, if P is a connected slit polygon with area \ , it must be Qs, where

L(Q) = 3 and 5 is a 1-segment from a point of Q n I? to the interior vertex.

Thus A^i(P) = Ki(Qs) is a 1-simplex.

Proof of 4.3. Put the triple (a(P), N(P), h(P)) in lexicographic order (e.g.,
(2,1,1) > (1,4,6) > (1,3,8)); the proof is by induction on the triples.

Lemma 4.4 deals with the initial case (\, 0, 0). Let abc be a convex angle in

dP (e.g., in Figure 12, gfe). Applying an element of A\ , we can put b at

(0, 0), a at (0, 1), and c at («, -m) , n, m>0, m < n .
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ac        ec be
•-•-•

KXP

(a) (b) k = 1 (c) k = 0 (d) k * 0, 1

Figure 13

Suppose that m > 0. Then (as in 3.12) the edge 5 = (0, 0)(1, 0) is an

isolated vertex in C7iP, and so K{P is the cone at S on K\PS. Now a(Ps) =

a(P), but either h(Ps) < h(P) or N(PS) < N(P), so, by induction, KXPS is a

disk and hence K\P is a disk. _
Now suppose that m = 0, so that c is at (1,0). Let s = (0, 1 )( 1, 0). If no

1-segments of intP have an endpoint at (0,0), then s is an isolated vertex in

(jiP,andso K\P is the cone at s on K\Q, where Q is P with abc replaced

by ac, that is, with the triangle abca excised. (Since be c P, Q is still a slit

polygon.) Since a(Q) < a(P), by induction K\P is a disk.

If, on the other hand, some edge crosses s, then ( 1, 1 ) e int P and t =

(0, 0)(1, 1) must be a 1-segment in P. I claim any triangulation of P must

contain either s or t as an edge. For suppose some triangulation does not

include t. Then some 1 -segment x of the triangulation crosses /. But any

edge crossing s would also cross x, and consequently 5 is an edge in the

triangulation.
Since either s or I is in any triangulation of P, it follows that K\ P is the

union of two cones: the cone at s of Kx Ps and the cone at t of Kx P,. The

two cones intersect in X = K\ Ps n K\ P,. If we can show that X is a disk we

are done (by, for example, Corollary 11.16 of [GL]).
X is the subcomplex of A"iP whose simplices are partial triangulations of

P which contain no edges crossing s or t. Let sx - (0, 1)(1, 1) and s2 =

(1, 0)(1, 1). Either s\ or s2 or both are vertices in K\P. If only one is a

vertex in K\P, say s\, then X is the cone at S\ on K\Q, where Q is the slit

polygon obtained by replacing abc with a(\, l)c in dP. Since a(Q) < a(P),

by induction K\P is disk.
If both S\ and s2 are in K\P, then A"[P is the join of K\Q with the

1-simplex (s\, s2), and again is a disk.
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