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THE LIMIT SETS OF SOME INFINITELY
GENERATED SCHOTTKY GROUPS

RICHARD SCHWARTZ

Abstract. Let P be a packing of balls in Euclidean space E" having the

property that the radius of every ball of P lies in the interval [l//c, k]. If

G is a Schottky group associated to P , then the Hausdorff dimension of the

topological limit set of G is less than a uniform constant C(k, n) < n. In

particular, this limit set has zero volume.

1. Introduction

Classical Schottky groups are determined by packings of balls in the sphere

Sn and conformai transformations between these balls. A ball packing is a union

of round «-balls in S" such that the interiors of the balls are disjoint. Given

a ball packing P, a Schottky group associated to P is a group generated by a

collection {Q: b € P} of conformai transformations Q with the following

property: To each ball b e P there is a corresponding ball V e P so that

C¿,(Sn - b') = int(b), b" = b, and C¿,- = C¿~'. A Schottky group is a discrete
subgroup of the general Moebius group GM(n). For basic information about

Schottky groups, see [B].
The topological limit set L{G) of a Schottky group G is the smallest non-

empty (7-invariant closed subset of Sn. More concretely, as long as L(G)

contains more than 2 points L{G) is the set of accumulation points of any

orbit. In case G is finitely generated—that is, in case there are only finitely
many balls in the packing—much is known about the "size" of L(G). It follows

from work of Doyle [D], Phillips-Sarnak [P], and Sullivan [S] that the Hausdorff
dimension of L(G) is less than a universal constant Cn < n . In the infinitely

generated case, less is known. One result was obtained by Z. X. He, who proved

that the limit set of a Schottky group generated by inversions in the disks of a

certain type of infinite disk packing has zero area. For a precise statement, see

[H].
The result of this paper is essentially a generalization of the those obtained

by He, but the methods seem to be different. We say that a packing has k-

bounded Euclidean geometry if the Euclidean radius of every ball lies in the

interval [k~l, k]. Our main result is
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Theorem. If G is a Schottky group associated to a packing having k-bounded

Euclidean geometry, then dim(L((7)) < C{k, n) < n .

Here C(k, n) only depends on k and n. Taking « = 2 gives another

proof of the fact that a finitely generated classical Schottky group acting on the

Riemann sphere has a limit set whose Hausdorff dimension is less than 2 . (The

finiteness condition guarantees bounded geometry.)

We remark that it is well known that one can produce (infinitely generated)

Schottky groups whose limit sets have positive volume, so some sort of restric-

tion on the ball packing underlying the group is necessary.

This paper is organized as follows. In §2, we give the basic idea of our

methods by carrying out the argument in a special case. In §3, we formalize and

generalize the constructions made in §2. In §4 we make the analytic estimates

needed to prove the theorem.

I would like to thank my teachers Peter Doyle and Bill Thurston for general

mathematical help and inspiration, and I would like to thank Dror Bar-Natan

and Oded Schramm for helpful discussions about the material in this paper.

This paper is my Ph.D thesis, presented at Princeton University in April, 1991.

2. The basic idea

To illustrate our techniques, we consider the Schottky group G generated by

inversions I\, h, h, h in four disks d\, di, dy, d$. We will show here that

L(G) has zero area.

Each element g £ G can be written uniquely as

g = Cilo---oCin, ij^ij+i.

We say that a depth n ball of G is one of the form

C,, o - - • o Ci„(din+l),        i,± ij+i.

Let Pn denote the set of depth n balls of G, and let dP„ denote the set of

spheres bounding these balls. Then the set A of accumulation points of \JdPn

is nonempty, closed and G invariant. Therefore A D L(G). In our situation,

it suffices to show that A(G) has zero area.

In our situation, dP„ consists of finitely many circles, implying that A ç

f]P„. P„+\ is obtained from P„ by replacing each disk b e P„ by three
smaller disks b\, ¿>2 > by c b. A would have area zero if the area of b\ U bi U by

was always a fixed fraction less than the area of b. However, as Figure 2.1

shows, this need not be the case.
Looking at Figure 2.1, we see that one of the three smaller disks, say by,

might be inconveniently large. Instead of figuring by into our calculations right

away, why not replace by by its subdivision? This gives us a subdivision of

b into the five disks b\,bi,byt\,byt2,byyy. This removes one problem, but

potentially creates another problem one level down: One of the byj might be

inconveniently large. So why not iterate this procedure and hope for the best.

What remains is a subdivision of b into set S(b) of infinitely many smaller

disks, as shown in Figure 2.2.
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Figure 2.2

Define

Qi = Pr,    Qn+l= U S(b)>    Q = C\Qn-
be<2„

Looking at Figure 2.2, we see that there is an infinite sequence of "crescents",

each containing two disks of S(b). The area of the two disks in the crescent is

patently a definite fraction less than the area of the crescent. Summing over all

crescents tells us that the area of Qn+l is always a fixed fraction less than the

area of Qn . Hence Q has area zero.

For every b £ Q„ , let Ab = A n b. The set Ab - S(b) is contained in every

disk of the nested chain labelled C in Figure 2.2. If this chain shrinks to a
point then A¿, - S(b) is a single point. If it does not shrink to a point, then

it shrinks to a circle, and Ab - S(b) is contained in this circle. In either case
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Ab- S(b) has zero area. By induction

A-Q„+1 = (A-ß„)u U Ab-S(b)
beQn

has zero area. Therefore, A - Q has zero area as well.

Putting everything together,

area(L(G)) < area(A) = area(g) + area(A - Q) = 0.

3. Geometric constructions

In this section and the next, we fix the dimension n once and for all. Let D

be the unit ball in En and let / be inversion in D.

Subdividing balls. A template is a packing of balls contained in D. Let £\

be the set of templates co such that I(co) U D satisfies the hypotheses of our

main theorem. This means that the radius of every ball of I(œ) U D lies in the

interval [k~l, k]. We call this the bounded geometry condition. Sometimes it

is useful to work with maximal templates. A template is maximal if the addition

of any ball produces a packing which is not contained in Q*.. We give Qk the

Hausdorff topology, considering each template as a point subset of D. This

means that two templetes o)\ and w2 are e-close if they are contained in the

e-neighborhoods of each other. It is easy to see that Q¿ is compact in this

topology. The point is that there are a uniform number of uniformly large balls

in any compact subset of D - {0} . For convenience, we will assume that the

constant k > 1 has been fixed once and for all. Set £1 = Q.k .

A subdivision of a ball e is a triple (co, g, e) such

(1) <yeQ.
(2) geGM.
(3) g{D) = e.

Given ball packings P and P', we say that P ~< P' if P' is obtained from P

by the subdivision each ball of P. An 01-pattern P* is a sequence of packings

{P„} , such that Pi is a single ball and Pn -< Pn+i. Define the limit set of P* to

be those points z e En such that every neighborhood of z intersects infinitely

many spheres in \JdPn . We denote this by A(P*)

Let G be a Schottky group associated to a packing P which has A:-bounded

Euclidean geometry. For each b £ P, let P„{b) denote the depth n balls of G

which are contained in b. Then it is easy to see that the sequence of packings

P*(b) = {Pn(b)} are Q-patterns. The templates are all of the form

HboIb(P~b),        b£P

Here Hb is an expansion followed by translation which takes b onto D. There-

fore A(G) is the countable union of the limit sets A(P*(b)) together perhaps

with the point oo = S" - E" (when G is infinitely generated). The upshot is

this: in order to bound the Hausdorff dimension of the set L(G), it suffices to

bound the Hausdorff dimension of the limit set of an Q-pattern.

The crescent construction. Suppose (œ,g,e) is a subdivision. We say that
ß £ co is the bad ball if its image under g is the largest. (If there are several,
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then choose arbitrarily.) We define the crescent of the subdivision to be the set

e-g{co- ß).

The following lemma is the main compactness tool we use to study the ge-

ometry of crescents. Let GM(oo) denote the subgroup of GM which fixes oo

and let GM = GM/GM(oo).

Lemma 1. Suppose {con , gn , en) is a sequence of maximal subdivisions, having

bad ball ßn . Then there is a subsequence {labelled the same way for convenience)

so that

(1) co„ -+ co* £ Q,

(2) [gn]^[g*]£GM,

(3) ßn^ß*£CO*,

(4) g*{co* - ß*) is contained in a compact subset of En .

Proof. (1) follows from the compactness of £2. (2) follows from the compact-

ness of GM, which is homeomorphic to the orthogonal group 0(n +1).

The only way (3) above could fail was if the size of ßm was tending to zero.

If ßm is very small, then the bounded geometry condition implies that ßm is

very close to the origin of D. We rescale so that em = D. We assert that

there is a unit diameter ball B, whose boundary contains 0 £ D, such that

\s'm(z)\ ^ l£m(0)l if z e B . If this was the case, then the maximality condition

would guarantee that there are some fairly large balls of com having a fairly

large intersections with B . But the image of such a ball under gm would then

be larger than the corresponding image of ßm .

Now we prove the assertion. For simplicity, we prove it for a Moebius trans-

formation T which preserves the unit disk in the complex plane. The general

case is similar. In complex notation,

!-(*> = ££•        "(-1,1).

We compute

|r(z)l = rr^w

Therefore, the level sets of \T'\ are concentric circles centered at I/a. In
particular, the radius of the level set containing 0 is at least 1. This proves

(3).
Note that (4) above is independent of the coset representative g* of [g*].

Since g„(D) c En , g* cannot take an interior point of D to oo. If g*(D) c En

then there is nothing to prove. We may therefore assume that either g*{p) = oo

for some p £ dD - co* or g*(p) = oo for some p £ co*. These cases are

shown in Figure 3.1. In the first case, g*~'(oo) ^ co*. The bounded geometry

condition implies that the inverse image of a whole neighborhood of oo misses

co* as well, which means all of co* is in fact mapped to a compact subset
of En.
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B1

D D

Figure 3.1

In the second case, there is a unique ball ß' £ co* tangent to dD at p,

and again the bounded geometry condition implies that there are no other balls

of co* in a neighborhood of p . Hence g(co* - /?') is contained in a compact
subset of En . The bad balls ß„ must be getting unboundedly large and hence

ßn -» ß', implying that ß' = ß*.   U

We use the same notation as in Lemma 1. Let C be the crescent of the

maximal subdivision (co, g, e). Also, the constants c¡ only depend on the

dimension n and the bounded geometry constant k .

Corollary 1. For some c\ < 1, volume(g(a> - ß)) < C\ volume(^).

Proof. Suppose we could find a sequence of subdivisions (con , gn,e„) so that

the best constant c„ in the inequality above tended to 1. By Lemma 1 we

can take a subsequence and consider the limits co* and g*. If g*(D) is a
finite ball in En , then (g*, co*, g*(co*)) is just another subdivision, forcing

lim(c„) = ô < 1 . On the other hand, if g*(co*) is not a finite ball, then (4) of

Lemma 1 says that c„ —» 0.   D

Corollary 2. If S c co - ß, then

volume(-S) volume^,!?))
€ Um ! c2\-

volume(a) - ß) '      volume(g(a> - /?)) '

Proof. By integration, the inequality above follows from the assertion that the

quantity

â(co, g,e) = ^-^- |  ,, ,,
mfzew_ß \g'{z)\

is uniformly bounded. The argument for this is virtually identical to the ar-

gument in Corollary 1. There are essentially three main points. First, ô is

independent of scaling. Second, (4) of Lemma 1 guarantees that the distortion

of g* on co* - ß* is finite. Third, it is easy to see that S varies continuously

with subdivisions in the obvious product topology.   G

For the crescent C, define w(C) to be the length of the longest line segment

which has endpoints in d(e) and d(ß) and which is perpendicular to both.

w(C) measures the width of the crescent.
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Corollary 3.  volume g(co - ß) <cy w"(C).

Proof. Note that this inequality scales correctly. Suppose that (co„ , gn, e„) are

a sequence of counterexamples. Ifwerescalesothat en converges to a finite ball

e, then we must have gn{ßn) converging to e as well. But then, taking limits as

in Lemma 1, we would have to have to have the second case pictured in Figure

3.1. The point is that (rescaling again) the balls g„(ßn) and en are becoming

parallel half-planes, which trap a small cylinder containing gn(con, ßn). The

volume of this cylinder varies like the «th power of its width.   D

Covering the limit set. Let P = {Pm} be an Q-pattern. We say that b is a

ball of P if for some n , b £ Pn . Note that every ball of P, except the largest,

arises as the subdivision of some other ball of P. We say that a bad ball of

P is a ball which is the image of the bad ball of some subdivision of another

ball. A bad chain is an infinite sequence of balls {bj} suchthat b¡+\ is the bad

ball in the subdivision of bj. Given any ball b £ P we let bad(b) denote the
maximal bad chain contained in b. This is exactly the nested sequence of balls

shown in Figure 2.2.
We say that a good ball is a ball of P which is not a bad ball. Given any

ball b £ P, & maximal good ball with respect to b is a good ball contained

in b which is not contained in any larger good ball contained in b. We let

good(è) denote the set of maximal good balls of b . This is exactly the fancy

subdivision of b used in Chapter 2.

Define Q = f\{Qn} > where

01 = A ,       Qn+l =   U  gOOd(úf)
deQn

Just as in Chapter 2, we compare A = A(P) and Q.

Lemma 2.  dim(A - Q) < n - 1.

Proof. Let Ab - A n b. Let bad(6) = {b\, bi,...}, and let bo = b. We have
the following decomposition:

oo

Aft - good(è) = Aoo U (J Xn ,
n=0

where

A„ = (Aft - good(ft)) n (b„ - bn+l),    X^ = (Ab - good(ô)) n (f|è„) .

Consider first kn . Let (co, g, b„) be the subdivision of bn . Xn consists of

those points z e bn+\ - bn such that every neighborhood of z intersects in-

finitely many balls of g(co). If there is such a point z, the bounded geometry

condition implies that g~l (z) = 0. Now consider A^ . If f] b„ is a single point,

then ¿oo is exactly this point. Otherwise f]bn is a ball, and ¿oo is contained

in the boundary of this ball, which is n - 1 dimensional.

Now comes the induction step.

A-ß,=0,    A-e„+1=A-ß„U (J(Aft-good(è)).
be<2„

Therefore A-Q„ is at most n-\ dimensional. Taking the union over n gives

the result.  □
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4. Estimates

We use the same notation here as in the previous chapter. In this chapter, we

prove that dim(ß) < C(k, n) < n . This will complete the proof of our main

theorem. In order to use the estimates made in the previous chapter, we make

the blanket assumption that every subdivision in our Q-pattern is a maximal

one. There is no problem making this assumption, because adding balls to an

Q-pattern can only increase the size of its limit set.

What needs to be done. From the definition of Q, all we need to show is that

there is uniformly some a < 1 and some p < 1 so that

y]    volume(^)p < avo\umep(b).

eegood(ft)

Our equation scales correctly, so we can assume that b has unit volume. The

good and bad sets below will all refer implicitly to b . Let bad = {b\, Z>2, ...} .
Let good„ = good n (b„ - bn+{), and good0 = good n(b-b\).

Consider the quantities

d(n , p) =   ^2   volume^),    d(n , p) = volume''(good„).

eegood„

Also consider the sums
oo oo

y(p) = Yld(n>PÎ>   y(p) = Yld(n,p)-
n=0 «=0

To prove the main result, it is sufficient to prove the following estimates:

(1) If c > 1 then for all p sufficiently close to 1, y(p) < cy(p).
(2) There is some d < 1 so that for all p sufficiently close to 1, y(p) < d.

The first estimate. To prove (1), it suffices to show d(n, p) < c d(n , p), V«

when p is sufficiently close to 1 . Here is what this means: Given a subdivision

(co, g, e), having bad ball ß , we just want to see that for p close enough to

1, we have

y  volume'' g(d) < c volume'' g(co - ß).

dew-ß

In fact, since the inequality above scales correctly, we can assume that g(co- ß)

has unit volume. Under these circumstances, we just have to show that

(*) ^2  volume'' g(d) < c
dew-ß

We prove (*) by breaking it into a finite part and an infinite tail end.

Here is the tail end: First of all fix a small s > 0. Let com denote the set of

balls b £ co so that 1(b) is farther than m units from the origin. Because of

the bounded geometry condition on co, there are at most const m"_1 balls in

com+\ - com . For \z\ = m, we have \I'(z)\ = m~2. Therefore, the volume of

b £com is at most const m~2" and
oo

]T volume"^) = J2     J2     volume"(Z>)

< const J2 k("-l)-2np < e
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for all sufficiently large N as long as (say) p £ [3/4, 1]. From Corollary 2 of
Lemma 1, we have

volume g(b) volume b
< const

volume g(co - ß) ~ volume(cu - ß)

Raising this inequality to the power p , we still have

volume'' g(b) volume'' b
< const

volume'' g(co - ß) volume"(co - ß)

for perhaps a different constant. Therefore,

£ volume" g(b)=  E      ry,*^
¿¿K ^volume» g(co-ß)

E       volume" b
—--¡r,-r- < const e.
volumes« - ß) ~

The last inequality follows from the fact that the volume of a maximal template

is uniformly pinched away from zero.

Here is the finite part: The remaining sum

Yi,     volume^)
b€w-(üf/-ß

is just a finite sum. By continuity in the exponent p, it can be made less than

1 for p sufficiently close to 1.
Putting both pieces together,

y volume"(6) +      ^     volume"(£) < 1 + const e < c

b£(On bZw-ß—OK

for small enough s and p close enough to 1.   D

The second estimate. In this section we again assume p £ [3/4, 1]. Re-
call that we have scaled so that the original ball b, the largest ball in our Q-

pattern, has unit volume. Let bad(è) = {b\, bi,...} . Suppose (com , gm , bm)

is the subdivision of the bad ball bm . Finally, suppose Cm is the crescent of

(u>m, gm, bm). Our strategy is again to decompose our estimate into a finite

part and an infinite tail end.

Here is the tail end:

Lemma 3. Given e > 0, we can choose a uniform m = m(e) so that y(p, m) <

e.  m is independent of the Q-pattern.

Proof. Consider

oo oo

(*) 7(P)    <Cl    5]^(Cffl)    <   C2   5>(CW)    <   Cy
m=0 m=0

Here cj only depends on the dimension n and the bounded geometry constant

k . The first inequality is just Corollary 3 of Lemma 1. The second inequality

follows from the facts that w(Cm) < const and np > 1 . A glance at Figure 4.1

explains the third inequality.
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Figure 4.1

From (*) it follows that each term of y(p, Cy/n) is less than n . It will be

useful to set
n = Sm".

If tx = volume"(good*) is a term in the sum y(p, cy/n), then there are three

possibilities:

(1) volume(èx) < ô ,

(2) volume(bx) > S and w(Cx) <S ,

(3) w(Cx)>ô.

We sort the terms of y(p, cy/n) into the above three categories.
If there are any terms of type (1) then there is some largest ball by such that

Ty is a term of type ( 1 ). All other terms of type ( 1 ) correspond to subdivisions

of balls contained in by . Scaling equation (*) tells us that the sum of terms of

type (1) is bounded by cy Sp.
For terms of type (2).

Wp{Cx)   <  w^2(Cx)        1/2

w(Cx)    -     w(Cx)     -

Therefore, the sum of type (2) terms is bounded by c3 r51/2.

For terms of type (3):

'■X .   O_ -

w"p(Cx) -  S"P  -  '

Equation (*) tells us that the sum of terms of type (3) is bounded by cyô. It

is clearly possible to adjust ô so that the sum of the three terms above is less

than e.   D

Here comes the finite part of our estimate: Corollary 1 of Lemma 1 says:

volume(goodm) j

volume(èm-èm+i)

As in Chapter 2, we sum over the crescents: y( 1 ) < Ô2 < 1. In particular,

y(\)-y(\,m)<ô2 < 1.

Since this last sum is a finite one, we can choose p close enough to 1 so that

y(p) -y{p,m)<\- 2e.
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We complete the proof of estimate (2) by combining this last equation with

Lemma 3, which is valid for any p £ [3/4, 1].   G

Putting it all together.   Let us put everything together. Suppose G is a Schottky

group which is associated to a packing having k -bounded geometry, and suppose

L(G) is the topological limit set of G. We can find an Q¿-pattern P such that

dim L(G) < dim A(P). In the notation above, we write A = (A - Q) U Q.
From the above two estimates it follows that, for some p < 1, we have

y volume"(¿) < const am.

b&Qm

Since am —► 0, dim(ß) < np . From Lemma 2, dim(A- Q) < n - 1. Therefore

dim(A) = ma\(np, n - 1) < c(n, k) < n.

This completes the proof of the main theorem.
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