
transactions of the
american mathematical society
Volume 335, Number 2, February 1993

ESTIMATES FOR SOME KAKEYA-TYPE MAXIMAL OPERATORS

JOSE BARRIONUEVO

Abstract. We use an abstract version of a theorem of Kolmogorov-Seliverstov-

Paley to obtain sharp L? estimates for maximal operators of the form:

Jisf(x)=   sup   — / \f(x-y)\dy.
x€S€& \S\ Js

We consider the cases where 3B is the class of all rectangles in R" congru-

ent to some dilate of [0, 1]"_1 x [0, JV_1] ; the class congruent to dilates of

[0, JV-1]"-1 x [0, 1] ; and, in R2 , the class of all rectangles with longest side

parallel to a particular countable set of directions that include the lacunary and

the uniformly distributed cases.

Introduction

Let ^ be a family of bounded open sets in R" containing the origin. For a
locally integrable function /, we define the maximal operator associated to 3§

by

(0.1) •**/(*)= sup ¿r ¡\f(x-y)\dy.
se& l-J I Js

The cases where 3§ is either the family of all rectangles in R" with prescribed

eccentricity or the family of all rectangles having longest side parallel to a given

set of directions, are of particular interest and have been studied by many au-

thors.
The techniques used to prove such theorems are divided into two categories.

One is the use of very delicate geometric arguments, that is, covering lemmas,

and is found in [Cor 1-4, Str 1-2, F]. The other makes use of the Fourier

transform (g-functions, Littlewood-Paley theory) and can be found, for ex-

ample, in [NSW, CDR, and CF]. In this paper we use a variant of a theorem

of Kolmogorov-Seliverstov and Paley to obtain sharp L2 estimates for certain

maximal operators that include the ones studied in the above references. Argu-

ments of this type have previously been applied to geometric maximal operators

in [SI, Ha]. In particular, we obtain simpler proofs of some of these results.

We prove the following:

Theorem A. For N > 2, let ¿%n denote the class of all rectangles in R" con-

gruent to some dilate of [0, 1]"_1 x [0, N~x]. For a locally integrable function
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/, let

(0.2) MNf(x)=    sup   ~ í \f(y)\dy.
X€R€¿%N \K\ JR

Then \\MNf\\LH*) * Cn(logN)\\f\\LHRn).

When zî = 2, this is Theorem 1 in [Cor 1], which is also a consequence of a

result of Strömberg in [Str 1], both obtained by covering lemma arguments.

We also consider the following more singular operator in R".

Theorem B. If we let <9Hn denote the class of all rectangles congruent to some

dilate of [0, 1] x [0, TV-1]"-1 and define MN as in (0.2) we obtain

(0.3) HAftf/W) < CnN(»-2V2(logN)\\f\\L2m .

An estimate like (0.3) has also been obtained in [CDR], but our argument is

simpler.
In R2 we obtain a stronger result: Let {Wj}Jix be a lacunary set of directions

in the plane (see §3 for the precise definition) and for a fixed N > 1 and

k = I, ... , N, let Wjk he uniformly distributed directions between Wj and

Wj+X . We form the maximal operator

(0.4) -*nAx) = sup j);,- f\f(y)\dy
x€R |-K| Jr

where the sup is taken over all rectangles in R2 with largest sides parallel to

some Wjk . We prove

Theorem C.   W^n/WlhiP) < C(logA/)||/||L2(R2) with C independent of N and

f.
By an argument similar to the one in [Cor 1 and Str 1], Cordoba has proved

in [Cor 3] a weak-type (2, 2) inequality for the operator ^v •

The proof of Theorem C contains as consequences, the results in [Str 1, Str

2] treating the lacunary and uniformly distributed case separately. The lacunary

case has also been proved by Stein [S1 ] for p = 2 using the same ideas and was

extended to 1 < p < oo by Fourier transform methods in [NSW].

Using the trivial L°° estimates, together with the M. Riesz interpolation

theorem, we obtain the Lp results for p > 2.

The advantage of the method used here is that the geometry involved in the

proofs is very simple compared with the original covering lemmas arguments.

Also, these covering lemmas only give weak-type (2, 2) estimates and the strong

type inequalities are then obtained by interpolating with cruder estimates for

p < 2. This does not work for Theorem C since there is no LP result for JiN

for p < 2. On the other hand, our method is essentially L2, which is very

restrictive.

The paper is organized as follows:

In §1, using the ideas in [SI], we prove an abstract form of a theorem of

Kolmogorov which will be the general set up for proving the above maximal

theorems. The general idea here is to linearize the operators and then use the

Hubert space structure of L2 to obtain some algebraic inequalities that imply

the boundedness of the maximal operator.
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In §2 we prove some simple estimates for convolutions in R" that contain

all the geometry necessary in the proof of the maximal theorems.

Finally in §3 we, after making some simplifications, apply the results of the
preceding chapters to prove the above theorems.

In the rest of this paper C (or Cx, C2, ...) will denote a constant not
necessarily the same on each occurrence.

This paper is based on the author's Ph.D. thesis [B], written at the University

of Rochester under the direction of Allan Greenleaf.

1. The abstract setting

We will now describe a general method for proving L2 estimates for maximal

operators that will be used in §3 to prove Theorems A, B and C. These ideas

were first used by Kolmogorov and Seliverstov (see [KSI, KS2] and also [Z, vol.

II, p. 161]) and later by Paley to establish some results on pointwise convergence

of Fourier series. They were later extended by E. M. Stein to different problems

in harmonic analysis. The following proposition is an abstract form of these

(see also [SI, Ha]). We will, for simplicity, consider only the selfadjoint case

that will be sufficient for our purposes though simple modifications allow one

to treat nonselfadjoint operators.

Proposition 1.1. Let A be a countable set and let {Tß}p€A be a family of self-

adjoint linear operators on L2(S, dx), where (S, dx) is a a-finite measure

space. Suppose that the following conditions hold:

(i) Tfi are uniformly bounded.

(ii) Tpf(x) > 0 if f(x) > 0 for all p.
(Hi) If f>0, then

(1.1) TpJvf(x) < MßT<f,(v)f(x) + NvT9(li)f(x),

a.e. for all p and v  where <p is a fixed function from A into A and where

Mß, Nv are linear operators on L2(S) satisfying the following estimates

(1.2)

and

(1.3)

supA^/(x)
z<

sup Nßf(x)

< M i:-
i:-

< N\\f\\V
V-

for some constants M, N.

(iv) For a dense subspace X of L2(S), we have

(1.4) sup Tßf(x) is finite.
L-

Then || sup^ Tftf(x)\\Li < C||/||¿2, where C can be taken to be M + N.

Proof. Write A = \J™, A¡ where each A¡ is finite and for all i', A,• c Ai+X . We
will first prove the proposition for the finite case. Let m he a positive integer

and let p(x) he any measurable function with values on Am . By condition (iii)

we have that for any / > 0

(1.5) Tß(x) Tvf(x) < M„,x) Tf(v)f(x) + Nv Tf(/t{x))f(x).
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Since the operators Tß are selfadjoint and positive, by taking adjoints on equa-

tion (1.5), we obtain

(1.6) TvT;{x)f(x) < T9{v)M;(x)f(x) + T;(ß(x))N;f(x),

and since f(x) > 0, we take v = p(x) and obtain that

(1.7) (T;{x)f, T;(x)f) < (M;(x)f(x), T;l/l{x))f(x))+(N;(x)f(x), lfWx))

Let / > 0 be fixed. Given e > 0, we choose p(x) so that

(1.8) (I + e)Tß(x)f(x) > sup Tßf(x).
ß£Am

Then by (1.7), (1.2) and (1.3) we have that if ||/||L2 < 1

|2

fix)).

(1.9) sup Tßf(x)
p€Am

<(l+e)(M + N)

v-
sup Tip{ß)f(x)

f£Am V-

for all f e L2 with ||/||L2 < 1 since (1.9) is independent of p(x). And, since

e can be made arbitrarily small, we have that

|2

(1.10) sup Tßf(x)
ß€Am

<(M + N)

L2

sup Tv(ß)f(x)
ß&Am C-

If we assume further that / e X, then by (iv)

|2

(1.11) sup Tßf(x)
/i€A„

<(M + N)

V-

sup Tßf(x)
ß

< 00

for / e L2 n X and ||/||L2 < 1.

This proves the proposition for the finite case and f e L2 n X. But the
right-hand side of (1.11) is independent of m so that if we let m —> oo, we

obtain

(1.12) sup 7^/(x) <(M + N)

for all f e X with ||/||L2 < 1. Since X is dense in L2 we have that (1.18)
holds for all / e L2 with ||/||¿2 < 1 which is the desired conclusion.

In the rest of the paper, we will be working on R" with the usual Lebesgue

measure.

2. Geometric considerations

To estimate TßTvf, we will need to use some simple properties of convolu-

tions in R" .

The following fact is well known, see [Hör, p. 102].

Proposition 2.1. Let u and v be distributions on R"  with compact support.

Then u*v is a distribution with compact support and

supp(w * v) c supp u + supp v = {x + y : x e supp u, y e supp v}.

Definition. A set  7?  in  R"   will be called a rectangle if it is congruent to

[ai, bx] x • ■ • x [a„, bn] for some a¡ and b¡ with a, < b¡, I < i < n .
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Definition. Let e be a fixed number satisfying 0 < e < 1. We define 38t to

be the class of all rectangles in R" that are symmetric about the origin and

congruent to some dilate of \—\, 5]"""1 x [-§, §] • Similarly we define % to
be the class of all cylinders in R" that are symmetric about the origin and
congruent to some dilate of the cylinder

{x = (xi, ..., x„) e R" : x\ H-h x2_, < \ and |x„| < §}.

An element of % is a cylinder D centered at the origin with a base of radius

\ and height eh and thus it can be described by the parameter p = (h, 6)

where 6 e Sn~x is a normal vector to the base of the cylinder. This association

will be one to one if we identify the points (h, 8) and (h, -6) on R+ x Sn~x.

Thus, each D e % will be denoted by Dß .

For a given p — (h, 8), let 38? denote the class of all rectangles in 3è\ that

are congruent to [-\ , §]n~x x [-y , y] and have its largest face perpendicular

to 8.
The following lemma states that, for our purposes, all the rectangles in 38?

and Dß e % are equivalent.

Lemma 2.2. Let p = (h, 6) and let 38? be as above. Then for all R e 38? we
have that for all x e Rn

(2.1) ÈiXdM) < TjrMx) * jrh^Ax)
\L>ß\ \K\ \JJß'\

where p' = (y/n - 1/z, 8) and Cx and C2 are constants depending only on the

dimension n and not on p or e.

The proof is simple and is left to the reader.

Now, let p = (h,8), v = (K,y) and let 7?, e 38? , R2 e 38? . Let tpx(x),
cp2(x) he given by

9í(x) = Tb\XRi{x),        i =1,2.
\Ki\

To estimate tpx * tp2(x), we have the following easy proposition that we prove
for completeness.

Proposition 2.3.  With the above notation, we have that for all x e R"

(2.2) tpx * tp2(x) < Ct=-xe

where E is a rectangle in R" symmetric about the origin congruent to [—f, §]""'

x [-f» f] wim a and b satisfying

(2.3) a = max(2/z', 2zc'),      where tí = (n - l)x,2h and k' = (n - l)l/2zc,

(2.4) b = max(2ea, d sin Oy),      where d = min(2/z', 2zc').

E is oriented in such a way that its largest face is normal to 6 or y according

to whether h > k or k > h.   8y denotes the angle between 8 and y.  The

constant C depends only on the dimension n and not on the rectangles Rx and
R2.

Proof. We want to estimate

(2.5) <P[*<Pi(x)=       <px(x-y)q>2(y)dy.
7r-
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By Lemma 2.2 we have that

(P\(x) * (p2{x) <C(px*<p2(x),     where ^i(x) = —-;Xdu,(x),
|7VI

(2-6) (¡>2(x) = t^-xXd„, (x)     with p' = (yfrT^Íh , 8) = (tí, 8),
\uv'\

v' = (y/n- Ik, y) = (¡c', y).

There is no loss of generality in assuming that h > k . Then, by changing

coordinates if necessary, we can also assume that 8 = en , that is

Dß' = {(xi, ... , xn)eR" :xj + ■■■+ x2_, < h'2 and |x„| < e/z'/2}.

By applying Lemma 2.2 again, we have that

(2.7) <px * <p2(x) < Cy/X * y/2(x)

where

(2.8) ^i(x) = -g-y~(x),        y/2(x) = -~-{XrM
\Ri\ \R2\

where Rx is the rectangle {x e Rn : |x,| < h'/2, i = I, ... ,n - 1, and

\xn\ < eh'¡2} and R2 is the rectangle {x e R" : |x,| < zc'/2, i = 1,..., n- 1,

and |x„| < ezc'/2} rotated by an angle of 8y about the e2, ... , e„-X-plane,

that is

R2 = {xeR" : |x,| < zc'/2 fox i = 2,3, ... , n-I;

\xx cos 8y + xn sin 8y\ < zc'/2 and \x„ cos 8y - xx sin 8y\ < ezc'/2} .

In order to estimate ipx * y/2(x), we will use the following formula that can

be easily obtained

nm t   y        Í        ,  y     t ^J \RX H (R2 + x)\
(2.9) ipx * y/2(x) =       V\(y)v2(x-y)dy=]-—   \

Jr" |7?l||7<2|

where \Rx\ = (h')ne and \R2\ = (K')ne.

There are two cases:    _

Case (i). 2ea > dsindy: in this case since we assumed h > k, we have

4eh' > 2k' sin 8y. By Proposition 2.1 we have that y/x * \p2 will have support

contained in the rectangle E = {x : |x,| < h! for i < n - I, \xn\< 2eh'} and

thus \E\ = 2n+x(h')"e . It is clear from (2.9) that for all x in E we have

/  x        I I
¥\ * ¥l(x) < -^^ = 7T7T- .IT^I      (h')ne

Thus

(2.10) Wi*¥2(x)<2"+x-^xe(x).

Case (ii). d sin 8y > 2ea, that is 2zc' sin 8y > 4eh'.
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By Proposition 2.1, y/x* y/2 is supported on the rectangle E = {x e R" :

\Xi\ <h! for z < zz - 1, |x„| < k'sin8y} and \E\ = 2n+x(h')"-xK'sin8y. By

(2.9) we have that

..... ...     zc"-2(e/z')(ezc7sinr^) l 2"+x
(2.11) y/x*¥2(0) =

[(h')"e][(kTe] (h'Y-^K'sinTy      \E\ '

And by translating 7?2, it is clear that the measure of |7?i n (x + R2)\ cannot

increase so that we have

2n+x
(2.12) y/x * y/2(x) < -r=r-     for all x in E.

Thus

(2.13) yfi * y/2(x) < 2n+x^-xE(x)    for all x e R" .

By (2.6), (2.7), (2.10) and (2.13), we have that

(2.14) <Px*(P2(x)<C^Xe(x)     forallxeR"

where C is a constant depending only on the dimension zz and E is the

rectangle described in the statement of the proposition.

A similar result holds for some more singular measures on R2 : for h > 0

and 8 e [=f , f ], let u^,e) be the distribution whose action on test functions
is given by

(2.15) "(/¡,0)(/) = ¿/_ Ateos8,tsinö)dt,       feC?(R2).

Then we have

Proposition 2.4. If f e Q^R2) is nonnegative, then for all (x, y) e R2, we
have that

(i) u{h,8)*U(K,d)*fi(x,y)< 2u{2max(A,K),6)*fi(x,y),or

(ii) u{ht9)*u<K,y)*f(x,y) < (4/\E\)xe * f(x, y)

where E is a rectangle of dimensions 4 max(zz, zc) and 2 min(h, k) sin \8 - y\,

symmetric about the origin and with its longest side parallel to 8 or y according

to whether h > k or h < k .

The proof is similar to the preceding one and is left to the reader.

Remark. Since for any rectangle E as above, there exists a parallelogram P

centered at the origin, containing E such that

(a) its longest sides are parallel to the longest sides of E ;

(b) the shortest sides of P axe parallel to one of the coordinate axis;

(c) |i'|<2|£|,

we obtained that the conclusion (ii) above can be replaced by

0

(ii') u(nte) * u(K,y)*fi(x,y)<—xp* f(x, y).
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3. Proof of theorems

Before we proceed in proving the theorems, we will make some simplifications

in order to apply the results of the preceding paragraphs.

Since Mfff = Ms\f\, it is enough to prove Theorem A for nonnegative
functions.

For N > 2 fixed, let m he an integer such that 2m < N < 2m+x. Then if R

is a rectangle in R" containing x congruent to [0, h]h~x x [0, hN~x] where

zz > 0 satisfies 2' < h < 2,+x for some i e Z, we have that for all / > 0

(3.1) r^l\f(y)\dy<cnf*^-XR(x)
\K\ Jr \k I

where R' is a rectangle centered at the origin, congruent to [-2', 2']"-1 x
[-2'~m, 2'-m] and with sides parallel to R, that is, 7?' belongs to 382-m and

has the same orientation as R. Thus 7?' = Rß with p = (2l, 8), i e Z,

8 e S"~x. Also, by continuity of the Lebesgue integral, we can assume that 8

belongs to a dense countable subset Q of Sn~x.

Thus, Theorem A is equivalent to

Theorem A'. Let Q = {Wj}jez be a dense countable subset of Sn~x. For

p = (i, j) e 7?, let Rß be the rectangle in 382-m congruent to [-2', 2'] x

[-2'~m,2'~m] with Wj as a normal to its largest face. Define T™ and Tm by

(3.2) !?/(*) = tin**, */(*).

(3.3) Tmf(x)=sup\T™f(x)\.
ß

Then

(3.4) l|rm/llL2(Rn)<C„zrz||/||L2(Rn).

Proof. By positivity, we only need to prove (3.4) for / > 0.

Clearly TJ? is a bounded selfadjoint operator on L2 and if f(x) > 0 a.e.

then T™f(x) > 0 everywhere for all p .

In order to apply the ideas of § 1, we need to estimate T™ T™f(x) for / > 0.

Let p = (i, j), v = (k, I), then by Proposition 2.3, we have that

(3.5) T?T?f(x) < C, j^Xe * f(x)

where Cx depends only on the dimension zz and E is a rectangle in R"

symmetric about the origin, congruent to [-f, f]""1 x [-|, |] with a and

b satisfying (2.3) and (2.4) and E is oriented according to the statement

of Proposition 2.3. Thus E is an element of some 382-s where 5 satisfies

1 < s < m - 1 and E is parallel either to 7?^ or 7?,, according to whether

i < k or k < i. Thus if <p : 1? —* 7? is defined by tp((i, j)) = (i', j) where i'

satisfies 2'"-1 < (n - l)1/22' < 2'", we have that

(3.6) T?T?f(x) < Ci(Ts9Wf(x) + r9{v)f(x))

where s = s(p, v) < m - I. We still have to eliminate the dependence of 5 on

p and v and this is done by summing in s . One has

m-\

(3.7) T™T?f(x) < C, J] Tsv(fl)f(x) + T;{v)f(x).
5=1
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By repeating the steps on the proof of Proposition 1.1, we obtain

m-\

(3.8) l|7""/ll|2(Rn)<2C1^||r/||L2(Rn).
i=i

The proof is now completed by induction on m :
m = 1 : Tx is dominated by the Hardy-Littlewood maximal operator, so

\\Tlfh2 < C\\f\\Li. Suppose that for all s < m we have that \\T'f\\L2 <
Cs 11 /| | £2 where C is independent of s and /. We can assume that C > Cx.
Then by (3.8)

m-l

(3.9) \\Tmf\\2L2 < 2C2 £ j||/||L2 < C2zn2||/||L2.

i=i

This completes the proof of Theorem A' and hence of Theorem A.

As a corollary we immediately obtain an improved version of Theorem 1

in [Cor 1]. This was previously obtained by Strömberg in [Str 1] by covering

lemma arguments.

Corollary 3.1. Let

MNf(x) = sup —- / \f(y)\dy,
X€R \K\ Jr

where the sup is taken over all rectangles in R2 satisfying

(3 10) largest side of R   = y

shortest side of R

Then for all f e L2(R2)

(3.11) \\MNf\\vm<CQotN)\\ñw*)-
Proof. This is just the case zz = 2 of Theorem A.

To prove Theorem B, we first have to introduce some more notation. As in

the statement of Theorem A, let Í2 = {iU/}_/ez be a countable dense subset of

Sn~x. In order to simplify the argument, we will assume that for each Wj eil,

there exists a wk in Q such that wk is orthogonal to Wj. Let m he a positive

integer. For p = (i, j) e 7? , let Cß he the cylinder, symmetric about the origin,

congruent to {x = (xx, ... , xn): -2'"1 < Xi < 2/_1 , (x2 + - • - + x2)1/2 < 2l~m}

and such that its axis is parallel to Wj.

Define S™f(x) by

(3.12) sZ>f(x) = -!-xcß*f(x).
\^ß\

An argument similar to the one preceding Theorem A' shows that Theorem

B is equivalent to the following.

Theorem B'. With the above notation, let

(3.13) Smf(x) = sup\S^f(x)\.
ß

Then for all f e L2(R"), we have

(3.14) l|S",/||¿2(R„) < C2m^'zn||/||L2(R„).
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Figure

Proof. For p = (i, j), let <p(p) = (i, k(j)) where Wj is orthogonal to wk.

Thus, if Tßf is defined as in Theorem A', we have that for all / > 0.

(3.15) S™f(x) < 2m("~V T™ß)f(x)    a.e. for all pel2.

The theorem is then a consequence of the following.

Lemma 3.2. For all p, v el? and f > 0 we have

m-\

(3.16) S?S?f(x) < C2-(""2) Y, Thv(ß))f(x) + Th,M)Ax)
5=1

where C is a constant depending only on the dimension, ß : 2? —> Z2 is a fixed

function and <p is the function on 7? described above.

Thus applying the reasoning of Proposition 1.1, we obtain from (3.16) that

m-\

(3.17) HSm/HÍ2(Rn) < C2"*"-2) J]] II^VII^íR-) •
5=1

By Theorem A', ||r,/||L2(R.) < Cs for all fie L2(Rn) satisfying ||/||L2(Rn) <

1. Thus we have

(3.18) ||S",/IIÍ2(Rn) < C2mC-Vm2     for all / with ||/||L2(Rn) < 1.

In order to complete the proof, we just need to prove Lemma 3.2.

Proof of Lemma 3.2. The proof is a combination of the ideas in Proposition

2.3 and Theorem A'. Let p = (i, j), v = (k, I) and assume that i > k. By
(3.15) we have that for / > 0

(3.19) S?S?f(x) < l^-VT^SïKx)

where

(3.20) T^(ll)f(x) = ^-xXR^fi(x)     and    S?f(x) = ±-Xc, * Ax)

and after changing coordinates, if necessary we can assume that Rß = {x e Rn :

\xp\ < 2'"1 for p < n - 1 and |x„| < 2i-'-m}. See the figure for zz = 3.
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(3.21) T™{lJ)S?f(x)<-^XE*f(x)

An argument similar to the one in Proposition 2.3 shows that

C_

\E\

where E is the rectangle {x e R" : \xp\ < 2' foxp<n-l, \x„\ < d} where

d = max(2'_m+1, 2A:cosu)/è„). Thus if ß(i, j) = (2i, j) we get

(3.22) Tfc&m < CT;\;¡;lf(x),     where s(p,v)<m-l.

As in Theorem A', we add in 5 and get

m-\

(3.23) S?S?f(x) < C2-C-2) 53 Tjiflß))f(x)     if i > k.
5=1

The case i < k is obtained by "interchanging" p and v.  Note that (3.16)

includes both cases. This finishes the proof of the lemma and of the theorem.

We will now show by examples that the power of log N in Theorem A and

the power of N in Theorem B cannot be improved.

Example A. For N » 1, x = (xx, ... , xn) in R" , let CN be the "cylinder"
{x e Rn : 1 < x2 + x2 < N2, 0 < x, < N for 2 < i < n} .

Let

Mx) = (x> + x}y/*Xc"{x)'

then

(3.24) ||/v||L2 = CA('!-2)/2(logA)1/2.

If x satisfies x2 + x2 ~ j2, an easy computation shows that

(3.25) MNfN(x) >Cj-x log j

and thus

(3.26) \\MNfN\\2Ll{Rn) > C53N"-2[-^fLL ~ A"-2(logA)3.
7=1 J

Combining (3.24) and (3.26), we obtain that

(3.27) ||^/jv||l*(r.) > C(log^ll/vIL:^).

Example B. Let / be the characteristic function of the unit ball in R" so that

II/IIl2(R") = c„.
For x in R" satisfying |x| > N, it is easy to see that

(3.28) MNf(x) = CNl*-V\x\-H

and thus

(3.29) ||M^/||L2>CA("-2)/2.

The following maximal operator has been considered by Cordoba in [Cor 3].

Let {wjo}Jíx he a lacunary sequence converging to zero, that is, there exists a

number X satisfying 0 < A < 1 and such that

(3.30) ^J±hl<x,       wxo=l.
wJ,o   ~
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Let N satisfy N » 1, and for zc = 0, 1, ... , N - 1, let wjk satisfy

(3.31) Wj+x^<wjk<Wjto

and

(3.32) ^L\kx -k2\< \wjkx - wjk2\ < 3*1*1 - H

where A7- =Wjto — wj+x ;o and a satisfies 0 < a < 1.

For locally integrable / in R2 consider the maximal operator

(3.33) 4/W = supji I \fi(y)\dy
xeR |-K| Jr

where the sup is taken over all rectangles in R2 having largest side parallel to

(1, Wjk) for some j > 1 and k < N - I .
Then it is proved in [Cor 3] that J?n satisfies the following weak-type esti-

mate

(3.34) \{x:JtNf(x) > a > 0}| < Q>a(log37v>-2||/||£2(R2)

where Q a depends on A and a but not on N or /. Theorem C, stated in

the introduction, shows that J?n is bounded on L2(R2), with the same norm

essentially.
There is no loss in generality in assuming that the rectangles involved in

(3.33) are centered at x and have dimensions 2"1' x 2mi where mi, m2 e Z.

These affect ^# only by a multiplicative constant.

If 7?o is such a rectangle, with dimensions 2m> x 2mi (mx > m2) and with

its largest side parallel to (1, wJoko), then we have that for / > 0

(3-35) -L /  \f(y)\dy < 8Sm2T(mx,JoMf(x)
\Ko\ Jr0

where for x = (x, y) in R2 we have

(3.36) Smf(x,y) = -LT [     f(x,y-s)ds
¿       J-2m

and

1     f2'
(3.37) T(ij,k)f{x,y) = ^fT\ J    Ax-s,y-swjk)ds.

Since Sm is dominated by the one-dimensional Hardy-Littlewood maximal op-

erator acting in the y-variable which is bounded on LP foxp>l, Theorem C

is then a consequence of

Theorem C . For i eZ, j = 1,2, ... , and 0 < k < N - I, let p = (i, j, k)

and define Tßf by

1     f2'
(3.38) TnAx,y)=2Mj    Ax-s,y-swjk)ds,

and

(3.39) T f(x,y) = sup \Tßf(x,y)\
ß
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then

(3.40) \\Tf\\mV) < Q,a(log/V)||/||L2(R2).

Proof. Again, it suffices to prove (3.40) for / > 0. Let p = (ix,jx, kx),

v = (h, 72, k2) and let us estimate TßTvf(x, y). These estimates will fall

into two different cases.

Case 1.  \jx - j2\ >2.
Assume, for the moment, that j2 > jx. Then we have two subcases.

Subcase 1.1.  i2> ix . By Proposition 2.4

(3.41) TßTuf(x,y)<^XE*f(x,y)

where E is a parallelogram with longest sides parallel to (1, whk2) and length

2'2+1 and vertical sides of length 2zi = 2'l+x(wjxkx - whkl).

Since wjxkx/(whkx -whh) < 1/(1 - X) we have

(3.42) TßTvf(x,y) < j^-jA^^x, y)

where q>(i, j, k) = (i+ I, j, k) and

1 rl'wjk

(3.43) A{iJtk)f(x,y)= /        f(x,y-s)ds.
*■      wjk J-2'wjk

Subcase 1.2. ix > i2.
In this case, and inequality like (3.41) still holds with E being a parallelogram

with longest side parallel to (I, wjxkt) and horizontal sides of length 2zi where

d = 2,2. KtrMM;)

By (3.30) we have that d satisfies 2,2(1 -X) < d < 2'2 so that

(3.44) TßTuf(x,y) < ^-^T^x^)

where

1     f2'
(3-45) B(i,j,k)fi(x,y)=2^J    f(x-s,y)ds.

The case where jx > j2 is treated similarly and so we obtain that if \jx - j2 \
>2

C
(3 46)   Tp-TvAx,y) < Y^(AßTv(v)f(x,y) + AuT9(ß)fi(x,y)

+ BßTflv)f(x,y) + BvTf{ß)f(x, y)).

Case 2. \jx - j2\ < I.
We again will first assume that j2 > jx and divide Case 2 into two subcases.

Subcase 2.1. ix > ix.
Similarly to Subcase 1.1, by Proposition 2.4 we have that an estimate like

(3.41) holds where E isa parallelogram with longest side parallel to (1, Wjlkf)

and length 2'2+1 and vertical sides of length 2d where d satisfies

(3.47) 2'ia{lNX)W^<d<2»Wjx0,

by (3.31) and (3.32).
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Now if [z] denotes the greatest integer less or equal than z, let LN he
defined by

(3.48) ^N [^LT)] + 1

and for / = 0, I, ... , LN let

(3.49)

rl        ft       ^     (2i+M(l-X)awj0\       r*"H-A/W '
CijJi)f(x,y)=[-J-\      / f(x,y-s)ds.

\ A J       J-2M(\-l)awj0N-'

Then, as in the proof of Theorem A', one has

(3.50)

TßTvf(x, y) < 8 Í Tv{ß)f(x, y) + T9(v)f(x, y) + 53 c'ßTv^)f(x > y)\ •

Subcase 2.2. ix> i2.
As in Subcase 1.2, an estimate like (3.41) still holds only with the difference

that now d satisfies

(3.51) 2ha(l-X)/N <d<2'K

With LN as above, let

(3.52) Dl{iJMf(x,y)=(2'+M^~X)a)     f f(x-s,y)ds.
v V A /       J-2M(l-X)aN->

We then obtain

(3.53)

TßTvf(x, y) < 8 ( Tv{ß)f(x, y) + T9(v)f(x, y) + 53DlT<p(ß)Ax, y) 1 •

Similarly when jx > j2. By (3.46) and (3.53) we obtain that for all p and v

TßTvf(x, y) < Ci I Tp(ß) + Ty^) + AßT9(V) + A^T^^

En

(3-54) + BßT>i>(v) + ByTydi) + ;j CUTÇ(V)
1=0

+ C„ T^ß) + Dß TV(v) + Dv T^ß) J f(x, y)

where Q = C/(l - X).
Since operators Aß, Bß, Cß and Dß axe dominated by a one-dimensional

Hardy-Littlewood maximal operator acting in the x or y directions, we obtain

(3.55) \\Tf\\L2m<~-(l+LN)\\f\\L,m

where Ln is given by (3.48). Or equivalently

(3.56) \\Tf\\L2,V)<Cita(lo%N)\\f\\mVil)

with Cx%a independent of N and /.

This completes the proof of Theorem C .
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The proof of Theorem C contains as consequences L2 versions of results

previously obtained by different methods. See [Str 1, Str 2 and NSW].

Corollary 3.2. Let {wn}^Lx be a lacunary sequence converging to zero. Let

(3.57) j?xf(x) = sup ̂  [\f(y)\dy,
xeR \K\ Jr

where the sup is taken over all rectangles in R2 with its longest side parallel to

(1, w„) for some n . Then

(3.58) \l*iñw)<Cx\\ñw)-

The proof of (3.58) is just a repetition of Case 1 in the proof of Theorem

C . This is also proved in [SI] using the same method.

Corollary 3.3. Let ex, e2, ... , e^ be N uniformly distributed directions in R2
and let

(3.59) J!Nf(x) = sup ri- f \f(y)\dy
x€R \K\ Jr

where R is any rectangle with one side parallel to the one of the e¡ 's. Then

(3.60) II^VllL2(R2)<C(logA)||/||L2(R2).

The proof of the corollary is a slight modification of Case 2 in the proof of

Theorem C.

Remark. It is an easy consequence of Fubini's theorem that Theorem C and its

corollaries still hold in R" as long as we have that the set of directions involved

in the respective maximal operators lie in a fixed two-dimensional subspace of

R".
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