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MODULAR FORMS OF WEIGHT \ DEFINED ON PRODUCTS
OF p-ADIC UPPER HALF-PLANES

ANNE SCHWARTZ

Abstract. We continue Stark's study of modular forms defined on products

of p-adic upper half-planes. Specifically, we restrict to the case of the number

field Q and one finite prime. In this setting we develop a multiplier system for

modular forms of weight A , and provide an example of such a form.

1. Introduction

Historically, the relationship between modular forms and Dirichlet series
defined over the rational numbers has played a crucial role in number theory.

For example, the functional equation of the Riemann zeta function can be

derived using a modular form of weight one-half, a classical theta function.

A more systematic study of the correspondence between modular forms and

Dirichlet series was begun by Hecke in the 1930s. More recently (1967), Weil

introduced an extension of this correspondence to Hilbert modular forms and

Dirichlet series defined over number fields. The Taniyama-Weil conjecture,

which relates elliptic curves and modular forms, extends this correspondence

even further (see [Te] for more information). These advancements of the Hecke

theory have also occupied a critical position in the study of number theory.

Unfortunately, the relationship between modular forms and Dirichlet series

is difficult to extend to number fields, particularly if the class number of the

number field is not equal to one. One response to this difficulty involves the

use of adeles (see [We] for example). Another approach to this problem is to

introduce a ring larger than the ring of integers of the number field. Given a

finite set of odd primes, S, including the infinite prime, we take this larger
ring to be the ring of 5-integers. By defining S appropriately, one can force

the ring of ¿»-integers to have class number one. Stark introduced this method

of attack in [Stl], where he used it to define a new type of modular form of

integral weight. Rhodes continued the study of this approach as it pertains to

integral weight modular forms in his thesis [Rh]. In this paper, we begin to

consider modular forms of half-integral weight for the number field K = Q

and S = {oo, p) by finding the appropriate theta multiplier, and generating an

example of such a form.

2.   Background.    We start by introducing the terminology that will be used

throughout the paper. In particular, an upper half-plane must be constructed,
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as well as an appropriate discrete group, both of which must depend on our set

of primes. We begin by assuming that Q is the number field and that S is a

finite set of primes of Z, including the infinite prime and excluding the prime

p = 2, say S = {oo, px, p2, ... , p„} .

Given the set S, we will need to define two types of numbers that depend on

the primes in S. First, we can define an ¿-integer to be a rational number m/n
such that the only primes dividing n are the finite primes in S. In particular,

if S = {oo, p} , then an ¿-integer is a rational number of the form mpj , where

m and j are in Z. For a general S, an ¿-integer is a number of the form

m-F["=l pj', where the m and j¡ are in Z. We denote the ring of ¿'-integers by

D(S), and the units of D(S), the ¿-units, by D(S)X = {±UPesPJp\Jp e z) ■
In addition to the ¿-integers, we will need to make use of the p-aàic numbers,

denoted by Qp , and the p-adic integers, denoted by Zp . We will take | • \p to

be the valuation on Qp normalized by \p\p = _-.

In order to get a better feel for these different types of numbers, we need to

have a better way of describing the numbers and their properties. In particular,

we need to define some sort of norm and trace. We will use the definitions given

in [Stl].
We begin by giving Stark's definition of an absolute norm or ¿-norm that

can be used for ¿-integers [Stl]. Given a rational number a, we define

N(a) = Ns(a) = a ■   ]J  \a\p.
Pes
p¥°°

This norm does everything a norm should do; N(q) is always a rational number,

N(q) = 0 if and only if a = 0, and a is an ¿-unit if and only if N(a) = ± 1 .
It is also multiplicative. We can extend this norm to a direct product Ylpes ̂ p >

where Qco = R. In particular, if z = (zp)pes is in Y[p€S QP , then we define

N(Z) = Zoo •   ]   [   \zp\p.

Pes
p^oo

Next, we will define an absolute trace, or ¿-trace. Let x — (xp)p€s be a

vector in Ylpes Qp ■ Since all the xp 's are in different p-adic fields, it is not

possible to define tr(x) by simply adding the components of x. Instead we

will combine them (mod 1). In order to accomplish this for a finite prime, p ,

we denote by trp(xp) the fractional part of xp . Therefore xp - trp(xp) is in

Zp . For p = oo , we let tr^^oo) = Xoo , a real number. Now we can define our

¿-trace by

tr(x) = \rs{x) = tToot.Xoo) - Y^ trp(*p)-

Pes

This ¿-trace has several interesting properties. In particular, we will need

that it is additive, and that a "trace formula" exists to partially describe its

behavior.

Lemma 2.1. If a and b are in rLesQp- men

tr(a + b) = tr(fl) + tr(b)    (mod 1 ).
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The "trace formula", which appears in [Stl], addresses the question of

whether or not the trace of an ¿-integer is actually a rational integer, as it

should be.

Lemma 2.2 (the trace formula, preliminary version). Let v be an S-integer.
Then tr(i/) = 0  (modi).

3. The upper half-plane and the discrete group

In this section we want to generalize the Poincaré upper half-plane, bR =

boo = {-Xoo + iy oo\Xoo, y<x ER, and Voo > 0} . We have altered the standard

notation slightly here, to distinguish it from the other upper half-planes with

which we shall deal. There are two generalizations that we will consider. In

each we will replace the real numbers, considered as the completion of Q with

respect to the valuation | • |oo , with Qp » the completion of Q with respect to

the valuation | • \p .
First, given a nonsquare unit Ap in <QP , we define the upper half-plane

f)p = {xP + yPy&p\xp ,yPeQp, and yp ¿ 0}.

Unfortunately, this is not a true "upper" half-plane, but rather a union of upper

and lower half-planes.
To get around this inconsistency we will take advantage of the fact that say-

ing y<x> is greater than zero is equivalent to saying that Vœ is in (Rx)2 =

{r2\r £ R*} . The analogy that we will use in the p-adic case is to require that

ordp(Vp) = 0 (mod 2). While this is not an exact paralleling of the infinite case,

it does provide us with a nice space to use. In particular, we define

<)p = {Xp+yp^/AP\xp ,yP£QP,yP^0 and ordp(yp) s 0 (mod2)}.

Associated to each xp + ypy/A~p' £ h° we assign the notation ordpxp = -/ and

ordp vp = -2j. This notation will be used extensively in §4.

Now we return to our set ¿. We define two direct products of upper half-

planes depending on the primes in ¿ :

rjs = JJ hp    and   $ = hR x   1[[ (,».
Pes Pes

Pt^oo

The next issue to consider is what matrix groups will act on hs and h|. We

bring the ring of ¿-integers back into the picture at this time by introducing

two subgroups of the group G = GL2(D(S))+ , the group of two-by-two matrices

with entries in £>(¿) and positive determinant. We define

Fs = SL2(D(S)) = {A £ G\ det(A) = 1}

and

^ = {(c   2)er.s|c = 0(mod4)},

where c = 0   (mod 4) means that 4 divides c in D(S). Note that any matrix

in r¡y can be written as a product of the following matrices:

(5 T). (i'iT - (o/-)4'
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The group F acts on t)S , and the group F^ acts on r;^ , by linear fractional

transformation. If z = (zoo , zPi, ... , zPn) is in \)S (or \\), and

a   b

A- \c

is in T (or Fj), then we define

'azoo + b   azD, + b azB, + b
A o z

-P\   ^ u u^Pn

czoo + d ' cz„. + d '      ' czDn + d

We will be especially interested in the action of F^ on (j° , and from this

point on we will concern ourselves primarily with this action.

4. Modular forms

Now that the scene has been set, we must specify exactly what is meant by a

modular form in this setting. For the remainder of this paper, unless otherwise

specified, we will assume that we only have one p-adic upper half-plane; that

is, ¿ = {oo, p} .

We begin by considering modular forms of integral weight on fi5 . In [Stl]

Stark defined modular forms of integral weight k on the upper half-plane f)5 ,

as follows.

Definition 4.1. A function /: fo —> C is called a modular form of integer weight

k for the group G on the product upper half-space fo if for z in f)s

f(Aoz) = -N(cz + d)kf(z)   forally4=(*   ¿\ in G.

Stark generates an example of such a form in the same paper; if f(zoo)

is a classical modular form of integral weight k, then the function F(z) =

/((zœ - Xp)¡pj), where z £i)S , \yp\p = p~j, and xp is taken to be in Z[p~x]

(modpj), is a modular form of weight k for G acting on rj^ .

To define modular forms of weight 1/2 we will use instead the upper half-

plane f)|. Then, in trying to generalize the classical definition of modular forms

of weight \, we expect that the transformation rule will involve some sort of

theta multiplier. Recall that the theta multiplier (see [Sh]) for z in f)R and for

A = ("cbd) in r0(4) is defined as

]{A,z) = i

where

e-x(t)(cz + d)x'2   ifc^O,

1 ifc = 0,

£d -a:ifd=\ (mod4)

ifi/ = 3(mod4),

( j) is the Kronecker symbol, and we are taking the principal value of the square

root. This multiplier system will not work in the new setting because the entries

of our matrices are not necessarily integers, but ¿-integers.

In the p-adic setting we seek a transformation rule of the form

f(Aoz) = Xs(A,zp)N(cz + d)x'2f(z),
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where Xs(A, zp) is an eighth root of unity. With this end in mind, we first

define a theta function on h° . This function will ultimately be used to give us

an example of a weight \ formón h^ , as well as the exact multiplier system. To

make this definition, we will need to have a way of combining p-adic numbers

and real numbers in an exponent. We therefore define for z = (z^ , zp) e \f*s :

WM = exp(-^), Wp(yp) = { ¿   ¡J»^ '

eoo(xx) = exp(7t/Xoo),    and   ep(xp) = exv(-nixp),

where, by an abuse of notation, xp is taken to be equal to the fractional part

of xp . We also take the fractional part of xp so that the numerator is even.

We then combine these expressions so that the theta function will have a

term dependent on the "real" part of the variable z, and a term dependent on

the imaginary part of z . Define

W(y) = Wp(yp) x fPooCVoo)   and   e(x) = ep(xp) x <?«, (*«,).

Now, we use the functions defined above to define a theta function.   For

zef)", and u = (Woo , up), v = (vx ,vp)£CxQp, let

(4.1) e(z,(UY\=   Y   W((n + v)2y)e((n + v)2x-2nu-uv).

»«[i]

This function will also be denoted by 6(z, u, v). There are several things to

notice about this definition. First, it is reasonable to call it a theta function, as

it closely resembles a symplectic theta function. The extra term involving xp

can be combined with the term involving Xoo to give a single term with a trace

in the exponent, just as one would expect of a theta function defined over a

number field. In fact, e(n2x) can be written as exp(7t/tr(«2x)).

We are now ready to determine the transformation properties of this theta

function. In particular, we want to know what the relationship is between

Q(Aoz,A(^)) and 0(z, (uv)) for A in the subgroup rg of SL(2, Z[±]) con-

sisting of all matrices (abd) such that b = c = 0 (mod 2). In analogy with the

classical theta function, we hope that there are nice transformation formulas

for the theta function under translation and inversion of the variable z. These

properties are developed in the following theorem of Stark [St2], which gives a

transformation rule similar to that for the classical theta function.

A= Ia     , left,        zel)?, and u, v £ C x

Theorem 4.2. For

c   d ) e   s '        " ^ ,>s ' "'"* "* ' " ^ *" ~ Si/"

8(z, u, v) satisfies the following:

(4.2) e(Aoz,A^=x-mcz + d)]x/2e(z, Q),

where x is an eighth root of unity depending on A and z.

Proof. Every matrix in Fes can be written as a product of the following matrices:

(Î  "o')'   (o  i)     and   (o 2I)
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where íe2[^]. Note that while ( ° ~0X ) is not in the group T|, it is a generator

of a group containing T|. Therefore it is enough to check that (4.2) holds for

these matrices.
We begin this process by considering A = ( ¿ 2/ ). The action of A only

affects x and u. Therefore, W((n + v)2y) is unchanged. The part of the

summand involving x, e((n + v)2x - 2nu - uv), is replaced by

e((n + v)2(x + 2t) - 2n(u + 2tv) - (u + 2tv)v).

But,  with a little algebra and Lemma 2.2,  this expression simplifies to

e((n + v)2x - 2nu - uv).  Thus, Q(A o z, A(^)) = 0(z, (£)).  Also, notice

that for this matrix, N(cz + d) — 1, so with x = 1 > (4.2) holds.
Next, we let

"G IT-
The effect of these actions is that z is replaced by p±2z, and (") by (f," ) or

("¿¡¡). In either case, it is easy to see that 0(A o z, A(uv)) = 0(z, (")). Thus,

since N(cz + d) = 1, (4.2) holds with x = 1 •
Finally, we consider inversion (which is significantly more complicated). We

begin by rewriting 6(z, u, v) using Poisson summation:

e(z'(    ))=   Y!    Í      rV((t + v)2y)e((t + v)2x-2tu-uv-2tn)dt,

where dt — dtoodtp , and the measure is normalized so that /z dtp = 1. With

the change of variable t —> (t - v), we can rewrite the integral as

e(z,(U\j=  Y   í      W(t2y)e(t2x-2(t-v)u-uv-2(t-v)n)dt

ten1,]

= £ e(uv + 2vn) /       W(t2y)e(t2x - 2t(u + «)) dt
ilxO.

fl62Ii] L J**<*>

Now we want to consider the real piece of this integral:

rVx {t*0y00)e*il'~x°° ~2t°° ("°°+"» dtoc.s'R
One can complete the square in the exponent of the integrand, and also use the

fact that IFoo^oo-Voo) is its own Fourier transform to simplify this integral to

/     WqcU2   yoo)e'tí'(°oX°0_2ío0^00+")) dtco  — pXHn + Uoofj-l/Zao)

JR \/-ÍZoc

Next, we must consider the p-adic piece of the integral,

wP(tjyP)ep(tlxp - 2tp(up + n)) dtp.
/JOr

Before we begin, recall the notation that we have been using: zp = xp + ypAp ,

and \yp \p = p2j. Also, since we will be working with this integral for quite a

while before it is simplified, we drop most of the p-adic subscripts.
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Then the change of variable t -* pH enables us to simplify the integral:

Wp(t2y)ep(t2x - 2t(u + «)) dtIJo*

-XfPJ Jz
ep(t2p2Jx - 2tpJ(u + n)) dt.

z„

At this point, we must break into two cases; we will find that the integral

simplifies differently depending on whether \xp\p < \yp\p , or \xp\p > \yp\p .

In the first case, because t2p2jx £ Zp , the integral simplifies to

1   Í . /   ,._*/_.    „uj,      1 Í1   ifpj(u + n)£Zp,
- f ep(-2tpj(u + n))dt =

J%„pJ Jzp pJ I 0   otherwise.

The next step in this case is to take this evaluation of the p-adic integral, and

combine it with the real integral inside a sum over Z[j]. Before we are able to

do this successfully, we must consider -l/zp a little more carefully. We can

write
i       -Xp yP     rr rr

-= -5-t7T + ~î— 2ÏTVAp = r + sJAp,
Zp     xj-y2Ap     x2-yjApV   * V

where \r\p < \s\p and \s\p = p~2>. Therefore we can replace the integral

(l/pJ)Jz ep(-2tpj(u + n))dt  by  (l/pj)Wp((u + n)2s).    Also, notice that

ep((u + n)2r) = 1 whenever wp((u + n)2s) ^ 0.

Regrouping, we now have

»ez[¿]

e(uv + ??>»)      \     /.'"•("+«»)2(-i/^o.)
V- izoo

"2C,\„ ti,,    ,  „\2,x -]Wp{{uP + n)¿s)ep((up + n)¿r)
P

sTï^P>     \ z     \u ))

Finally, since   (\/\/-iz00)\lpj   is equal to an eighth root of unity times

[N(z)]_1/2 , we have shown that (4.2) holds when \xp\p < \yp\p .

Now, we must consider the second case, when \xp \p > \yp \p . We recall the

convention that \xp\p = pl. Again, we look at the p-adic integral,

If
PJ h„

ep(t2p2jx - 2tpj(n + u)) dt.

Expanding (t -\-pl~2i)2 , we see that t2p2jx = (t + p!-2j)2p2jx (mod 1). It is

also true that 2(t + pl~2j)pj(n + u) = 2tpj(n + u) + 2p'~J(n + u). Applying

these relations, as well as the change of variable t -> (t+pl~2J), we rewrite the
integral as follows:

1/P] Jz
ep(t2p2jx - 2tpj(n + u)) dt

= ep(-2p'-j(n + u))-j i ep(t2p2jx - 2tpj(n + u)) dt.
PJ JzD
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The only way that this equality can hold is if ep(-2p'~J(n + u)) is equal to
one, or the integral is equal to zero. However, this integral is not identically

zero. Therefore we need only consider the first possibility. Using the fact that

if -l/zp = r + Sy ip, then \s\p = 2j - 21, we see that ep(-2pl ](n + u)) = 1

if and only if Wp(s(n + u)2) = 1. Returning to the integral, we now have

-t /  ep(t2p2jx - 2tp'(n + u)) dt
P1 Jz„

= en —(n + u)'
x 1/PJ Ji.

-[tpJx
X

[n + u)]2   dt

Next we would like to bring r back into the picture. With this in mind, we

notice that

,2

\x2-y2Ap)        x (.1-(*)2aJ

' + ©' An  +

\l-(lX)2*P

1 1

x (I),

where / is a p-adic integer of order 2/ - Aj. Therefore we can replace

ep(-^(n + u)2) by ep(r(n + u)2), as -£/(« + u)2 £ Zp. Thus, the p-adic

integral has been reduced to

ep(r(n + u)2)— [ ep(-[tpJx
PJ Jz„     \x

(n + u)]2   dt.

We continue by isolating the integral; we rearrange the powers of p , and use

the fact that p'x £ Zp , and pl~J(n + u) £ Zp to get

1 / e, (I[,^ - (, + .)!») d, = i, I ep (^-/) a,

1 u
JTL„

1/P'x¡
nl-V

dt.

1/PJ h„

Notice that we have eliminated the dependence on n .

To simplify the integral even further, we replace the integral by a sum. To

do this, we notice that ep((l/p¡x)t2/pl~2j) depends only on t modulo pl~2j.

Therefore we can replace the integral by a sum over congruences classes, taking

into account that the measure of each congruence class is l/p'~2J. This gives

us

'1/P'x.2\ ^_1      V      e   ({lp'X-^
Pj

a(modp'-2>)

We would also like to eliminate the p-adic presence so that we will be dealing

solely with rational numbers in the exponent. Therefore we approximate the

p-adic element in the exponent; assume that I ¡p'x = —2b (modp/_2j), where

b £ Z. Then ep((l/plx)a2/p'-2J) = e^iba'/p'-2') Now we have simplified the

integral to the simple sum

ph   E   *
a(modp'~2i)

,(2niba2/p'-lj)
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This sum can be reduced using standard Gaussian sum reductions:

J
P1
_L        \^       e(2niba2lp'-2i)
jl-j      Z-i

a(modp'-2-')

, p(l-2j)/2 jf / is even

— | p(i-2j-i)/2   J2   e2niballe   if/is odd

V a(modp)

1    Í 1 if / is even

WX (%)ep   if/is odd

where
1     ifp = l(mod4)

6p

i    if p = 3 (mod 4),

and (|) is the Kronecker symbol.

-{

ymb

Finally, we combine all the pieces to obtain

£
»€Z[¿]

0^,/^ =   Y,   -T=\=eni(n+u,x)1(-'ilZca)e{uv + 2vn)

1    Í 1 if / is even

x *,(r(„ + «,) )^(^ + ^)p772\(^p   if/isodd

í 1 if / is even 1   ^

\(b-)£p     if/iS0dd   J     EV-iZooP'/2
e*i(«+«oo)2(-l/«o

»ez[i]

x e>(r(rt + «p)2)W/p(5'(« + up)2)e(uv + 2vn)

1   rei± '-
A[N(z)]'/2     V z  ' V »

This completes the proof.   D

Now that we have established the existence of some sort of "theta multi-

plier", we would like to be able to write it down explicitly. Once this has been
accomplished, we will be able to define modular forms in this p-adic setting.

We will also have an example of such a form, so it will not be a totally vacuous
definition.

As a preliminary step, we must define a slightly different theta function, a

" 2ni " version. This is necessary so that we can have the group F^, rather than

T^ , acting on rj° . The transition is quite straightforward; we will consider, for

is >

û(z) = e(2z, '

zehg

o>,
a   2ft-Then the action of ( acbd ) £ F^ on z is equivalent to the action of ( ca,2 ¿ ) e r|

on 2z.

It is at this point that the impact of the p-adic variable becomes most appar-

ent, and the theory begins to diverge from the classical theory. As we noticed

in the proof of the previous theorem, the relative 'sizes' of xp and yp are very

important. This will be quite noticable in the development of the multiplier sys-

tem, as presented in the proof of the theorem below. First, though, we require

a technical lemma concerning quadratic Gauss sums.
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Lemma 4.3. For c, d £ Z, c ^ 0, and (c, d) = 1, let

Gc(d)= y elni,ldlc-

/(mode)

Then

(4.3) Gc(-d) = V2(icTx'2\c\(^)ed,

where we take the principal value of the square root.

Proof. First, we notice that Gc(d) is periodic in d with period c. Therefore,

without loss of generality, we can assume that d is an odd prime.

Now we apply the reciprocity formula for quadratic Gauss sums [He, p. 209,

Theorem 161] to get

(4.4) Gc(-d) = V2(ic-xd)-x'2Gd(c/4).

Gd(c/4) can be evaluated since we are assuming d is an odd prime. In partic-

ular, from Lang [La], we obtain

(4.5) Gd(c/4) = ed l^pj Vd.

Combining (4.4) and (4.5), and simplifying completes the proof.   G

Theorem 4.4. For A = (ac b) £ F°s and z £ \j°s, t)(z) satisfies

(4.6) Û(A o z) = Xs(A, zp)[N(cz + d)]x'2û(z).

The multiplier Xs(A, zp) is defined as follows: If c = 0, then Xs(A, zp) - 1.
Ifc^O.let

(J — c . p-min{ordf,(c),ordp(i/p2j)}

and
d' = d • p- mM°rMc),°TMdp21)}

and let w £ Z be such that p2j~'w = p2jxp  (mod 1). Then
(\)If2j>l, then

Xs(A,Zp) = ed,x^y

(2) If I > 2j, let c' — Cop', where cq £ Z, and (en, p) = 1. Then there are

three possibilities:
(i) If I -2j > t>0, so t = 0, or t = ordp(c) - ordp(d) - 2j, then

Xs(A,Zp) = e-x_     (     Cop!~:
P'~'d' \pi-td' + WCo)'

(ii) If I - 2j < t, so t = ordp(c) - ordp(d) - 2j, then

Xs(A, Zp) = e-2xJd, [p2jd,+p2j-iwc,) ■

(iii) If1-2} = t, let r - ordp(p2Jd' + wc0). There are two possibilities: if
r < I - 2j, then

J-2j-r
IA \-    "I    ( C0P      j^ \

Xs{A, zp) - eprd, yp-r{p2jd, + WCo) )
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and if r> I -2j, then

Xs(A , Zp) = B-Xd, {p2j-,{p2jd, + WCo)) ■

Remark. In the case that xp = 0, ordp(xp) is undefined. Therefore we take /

to be -oo , so that 2j > I always. We are then in the first case of the theorem,

which does not depend on /.

Proof. If c = 0, then Ao z is a translation, so û(z) is unchanged.

If c / 0, we begin by assuming that 2j > I. Then we can simplify the theta

function

û(z)=  Y e-2nn2y°°Wp(n2yp)e2nmlx~e-2ninlx'

«6Z[Jip'

e-2%nLP1'yoae2nin2P2'>

nel

Now fix Zp , and let ^ = -d'¡c'. Replacing Xoo in the summation, we see

that

#(z) _ y e-2nn2p2>yoa e-2nin2p2'd'/c'

nez

-2ni(h+kc'fp2Jd'/c'_ y^     V^     e-2n(h+kc'jlPl>yooe

keZh(moác')

= E  E
keZh{modc')

e-2K(h+kc')2P2>yooe-2nih2p2>d'lc'

2nih2P2'd'/c' V^    -2n(h/c'+k)2(c')2P2'y     e-2nih2p2>d'lc' V-

/j(modc') kei

v.

=   Y   e-2*ihVJd'/c'e(2(c>)2p2jyooi,0,£),

A(modc') ^ '

where 8(z, u,v) is the symplectic theta function. Then we apply the inversion

formula for the symplectic theta function (see [Stl], for example). This gives

(4.7) û(z) = (2(c')2p2Jyoo)-x'2   Y   e-*'**"/'ö (2{Jp2Jyoo . ^. O) .
/i(modc')

But we are not interested in &(z) by itself, but rather how it relates to

û(A o z). We showed in the previous theorem that the relationship is of the

form û(Aoz) = Xs(A, zp)[N(cz+d)]x/2û(z), where Xs(A, zp) is an eighth root

of unity. Let us now use this last relationship, for the Xoo that we have chosen,

and the fixed zp , as well as equation (4.7), to determine Xs(A, zp). Also, note

that A o Zoo = i/c2yoo + a/c (using the fact that d'/c' = d/c). Substituting into
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the transformation, we see that

û((^— + -,AoZp
\\c2y oo    c

= Xs(A, zp)[N(cz + d)]x/2(2(c')2p2Jyooyxf2

\Ä> eW)2P2^ o

1/2

= Xs(A, zp) [c (-£■ + />«,) + d}     \czp + d\p/2(2(c')2p2Jyoo)-x'2

V-        -2nih2p2^d(_i_     dl    q\-2nih2p2>dVd(_I_    dl
^   € ° l2(c')2P2^0

Also, in the spirit of simplification, notice that (c(-d'/c' + ¿Voo) + d) = ciy^ .

We would now like to eliminate the dependence on y^ . In order to do this

we will take the limit as >>oo —» 0+ of both sides of the last equality. Carrying

this step out, we see that both of the theta functions approach one, thus reducing

our equality to

(4.8)      l=Xs(A,Zp)\cZp + d\lp/2(ic)x'2(2(c')2p2J)-x'2   Y   *-2*ttW/e'.

/i(modc')

The next order of business is to evaluate the summation. This is quite simple

in this case because we are dealing with a quadratic Gauss sum. Applying

Lemma 4.3 to our sum, we get

Y e-^^ = v2^)-yy\(^)epVd,
/¡(mode') Ky '

It is also necessary to evaluate the p-adic valuation \czp + d\p . Because

2j > I, ordp(czp + d) = min{ordp(i/), ordp(c) - 2j} . Therefore \czp + d\p =
p- min{0Tdp{d) ,ordp{c)-2j}

As a final step we make use of these evaluations to condense (4.8). Simpli-

fying as we go along, we see that

l=Xs(A,zp)(jj^)ed,,

or, solving for Xs(A, zp),

Xs(A,zp) = edx^y

This proves the first part of the theorem. It also helps to establish the credibility
of #(z) as a potential modular form of weight \ because it so closely resembles

the classical theta multiplier.

Now the real work begins. We assume that / > 2j and see what happens. As

in the previous case, we will begin by rewriting û(z). We will see immediately

that this case will be more complicated due to the presence of the xp . However,

the path we take will follow that of the previous case; we start by obtaining a

sum over the rational integers, and then try to extract a Gauss sum.
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Using the definition of #(z) and Wp(yp) we can easily accomplish the first

task:
ß(z\ — Sp e-2nn2Pl'yac,e2nin2P2>xa:,e-2nin2P2'xp

nez

Next we begin the process of finding a Gauss sum and a symplectic theta

function in the above sum. As before, this will be accomplished by replacing

Zoo with a specific value, -d'¡c' + iy^ , and breaking our sum up into a sum

over congruence classes:

#(z) = V^ e-2n0i+kc'Pl-2>)2P2iyao

kez
h (mod c'p'-2')

x e-2ni(h+kc'p'-2>)2P2'd'lc'e-2ni(h+kc'p''2j)2p2'xp

_ V^ e-2Kih2p2id'lc'e-2nih2P2'xpTT^ ^^h+kc'p'-^fp^yoo

h(moác'p'-2i) kez

V^ e-2nih2p2'{d'lc'+xp) y^ e-2n((h/c'p'-2J)+k)2(c'p'-2')2p2'yoo

A(modc'p'-2j) kez

=       Y      e-^W+^O Uc'p'-^VJy^i, 0, y^j) .
A(modc'p'-2J) ^ '

At this point we invert the symplectic theta function. This yields

û(z) =       Y      e-2nih2p2j^'/c'+x^(2(c'p'-2J)2p2jy00)-x'2

M m A(modc'p'-2>)

X ° \2(c>pi-2J)2p2iyoo ' "ry^ ' °J •

Now we need to return to the big picture; we must fit this last relationship into

the transformation formula. To do this, we combine (4.2) with (4.9), with x^o

specified as always. We then consider what happens in the limit as Voo -* 0+.

The net result is that

1 = ¿504, zp)(ic)x'2\czp + d\lJ2[V2\c'\p'-J]-x

(4.10) x V^ e-2Kih2P2J{d'/c'+xp)_

ft(modp'-2>c')

The nice thing about this last equality is that it contains a quadratic Gauss

sum. However, to evaluate the sum, we must worry about the numerator and

the denominator in the exponent being relatively prime. Therefore we must

make some simplifications in the summation. In particular, we would like to

eliminate the p-adic references. We would also like to deal with integers when-

ever possible, so we want to extract any powers of p. Thus, we set w to be

an integer such that p2j~lw = p2jxp (mod 1). Also, we write c' - cop', where

Co e Z, t > 0, and (p, en) = 1. These definitions allow us to rewrite (4.10) as

1 = Xs(A, Zp)(ic)x'2\cZp + d\l/2[V2\c'\p'-J]-x

(4.11) x y* e~2Mih2(pl~,d'+wc0)/c0p'-2\

A(modp'-2V)
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The evaluation of the sum above will vary depending on the relationship

between cnp'-2-' and pl~'d' + wcq . This is what gives us the many different

flavors of theta multiplier. Considering this relationship as a function of t, we

will break our study into three separate cases. Each of these cases will be stated

in two different ways. In particular, we have

(i) / - 2/ > t > 0 «• ordp(pl-'d') > 0,

(ii) / - 2/ < t •» ordp(p!-'d') < 0,
(iii) l-2j = t& ordp(p'-td') = 0.
In case (i) (cop'~2j\ p'~ld' + Cqw) =1 so we can evaluate the summation

in (4.11) immediately as the product of a quadratic Gauss sum and p'. This,

combined with Lemma 4.3, yields the following equality:

1 =xs(A, ZpXicY^czp + d^Vllc'lp'-J)-1

xp'v^V^r'W^V^ (p^Zco) •

This last equation is very easy to simplify. Using the relationships between

c, c', and Co, as well as the actual value of the p-adic valuation that occurs,

we can eliminate all of the powers of the prime that occur. In particular, c' =
C .p- min{ord„(c) ,orip{d)+2j} _ C(jpt    AlsQ; usjng the conditionS that  / - 2j > t > 0 ,

and / > 2j, we determine that \czp+d\p2 = p-(°rdi>(cW)/2 These relationships,

along with a little algebra, give us the desired result, that

Thus we have established the first part of the second case of the theorem.

Now we pursue the second part; we assume that / - 2j < t. In this case we

can rewrite

p'-'d' + wc0 = p'-'-2j(p2jd' +p'+2j-'wco).

The reason for this is that now p2'd' + pt+2j~lwco is an integer, and is also

relatively prime to p . This enables us to evaluate the Gauss sum. In particular,

we are looking at

1 =Xs(A, zc)(Jc),l2lczp+d^<¿1XV2^c'\P'-']-•

»    E e -2nih2(p2'd'+p'+2>-lwc0)lp'c0

A(modp'-2;+'c0)

= xs(a , zp)(ic)x'2\czp+<2[x/2>y-;]-y-2;

x      y^     e-2Ttih2(P2>d'+P2'-lwc')lc'

/¡(mode')

We now have to simplify a Gauss sum for which the numerator and denominator

in the exponent are relatively prime. Therefore we apply Lemma 4.3. This step

and some algebra leave us with

i = xs(a, zp)(ic)xi2\czp+d\y2^[i(crxrx'\^ (p2Jd, +cp2j-lwcl)-

To simplify the right side of this equality, we make use of the conditions that

are unique to this case; because 0 < / = ordp(c) - ordp(d) - 2j and I -2j < t,
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we see that \czp + d\p = p-°ld^d). It is also true that d = c0p' = Cp~ordp^-2'.

Thus, we arrive at the desired relation, namely that

Xs(A, z„) = e;2)d, {p2Jd,+p2j-iwc,) ■

Now we have arrived at the last case. This time, we assume that l-2j - t >

0. This allows us to rewrite the equality given in (4.11) as follows:

l=Xs(A, zp)(ic)x'2\czp + d\l/2[^\c'\p>-J]-x

x Y^ e-2Kih2(P2'd'+wc0)lP'cü

/¡(mod p'-^c')

Notice that p\ p2id'wco ■ Therefore, it is possible that p | (p2jd' + wco). In

any case, we can write p2jd' + wco = Prm, where r is a nonnegative integer,

and m is an integer relatively prime to p. This substitution enables us to

consider

\=Xs(A, Zp)(ic)xl2\czp + d\lpl2[V2\c'\pl-i]-x

x V^ e-2nih2P'm/P'~2jc0

h(modP'~2'c')

Fortunately, (en, m) = 1, so we will just need to worry about powers of p

when we try to simplify the summation. However, these powers of p prove to

be quite troublesome; they may be in either the numerator or denominator of

the exponent, leaving us with yet another pair of cases to consider. These cases
are determined by the relative sizes of r and I -2j .

We begin by assuming that r < I -2j. Then we are looking at

1 = Xs(A, zp)(ic)x'2\czp + d\lp/2[y/2\c'\pl-J]-x

x y^ e-2nih2m/P'-2'-'c0

h(moáP'-2'c')

= Xs(A, zp)(ic)x'2\czp + <2[v/2|c'|p/-;ry+'

x Y^ e-2nih2mlP>~2>-'ca_

/¡(modp'-2J-rCo)

We now have a Gauss sum that we can simplify. We again use Lemma 4.3 to

deal with the Gauss sum, transforming this last equality into

1 =Xs(A, zp)(/c)'/2|czp + i/|y2^p^(/Co-')-'/2p-^/2+'/2em i^p±) -

The next step is to use the conditions that we have been given to relate all of

the different c 's, and also to come up with a value for the valuation. First, we

notice that d = c0p' = cp~ 0TMd)-2J. Then we find that \czp+d\p = p~ 0Td^d)-r.

This leaves us with

Xs(A, Zp) = e~x
m

P1-
p-'(p2Jd'+wc0) \p-r(p2jdi + WCq}

c0p'-2j~r

P'd' \p-r(p2Jd' + wco)
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In the case that r > I - 2j things work out slightly differently because all

the powers of p are in the numerator of the exponent. In particular, we must

somehow transform

\=Xs(A, zp)(ic)x/2\czp + d\l/2[V2\c'\p'-Jrx

x y^ e-2nih2mP'-,+2'lc0

/¡(modp'-2V)

= Xs(A,zp)(ic)x'2\czp + d\lp/2[V2\c'\pl-J]-xp'-2J+t

x      y^     e-2nih2mP'-'+2J/c0

/¡(mod Co)

into a somewhat normal looking theta multiplier.

First we use our standard tools to evaluate the summation. This yields

l=Xs(A,zp)(ic)xl2\czp + d\l'2^p'-^(ic^x)-x%r-,+Vm [~^-) ■

Then we notice that d = c0p' = Cp-°rd^-2i, and \czp + d\p = p-™¿p(c)+V .

Putting this all together, we see that

l=Xs(A, zp)epr-l+Vm [pr_MJm)

= Xs(A, zp)ep,-l+2jp-,[p2jd,+WCo) [p2j-i{p2?d, + WCo))

= Xs{A'Zp)e^ip2J~'(pZ + wc0))-

Rearranging this last equality gives us the final statement of the theorem:

Xs{A>Zp) = eÚ'(PV-i(pZ + wco))-   °

We will now take the multiplier constructed in the proof of Theorem 4.4,

and use it to define a modular form of weight 5 on rj^ for S = {00, p}.

Definition 4.5. A function /: h?, —> C is called a modular form of weight \ on

rj° if f(z) satisfies

f(A o z) = Xs(A, zp)N(cz + d)x'2f(z),

for zGf)0,and A = (ac bd) e T* .

In the context of proving Theorem 4.4, we have established that there is a

modular form of the type that we are looking for.

Theorem 4.6. The function i?(z) is a modular form of weight 5 defined on rj^..

It remains to extend the definition of a modular form used in this paper

from S = {00, p} to an arbitrarily large set of primes. It would also be nice
to generate more examples in order to get a better picture of the space of such
forms. Finally, an analog of Hecke theory for these modular forms is waiting

to be developed.
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