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THE FINITE PART OF SINGULAR INTEGRALS
IN SEVERAL COMPLEX VARIABLES

WANG XIAOQIN

ABSTRACT. A divergent integral can sometimes be handled by assigning to it as
its value the finite part in the sense of Hadamard. This is done by expanding
the integral over the complement of a symmetric neighborhood of a singularity
in powers of the radius, and throwing away the negative powers. In this paper
the finite part of a singular integral of Cauchy type is defined, and this is then
used to describe the boundary behavior of derivatives of a Cauchy-type integral.
The finite part of a singular integral of Bochner-Martinelli type is studied, and
an extension of the Plemelj jump formulas is shown to hold.

1. INTRODUCTION
We know that an integral of the type
11 b flx)dx
( - ) B (b__x)k+1/2
is divergent if kK > 1/2. For k an integer > 1, Hadamard [1952] derived an

expression which he called the finite part of (1.1), and which, as he showed,
possesses many important properties. His definition is

FP/b( f(x)dx

b — x)k+l/2

_ lim /”‘8 fogdx 5% (Z1//)
T e0 | J, (b - x)k+12 = gk —j—1/2)ek=i=1/2
Fox [1957] considered a divergent integral

b
(1.3) / e S(x)dx

X — u)k+l >

(1.2)

where a < u < b and k is a nonnegative integer. His definition is
(1.4)

u—e b
FP/ (x(x)dx — lim [/a (f(x)dx +/u M__Hk(u,t:)

_ u)k+l £—0 X — u)k+1 +e (x —_ u)k+l
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Here Hi(u,e)=0 if k=0, and
f ( —(=D*~ ’>
K, e) Z ! k—j)ek-i)°

if k is a positive integer. For a given function f the finite part is obtained
here by subtracting negative powers, if any, of ¢ in an expansion of the integral
over the interval [a, b] minus the symmetric interval [u—¢,u+¢]. If u=a
or u = b, the finite part can also be defined, but it is somewhat less stable then
for integer k.

So we shall call the right-hand side of (1.2) or (1.4) the finite part of the
integral (1.1), (1.3) respectively; in the special case k = 0 in (1.4), when there
are no negative powers of ¢, it is also known as the principal value, or Cauchy
principal value. We shall use the notation FP [ and PV [, respectively. See
Hoérmander [1983:70] for a general definition.

Similarly we can define the finite part of a singular integral

j{(f(z)dz weC.
C

z — u)k+l ?

where C is a closed curve. We can get formulas corresponding to the Plemelj
jump formulas.

This paper is aimed at studying singular integrals in C”. In §2 we define the
finite part of a singular integral

£)
/ Tt

and obtain the corresponding Plemelj jump formulas which describe the bound-
ary behavior of the higher derivatives of a Cauchy-type integral. In §3 we define
the finite part of the singular integral of Bochner-Martinelli type

Zp— W
/Qf(z)|zk_—wl,§K2n—1(2,’w), we, k=1,...,n,

and obtain similar theorems.

This paper is finished under the guidance of my advisors, Professor Christer
Kiselman and Professor Zhong Tongde. Professor L. A. Aizenberg read this
paper carefully and gave me suggestions. I am very grateful for his help.

2. FINITE PART OF SINGULAR INTEGRALS ON SPHERES

In several complex variables we do not have a kernel with all the good prop-
erties of the Cauchy kernel—both domain invariant and holomorphy. However,
for a given domain there may exist good kernels, and in the case of the ball we
can use |

.
—(1-28)"ds(@).
Here ¢ = (&), ..., &), z=(z1,..., z,) are points in C", and we use matrix
multiplication, the prime indicating the transpose of a matrix so that zE’ =
S ziE; ; and |z| = VzZ' . We define the kernel for ¢ on the unit sphere and z
in the closed unit ball. We shall use the notations

B={zeC"; zZ < 1}, S={zeC"; zZ =1}
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for the open unit ball and its boundary, the unit sphere, respectively. Moreover
ds(&) denotes the area element of the unit sphere whose area is

/ ds(&) = = wpn_y = 22
S

I'(n) "
Suppose f is an integrable function on S. Then
2 1 [ f©)dse)
WJs (1-z&E)

exists for all z € B, because in this case the integrand has no singularity at all.
For z € S the 1ntegral exists for a particular point z if |f(&)| < C|é - z|" for

some « > 0. Indeed, without losing generality we may take z = (1,0, ...,0)
and assume that supp f C {£ € S; & #0}. Then
& _ /@)
[1— zfll” 1611 = 1) + &2 + -+ [&al2]"
. /@)l
=&+ 16+ + (&2
so if we introduce local coordinates (y, w)=(|1-&|,&,...,&) e RxC"!

on the unit sphere near (1,0, ..., 0), the singularity of f(&)/(1- zE’)" is not
worse than that of the locally integrable function (y + |w|?)~"+e/2

Generally for every z € S and a Holder-continuous function f, we can
define the Cauchy principal value of (2.1) as

1 [ f@é) 1 f(&)
PV — d =li —=d ,
W Js (1 —vé ) s@) El—r}?)w Sn{j1-vg |>e} (1 —vé) ()

and we have a Plemelj jump formula, as shown in Lemmas 2.1 and 2.2; see
Gong [1982].

Lemma 2.1. Suppose f is a Hélder-continuous function on S, i.e., that there
exist numbers a with 0 < a <1 and C such that for any £, n € S we have
|f(&) = f(n)| < C|&E —n|*. Then the Cauchy principal value exists and we have
that

PV1 f(
@ Js (1 —vé »

Lemma 2.2 (Plemelj jump formula). Suppose f is a Holder-continuous function
on the unit sphere S. If z tends to v from the interior and satisfies

|Z—'U| _d(Z,'U)

minyes|u—z| ~ d(z,S)

f(&) - f(v)
w/ 1-v¢n ds(&) + f( ves.

<M

for some constant M , then we have

SO gy —pv L [ SO

lim — ds(§)+%f(v), veS.

=0 @ Js (1 -z ) @ Js (1 -vE )

Lemma 2.3. Suppose [ is a continuous function on some neighborhood of the
unit sphere S and k times continuously differentiable, with support contained
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in the ball B(p, 1/2) of center p and radius 1/2, i.e, B(p,1/2) = {z €
C";|z—p| < 1/2}, where p=(1,0,...,0). Let L be the operator defined by

1 8f of
(L)) = Z él(é) éxaél()+f(€),

Uf=LL"~'f), LAf)=f.

Then (1) (Lf)(&) is a continuous function on a neighborhood of S andis (k—1)
times continuously differentiable, with supp Lf C B(p, 1/2).

(2) Suppose that all kth partial derivatives of f are Hélder continuous. Then
all (k — 1)th partial derivatives of Lf are Hélder continuous.

(3) (Partial integration). Let k be a positive integer and let 0 < B < 1. For
any z€ B, z, #0, and any surface 2C S, z ¢ T, we have

[—L8 g
T (1- 22’)"‘5”‘
_ 1 LNQ
(n—ﬂ+k—1)(n—ﬂ+k—2)“'('l—ﬂ)21/(l—zzl) ©
_ Z n ﬂ k,j (Ljf)(ﬁ)d€2déndzzd€n

T Jer (- 22,

b

where A, g i ; denotes the constant

1
(22) An,ﬂ,k,jz (n—ﬂ+k—1)"'(n_ﬂ+k_1_j)2n_lin.

In particular, when z € B, z, # 0, we can take X =S and obtain

f(&)
/s (1 — & yn—B+k ast)

= ! (LXf)(&)
C(n-B+k- 1)(n—ﬂ+k—2)...(n_ﬂ)le</S(l_zz,)n_ﬂ ds(&).

Proof. Since B(p, %) c{zeC"; z; #0}, Lf is well defined on some neigh-
borhood of S and (1) and (2) follow from the definition of the operator L.
We shall prove (3).

On the unit sphere S we have

E\dE + -+ &, dEy + EAE + -+ E,dE, =0.

On the subset of S where &, # 0 we have, if j > 2,

_é_ldzj mOd(dél,... ,dén,dzz, ey [dEj],”- ’dzn)'

@ = -7

Here and in the sequel the notation [dfj] means that dzj shall be omitted.
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The area element can be expressed as follows:

d5(8) = s S (-1 'E ey -+ d&udE, - [dE) - dE,
j=1

= 2n+lncl Zéjzjdél déndzz .. dEn
j=1

1 _ _
- mdﬁl o dEydE, - dE, .

Because of supp f € B(p, 1/2) and
dél = —éldzl/zl mOd(dé2’ cee s dén> dEZa cee s dzn),

we get for any positive number m :
f($) f(©)
—5—ds(¢) = e,
/2 (1- zE )m+1 s) /Z‘nB(p,]/2) (1-z¢ )m+l s(e)

1 f(©)

= — =2 d¢---dEdE, - dE,
2n—1jn /).'.ﬁB(p,l/Z) 61(1 _ Zzl)m"'l él ‘f déz dé
a’[ 1_,m}d62---d§ndzz'“dzn
f

_ 1 J& [ &
2n=1inm Jsnppoap2) 71¢) (1-2¢)

- 1 ©)) e, ... de,dE, - dE
T an-ljnmz, /ZnB(p,l/Z) (1 ZEI)'” d ( 21 >d52 d&nd&,---dé,

S - L () se,...q¢,d2, . dF
2n=linmz, /a(an(p,l/z ) (1 -z ym (E )déz AondCy e
_ 1 0f o 501

- . {élaél@) 9 &)+ 1ee )}

Mzy Jsngp,1/2) (1 — 2& )mE, 351

. 2n+in§,d6‘ - dE,dE, - dE,

- m/(m 12) (1 - 1z¢ ym (ff(.é)> Ao dldly: -,
= 55 Jog -2

1 1 f€) 3 i3
- 7 1 dendd, - d "
2n-linmz, /(an(p 1/2) (1 = z&)m ( 3 ) e é

1 (Lf)(é) ds(é)

le z(l_zé)m

1 L (1) :
. /az( _ ( )dé -de,dE, - dE, .

B 2n=linmz, 1—zE)m él

Now (3) follows by iteration.
In view of Lemma 2.3 it is reasonable to give the following definition.
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Definition 2.4. For any function f which is k —1 times continuously differen-
tiable on some neighborhood of S, k£ > 1, and any number # with 0< < 1
we define the finite part of a singular integral

1 1)
AT ST
1 f(&)
_gg‘l’{ /Sn{u Eiizey (1 =& )npek @)

L § L f(&)d&, - d&ndE, - dE,
+ — Ay ; > 22 _ ,
w j_X_:O Bk, j /Sn{|1—51|=8} (1 = &)n—B+k—j-1§, }

provided the limit exists. Here A, 4 i ; are the constants defined by (2.2).

Theorem 2.5. (1) Suppose f is a continuous function on some neighborhood
of S and is continuously differentiable up to order k with Hélder-continuous
derivatives. Then the finite part in Definition 2.4 exists.

(2) There exist constants cj, j=0,..., k-1, such that

k-1 , a _

) (LI(f)(©)dE - dEndE, - dE,
A, ; g ey
Bk /Sn{ll & l=¢} (1 =&, )n—B+k=j-1E,

k—1

_ Cj B
- ; 5 0P,

provided that f is 2k times differentiable. Therefore the finite part of a singular
integral is obtained by subtracting the negative powers of € from an expansion of
the integral over the complement of a symmetric neighborhood of the singularity
inthecase 0 < B < 1.

Proof. (1) Take an open covering (Uj)i<j<m of S such that p € U; and
U, C B(p, 1/2), and a partition of unit (f;)i<j<m subordinated to (U;)i<j<m -
Then we have 377, fj = 1, supp(fif) C Ui, and supp(f;f) C C"\B(p, 9),
where 2 < j < m and o is a positive number smaller than 1/2.

Let ' =Y., fif; then supp /' C C"\B(p, g). If ¢ is small enough, we

have that

[ Ei hif
— = — &=t g

Jotn T 0= [ G @

1) ) JAGI)
— 27 d B A ILA L |
/Sn{u-E.m} (1 =¢&)n-B+k @)+ /sn{|1—5.|ze} (1 =& )n—b+k $)

(e RO,
/S(I—EI)”‘”*" s(é”/Sn{n—Ellze} (1= &)npek o

=L+
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[
h= [ g O,

where

and

——== 2 _ds(&).
n{1=g,1>e} (1 — &, )n—B+k

Here I, is independent of ¢ so lim/; exists.

Since f,f satisfies the condition in Lemma 2.3 we have

he | AOSE)

k—1 . _ _
(L (NSf)&)dS,---dEndE, - --dE,
L=-S5S"4, 51 ; L nde
2 g%'wwémm&m (1 =8Pk Tg,
1 (LX(A)©)
* (n=B+k-1)---(n—B+1)(n-p) /Sn{||-2,|ze} (1-&)n# ).
If ¢ is small enough, we have SN {|1 —¢,| <&} C B(p, o). Therefore we see
that
Alsogi-zicey = 1>
and . '
LD lsngn=z, 1<y = L sagn-zi<er -
Now
3 1 (LKA L))
b= (n=B+k-1)--(n—B+1)(n-p) /Sn{|I—E,|Ze} (1—& )8 )
k-1 . _ _
(L]f)(‘f)déZ cot déndéz e d‘fn
- An j - 1z s
g%’mwémm&m (1= &) prk=inIg,
$O

o Js (1 — & )n—B+k

im {1 f(&)
=l —_ _J&)
81—1?(1]{0) Ln{ll_zllze} (] —él)n—ﬂ dS(f)

1 LK) E)dEs - - dEdE, - - dE,,
NEL YR (LAF)(©)des - dndE,y 5}
j=0 5

n{11-Z,|=2} (1 =& )n—Brk—i=IE,

__l_ ) _1- 1 W
_wllﬂll%w(n—,bwk—1)---(n—/3)/sn{11—2,|ze} (1=&)m* “

Because all partial derivatives of f are Holder continuous, all partial deriva-
tives of f,f are Holder continuous. According to Lemma 2.3, LK(f,f) is
Holder continuous and so the above limit exists, which is a Cauchy principal in
the case f = 0; a convergent integral incase 0 < f < 1.

(2) Let S, =Sn{|1 -¢&,|=¢}. Let

g(&)

©-

d€2~~d€ndzz~--d3,,,

7€) = /S (1 =&)m=rpr-1g,
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where g is any 2j times differentiable function. We shall prove that there
exists a function ¢ which is real analytic at the point ¢ = 0 such that

o0 = 20 4 0e?).

Expand g({)/fl around the point p as follows
BO _ S gk(1-E)(1 - &)EK + 0 - p),

S1 s+1+|K|<2j

where K = (0,0, k, k3, ..., kn, ky) and &K = éé‘zfgf---é,’f’f’;;. Since for all
& €S, we have B i
|€—p|> =2Re(1 - &) <21 =&,

we see that
_ K- e e, dE
/S, |1 =& |n—p+i-! d&y---dGdS, - dg,
SC/ dfz...df_,,dﬁz...dén chﬂ.
e |1 —él|n_ﬂ—l

Let 1 —&, =¢e’® on S,. In terms of the new coordinates (8, ¢&,, ..., &), Se
has the following representation

Se={(1—ee7?,&,...,&) € C"; [E2 = g + e — )},

where we write & for the vector (&, ..., &); [E2 = |&2 + - + |G|, We
now sum over all s, ¢ and K suchthat 0<s<j, —-n—-2j<t<-n+j,
|K| < 2j; this gives

(&) = _& (=B gg, .. de, dE, .. dE B
01 = X ok i [ orosa, O G dendEy -y + OE)
- £ =B (128K JE, . . . dEndEs - - - dE 8
=2 TR f v O € A dndEy e dEy 1 O
s G — _
=ZC"K_ef-ﬂ 2 <eid vemio el ”)o(g‘/zc)xdﬁdéz-~-d€nd§2-~-d§,,+O(eﬂ)
<elvte—10—¢
A * =B g V26K GEs .. dErdE, - - dE. + O(eP
=Y Cuk 53 e o (@P0RdE dEndE, - dE, + 0.
& — arccos & |E|2<eif +e—16 —¢

When |K| is an odd number we have
/. (120K dE, - dendE, - dE, = 0
|E|2<eib +e=i0—¢

because of the symmetry of the ball. When |K| is an even integer, say 2k, we
have

arccose _ _
/ elt=-B8 49 8k¢2kd§2 - dE,dE,- - dE,

— arccos £ |€]2<eib+e—i0—¢

arccose ) )
— C8k/ et(l—ﬂ)G(ete + e—10 _ 8)n—l+kd0 ,

— arccos &

which is a real-analytic function of ¢.
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Theorem 2.6. Let the hypotheses be the same as those of Theorem 2.5. The
Plemelj jump formulas hold, i.e., if z tends to p from the interior and satisfies
d(z,p)/d(z,S) < M, where M is a constant, then we have

(i)

LSO g

lim —
z=p W Jg (1 - Zf )n+k
_wpl f(&) 1 1 k
—pr/s(l — &)k ds(e)+ 2(n+k-1)---(n+ l)n(L 1))
(ii) Let K = (ky,...,ky) and k = ky +--- + ky,, where ki, ..., k, are
nonnegative integers. Then
k
im— 0L [ SO g

=0 9709zl 0 Js (12 28)n

_ n(n;)-k FP/ é[l~— én )f ) S(f)+%Lk[(-Z—Ilq "'fﬁ")f(z)]lnp.
In particular, if K # (k,,0, ..., 0), we have

LM@Y -2z f(2))=p = 0,
and

lim ds(&

z—=p 62"‘ 825 w/ (1- zg
@ s (1=¢&))n+k

Proof. (i) Let f', f; be the same as in the proof of Theorem 2.5. Then,

according to Lemma 2.3, we have

| (—1—_—fzi§,))7+kds«:)= S(l_f;%ds(én S(lfl_g,f));k.ds@
s(l—_flz%))mds +n(n+1)_,,(l,,+k_1)zk/(1_(fz‘éf)) ds ).
According to the proof of Theorem 2.5 we know that
tim & [ e €= 4 [ 40
+§i_‘,‘,‘,n(n+1) (1n+k—1 w/LI; flzg)() )ds(é)
"3 S(lf/c))”+"ds(é)+n(n+1)---(ln+k—l)wpvfs%ds(f)
¥ In(n - 1)~~1~(n+k - I)Lk(flf)(p)
- éFP/gU__fé“éI;,:ﬁds(é)+ IO 1)‘.1‘(n+k_ FL).
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(ii) Since we have the following relation:

a* (&)

azllcl aznnw l—zzl) dS(é)
_(n+tk-1)---n G- )f(é)
- J

w (1 _ Zf )n+k

ds(€),

we can deduce (ii) from (i).
We now consider the finite part at an arbitrary point on S by reduction to
the case already discussed. For any point v € S, take a unitary matrix U such

that vU =p=(1,0,...,0). Let £ =wU . Then we have
f(§)
— > 4
[S’n{ll—vf’lZa} (1 — vE yn—B+k s(e)
f(wT)
=/s — g As(w).

n{li-w|>e} (1 =W1)"
Definition 2.7. The finite part of a singular integral
[ s
S (1 — 'Ué )n—ﬂ+k
is defined by

/&) f(wT)
FP/(l—vc)n T B0 = P/ (= yrre 4

The above definition is independent of the choice of the matrix U. If f is
k times continuously differentiable and the derivatives are Holder continuous,
then the finite part at the point v € S exists. For points z with zZ’' < 1, write
zU = n. We obtain

. f($) L f(wT)
B Jy e sy O = T gy )
f(’LUU w g
_FP/ l—wl)"+’< (w)+2(n+k_1)...nLk(f(wU))w:p
w k p——;
FP/ l—vé n+kd se) + 2(n+k — 1)-~nL (f(wl)) wep

3. FINITE PART OF SINGULAR INTEGRALS OF BOCHNER-MARTINELLI TYPE

Let D be a domain in C" = R?" whose boundary 4D = Q is of class C>.
Write zy = uy + iy, kK =1,...,n. We define a Bochner-Martinelli type
integral by

=/Qf(Z)K2,,_1(Z,’UJ), weC"\Q,

where

Kint(z, w) = G Y (-1 2otz - dzgdy - [d7))- - dZ,.
j=1

| |2n
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Here C, is a constant:
_(n=1)!
Cn = (2mi)n

Lu and Zhong [1957] have studied the boundary value of the Bochner-Martinelli
type integral and the corresponding Plemelj jump formulas. Their results are
the following two lemmas.

Lemma 3.1. Let f be a Holder-continuous function on D = Q andlet a € Q.
Then the principal value

PV [ SRz 0) =lim [ f(@)Karni(z, )
Q e~V JQ\B(a,e)

exists, where B(a,e)={zeC"; |z—a|<é&}.

Lemma 3.2. Let f be as in Lemma 3.1. Then for every a € Q we have
Fia) =PV [ f(2)Kaner(z. 0) + 3f(a),
F@) =PV [ f(2)Kanes(z, @) - 5/(a).
where F;(a) and F,(a) are the limits of F(w) as w tends to a in D and in

C"\(Q U D), respectively.
Now assume that 0 € Q and that in a neighborhood U of the origin we have

QNU={zeU; r(u, ..., uy) =0},

for a function r € C3(U) satisfying

orl _ 1, or| _..._or 0.

ouy u=0 ous u=0 Ouzn u=0
In other words, the tangent plane of Q at the origin is defined by u, = 0.
Since Or/0u,|y=0 # 0, we can write the equation r(uy, ..., uz,) = 0 as
uy — h(uz, ..., us,) = 0, for a suitable function h of class C3 and satisfying
h(0,...,0)=0, 8h/0uy|y—0 =--- = 0h/Ousnlu=0 =0

Lemma 3.3. Define Q;, ,={z€Q; e<|z|<n} for 0<e<n. Fix n. Then

ujduy - - dus,

(3.1) lim j=1,2,...,2n;

e—0 QL” |Z|2n 5
exists. Moreover, if w = (w, ..., w,)=(-¢€*,0,...,0), then
EJ_TU_J - i—=1.2 .
(32) ggr(l) \ 'Z_wlzn | |2n du2 duZn Os .1 H 7"')n’
nn
z — s J=1
(3.3) lim ZimV0 Gy duyy = (=D’ 7
e=0J0nB(0,¢) |z — w| 0, j=2,...,n;
(3.4) lim |z |"IZ’ w’!duzmduz,,:O, j=1,2,...,n;

|2n

e=0JonB(0,¢) |z -
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(3.5)
1 e = = e .
em(n) g | i Tz duy---duy, =0, j=1,2, , h

Here a denotes any positive constant.
Proof. We shall use spherical coordinates

(3.6) Uy =uy, up=pcosly, ..., uy_; = psinf;---sinf,,_3costy,_1,
’ Upy = psinfy ---sinb,,_3sinby,_;.

Proof of (3.1). We shall only prove the case of j = 2. The proof for j =
3,...,2n is similar. For j = 1, the function is even integrable.
By using spherical coordinates we have

urduy ---du T e T e
/ —%35:/ sin" 36, cos 6,d0; | sin®""*06,d0,
Q. |2| 0 0

" s [ d S
[ siny,_3d6,_ Oan-
/0 $i0 6230203 | - 02 2/82<Wz+p2<,72 (P+y(p, 0))"°

where y(p, 0) = h(pcosl,, ..., psinf;---sinf,,_7).
It is clear that

= oy -0
w(0,60)=0, ap(O,B)—O,

we can therefore assume y(p, 0) = p*p(p, 0) for some ¢(p, 6) which is of
class C? outside p =0 and continuous at p =0.

Consider
p2n——ldp
0- | |
8OV = eyt P4 V(0. O

Let t = /p?+ y?. Then
W(pa 9) = pz(p(p’ 0) = tz(ol(t’ 0)’

where ¢,(t, 8) is C3 outside ¢ = 0 and continuous at ¢ = 0. We get
ntz_ 2\n—1 ’712— 2\n—1 o
4 4

n _ $2,2\n—-1 n
=/ (1 l (01) dt—/ (1 _t2¢%)n—l¢la_'//dt
A t A ot

"1 S 2 1 oy
= —dt+/ Z(—l)ﬂc,’{_,ﬂp-'q;l"dt-/ (1 -2l —d1
e 1 e 57 ¢ ot

;,n—l n
=10g7l—loga+/ Z(—l)pc,’,’_,tz"“wf”dt—/ (l‘tz(l’lz)"_l(ﬂlaa—vt/dt,
€ p=1 £

CP_, = (n-1)/(p(n—p—1)!) denoting the binomial coefficients.
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Using the known result that fo" sin?" 3 0,co0s0,d6; =0, we get
/ uzduz--~du2,,
Q

e |z[?

b4 n
- / sin?" 9, cos 6,6, / sin2"* 0,d0, - -
0 0

T 2n
/0 Sin O3n_3d63n_3 /0 2(0)d6y,_s

n
= / sin**2 0, cos 0,d6, - --

0
2n n" 1
/ / 1P CP_ 17~ g dt

n
- / (l—lz(l’f)"_l(ﬂra—wdl}d@zn—r
: a1

The integrals in braces are continuous functions of ¢. So when ¢ — 0, the
limit exists.

Proof of (3.2). Applying spherical coordinates we know that

Le_”

U
o

du2 duz,,

n n
- / 5in2"3 9, cos 6,|d6, / sin2"* 0,d6, - -
0 0

n 2n
(3-7) / sin 02,,-36102,,-3 d02n_2
0 0

. /ﬂ [ 1 _ _1_] t2n 1
e L[12+¢e*+2e22¢(t, n)]*  t2n
-ty - - oty 2] a.

Notice that (¢* + 2¢21%¢,)/1? = O(e?), t € [e, 5], and that

1
[£2 + &4 + 2e2t2¢. (2, n)]"

— 1 — i +0 8_2
- th(l +(84+28212(p1)/12)” T p2n P2n )
Applying the above estimate to (3.7), we obtain

/Q,,,,

Similarly we can prove that

J

U
T

duy-- duz,,<C£/ —dt.

Uj
T

duy---duy, < Ce? a't j=3,...,2n,

e, n
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which implies (3.2) for the case j =2, ..., n. Since u; = o(|ua| + -+ |ua4l) ,
on Q. ,, we see that

U U

- duy---duy, =0.
|z —wp | T

lim
e—0 Q.

On the other hand we have the following estimates

€ duyduy <ce? [ La
— AUy AUy, < Ce —dt.
/Q [z —wpn O TS /etz

Therefore we obtain (3.2) when j=1.

Proof of (3.3). Applying the spherical coordinates (3.6) we know that

/ Lduz.‘.duzn
Q

nBO,e) |2 — W]

n n
- / sin?"~2 9, cos 0,d6, / §in2"* 0,40, - -

0 0
2n

(3.8) / $in 02n_3d02m—3 | dOm_
0 0

./8 1 2n—1
o [2+e*+2e229(t, n)]

_ _ 0
(- eobrt— - eobrtio S ar.

Notice that for ¢ € [0, €], 2e2t2¢,(t, 6)/(t* + €*) = O(e?) . So we have

1 1
12+ e +2e22¢,(t, n) (2 +¢%)

(1+0(e?).
Applying the above estimate and fO” sin** 2 9, cos 6,d6; = 0 to (3.8), we obtain

/ — ¥ dudu <C82/E et dt
QnB(,e) |2 — W[ 2 = o (2+¢e4)n

¢t Ce? [t d(®)
< 2 =
s Ce /0 t2+s4dl 2 Jo t2+¢*

2
= CTslog(l +1/62) = 0.
Similarly we can prove that
u] 2 € dtz .
L du,---d <C —_— =2,...,2n,
/QnB(O,e) |z — w|? e o t2+¢* J

which implies (3.3) when j=2,...,n.
Since dh/0uj(0) =0 for j=2,...,2n we see that

lui] < Clual* + -+ + |unl?)
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on € ,. So we obtain the inequality

Ui
I du2 .. 'duZn
/QnB(o,a) |z —w|?

/~ |ZP € ﬂn
< ———du,---du, SC/ ——dt,
QnB(,¢) |12 — W[ " o (2+e4)n

where the last inequality is obtained as in the proof of (3.2) when j = 1.
Similarly-we see that

—_ u2"'du2n
QnB(0,s) |2 — w|*

L 3 L 2n £ 82t2”_2
- /0 sin?"3 6,40, - - /0 sin0yusd0ns [ dbys [ e divol)
n . 2n—3 n ) 2n oo t2n—2
=/0 sin Blde,/o sin 6,,_3d6,,_3 A d02,,_2/0 mdt-l-o(l)
2= Dby [ gt o1
=(2n- )2n-1/0 @x" t+o(1).
Here
2nnn—]
bon-1 = 2n— D!

is the volume of the unit ball in R?"~! and the value of the integral
I o0 lZn—2 d
"= /0 S

[ - E@n-3 _ m(2n-3)
n— 2(2”—2)" - 2n(n_ 1)' )

is easily found to be

so that the last expression becomes 7”/(n — 1)! + o(1). Combining with the
above estimates we get that

lim —duz -duy,
e=0 Janp(,s) |2 — W]

o0 t2n—2 7["
_(Zn—l)bZn—l/(; (12+1)” dt = (n—l)'

Proof of (3.4). Similarly as in the previous step we can prove the estimates
5 & 12n+a—2
Ce?* | ———=dt, j=1,
o Zj / (12 + et /
z _—W duz duz,, < ¢ nta—l
QNB(0,e) |z —w| C / pentas

t2+84 j=2,...,n,

which is what we have to prove.
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Proof of (3.5). As in the proof of (3.2) we get

) ’Ita
/ duy---duy, <e¢ / —zdt
Qc,r] '3 t

which is what we want.

|z|*(z; —w;)  |z|°Z;
|z — w2 |z|2n

Theorem 3.4. Suppose dh/0u;, i =2, ..., 2n, are Holder continuous on Q
and f is a continuously differentiable function on Q such that 8 f/du;, j =
1, ..., 2n, are Holder continuous. Then the finite part

FP/g;f(Z)%KZn-—I(Z’ 0)

defined as
. By f(0)
lim Zk K z,0) - ———]|,
exists, where
. 2" (n - 1)!
n—1j;n — -1
B = { 2Ty = S kL
09 k= 2, R ()

here by,_, is the volume of the unit ball of dimension 2n — 1 and C, is the
constant in the Bochner-Martinelli kernel.

Proof. We prove only the case of k = 1; other cases can be proved similarly.
By Stokes’ formula we get

/Q\B(O, |Z|2n+2 Z 1Y~'zjdzy - dzpdZ) - [dZ)) - dZ,
_ _l/ f(2)d [E;-'=1(—l)f“?jdzz~~a’z,,dEl .--[dZ}]---dZ,
n Ja\B(©,¢) |z|2»
_ 1 f(z)zj;;l(—l)f-'z,-a!z2 dz,dZ,---[dZ;]---dZ,
n Ja@nB(o,e)) 2|2
N l/ df(z)z;':,(—l)f-'f,dzz--~dz,,d7, ---[dzZ)]---dzZ, ‘
n JQ\B(0.¢) |z|2
Let
Cn j-1= _ _ _
V/(e):-nsz,, /(B(OenQ Z Zjd22---d2,,d2|~'~[de]~-~dz,,.
Then

Lop o 7O K12, 0= we)
_1 of

—K5,-1(z,0)
B0, 021
Cn 1 af_ _ _
+——1"“/ ——Zidzy---dzydZ,---dZ
n =D Q\BO,¢) 121" < 07,7 e "
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According to Lemma 3.1, lim,_/; exists.

12=9'._1)n—1{/ +/ } lzn 6f_d22 -dz,dz,---dzZ,
n O\B(O,n) JQ,, |z| Y

=NL+1.
If n is small enough, lim,_ /] exists because I; is independent of &.

—2§)n— IC 0
L= (= ’) / |Z|2” fz,dz;duz dundinyy---dus, .

Notice that

d?l = du1 - idu,,H = (aih :
n+

1 (_l)n_l(_Zi)n_ICn ( oh )

2= n Qw|z|2" Zaz, Bupyy ) M A
_ (—1)"“(—2i)”“Cn/
- n Q. |z|2n

3 [gg ) (o= - i) - (ngj ©) (5o 0)- i) | iy

j=1

oh(0) . 1
+ ( H1(=2i)"-1c, Zaz, (au§+3—l>/9 B I2nz,du2 ~duyy .

Because 0 f/0Z; and 0h/O0up,, are Holder continuous on Q, the limit of
the first term exists when ¢ — 0. The limit of last term exists by (3.1) in
Lemma 3.3. On the other hand, by assumption 0 f/du;, j=1,2,...,2n,
are Holder continuous, so we have the following identity:

C n
)= - 2 z D5 '5dzy - dz,dZy - [dZe) - dZ
w(e) pyST B(B(O,e)nﬂ)f( )E_( )T Zidzy 1---[dzg]---dzy

G of
ne? Jago,5nQ) l +Z( 0z + (O) )]

n

. Z( DV 120dzy - dz,dZ, - [dZi) - dZa + 0(1)

- i) duy., (mod duy---duyduy,;---duyy,)

2n 0)/ zy---dzydZy---dZ, + 0(1)
8 Os)nQ

_ G oS S [ ndaydzdz W7 dz
T 821(0)2( 1) B(o’e)nnzkdzl dz,dz)---[dZ]- - dZ,

"G _ _
£2n L Zaz, /0 o szdzzmdz,,dzlmdz,,

(- 1)"c,,n+1)Zaf 0

0z B(0,&)NQ

+ 7jd22'-'d2,,d?1"'dfn.

82"
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The last identity is obtained by Stokes’ formula.
By the method used in proving Lemma 3.3 we can prove that the last three
terms tend to zero as ¢ tends to zero.

/ dzy - dz,dz,---dz,
B(0,e)nQ
- / (=)™ (dus — idtny1)(~20)" dtty - Attty - ditizn
B(0,e)NQ

= (=201 (=i) / durdits -+~ ditgy + (—20)"~!
B(0,6)nQ

oh
. durdus---du
/B(O,e)nQ gy 2002 2

= (—2i)""(—i)/ dusdus - duy, + o(e2")
B(0,£)nQ

= (=20)"1 (=) / sin2"36,d, - -
0

n 2n
] i 02n_3d02n_3 [ dOrm_2 / P 2dp + o)
0 0 w2+p2<e?

— (=20)" (=) / s~ 0,d6, - -
0

n 2n €
/ sin 6,,_3d07,_3 d@zn_zf 124t + 0(82") .
0 0 0
Therefore we see that
|
w(e) = 5(21)" 'Cpban-1 f(0) + 0(1).

The proof is finished.
Theorem 3.5. Let f and D be as in Theorem 3.4. Define

F(w)=/Qf(z)K(z, w).

Then the limits of (OF [0w)(w), k=1,...,n, as w tends to 0 along the
inner normal and the exterior normal of Q at the point 0, exist and are given
by the following expressions:

(Qf—>.(0) = PP [ nf() 2Kz 0+ 5 2L 0+ 24, 2L (0);

dwi Q |z|2 20z 27% 87,
OF = Zk _Yof 1, 9f
(M)s(O) = FP an(z)|2|2K(z, 0) 292, (0) 2A"6fk (0,
where
\n o0 t2n—2dt
4 { ~(@i 2= DCabaons [ =1 k=1,
03 k=2,...,n.

Here by,_, is the volume of the unit ball of dimension 2n — 1 and C, is the
constant in the Bochner-Martinelli kernel.
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Proof. We only prove the first equality for the case k = 1. For the other cases
the proof is similar.

OF _
%(w)”c"/gf( |z-w|2"+ZZ (2~ wdz
dz,dz, - [dZ;)] - dZ,

n

=—C /fZ)d[ ’LU|2" Z(—l)j_](fj—’l_ll-j)d22'-'
Jj=1

dz,dz,---[dZ;] - dZ,

n

=C, af(z)_l_Z(_l)j—l(fj ~W;)dz; -

dz,dz, - [dZ)] - dZ,

) | _ _
+ (- )”“C,,/QZ—(,);—'Z_wlzn(zj—wj)dzz-~-dz,,d21~~dz,,
=t "7 '
of
= [ =K(z,w
r (z, w)
_ 1 of _ _
_1\n—1
+(=1) Cn/glz_an 2 7z, —(Zj-w,)dzy---dz,dZz,---dzZ,.

By the proof of Theorem 3.4 we know that

Zl 1 0f
FP/f —=K(z,0)=lim— z,0
|22 e—0 N Q\B(Oe dz, K(z.0)
+limﬂ(—l)”“/ 12 6_f_ dzy---dz,dz,---dzZ,
e—=0 n Q\B(0,¢) |Z| n par 0z
So we only need to prove the following inequality
(3.9)
. of
3}1_% r K(z w)
. 1 8f _ _
1
+1LI_I'{})(—1)" C Qm 8_ ( w})dzz dZ,,dZ.-~~dZ,,
_ of 1 8f
ll—r'l;l) Q\Bosale( 0)+2621( )

+limC,,(—l)"“/ l —f jdzy---dz,dz,---dz,
e—0 Q
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It follows from Lemma 3.2 that
0 1 c’)
2Lk, 0+ 5550,

lim/ﬂ (z, w) =1lim
w—0 Qazl e=0Jo\B(0, e)321

So we only need to prove that

1
i - — —_
il_*mo(._l)n C"/QIZ‘wP"z::Bf Z;—-W,;)dzy---dz,dZ,---dZ,

(3.10) =£§(1)(—1)”“C,, Z 6Z]z,d22 -dz,dz,---dz,

Q\B(0,¢) |Z|2”
af
§A13_ (0).
Take w on the inner normal. Its coordinates are w; = —&2, w, =0, ...,
wn = 0 . Let
Aje) = / = w|2" a— 2, - W))dz, - dz,d7) - d7,

_ 1 6f_ - -
— — n 1 .o
(-D"Cy /Q\B(o,e) B 82 idzy---dz,dz,---dZ,

- 06 [ a5 (3 ~)
gzj:( ) (aun+l ©)- l)]

(2~ W))duy -~ duzy

- (2)"'C, \BO,c) Iz}z" [g;( )(6un+1 (2) = )
- 520 (Ga= - i) | zdua - d
+ @i Cug (0 0 (5o (0 )—-i)/{;l—}j—wlf;duz - duz

e f .
— (24)n-1 _
(21) C ( ) (aunﬂ( ) l) /Q\B 0,¢) |Z|2n du2 duzn '

The function 6h /6u,,+1 — i 1s Holder continuous. Therefore we see that

when j=2,...,n,
7.
|A;(e)| < C |z] I duy -+ -duy
’ Q\B(0, ¢) |z —wl? |z |2" "
z|*|Z;
+C _l__l_%duz...duzn
QnB(,¢) 12 — W|
?.
+C J duy---duy
a\BO,e) |12 — WP |Z|2" "
E.
+C/ — duy---duyy,| .
QnB(,¢) |12 — W] "
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By applying Lemma 3.3 we get

(3.11) Aj(e) =0 ase—0, j=2,...,n.
The case j = 1 remains to be considered:

Z) — W,
A

1, of
A, = < a
A1(8) 2A137| (0)' < C 2\B0.¢) |Z|
|Z|a|71 —w1|

du2-~-du2,,

+C duy---duy,

QnBo,s) 12— w*"
Z1 — W,
|z —wl? |z |2"

+C duy---duyy,

Q\B(0, ¢)

Z n"
————duz duyy, — ———| .
/QnB(O e 12 —w[" To(n-1)!

Again by applying Lemma 3.3 we get

+C

(3.12) Ai(e) — iAlg_f (0) ase—0.
Now (3.10) follows from (3.11) and (3.12).

Now let us consider the general case. In the sequel we assume that Q is the
boundary of a domain D and is of class C?. Let a € Q be a point. Assume
that Q is defined locally by an equation r(z) = 0 in a neighborhood of a point
a, dr|,—, # 0, so that its tangent plane at the point a is

Re Z(a;;,) (zj—a;)=0.

We make a unitary transformation

n
z—a=2z'U, zp—-a =Zz}‘Ujk,
j=1
where the Uj; satisfy

iU(ﬂ) _{c>0, k=1;
%i\oz;),_, 1o, k=2,...,n

If Q is transformed to Q*, the equation for the tangent plane of Q* at
z*=01is ¢(z} +2])=0

Let z} = vy + iUk, K =1, ..., n. Then the tangent plane of Q" at the
point z* = 0 has the equation v; =0.

Because K,,_i(z,w) is invariant under the aforementioned unitary trans-
formation, the finite part of the integral of f over Q at point a can be defined
as the following

FP/f Kzn 1(z, a)

_ 7
= FP/Q }: U f(z°U - a)|7{|—2K2,,_l(z*, 0).
- J=l
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Now let us take
(0r/0Z})z=q
ko1 1070 z)2=a|?

Let F(w) = [, f(z)K(z, w) be the same as in Theorem 3.5. We know that

()= L3S m

* Z/ lUjk(Z _w)
Q‘f(z U-a) = —w

Ulj

Kon1(27, w).

By using Theorem 3.5 we see that

(3(9151() FP/nf(z Eng(z a)
N

—FP/nf Z"Kza)

18/(2) ~T 3f
S OO

So we have proved the first one of the following formulas. The second one
can be proved similarly.

(%) FP/ nf( z) |2 K(z,a)

+ lﬂ(a) - —U]kZUljaaf (a)

(gulik)e FP/ nf( z) |2 K(z,a)

1af - < af
_Eazk( )+ U]szlj

( )

Here (0F /0wy )i(a) and (OF /Owy).(a) are the limits of (F /0wy )(w), k =
1,...,n,as w tends to a along the inner normal and the exterior normal of
Q at the point a, respectively.
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