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IMPRIMITIVE GAUSSIAN SUMS
AND THETA FUNCTIONS OVER A NUMBER FIELD

JACOB NEMCHENOK

Abstract. We obtain a reduction formula for an imprimitive Gaussian sum

with a numerical character in an algebraic number field, i.e. a formula that

expresses that sum as a product of several elementary factors times a primitive,

proper, normed Gaussian sum (formulae (16) and (19)). We also introduce

Gaussian sums with Hecke characters and derive a similar reduction formula

for them. The derivation is based on an inversion formula for a multivariable

theta function associated with the number field, twisted with the numerical

character.

1. Introduction

Let K be an algebraic number field with the ring of integers o and the abso-

lute different Ö, m an integral ideal of K, x a numerical character mod m, n £

m_1ö-l. The Gaussian sums over K

Tnix)=   Y  xia)e2nrïT^na)

a€o
mod m

introduced by Hecke in [3 and 4], generalize the classical Gaussian sums with

Dirichlet characters (K = Q). Assume that x is primitive and x„(x) / 0 (i.e.
xn(x) is proper primitive—see §5). By the well-known product formula for

Gaussian sums [8, Propositions 6.5 and 6.7], xn(x) can be written as a product

of proper primitive Gaussian sums xm(y/), where y/ is a character modpp, p
a prime ideal. The latter can be explicitly evaluated if e > 1 (see [9] for the

case K = Q, [6] for the general case); for e = 1 , we get Gaussian sums over

the finite fields o/p . Also, xm(\p) coincide, up to a root of unity, with p-adic

Gaussian sums [8, Corollary 1, Proposition 6.8]. Thus x„(x) can be explicitly

evaluated or expressed in terms of more well-known Gaussian sums.

In this paper we consider a complementary question: given an arbitrary Gaus-

sian sum x„(x), express it in terms of a proper primitive Gaussian sum. More

precisely, we obtain an elementary expression (which we call a reduction for-

mula) for the quotient x„(x)/x(y/), where \p is the primitive character asso-

ciated to x and x(\p) is a normed Gaussian sum for \p (see §6). In the

case K = Q, this quotient was computed by Hasse [1, §20.1.iv], by a series of
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elementary reduction steps. He later generalized the formula (and its proof) to

Gaussian sums for ray class characters over a number field [2, §4.2].

Our proof of the reduction formula for Gaussian sums with numerical char-

acters, given in §10, is entirely different and is based on the transformation

properties of multidimensional theta functions with numerical characters. It

was inspired by the paper of Joris [5], who showed that the reduction formula

in the case K = Q can be derived from the functional equation of the corre-

sponding L-function. For arbitrary K, however, L-functions are unsuitable as

they are formed using ideal and not numerical characters. That is why we use

theta functions instead.

The connection between theta functions ûx(z, ("), a) and ßxß\z, ("), a),

defined in §§7 and 9, and Gaussian sums x„(x) is based on the fact that the

latter appear in inversion formulae for the former (formulae (14), §8 and (14a),

§9), which hold for primitive / . In [3], Hecke deduced from these inversion for-

mulae (with z = (0, v)) the functional equation for the L-function L(s, X),

where X is a primitive Hecke character inducing x (m the sense of Proposi-

tion 1); the Gaussian sum x„(x) appears in that functional equation as well.

The theta functions with both x and y variables were introduced by Hecke in

[4]. He used their transformation properties to obtain a reciprocity formula for

tnix), where x is primitive quadratic, and as a consequence the quadratic reci-

procity law over an arbitrary number field. The x variable gives theta functions

the extra property of periodicity which, together with inversion formulae, will

play an essential role in the proof of our main result. In fact, these theta func-

tions provide an important example of modular forms of uniform weight 1/2

or of weight (1/2, ... , 1/2, 3/2, 1/2, ... , 1/2) for a congruence subgroup of
the Hilbert modular group SL2(o). The modular properties of these functions

are analyzed in detail in [10].

The Hecke characters and corresponding Gaussian sums are introduced for
two reasons. First, they are used to define normed Gaussian sums x(tp) (al-

though the definition involves an arbitrary choice); secondly, Hecke characters
are general enough so that each numerical character is induced by a Hecke

character. This relation between numerical and Hecke characters carries over

to corresponding Gaussian sums, and enables us to easily generalize the reduc-

tion formula to Hecke characters and in particular to recover Hasse's reduction

formula for Gaussian sums with ray class characters (Corollary 2, §10).

I am grateful to Professor H. Stark for pointing my attention to Joris's paper

and for stimulating discussions.

2. Notation

Throughout the paper, K is an algebraic number field of degree A over Q,

having r\ real and r2 complex embeddings into C. The ring of integers, the

group of units, the different and the absolute value of the discriminant of K are

denoted by o, U, D , and D, respectively. If a £ K, the algebraic conjugates

of a are denoted by a^ (v = 1, ... , A), and are ordered so that a(v) is real

for 1 < v < r\ and a(v+riX = a^ for rx + I < v < r\ + r2. (The horizontal bar

always denotes complex conjugation.) For a £ K, we also put

e(a) = e2mTT(a),        ex(a) = eniT^a),

where Tr denotes the algebraic trace from K to Q and i = %/^T.
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A fractional ideal a can be uniquely written as a ratio b/c of two integral

coprime ideals, called the numerator and the denominator of a, respectively.

If m is an integral ideal of K, we say that a is prime to m if b and c are

both prime to m. The greatest common divisor of two integral ideals a and b

is denoted by (a, b). The absolute norm of a fractional ideal a is denoted by

A (a). The Möbius function and the Euler phi-function of an integral ideal a

are denoted by p(a) of <j)(a), respectively. If m is an integral ideal of K, we

let I(rn) be the group of fractional ideals of K which are prime to m, and we

also put
K(m) = {aeK*\(a)£l(m)},

Ki(m) = {a £ K*\m divides the numerator of (a - 1)},

P(m) = {(a)\a £ K(m)},        P,(m) = {(a)\a £ tf,(m)}.

Our notation for theta functions essentially follows that of [10].

3. Numerical characters and Hecke characters

Let m be an integral ideal of K. Every additive character of the abelian

group o/m of residue classes modulo m has the form

en(a -f-m) = e(na)       (aeo)   for some n e m_1ö_1.

Following Lamprecht, we call en proper (echte in German) if, as t runs over

the residue classes of o mod m, ent runs over all additive characters of o/m.

It is easy to check that the character en is proper if and only if the ideal mo(n)

is prime to m.
A character/ of the abelian group (o/m)x of reduced residue classes modulo

m is called a numerical character (or simply a character) mod m. We will think

of x as a complex-valued function on o satisfying, for a, b £ o ,

(i)  x(ab) = x(a)x(b),
(ii)   x(a) = Xib) if a = b (mod m),

(iii)   x(a) = 0 if a t K(va).

We will also need to evaluate x at nonintegral elements of K. Namely,
if an element a £ K can be written as a ratio b/c, where b, c £ o and

c £ K(m) (equivalently, if the denominator of (a) is in I(m)), then we put

X(a) = X(b)x(c)~x ■ Thus x is defined on K(m) and ^ = 1 on Ki(m).

The conjugate character x is defined by ~x(a) = X(a) whenever x(a) makes

sense.
Let m be an integral ideal of K. A Hecke character mod m is a homomor-

phism X of I(m) into the group C'={ze C| \z\ = 1} such that

(1) X((a))=X(a)       (a£Ki(m)),

where X is a homomorphism of K* into C1 of the form

rX+ri   /   /7(")    \l"

v=\   Vl l7

for some /„ eZ, tv £R, (v = 1, ... , fi + r2). (This definition is very close

to Hecke's original one.) More generally, one can include infinite real primes

in the modulus of X, but for our purposes this is unnecessary. If A = 1, X is

called a ray class character mod m. We call X the infinite part of X .
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As usual, we extend X to the semigroup of all integral ideals of K by putting

X(a) = 0 if o 0 /(m). The conjugate character X is defined by X(a) = X(a).

The following proposition (essentially contained in [3]) shows the relation

between Hecke characters and numerical characters.

Proposition 1. Let X be a Hecke character mod m with infinite part X. Then

there exists a numerical character x mod m such that

(2) X((a)) = x(a)X(a)       (a € K(m)).

Conversely, given a numerical character x mod m, there exists a (nonunique)

Hecke character X mod m with infinite part X such that (2) holds.

Proof. The first assertion follows directly from the definitions. To prove the

second one, we first find X so that ^(e)A(e) = 1 for every s £ U (the existence

of such X is guaranteed by Dirichlet's unit theorem). Now define X on the

group P(m) by formula (2) (this is unambiguous by the choice of X), and then

extend X to a character (denoted by the same letter) on the group /(m). Since

X = 1 on /ai(m), we get X = X on Ki (m), i.e. X is a Hecke character; and

(2) holds by the construction X .   Q.E.D.

If X, x are as in (2), we say that X induces x ■

4. Primitive and imprimitive characters

Recall that a numerical character x m°d m is called imprimitive if it is

induced by a character of a smaller modulus, i.e. if there exists an ideal m'

strictly dividing m and a numerical character x' m°d m' such that X - X'

on K(m). Otherwise, x is called primitive. The smallest ideal m' as above

is called the conductor of x and is denoted by f^ (thus x is primitive if and

only if \x = m). The character x is induced by a unique primitive character
i// mod fx , which we call the primitive character associated with x • The two

characters are related by the formula

(3) X = VX\,

where X\ is the principal character mod q , q being the product of prime ideals

dividing m but not f^ . The definitions for Hecke characters are completely

analogous.
Let X be a Hecke character mod m with infinite part X, and let x be the

numerical character mod m induced by X. It is natural to ask whether the

primitivity of X is related to the primitivity of x ■ The answer is stated in

Proposition 3. But first we need an auxiliary result.

Proposition 2. Let X, X be as above, and suppose that X is induced by a Hecke

character X' mod m', where m'|m, with infinite part X'. Then X' = X.

Proof. From the definitions, we get X'(a) = X'((a)) = X((a)) = X(a) for all

a £ Ki(m). Put p = X'X (where by definition X(a) = X(a)). We can view

X, X', and hence also p, as continuous characters of the topological group G =

R*r< x C*2r2, and we have just seen that the kernel of p contains Ki(m) ( K is

embedded into G via its conjugates). But Ki(m) is of finite index in the group

K(m), which is dense in G by the Strong Approximation Theorem. Therefore

p = 1 .   Q.E.D.
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Proposition 3. Let X, X, x be as above. Then

(i)   X is (im) primitive if and only if x is (im)primitive;

(ii) the conductor of X is equal to the conductor of x ',
(iii) if *¥, y/ are the primitive characters associated to X, x. respectively,

then y/ is the numerical character induced by *F.

Proof. Suppose that X is imprimitive. Then there exists an ideal m' strictly

dividing m and a Hecke character mod m' such that X = X' on 7^1 (m).

By the previous proposition, the infinite part of X' is A. Let x' denote the

numerical character mod m' induced by X'. Then for every a £ K(m) we

have xia) = X((a))X(a) = X'((a))X(a) = x'(a), therefore x is imprimitive.
Conversely, suppose that x is induced by a numerical character x' mod m',

where m' is an ideal strictly dividing m. Define a character *F on Pi(m')

by *F((a)) = X(a). This makes sense because for e e U n Ki(m'), x(£) —
X'(e) = 1 and consequently X(e) = X((s)) = 1. A similar computation shows

that X — X on I(m) n Pi(m'). This and the fact that the groups involved

are abelian, enables us to extend *P to the group /(m)Pi(m') by T(o(a)) =

X(a)X(a). Extending *P further to the whole group 7(m') in an arbitrary way,

we obtain a character which by construction is a Hecke character and agrees

with X on I(m). Therefore X is imprimitive, and (i) is proved (the second

implication in (i) is stated in [4, p. 264].
Part (ii) is an immediate consequence of (i). Finally, let XP, y/ be as in (iii),

and let y/' be the numerical character induced by *F. By parts (i)-(ii), y/' is

primitive mod \x , hence y/' = y/ , which proves (iii).

5. Gaussian sums with numerical characters

Let x be a character mod m. The Gaussian sum for x with the parameter

n is defined by

*»(*)=   E   X(a)e„(a)=   Y   X(a)e(na),
a£o ago

mod m mod m

where n £ rrr'ö-1 , so that (n) = m~xü~xn, n an integral ideal.

A Gaussian sum x„(x) will be called proper if the additive character en is

proper (this is in a slight conflict with Hasse's terminology in [2]); it will be

called primitive if the multiplicative character x is primitive. We recall some

elementary properties of x„(x) in the next proposition.

Proposition 4. With the above notation, we have

(4) TniX) = XÍ-lKiX),

(5) r„(x)=    Y   X(a)e(na)       (o€/(m)),
a6a

mod mo

(6) Tntix) = X(t)Tn(x)   for all ien"1 such that x(t) is defined.

In addition, if x is primitive, then

( 0, if (n, m) = 0,

(7) |T"WI=U(ra)^,    otherwise,
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(in other words, a primitive Gaussian sum does not vanish if and only if it is

proper).

Proof. The formula (4) is obvious. To prove (5), observe that if b = a n o

(= the numerator of a), then a complete system of coset representatives for

b mod mb is also a complete system of coset representatives for both a mod ma

and o mod m. The proof of (6) splits into two cases: (i) / £ K(m) and (ii)

X(t) = 0. In case (i), (6) follows from (5) by putting a = (t) and making a

substitution a = bt. In case (ii), x(t) = 0 and by (7), xm(x) = 0, so both sides
are zero. As for (7), we may assume, in view of the product formula mentioned

in the introduction, that m is a prime power. For the elementary proof in that

case, see [6, Regel 1, p. 155 and Satz 6, p. 164].

6. Gaussian sums with Hecke characters. Normed gaussian sums

Let X be a Hecke character mod m with infinite part X, and let a be a

fractional ideal of K and n a number in m^cr'D-1 . We define the Gaussian

sum for X with the parameter n and the auxiliary ideal a by

Xn(X\a)=    Y   X(x)~X(a)e(na).
a&a

mod ma
(a)=ar

The sum is independent of the choice of coset representatives for a mod ma,

thanks to formula (2) and the restriction on the parameter n . For X = 1 this

coincides with Hasse's definition of a Gaussian sum for a ray class character in

[2].
Every Gaussian sum xn(X\a) as above can be reduced to a Gaussian sum for

a numerical character. Indeed, if c is an integral ideal prime to m such that

the ideal ac = (c) is principal, an easy calculation as in [2, §2] shows that

Xn(X\a) = X(c)X(c)xnc(X\0),

and equation (2) implies that

xn(X\o) = xn(x),

where x is the numerical character mod m induced by X. Therefore

(8) x„(X\a) = X(c)X(c)xnc(x).

Observe that, unlike the traditional Gaussian sums, T„(A|a) generally takes

transcendental values. Note also that x„(X\a) ^ 0 if and only if xnc(x) / 0.

By (7), this is equivalent to (ma£>(/i), m) — o. Parameters n , a satisfying this

last condition are called proper. We call the Gaussian sum x„(X\a) proper if

n, a axe proper, and primitive if X is primitive.

A proper primitive Gaussian sum with a Hecke character X can be normal-

ized so that it depends only on X and not on the choice of parameters n , a.

Namely, if X is primitive mod m and has infinite part X, we define the normed

Gaussian sum for X by

x(X) = X(n)X(n)xn(X\a),

where x„(X\a) is any proper Gaussian sum for X and n = maD(«). That this

is independent on the choice of parameters can be easily checked using (8) and
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(6). Even better, by definition

x(X)=    Y   X(nxjX(na)e(na).
aÇa

mod ma
(a)=at

Making a substitution b = na, we get

x(X) = Xi(X\m-xD-x),

which visibly depends only on X\
Unfortunately, such a canonical normalization does not exist for proper prim-

itive Gaussian sums with numerical characters. If x is a primitive numerical

character mod m, the best we can do is fix a primitive Hecke character X

that induces / (see Propositions 1 and 3) and define a normed Gaussian sum

for x by

t(x) = x(X),

or, using the formula above,

(9) x(x) = t„(x)X(n)X(n),

where x„(x) is any proper Gaussian sum for x, n = mD(«), and X is the

infinite part of X.

7.  THETA FUNCTIONS OVER  K

Let fji = {x + y i £ C\y > 0} be the complex upper half-plane and S)2 =
{x + yk £ M\x £ C, y > 0} the quaternionic upper half-space, where H =

{a + bi + cj + dk\a, b, c, d £ R} is the quaternion algebra over R and C is

identified with the subset {a + bi} of M. The generalized upper half-space over

the field K, denoted by $)k , is the set of A-tuples z = (z(l/))i/=i,..., ̂  such that

(i)   z<") = x^+y^i£f)i   (l<v<rx),

(tí)   z<"> = xW+y^k £ft2   (r, + 1 < v < A),

(iii)   x^+'iî =JcM, y(l/+r2) = y(v)  (n + \<v <ri+r2).

We will sometimes write z = (x, y) for z £f)x , where x, y are as in (i)-(iii).

The group SL2(K) acts on f)K as follows:

(ac    bd)°z = [(a^zM + b^W]z{"] + rf00)-1]-!....,*

for ^    bd\ £SL2(K),  z£f)K.

The following notation will be used (for z = (x, y) £ fix) '■

1     0
-Z       =   1   ,        „     |UZ = (-Zv   '      j„=i.n ■

+ b=(o   bi)°z = (x^ + b^,y^)v=i.N   (b£K),
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Let us now define a theta function over k with characteristics u, v by the

formula

<,H"M=I>p{'"'Y x(v)(a(v) + v^)2 - 2u(v)a^ - u{v]v("),,(")

,i/=i

-nYy^\a^ + v^\2\
¡/=i J

(z = (x, y) £ -?)fr, u,v £ K, a is a fractional ideal of K.) This func-

tion is taken form [10]. Hecke [4, §57, formula (185)], defines a function

6(t, z, co ; o) = (9((2&>, t), ( ° ), a). For the sake of brevity, we will write

û ( z, (     ) , o j = Yedx(a + ii)2 + iy\a + v\2 - 2ua - uv]
\        \     / /        aça

with obvious conventions.

The two basic transformation properties of this function are

(i) Periodicity in the x variable when v = 0 :

z + b, (fy ,a) =û(z, (*) ,o)        (b £ (2)a-h~x),

(ii) the inversion formula

(10)      ô(-z-^(-J;),a-1ö-1)=A(a)01/2A(-/z)1/213(z,^

Here for z = (x, y) £ Sjk , N(-iz)x/2 is defined as a product

f[(-izM)V2 'ff \\z^\\l/2,
v=\ i>=ri + l

where ||z(l/)|| = \x^\2 + y(v) is the quaternionic norm of z(v) (rx + 1 < v <

f\ + r2) ; the square root is chosen to be positive when z(l/) is purely imaginary

( 1 < v < T\ ) and always positive for rx + 1 < v < rx + r2.

The property (i) is obvious; as for (ii), it is shown in [10] that û(z, ("), o)

is a specialization of a "twist" of the symplectic theta function

ûa (M(ß)= Y exp{ni['(n + v)íi(n + v) - 2'nu - 'vu]}

^      ' n£Z"

[7, §11.5, formula (5.3') ]; here u, v £ CN , Q is an A x A complex symmetric

matrix whose imaginary part is positive definite, 'A denotes the transpose of a

matrix A, and all vectors are column vectors. The formula (10) is then easily

deduced from the well-known inversion formula for ßa(vu)(ü.) [7, §11.5, formula

(5.6)]. For the proof of (10) in the case u = v = 0, see also [4, §57, Theorem

162].
We note for future reference

(11)   A[-i(a2z)]1/2 = A((a))A(-/z)'/2,        N[-i(-z~l)]l/2 = N(-iz) -1/2
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The following "rescaling" formula will also be useful:

o:,     .(a, (;)..)-»(,,(%«),(.).)    («*•).

8. Theta functions with characters

Let x be a character mod m. Define

ûx (z, ( " J , aj =^^(a)e,[x(i7-r-i;)2 + 7>|a + 7;|2-2u!M-Mv]

^        ^     ' ' aea

where z £ H, u, v £ K, a is a fractional ideal whose denominator is prime

to m, and the notational conventions for ei[---] are as in §7. Thus, theta

functions of the previous section are particular instances of ûx when x —

Xi, the principal character mod o. On the other hand, grouping together the

elements a £ a with the same residue mod m, we see that each ûx is a linear

combination of û 's:

(13) t),(z,(^,a)=    Y   X(b)ei(-ub)û[z,^vlbym^.

mod ma

Using this formula and the inversion formula (10), we obtain

Proposition 5. Let x be a primitive character mod m, and let (n) = m_1¡)_1n,

n an integral ideal prime to m. Then the following inversion formula holds:

% H*-1 .(;£) >-,°-1

= X(-l)rn(x)N(a)Dx/2N(-iz)x/2ûx (z, /

Proof. Using successively (13), (12), and (10), we get

u/n

Y      Xib)exinvb)$(-n2z-x, (m/~™6) .mrr'a"1

ften-'a"1
mod mn~'a_1

¿>€r.-'a-

mod mn_1a_1

Y      X(b)ei(nvb)ß(-z-x,(u+vnb),a-xt>-x)

„-I.-Iran     a

= N(a)Dx'2N(-iz)x/2       Y       X(b)ei(nvb)d(z, (" + "*) , a)

¿Gn-'a-1

mod mn _ ' a - '

= N{a)Dl/2N(-iz)1'2       Y       Xib)

¿En-'a-'

mod mn~'a_l

x ^e[[x(a + i>)2 + zy|a + v\2 - 2(u + nb)a - (u + nb)v + nvb)]
a6a
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= N(a)Dx/2N(-iz)x/2Y

a€a

Y      X(b)e(-nab)
èen-'a"1

■mod mn"'o"

ab

x ei[x(a + v)2 + iy\a + v\2 - 2ua - uv].

Finally, the sum in brackets is equal to x-na(x) = X(-l)x(a)Tn(x) by virtue of

(5) and (6).   Q.E.D.

Theta functions with zero characteristics will be written as ûx(z, a). Observe

that ûx(z, a) vanishes identically if and only if x is odd.

Let y/ be the primitive character associated with x , and let the ideal q be

as in (3). Then ûx(z, (^), a) is a linear combination of ßv 's:

(15) **(*>(S)>u)=E^b)*r(*.(¡i)
b|q

This follows from (3) and the identity

X\(a)=    Y   ^(fa)       (a€°)-
(»l((«).<0

Remark. Let the notation be as in Proposition 5. Hecke noticed that the equality

\Tn(x)\ = A(m)'/2 in (7) drops out of the inversion formula for a theta function

with x • Indeed, suppose first that x is even. By (14),

^(z,o) = x(-l)T„U)7)1/2A[-/(-772z-1)],/2A(n)-17%(-«2z-1,n-1),

i%(-«2z-' , n"1) = /(-1)t„(x)7J>1/2A(-/z)1/2ö,(z, o)

so ûx(z,o) = x„(x)xn(x)N((n)n)Dûx(z , o) = \xn(x)\2N(m)-xt}x(z , o) (we used

(11) and (4)). Cancelling the nonzero function ßx(z, o), we obtain the desired

result. In the case x is odd, apply the same argument to the function û[ (z, o)

(see next section).

9. Functions ßf](z,(uv), a)

In our proof of the main result in §10, we will encounter the usual difficulty

owing to the fact that ûx(z, a) vanishes identically for odd x- To deal with odd

characters, we introduce a new class of theta functions and prove an inversion

formula for them, using a well-known trick due to Hecke [3, p. 265].

Fix a number p between 1 and A, and define

d,w z, , a

[ ¿ZaeoX(a)(a{ti) + v^)e{[x(a + v)2 + iy\a + v\2 -2ua-uv],

if p< r.

¿ZaeaX(a)

(/')a(ß) + v

a(p) + vW
ei[x(a + v)2 + iy\a + v\2 - 2ua - uv],

if p > r\ ,
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where the notation is as in §8. Note that for p > r{, the defining expression

for ûx    contains a 2 x 1 matrix so that ûx    is a C2-valued function!

Again, we will write uxß)(z, a) if u = v = 0. Note that &xß)(z, a) = 0 if

and only if x is even.

Proposition 5a. Under the same hypotheses as in Proposition 5,

x
-n2z~x

-nv

0
«-i„-i, n    a

(14a)

r(ß)

x(-\)xn(x)N(a)Dxl2N(-iz)xl2^r/>l)
0

, a

X(-l)xn(x)N(a)Dx/2N(-iz)x/2

(    n^xW       in^~lyW/2
û^l

if p < n,

0'

\inW-[y(Kf2      «M-'jcW

if p>rx.
Proof. In the definition of the theta function ûx(z, ("), a), the characteristics

u — (u\, ... , u„), v — (vi, ... , v„) can be more generally considered as 2A

independent complex variables, with the conventions

|fl(") + v(u)\2 = (a(v) + t)<"))(flM + ÖM),

' «("),        if i/<n;

u(") = J v("+'-2),    if r, < i/ < n + r2 ;

k ■y(iy-''2),    if rx +r2 < v < A.

The inversion formula (10) will still be valid, and hence so will (14). Now to

obtain (14a), apply the differential operator

Wi-dW)   (lf^ri)  or  2Ti\dldW))   (lf//>r|)

to both sides of ( 14) with u = 0, and then specialize u, v to be in K .

10. Proof of the reduction formula

Theorem 1. Let x be a character mod m of conductor f, y/ the primitive char-

acter mod f associated to x < *¥ et Hecke character mod f inducing y/. Let

ner'r' be a parameter, n = mD(«), let q be the product of prime ideals of

o dividing m but not f, and put r = m/fq. Then

' T(^)^(«)íV(r)/í(q)4'(q)iP(b)M(q, b)M(q , b)],

(16) x„(x) = < ifn = rb,  b integral,

.0,     ifr/n.

(t(^) = t(^*) m a normed Gaussian sum defined in §5.)

Proof. First, we deal with the case of even x ■ Consider i5/(-772z~1, o), which

is not identically zero. Although we cannot apply the inversion formula (14)

to it directly (x is not primitive), we can write it as a linear combination of

d¥ 's or û 's and then apply the respective inversion formulae.  This way we
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will obtain the Fourier expansion of the original function in x in two different

ways. Comparing the Fourier coefficients, we will obtain (16).

Let x„0(y/) be a proper Gaussian sum, so that «0 £ f~'ö_1 and the integral

ideal no = fo(«o) is prime to f. Also put to = n/no . The first way to proceed

is via (15) and (14):

ûx(-n2z~x, o) = Y»it>)$A-n2z~l, b)

b|q

= Y^)w(-l)rn0(^)N(nölb-x)

b|q

x Dx'2N(-ico-2z)x'2û¥(oj-2z, nô'b"1).

Making a change of variables c = b-1q, b = co~xa ,we get

ßx(-n2z~x, o) = xno(y/)N(xc\n-x)Dx'2N(-iz)x'2

xY^Mc)N(q)-xN(c)   Y   ¥(cob)ei(xb2 + ty\b\2)
c I q èem-'c

= xno(w)N(xn-x)Dx/2N(-iz)x/2p(q)

x   Y   Vi0*1*)
ftetn"1

E      Aí(c)A^(c)
,c|((è)tu-i,q)

ei(xb2 + iy\b\2).

The sum in brackets is easily seen to be equal to p[((b)nx~x, q)](p[((b)m ', q)].

Therefore

(17)

where

c(a) = {

t)x(-n2z ', o) — Y c(a)ei(xa2 + iy\a\2),

aÇn-

f xno(y/)N(vn-x)Dx/2N(-iz)x/2p(qW(coa)

xp[((a)nt-x, q)](t>[((a)nx-x , q)],     if a € tn"1 ,

0,     otherwise.

On the other hand, using (13), (12), and (10), we get

ßx(-n2z~x,o) =   Y X(b)û(-n2z-x,(°b),m)
b€o ^ V     / /

mod m

= £«*>»(--'■ U)'n¡r')
b€o

mod m

=   E  X(b)N(n-x)Dx'2N(-tz)x'2û(z, ("^ ,n-x^)

b€o
mod m

= N(n)-xDx'2N(-iz)x/2  Y X(b) Y ei(xa2 + iy\a\2-2nba)

bea
mod

flgn-

N(n)-xDx'2N(-iz)x/2 Y

a€n~

Y X(b)e(-nab)
6eo

•mod m

ei(xa2 + iy\a\
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In other words,

(18) ûx(-n2z-x,o)= Y d(a)ei(xa2 + iy\a\2),

where
d(a) = N(n)-xDx'2N(-iz)xl2X-na(x).

Comparing the Fourier coefficients at ei(xa2) in (17) and (18), we get

[c(a) + c(-a)]ei (iya2) = [d(a) + d(-a)]e{(iya2).

The assumption that x is even implies that c(-a) = c(a), d(-a) = d(a), so
c(a) = d(-a). Actually, all we need is the equality c(l) = d(-\). Cancelling

common factors, we obtain a formula that expresses x„(x) in terms of x„0(y/) :

n0(y/)N(x)p(c\)y/(co)p[(nv  ' , q)M(nt  ',q)],     if r|n,

\ 0,    otherwise.

Finally, we can get rid of the extra parameter «o and make the formula more

transparent by substituting x„0(y/) = x(y/)yl'(no)X(no) (formula (9)) (this, of

course, comes at the cost of having to make an arbitrary choice of *F). A short

calculation shows that if n = rb , b an integral ideal, then

xno(ip)no}) = r(y/)X(nmqy¥(b),

which finishes the proof of ( 16) in the case x is even. If x is odd, apply the

same argument to the function vf\-n2z~x, o) for some p (say p — 1). (If

p> /"i, this is a C2-valued function, so we obtain expansions similar to ( 17) and

(18) and then equate the first coordinates.) The extra factors in the inversion

formulas will cancel at the end (we leave the details to the reader). The proof

is now complete.

Formula (16) can be stated in a different form: if, with the above notation,

we put
, m , n

m =
(n,m) (n,m)

then

{ 0, otherwise.

The equivalence of ( 19) and (16) is proved in [5] for K = Q ; the proof for the

general case is completely analogous.

Corollary 1. With the above notation, the Gaussian sum xn(x) does not vanish

if and only if r|n and (nt_1, f) = o (equivalently, if and only if f|m', m'/f is

squarefree and (m'/f, f) = (n', f ) = o). The absolute value of a nonzero Gaussian

sum xn(x) isequalto A(f)'/2A(r)r>(q, b) (orto A(f)'/2(/)(m)/(/)(m')).

Proof. Immediate from (16) and (19), together with (7).

With almost no extra effort, Theorem 1 can be generalized to Gaussian sums

with Hecke characters, since these can be reduced to Gaussian sums for numer-

ical characters by formula (8).

Corollary 2. Let X  be a Hecke character mod m of conductor f, with infi-

nite part X,  ^V the primitive Hecke character associated to X , a a fractional
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ideal, n £ nf'a-1!)-1, n = maD(72), and let q, r be defined as in Theorem 1.

Then (16) and (19) still hold with xn(x), t(^) replaced by xn(X\a), x(*¥),
respectively.

Proof. As we remarked earlier, (19) is equivalent to (16), so we will concentrate

on (16). Select an integral ideal c suchthat (c, m) = o and ac = (c) is principal.

By (8),

x„(X\a) = X(c)X(c)Xnc(x) = V(c)X(c)xnc(x),

where x is the numerical character mod m induced by X . (Recall that X — 4*

on 7(m).) Let y/ denote the primitive character associated to x ■ Propositions

2 and 3 imply that the infinite part of *F equals X, the conductor of y/ is

f, and y/ is the numerical character induced by *F. Applying Theorem 1 to

xnc(x) and taking into account the formula above, we get

xn(X\a) = I

x(V)X(n)N(x)p(qmqmb>c-x)p[(q, b')M(q, b')],

if nc = tb',  b' integral,

0,     if r /nc.

Since (c, r) = o, r|nc if and only if r|n. Furthermore, if indeed nc = tb',

where b' is an integral ideal, then the ideal b = b'c-1 is integral, n = tb and

(q, b') = (q, b), so x„(X\a) is given by the desired formula.

Putting X = 1 in the above corollary, we recover Hasse's formula for Gaus-

sian sums with ray class characters ([2, p. 25], with v = 1).
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