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ANDRÉ PERMUTATIONS, LEXICOGRAPHIC SHELLABILITY AND
THE cíMNDEX OF A CONVEX POLYTOPE

MARK PURTILL

Abstract. The cd-index of a polytope was introduced by Fine; it is an integer

valued noncommutative polynomial obtained from the flag-vector. A result

of Bayer and Fine states that for any integer "flag-vector," the existence of

the crf-index is equivalent to the holding of the generalized Dehn-Sommerville

equations of Bayer and Billera for the flag-vector. The coefficients of the cd-

index are conjectured to be nonnegative.

We show a connection between the crf-index of a polytope 30 and any

CL-shelling of the lattice of faces of &> ; this enables us to prove that each

André polynomial of Foata and Schiitzenberger is the crf-index of a simplex.

The combinatorial interpretation of this crf-index can be extended to cubes,

simplicial polytopes, and some other classes (which implies that the crf-index

has nonnegative coefficients for these polytopes). In particular, we show that

any polytope of dimension five or less has a positive cd-index.

1. Introduction

The combinatorial properties of a polytope & are the properties of the lat-

tice of faces of the polytope L(^) ; properties that are the same for all poly-

topes with the same lattice of faces are called combinatorial invariants. (For

background on polytopes, see [8, 13, 14].) The cúí-index is an important new

combinatorial invariant, introduced by Fine, which is related to the flag-vector,

which in turn is a generalization of the /vector. Both the flag- and /vectors can
be defined for any ranked poset, not just the lattice of faces of a polytope. (For

background on posets and lattices, see [4, 20].)

The/vector of a «-polytope (or, in general, of any ranked poset of rank n +

1) is defined to be (/_i, ... , fn-X), where f-X is the number of faces of

rank /' (that is, in the polytope case, the number of faces of dimension i - 1).

Hence, for polytopes, /_i = 1 (counting the empty face), /> is the number of

vertices of ¿P , and f„-X is the number of facets. (Notice that this notation has

a subscript that is off-by-one from that often used for the /vector of a poset.)
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A lot of work has been done on the /vector of simplicial polytopes (which

are polytopes such that each facet is a simplex). One of the first such re-

sults is the Dehn-Sommerville equations; these are best stated in terms of the

/z-vector (ho, ... , hn), which is defined by

¿A/x',-,' = E/î-i(*-1),,-/.
;=0 i=0

The Dehn-Sommerville equations then are just h¡ = hn-, for each 0 < i < n.

Since each of the h¡'s is a linear combination of the /_i's, the Dehn-Sommer-

ville equations are linear relations among the /_i, and in fact are the most

general such relations that hold for the /vector of every simplicial polytope

(that is, they imply all other such linear relations).

Further work by many mathematicians culminated when Stanley (only if) and

Billera and Lee (if) proved a characterization of the /vector of any simplicial

polytope (which was originally conjectured by McMullen). The result states

that an integer vector (ho, ... , hn) is the Ä-vector of a simplicial polytope

of dimension n if and only if the Dehn-Sommerville equations hold and the

vector (ho, hx - ho, ■ ■ ■ , AL„/2j - ^fAI-i) *s an -^-vector, which means that it

is the/vector of a multicomplex (a numeric condition for this is known). The

proofs of both directions of this result are quite difficult, and Stanley's direction

uses techniques from commutative algebra and algebraic geometry. For details,

see [3, 19].
Now, the flag-vector of a ranked poset L (with least element Ô and greatest

element Î) of rank n + 1 is an integer vector indexed by subsets of [n] :=

{1, ... , n}, denoted (fs \ S ç [«]). (In the case of a polytope, L is the
lattice of faces of the polytope, and n is the rank of the facets, which is thus

the dimension of the polytope.) Each fs counts the number of chains in L of

the form {Ô < xx < x2 < ■ ■ ■ < xk < 1} such that { p(x¡) | 1 < i < k } = S.
For simplicial polytopes, the characterization of Billera, Lee, and Stanley

of the /vector gives a characterization of the flag-vector (since the flag-vector

of each simplex of rank r, Ar~x , is known, so the value of fs(¿P) is ex-

actly fnaxs(^°) - /s\max.s(Amax's-1))- Not much is known about the flag-vector

of arbitrary polytopes, and it seems unlikely that a conjecture analogous to the

McMullen-Stanley-Billera-Lee result for simplicial /vectors will be formulated

soon for the flag-vectors of arbitrary polytopes, let alone proven. However,

Bayer and Billera proved that certain linear equations, called the generalized

Dehn-Sommerville equations, hold for the flag-vector of any convex polytope,

and that these are the most general linear equations that hold for all convex

polytopes. The generalized Dehn-Sommerville equations are:

k-\

Y (-TM/sû;(P) = (1 - (-l)*-i_1)/j(P)
j=i+\

whenever S ç[n], i <k, {i, k} ç S Ù {0, n + 1}

{j\i<j<k}ns = 0 ,
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where n is the dimension of the polytope in question. As with the /vector, it

is convenient to define the /?-vector or flag h-vector, by writing

ßs=Y(-l)*^fT
TÇS

for each S ç [n]. (This notation is taken from [2], as, unfortunately, hs is used

for something else in this field.) However, while the generalized Dehn-Som-

merville equations imply that ßs =^[«]\5, (which is reminiscent of h¡ = h„-¡),

the converse is not the case, and the general statement of generalized Dehn-

Sommerville is not simplified by merely restating the equations in terms of

the flag ¿-vector.
However, if we form the noncommuting polynomial Y,sc[n)ßsw(S) > where

w(S) is a word of length n in the variables a and b such that the zth letter

of w(S) is b if i £ S and a otherwise, then Bayer and Fine showed that this

sum can be rewritten in terms of c = a + b and d = ab + ba if and only if

the generalized Dehn-Sommerville equations hold for the flag-vector (fs) ; this

rewriting is called the cd-index, which was first introduced by Fine. These ideas

were first published by Bayer and Klapper in [2].

Fine originally made the following conjecture (which was strengthened by

Bayer and Klapper in [2] to all CIF-spheres—see that paper for details):

Conjecture 1.1 (Fine). The coefficients of the cd-index of any polytope are non-

negative.

Unfortunately, the cd-index as we have defined it is a very mysterious ob-

ject. So in addition to attempting to prove the Bayer-Klapper conjecture, we

would like to find some combinatorial interpretation of the coefficients, that
is, some set of objects for each cd-word w and each polytope 3°, such that

the coefficient of w in the cd-index of J3 is the cardinality of the given set

of objects. In addition to proving the conjecture, such an interpretation might

provide additional insight into the cd-index.
We do not find such an interpretation for all polytopes, but for several classes

of polytopes, including the simplicial polytopes, we do; for each word, there is

a collection of blocks in a partition of the maximal chains of the lattice of faces
of ¿P which has cardinality equal to the coefficient of the word in the cd-index.

This interpretation relies on the notion of a CL-shelling of the chains of a

lattice, which is a way of labeling the maximal chains of the lattice with integer

vectors, one integer per covering relation. This concept is due to Björner and

Wachs, who showed that the lattice of faces of every polytope is CL-shellable (a

result which in turn requires the famous result of Bruggesser and Mani that every

polytope is shellable). Then the flag ¿-vector of a polytope can be computed

from the labels of any CL-shelling of the lattice of faces of the polytope; in

fact, ßs is the number of maximal chains of £P that have descents at exactly the

rank levels specified by S. Hence, each chain gives rise to a word in a and b

in the sum J2ßsw (S), so a partition of these chains such that the chains in

each block have ab-words summing to some cd-word gives the combinatorial

interpretation desired.
In the case of the simplex and octahedron (in each dimension), such a par-

tition exists, since the lattices of faces of these polytopes are isomorphic to the
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boolean lattice and the lattice of signed sets respectively. Hence, we can produce

a CL-labeling by labeling each covering relation A < B by the unique element

of B\A. This labeling is particularly nice, and the collection of labels of all

chains of the boolean lattice (resp., the lattice of signed sets) is exactly the set

of (signed) permutations of an «-set (where n is one more than the dimension

of the simplex, or the dimension of the octahedron; in the latter case, 0 must

be added to each signed permutation).

This motivates a study of (signed) permutations, in which the work of Foata

and Schützenberger on André permutations is invaluable. An André permutation

of a totally ordered set X is a permutation without double descents satisfying

an additional technical property. We extend this notion to the case of signed

permutations, where we must add additional even more technical properties (for

instance, we require that if m = maxX, then m = -m appears in the signed

permutation). Foata and Schützenberger studied André (signed) permutations

because they are in bijection with alternating permutations of the same set (and

we extend this to the signed case as well). The main fact that makes André

(signed) permutations useful is that if c*i •••q„ is a permutation with ak =

min{ai, ... , an} , then it is an André permutation if and only if both ax ■■ ■ ak

and ak+x ■ • -a„ are André permutations. In the signed case, if

ak = min{a!, ... , a„} = -max^o^l, ... , |a„|},

then ax ■ ■ ■ an0 is an André signed permutation if and only if ax ■ ■ -ak is an

André unsigned permutation and ak+x • • a„0 is an André signed permutation.

(This corresponds to the fact that the downward intervals in the lattice of signed

sets are isomorphic to boolean lattices).

We inductively construct a partition of the maximal chains of the boolean lat-
tice and the lattice of signed sets, labeled as above. There is one André (signed)

permutation per block, and each block sums to a word in c and d that can

be read off of the ascent-descent structure of that André (signed) permutation.

From this fact, it follows that the cd-index of the simplex is exactly one of Foata

and Schiitzenberger's André polynomials (with the identification of their s, t

and the c, d of the cd-index). Since the simplex is self-dual and since the cd-

index of ¿P can be derived from that of ¿?* by simply reversing each word,

we immediately get their result that each André polynomial is invariant under

the reversal of each word.

The partition just constructed has some very nice properties. For instance,

each block n, that corresponds to (that is, whose chains' ab-words sum to)

a cd-word w¡ beginning with the letter d has all of its chains pass through

a single atom of the lattice of faces of £P. A similar but more complicated

fact holds if Wi begins with the letter c. Since every ordering of the atoms

of a simplex gives rise to a CL-labeling as before, and hence to a partition

with these nice properties, we can use these properties to extend the partition
to the lattice of faces of any simple polytope; since simple polytopes are dual

to simplicial polytopes, simplicial polytopes also have nonnegative cd-indexes.

Similarly, using similar properties and a recursion for the cd-index for polytopes

due to Bayer and Klapper, we show that any polytope with dimension less than

or equal to five has a nonnegative cd-index.
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2. The cd-iNDEX

Definition 2.1. For any ranked poset P with Ô and Î of rank n + 1 and

for each subset of [n], S = {ix, i2, ... , is} such that ix < ■■■ < is, let

fs - fs(P) be the number of chains of P, Ô < x¡, < xl2 < ■ • • < xis < Î such

that p(Xjj) = ij . The flag-vector of P is the vector (fs | S ç [n] ) in I2" with

basis elements indexed by ( S \ S ç [n] ).

If P is as in the definition, and S ç [n], then Ps is the poset with base

set {jc € P | p(x) £ S} U {Ô, 1} with the same relation; this is called the

rank selection of P. The chains in this definition are exactly the flags (maximal

chains) of the rank selected posets Ps, which is why (fs) is called the flag-

vector.

Following Stanley, we say a ranked poset with Ô and î, P, is Eulerian

whenever its Möbius function satisfies ß¥(x, y) = (-l)/»«-^) = (-l)rtl*.>-l)

for all x < y in P. For any F < G in the face lattice, the interval [F, G]

is the face lattice of a polytope ¿P\f ,g\ of rank p(G) - p(F), and hence of

dimension p(G) - p(F) - 1 ; furthermore, it is well known that ß&>(F, G) =

X(^[f,g]) = (-ly^.ci). Hence for every polytope &>, L(^) is Eulerian; this

motivated the definition of Eulerian.

Theorem 2.2 (Bayer-Billera, [1]). If P is a rank n + 1 Eulerian poset, then

k-l

Y (-1)J"'"'/5Ù>(P) = (1 - (-l)k-'-l)fs(*)
(2.1) i=i+x

whenever S ç [n], i < k, {i, k} ç S Ú {0, n + 1} and

{j\i<j<k}ns = 0

Furthermore, these equations (along with /0 = 1) imply all linear equations

that hold for the flag-vectors of all n-polytopes (and hence all Eulerian posets P).

The dimension of the affine span of all flag-vectors of n-polytopes is e„ - 1,
where e„ is the nth Fibonacci number (defined by eo = ex — \ and e¡ =

e;_i +*/_2).

Definition 2.3. The flag h-vector or ß-vector of a poset P of rank n + 1 is

(ßs I S ç [n]), where

/?s :=£(-!) W)/r.
TÇS

Note: the flag «-vector is to the flag-vector as the /' ~ctor is to the «-vector;

as with the «-vector, use of the flag «-vector makes stating certain things clearer.

(The generalized Dehn-Sommerville equations are unfortunately not one of

these things; (2.1) becomes

k-\

Y £ (-ir'-'/WP) = in - (-i)*-''-1) £jmp)
(2 2) Tcsj=i+i res

whenever S ç [n], i < k, {i, k} C SO {0, n + 1}, and

{j\i<j<k}nS = 0.
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which is not really very nice. However, Proposition 2.9 gives a nice consequence

of the generalized Dehn-Sommerville equations, as does Theorem 2.4.)

As with the «-vector and the/vector, the flag «-vector can be converted back

into the flag-vector:

fs=Yßs-
TÇS

(This is a simple inclusion-exclusion argument.)

To each subset of [«], we can associate a word in the letters a and b of

length « , via tun(0) :— w(0) := 1 and wn(S) := w(S) := wxw2 ...wn, where

w,-\b  ifieS.

So for instance, if « - 5 , then w({ 1, 3, 4}) = babba.
Using w(S), we can associate a noncommuting polynomial ab(3P) (in the

(noncommuting) variables a and b) to the flag «-vector of 3? :

ab{&) := £ /feiu(S).
SÇ[n]

We call this the ab-index of 0s.

Theorem 2.4 (Bayer-Klapper, [2]). The generalized Dehn-Sommerville equations

holding for an integer vector (ßs \ S ç [«]) is equivalent to the existence of a

unique noncommuting polynomial f(c, d) in c and d with integral coefficients

such that Y,scin]ßsw{S) = /(a + b, ab + ba).

Definition 2.5. Given the notation of Theorem 2.4, the cd-index of P is defined

to be /(c, d) and will be denoted cd(P) ; the cd-index of a polytope 3P is

defined to be cd(L{&>)).

Corollary 2.6. Every polytope has a cd-index.

For example, consider A2, which is a triangle. Then /0 = 1 , /i} = f{2} = 3

and /{i)2} = 6. Hence, ß0 = 1 , ß{x} =ß{2} = 2 and ß{x 2} = 6 - 3 - 3 + I =

1. The cd-index of A2 is thus c2 + d .
Let rev(ui ■• -v„) = v„-- -vx for any word V\ • ■ ■ v„ and extend rev( ) linearly

to sums of words. Then we have the following fact (from [2]):

Lemma 2.7. cd(&) = rev(cd(^*)).

Since the existence of the cd-index is equivalent to the holding of the general-

ized Dehn-Sommerville equations, studying the cd-index is a good way to study

these equations (especially since the equations are so messy and unpleasant).

However, the cd-index appears to be a very subtle invariant; it is not even easy

to calculate the cd-index of a simplex without some sort of general theory. (In

fact, the author spent several weeks trying to do this before Dr. Stanley pointed

out the paper [11].) Therefore, it would be nice to get some sort of combi-

natorial interpretation for the cd-index. In connection with this, we recall the

following conjecture:

Conjecture 2.8 (Fine). The coefficients of the cd-index of any polytope are non-

negative.
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If this holds, it might be possible to find some set of combinatorial objects
that the coefficients of the cd-index count; conversely, if we could find such a

set of objects, we would have proved the conjecture.

At this point, we note the following result, which is essentially [20, Corollary

3.14.6] for Eulerian posets and due to Bayer and Billera [1] in this context:

Proposition 2.9. If the integer vector (ßs \ S ç [«] ) satisfies the generalized

Dehn-Sommerville equations, then ßs = ß[n]\s ■

Note that the equations ßs = ß[n]\s do not imply all of the generalized Dehn-

Sommerville equations, as we will see. Consider the case where n — 3. It is

straightforward to calculate that the generalized Dehn-Sommerville equations
are

/?0 = 1 ,      ß{l}=ß{2,3},      ß{2} = ß{l,i},      ß{3}=ß{\,2}

and, finally

ß{2}=ß{l}+ßm~l

which does not follow from the other four.

3. Poset labelings

Björner [5] and Björner and Wachs [7] introduced notions of shellability for

posets which we require. For completeness, we give the definitions and state a

few results here; see the papers just referenced for details.

Let £ü,(P) be the rooted edges of a poset P, that is, {(r, x, y) \ r = {r0 <

••• < r¡ = x} G Jtfê([Ô, x]), x < y}, where Jffê(Q) denotes the set of
maximal chains of any poset Q. Then X: J?»(P)-»Z is a chain-edge labeling

of P, and we write Xr_(x, y) for X(r,x,y). A rooted interval L[x, y] is an

interval [x, y] together with a maximal chain r of [Ô, x], which is called the
root of the rooted interval.

A (maximal, saturated) chain of L[x, y] is a (maximal, saturated) chain c of

the interval [x, y] along with the root. For a chain-edge labeling X, and a max-

imal chain c of L[x, y], we write XL(c) for (Xr_(co, cx), XL<{Cl}(cx, c2), ... ,
Ar<£(c/_i, C/)) (in the last term, we slightly abuse the notation; the root is ac-

tually r < {co < Ci < • • • < c/_!}). We say that a rooted chain ç of L[x, y] is

( X-)increasing whenever XL(c) is, and we have the lexicographic order <¿ex on

the chains of P ( a <iex b iff for some j, a¡ = b¡ for i < j and a¡ <bf).

Definition 3.1. A chain-edge labeling X: §Ü,(P)—»Q is a CL-labelingof P (for
"chain-edge /exicographic") iff for each rooted interval ¿x, y] of P, there is

a unique lexicographically first maximal chain, and this chain is the unique

increasing chain of L[x, y]. A poset P is said to be CL-shellable or CL-
labelable if there is some CL-labeling of P.

If Xr_(x, y) is always independent of the chain r, then we say X is an EL-

labeling and that the poset is .EX-shellable.
A useful reformulation of CL-shellability was introduced by Björner and

Wachs in [7]; for this, recall that the atoms of P are a £ P such that a > Ô.

Definition 3.2. An ordering {ax, a2, ... , at} of the atoms of P is a recursive

atom order (and we say P admits a recursive atom order) whenever either P is

of rank 1, or both
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(1) for all 1 < j < t, the interval [a,-, Î] admits a recursive atom order in

which those atoms of [a,, 1 ] which cover some a¡ with i < j come

first, and
(2) for all 1 < i < j < t, if a¡, a¡, < y £ P, then there exists a 1 < k < j

and z £ P such that ak , a¡ < z <y .

A shelling order of a polytope (which we will define in a moment) is a recur-

sive atom order of the lattice of faces of the dual polytope. This motivated the

definition of recursive atom order.

Algorithm 3.3. Given a recursive atom order of a poset P, we construct a CL-

labeling of P.
Let {ax, a2, ... , a¡} be an recursive atom order, and pick any integer label-

ing X,m of the pairs (Ô, a¡) such that X,m(Ô, a¡) < X^(Ô, a¡) for all i < j .

Now, for each atom a¡, let F(üj) be the set of all atoms of [a,-, 1] that

cover some a, with i < j ; this is the set of atoms of [a,, î] that must come

first in any recursive atom order of [a,, î]. Pick such a recursive atom or-

der (which exists by definition), say bx, b2, ... , bs, and extend X to the bot-

tom edges {aj < bk} of \a¡, î] such that X{0<aj}(aj, bk) < X{ó<a¡}(aj, b¡)

for k < I, and

bk £ F(aj) => X{0<aj}(aj, bk) < A{Ô}(Ô, af),

bk £ F(aj) => X{0<aj}(aj, bk) > A{Ô}(Ô, aj);

clearly this is possible. Continue inductively to create the required labeling.

See [7, Theorem 3.2] for a proof that this is, indeed, a CL-labeling. The
same proof demonstrates how to go from a CL-labeling to a recursive atom

order.
Recall that a polyhedral complex is a finite set A of polytopes in E" such

that a face of any element is again an element and the intersection of any two

elements is a face of both (and hence an element). One example of a polyhedral

complex is any simplicial complex, since a simplex is a polytope. The example

we are most concerned with is 83s , which is the set of all faces of 3° except 3°

itself. Hence, we say that the facets of a polyhedral complex A are the maximal

elements of A, so the facets of d3° in the polyhedral complex sense are the

same as the facets of 3a in the polytope sense. If all of the facets have the same

dimension «, we say A is a «-complex, so if 3s is a «-polytope, 33° is a

(n - l)-complex homeomorphic to a sphere, and the complex 3s :— 33d U {3°}

is a «-complex. A simplicial complex is a «-complex whenever it is a pure

simplicial complex.

An ordering of the facets Fx, F2, ... , F, of a «-complex is called a shelling

order if either n = 0 or F¡ V\ \}\Z\ F, is a nonempty (« - l)-complex for
all 1 < j < t and the following recursive condition holds: there is a shelling

of each dFj, 1 < j < t, in which the facets of F, n Uj~, F, come first.
(This definition, due to Björner in [5], seems the most useful in this context.

Note that it implies that a recursive atom order of a polytope is equivalent

to a shelling order for the dual polytope, and vice versa.)   We say that a n-
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complex is shellable if there is a shelling order on the facets, and that 3d

is shellable whenever 33° is. We form the lattice of faces of A, L(A), by

taking the union of the lattice of faces of each facet of A and adding a î ;

similarly, we form L*(A) by taking the dual to L(A). Hence, \Jyd36) is the
same as L(3°).

Theorem 3.4 (Björner-Wachs, [7, Theorem 4.3]). Let A be a n-complex. Then

A is shellable iff L* (A) has a recursive atom order.

Corollary 3.5. Let A be a n-complex. Then A is shellable iff L*(A) is CL-
shellable.

Note that we have slightly unfortunate terminology here: an «-complex is

shellable iff the dual to its lattice of faces is shellable, in which case we say

the lattice of faces is co CL-shellable. So we can say that an «-complex A is

shellable if and only if its lattice of faces is co CL-shellable.
Now we have the following important result.

Theorem 3.6 (Bruggesser-Mani, [9]). Every polytope 3s is shellable.

The idea of this is fairly straightforward. We imagine that we have a polytope

floating in space, and consider launching a "spacecraft" off of one of the facets

on a suitable straight line off to infinity. The "spacecraft" will then return from

infinity along the same straight line, but on the other side of the polytope. The

order in which the facets of the polytope become visible (on the way out) and

invisible (on the way in) gives a shelling order for the polytope. For details and

proofs, which are not so straightforward, see [9].

In a CL-labeled poset P of rank « + 1, the descent set of a maximal

chain ç = {Ô = Co < C\ < ••• < cn+x = 1} of P is the set of all i £ [n]
such that Xc(c¡-X, c¡) > XL(c¡, ci+x) ; this set is denoted 0.1(c) = D(c), and each

i £ D(c) is called a descent of the chain c. Recall the definition (in §2) of the

map w„ from subsets of [«] to words of length « in the letters a and b,and,
as before, denote the set of maximal chains of a ranked poset P by ,/# ^(P).

Then we have the following, which is basically [20, Theorem 3.13.2]. (See
also [6].)

Theorem 3.7. The ab-index Y,ß{s] ' W(S) of any polytope 3d with a CL-
shelling X is equal to the sum ^ w(D(c)), where the sum is taken over all c e
J?ff(L(3°)).

So we have a combinatorial interpretation of the flag «-vector (ßs) for CL-

shellable posets P, since ßs = #{c £ J^^(3°) \ D(c) = S } . Of course,

this immediately implies that each ßs is nonnegative for every CL-shellable

Eulerian poset (which was well known).

Each word in {c, d} can be thought of as a set of words in {a, b) of the

same degree by expanding c = a + b and d = ab + ba, so we might hope

to construct a partition of ^£''W('L(3a)) so that each block B of the partition

has J2ceBw(D(c)) summing to a word in c and d. This would constitute a

combinatorial interpretation of the cd-index.
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4. (Signed) permutations and LX-shellings

Recall that the «-simplex A" is the convex hull of n + 1 points in general

position in R" . The boolean lattice of rank «, B„, is the poset of subsets

of [n] ordered by inclusion. It is well known that L(A") = B„+1 . The «-

octahedron, cfn , is the convex hull of the points {e,, ëi}"=1 in W , where e, =

(à\,i, à2j, ... ,ô„j), ê, = -e,i, and S¡j is the Kronecker delta (1 if i — j

and 0 otherwise). The lattice of signed sets of rank n , B^ , is the poset on

base set

{A = (A+,A~)}{A+nA- = 0andA+UA~ ç[«]}U{î} ,

ordered by î > (A+ , A~) for all pairs A and (A+ ,A~)<(B+,B~) iff A+ ç
B+ and A~ ç B~ . (Note: in many other papers, such as [15], the order used for

the lattice of signed sets is the dual of the one given here.) We can think of these

pairs as sets where elements of A+ have a positive sign and A~ have a negative

sign; hence the name signed sets. For instance, the signed set ({2, 5}, {1, 3})

can be thought of as {-1, +2, -3, +5}. Once again, it is well known that

L(cf") = B± .
The n-cube, Sn is the dual of the «-octahedron; alternatively, we can define

it to be the convex hull of the points {(ex, e2, ... , e„) \ e¡ = ±1} ; its lattice of

faces is B±*. See [10] for more details on all three of these polytopes, and [16]

for more on the lattice of signed sets.

The boolean lattice and the lattice of signed sets each have a very nice EL-

labeling, defined as follows: for A, B £ B„ , obviously A <• B iff B\A is

a single element. We define X(A <• B) to be the element of B\A (which

is in [«] C Z). For A = (A+, A~), B = (B+, B~) £ B± , we have that

A < B when B\A is a single signed element (either B+\A+ is a single element
and A~ = B~ , or vice versa). We let X(A < B) be the element of B\A

(considered as an integer), so that X(({\}, {2}) < ({1}, {2, 3})) = -3. In

addition, if A+ Ú A~ = [«], then A < î . In this case, we let X(A < Î) = 0.
These labelings of B„ and Bj are called the standard labelings; any labeling

of L(A") £ B„ or L((f ") £ B± that can be derived from the standard labelings

by isomorphism is also called standard. See Figure 1 for an example of the latter;

each element of the poset is labeled by both a face of tf2 and the corresponding

element of B^.
Given a totally ordered «-set X, the X-standard labelings are defined to

be Xx(a, b) := o^l(X(a, b)), where v is the unique order preserving bijection

from X to [«] (extended to X± —> [-«, «] for the octahedron). Notice that

all the results we prove for the standard labelings will hold for the .Y-standard

labelings as well.
A bijection n: [n]—>X (where X is any «-set) is called a permutation

(or an unsigned permutation) of X. We often write n¡ for n(i) and the

word 7Ti 7i27ii ■ ■ ■ 7in for n ; hence, we call « the length of n . The set of all per-

mutations of a set X is denoted X\, and Sn := [«]! ; we have that the size of X\,

#(X\) — ( #X )!, so #S„ = «!. We think of these sets primarily as sets of words;

for example, {x, y, z}\ is the set of words {xyz, xzy, yxz, yzx, zxy, zvx),

and S3 = { 123, 132,213,231, 312, 321}. "
Consider injections a: [«]—>{+, -} x X, and write  er,   for a(i),  x  for
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Ô       0

Figure 1. A standard labeling of ¿f.

(-,x) and x for (+, x). Define |(±, x)\ :=x, and \a\ suchthat \o\¡■■:= \o¡\,

so \o\ is a map from [«] to X. Then we say that such a a is a signed

permutation whenever \o\ is a permutation of X. In this case, we let on+x :— 0,

and write ax ■ ■ ■ anan+x for o . However, we still call n the length of a . The set

of all signed permutations of a set X is denoted X\, and S* := [«]!. Again, we

consider S* and X\ as sets of words; Sf = {120, 120, Ï20, Î20, 210, 2l0,
210, 270}.

We consider only the case where X is (totally) ordered by a relation < . In

this case, we extend < to the set X± := ({+, -} x X) U {0}, so that

• y < 0 < x for all x, y £ X ;
• x < y iff x < y in X ; and
• x <y iff x > y in X.

This defines < as a total order on AT* . (For instance, if X = [2], we

have 2 < T < 0 < 1 < 2.) If X = [«], we identify x with -x, so A'± is iden-
tified with [-«, «]. We define supp(er) to be the image of a in {+, -} x X ,

{ax,a2, ... , o„} , so |supp(er)| = X . For instance, supp(1320) is {1,2,3} =

({2}, {1,3}). Notice that a can be thought of as a map from [«] into supp(rj),

and thus as a permutation of that set. Thus, a word with signs is ambiguous,

in that it could be a permutation or a signed permutation; throughout this pa-

per, the 0 at the end of the word ax ■ ■ ■ o„on+x will mark that the word is to

be thought of as a signed permutation rather than as an unsigned permutation

of {er,}"=1 • For an unsigned permutation n of X, we define supp(7r) := X.

(Notice that this is quite different from the support of a chain.)

Note that if #X — «, we have order-preserving bijections ux'- Ar—»[«]

and (r£ : X^1 —>[-«, «], which can be extended to bijections can^(7t) := vx ° tt

from X\ to S„ , and canf (er) := 0% ° er from X\ to S* . For any (signed)

permutation n (resp. er), we define can(7r) = cansupp(;r)(7r) (resp. can±(er) :=

caní , Jo)); can(^) and can±(er) are called the canonical equivalents of n

and o. For example, if X = {x, y, z} ordered alphabetically (x < y < z),

then can(xzy) = 132 and can±(xzy0) = 1320.

Proposition 4.1. For « > 0, // X is the standard labeling of B„ , then the set of

labels of all maximal chains of B„ , A(^# W(B„)), is exactly S„ .
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Proposition 4.2. For n>0, if X is the standard labeling of B±, then the set of

all labels of all maximal chains of B* , X(JfW(R^)), is exactly S* .

For any (signed) permutation n of length « , we say i £ [n - 1 ] is a descent

of ti whenever 7r, > ni+x and an ascent whenever n¡ < ni+x. The descent

set of n is the set of all descents of n and is denoted D(n) (this definition

matches the one given earlier for labeled chains in the case of the standard

labelings used in the last two results). For a signed permutation o, we say

that i £ [n] is a signed descent if either i £ [n - 1] is a descent of a or i — n

and on > on+x — 0; the set of all signed descents of cr is denoted D±(o) x

For example, the descent set of the permutation 7462531 is {1,3,5,6}. One
way to see this is to write 7b4a6b2a5b3bl, where the superscript is a for an

ascent and b for a descent. The word bababb is u;(D(7462531)), where w

is the function defined in §2. By using Theorem 3.7, we see that

Proposition 4.3. cd(A") = ¿Znesn+¡ w(D(n)), and cd(cf") = ^(T65± w(D±(o)).

5. André (signed) permutations

From here until the end of the section, we follow Foata and Schützenberger's

paper [11] (the first part of which was published as [12]), adding the correspond-

ing signed concepts which were not considered there. So all of the results in this

section for permutations originally appeared in [11]. If i - 1 and i are both

(signed) descents, we call i a double (signed) descent. Similarly, we can define

double (signed) ascents, (signed) peaks (ascent, descent) and (signed) valleys

(descent, ascent).
For any permutation n of length «, we define the restriction of n to an

interval [/', j] of [«] to be the permutation ff|[/,7] of {¡it, 7ti+x, ... , 7ij} of

length j — i + 1 defined by n\[¡j](k) = n(k + 1-1). In other words, the
restriction is the word 7i¡7ti+x ■ ■ ■ n)■■ . For any signed permutation er of an

«-set X and [/', j] ç [«] we define o\[ij] in the same way, so it is an un-

signed permutation OjOi+x ■■ -o¡ of the set {o¡, oi+x, ... ,of}, not a signed
permutation, (because there is no 0 at the end—the reason for this defini-

tion is because of our application to the standard labelings of Bj). However,

we define cr|ri?„+1] to be a signed permutation of length n — i + 1 because

we have o\[i>n+x](n - i + 2) = cr„_i+2+í_i = <7«+i = 0, so cr|r/,n+i] is the

word er,eri+1 ■ • • cr„er„+i , which ends with 0 .

A permutation a of an «-set X is an André permutation whenever a has

no double descents and a satisfies condition A„ :

(An) : for all 1 <;'</<«, if

a7_i = max{a;_i , aj, a/-i , cxj>} and

aj' = min{ay_i , aj, ay-X , a^} ,

there exists a j" , with j < j" < j', such that a;» < ay .

This is rather confusing; see Figure 2 which shows the condition on a graph

of a thought of as a function. Notice that, in fact, (A„) implies that there are

no double descents; it can be thought of as a generalization of the requirement

This is nonstandard; we are adding the 0 to match the labels of B„ .
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j j" i' i

Figure 2. Condition (An): the existence of j < j' such

that a;-_i > a¡, a;<_i > ay, a^ < aj, and a;_i > ay_i

implies the existence of ; < j" < j' so that ay < aj'.

that there be no double descents. The set of all André permutations of [«] is

denoted D*.

Examples.

£>Î = {1},    Z>5 = {12,21},    D*3 = {123, 132,213,231,312},

D; = {1234, 1243, 1324, 1342, 1423, 2134, 2143, 2314,

2341,2413, 3124,3142, 3241, 3412,4123,4132}.

Proposition 5.1. The restriction of an André permutation is an André permuta-

tion.

Proof. We just note that if a has no double descents and satisfies condition (A„),
then any restriction of it of length m has no double descents and satisfies (Am).

D

We say that an André permutation a of an «-set X is augmented when-
ever an = maxsupp(a) ; we denote the augmented André permutations of [«]

by A„.

Examples.

Al = {l],    ^2 = {12},    ¿3 = {123, 213},

A4 = {1234, 1324,2134,2314, 3124}.

Proposition 5.2. For n > 0, restriction to [«] gives a bijection An+X —> D* and

hence,  #An+x — #D* .

A signed permutation a of an «-set X is an André signed permutation

if a has no double signed descents, a satisfies condition An+X (which means

that the 0 at the end must be considered), and for x = maxX, x £ supp(a)

and a|[Q-i(3t)+i ,„+i] is also an André signed permutation, where we take 0 £ Sq

to be an André signed permutation. (These extra conditions are needed to make

various results that hold for André unsigned permutations also hold for André
signed permutations; for instance, the following.)
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Proposition 5.3. The restriction of an André signed permutation is an André per-

mutation or an André signed permutation.

Proof. For a signed permutation a and its restriction a\[¡jX with j < n, the

proof is as in Proposition 5.1 (and since we have removed the 0 at the end,

the result is an unsigned permutation). Otherwise, we have ß — a|[/>n+i],

and letx = maxX; either / < a~~x(x), in which case x = max|supp(/?)|

(so x £ supp(ß)) and fi\lfi-irx)+x,n+X] is the same as a\[a-l{x)+x^+x], which is

an André signed permutation; or i > a~x(x), in which case y = a|[Q-i(x)+i ,«+i]

is an André signed permutation, so by induction on the length of a, the signed

permutation ß is again André, since it is a restriction of the shorter André

signed permutation y .   □

The following was pointed out by Bayer (in a personal communication):

Corollary 5.4. If a is an André signed permutation of [«], then a„ < 0.

Proof. By the proposition, a|{„ „+1} is an André signed permutation; Hence,

-|a„| 6 {a„} by one of the conditions on André signed permutation, so an =

-\an\ < 0.    D

Because of the last result, all André signed permutations end with a descent,

like augmented André (signed) permutations; we shall see that the André signed

permutations correspond to augmented André (signed) permutations in other re-

spects as well. Hence, we say that all André signed permutations are augmented.

(It would be nice to find a better definition for André signed permutations, so

that they would properly contain the augmented André signed permutations,

as with the unsigned permutations. It would be especially nice if an analog of

Proposition 5.2 existed.) The set of all (augmented) André signed permutations

of [«] is denoted A* .

Examples.

^± = {0},     ^f = {10},     /1± = {120,Ï20,2T0},

Af = {3120, 3T20, 32T0, 1320, 23~T0,
Ï320,23T0, 1230, Ï230,2130,2Î30}.

The variation of a (signed) permutation n of length n is V(n):=wn-X(D(n)),

where  w  is the function introduced in §2.    Similarly, we have the signed

variation   V±(o) :- w„(D±(o))   of a signed permutation   er.    For instance,

^(3120) = w({2}) = aba.
For an augmented André permutation a of the usual «-set X, we define

the reduced variation U(a) to be the word obtained from V(a) by replacing

each ba with a d, and each remaining a by a c ? Since a has no double

descents and ends with an ascent (so V(a) ends with an a), there will be no

extra b's, so /7(a) is a word in c and d . Similarly, we have the reduced signed

variation of an augmented André signed permutation a, U±(a) which comes

from V±(a), both in the same way as U(a) comes from V(a).

2In [11], the original notation used was s for c and t for d .  The fact that the letters in

question sound similar is apparently a coincidence (see Theorem 6.1 for why we use c and d).
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Examples. We have that_V(2134) = baa, so (7(2134) = dc. Similarly,

^±(3120) = aba, so ^±(2130) = cd.

We now define the noncommutative André polynomial of Foata and Schüt-

zenberger as follows: U(An) :=¿~^aeA U(a) is the nth noncommutative André

polynomial. In addition, we define the nth signed noncommutative André poly-

nomial to be U^A*) := ¿ZaeA* U±(a) ■

Examples.

U(AX)=\,     U(A2) = C,     U(A3) = c2 + d,

i/(^4) = c3 + 2cd + 2dc,

U(A5) = c4 + 3c2d + 5cdc + 3dc2 + 4d2,

U±(A^) = l,     U±(Af) = c,

U±(A2k) = c2 + 2d,    U±(Af) = c3 + 4úc + 6có.

By letting c and d commute, we get the commutative André polynomial of

each type.

Proposition 5.5. For any permutation a of an (ordered) n-set, a is an André

permutation iff for am = minsupp(a), both a|rm] and a|rm+1 „] are André

permutations.

Proof. The 'only if is Proposition 5.1. So suppose a\\mX and a|[m+1 nX are

André permutations. Since m is a valley of a, we need only check condi-

tion An for j < m < j', but recall that am - min supp(a), so it is smaller

than aj', so we take /' = m .   D

Corollary 5.6. For any permutation a of an (ordered) n-set, a is an augmented

André permutation iff for am = minsupp(a), we have that a|rm_i] is an aug-

mented André permutation, a\[m+x .„] is an augmented André permutation and

maxsupp(a) £ supp(a|-m+1,„]).

Proposition 5.7. Let a be an augmented André permutation of an n-set with n >

2. Let am = minsupp(ä), ä(1) = ä|[m_i] and a' — a\[m+x,„]. Then

u(a) = ícU{á,) ifm = l
{  '     \ U(á^)óU(á')   otherwise.

Corollary 5.8.

n

U(An+2) = cU(An+x) + Y {")U(Aj)ÓU(An+x.J),        « > 0 .
7 = 1

Proposition 5.9. For any signed permutation a of an (ordered) n-set X with x

- max X, a is an André signed permutation iff am = x £ supp(a), a|[mj is an

André permutation and a|¡m+i ,„+ij is an André signed permutation.

Proof. By Proposition 5.3, the 'only if part is clear. Conversely, there are no

double signed descents and (An+X) holds just as the corresponding facts were

true in the proof of Proposition 5.5. The other two necessary conditions ( x £

supp(a) and a|[w+1 ,„+i] being André) are true by assumption.   □
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Corollary 5.10. There is a bijection

n+\

Ai+1-*© (L-l)     X Äm-\ x An-m+\)
m=\

(where (x) is the set of all signed sets, (A+, A"), such that A+ Û A~ ç X

and #A+ + #A~ = k).

Proposition 5.11. For all a £ A* , if am = «, then

U±(a) = JcC/±H[m+i,«+i]) ifm=l,
\U(a\lm-X])dU±(a\[m+x,n+X])   otherwise.

Corollary 5.12.

U^A^) = cU±(AÏ) + Y2J(j)V(Aj)dU±(AÎ-j) ■
7=1

6. Connection with the cd-iNDEx

Theorem 6.1. For all « > 0,

(6.1) cd(A") = U(An+x),

(6.2) cd(cfn) = U^A*).

Proof. By Proposition 4.3, we have that cd(An) = Y^nzs u>(D(n)) and cd((fn)

= ¿Zees* wiD±(o)). We will define a map Q: An+X ->25"+1 so that { Q(a) \

a £ An+X } is a partition of Sn+X ; for all a, ß £ An+X , a £ Q(ß) iff a =

ß; and ¿ZKeQ(a)w(^(n)) = U(a); this will prove (6.1).   Similarly, we will

define Q± : Af -> 2s* so that { Q±(a) \ a £ A„=} partitions S^ ; for all a, ß £
A±, a£ Q±(ß) iff a = ß ; and 2ZKfQ±{a)w{D(ii)) = t/±(a) to prove (6.2).

For both of these, we will proceed by induction on « .

For « = 1, S2 = {12,21}, A2 = {12}, and we set Q(12) = {12,21}.

Similarly, Sf = {10, 10}, Af = {10} and so we set Ö±(10) = {10, 10}.
Note that again the facts required of Q and Q± hold.

To define Q and Q* for « > 1, it is convenient to define

Q(a) = cans^p(Q)(ô(can(a)))

for a any augmented André permutation, and Q similarly. This means that

we will have partitions of X\ or X\ jmce we have partitions of the correspond-

ing S#x and S#x . For instance, (2(23) = {23, 32} because can(23) =12,

(2(12) = {12, 21}, and can^1 3}({12, 21}) = {23, 32}.

For a an André signed permutation of [«], let am = n, a'1' = a|[im_i]

(an unsigned permutation), a(2) = a|[m+1 „+1] (a signed permutation) and X¡ -

supp(â(,)). Then we set

Q±(a) = {nno, 7tño\7t £ Q(ä{x)), o £ Q±(á{2))} .

For example, we have Af = {120, 120,210}. For 120, m - 2 and

so  (2(120) = {7t2o, 7l2o\7l £ ß(l) = {l},cr £ Q+(0) = {0}} = {120, 120}.
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Similarly, ß±(120) = {120, 120} and ß±(210) = {2a, 2o \ o £ Q (10) =

{TO, 10} } = {2T0, 210, 2T0, 210} (in the latter case, m = 1).
For a an augmented André permutation of [n + 1], let am = 1 , â(1) =

«ln.jH-i], ä(2) = a|[m+i(„+i], Xi = supp(äW) (so « + 1 £ X2). Then we set

Q(a) = {n^ln™ , ?r(1>(« + \)[(7i(2))\7i^ £ Ö(ä(,))} ,

where [(n) = cansu|)p(7r)u{1}U„+1}(can(^)).

For example, A2 = {12}, and ß(12) = {In, 2[{n) \ n £ 0(2)}, that is,
{12,2|(2)} = {12,21}. Then, we have_^3 = {123, 2J_3} ; for a = 123,
m = 1, and so ¿(123) = { in, 3l(n) | n £ Q(23)}, since g(0) = 0 . We know

that ß(23) = {23, 32}, so (2(123) = {123, 132, 312, 321}, because 1(23) =
12 and 1(32) = 21. Note that ¿ZneQ{m) w(D(n)) = a2 + ab + ba + b2 = c2 =

1/(123). Similarly, 0(213) = {213, 231} , and £^0(213) w(D(n)) = ab + ba =

d = i/(213).
We will now show

(a) Q(a) n Q(ß) ¿ 0 implies a = ß ;
Q±(a) n ß±(i?) ¿ 0 implies a = ß.

(b) For all n £ Sn+X , there exists a £ An+X such that n £ Q(a) ;

for all n £ S^ , there exists a £ A ± such that n £ Q±(a).

(c) E,6Q(a)«'(^)) = £/(«);

¿ZeeQHa)™(D±(o)) = U±(a).

The first two show that we have a partition, and the third shows that the sum

is right. Note that all three are true for « = 1 (from the complete description

of Q and g* for this case given above). So we may proceed by induction.

(a) Note that for all n e (2(a), if ak — 1, then by construction nk £

{1, « + 1}. So if n £ Q(a) n Q(ß), then ak = ßk = 1. Hence, we have

that n = 7r(1)jc7r(2', where x = nk £ {\, n + 1}. Suppose x = 1 (the x = « + 1

case is similar). By definition of Q( ), we have that 7r(,) € ö(ä(,)) n Q(ß(,)), so

by induction a^ = /?('>. Hence a = aC'la^ = ß^XßW = ß . For the signed

case, we do the same thing with {«, «} instead of {1, « + 1} ; note that we

must use the unsigned case in the induction step.

(b) For o £ S^ , we can write er = 7rxcr', where x £ {«, «}. By induc-

tion, the permutation n is in some g(a(1)) (for a(l) some augmented André

permutation of supp(7t)) and the signed permutation er' is in some Q (ä(2))

(for a(2) some André signed permutation of |supp(er')|). The signed permuta-

tion a = ä(1)«ä(2) is an André signed permutation by Proposition 5.9 and the

fact that ä~(1)« is André, and er e g±(a) by definition of Q±( ).

For any n £ Sn+X , we write n = ^(1,X7C(2), where x £ {1, « + 1}, and {1, «

+ 1} n supp(7t(1)) = 0. (So x is the first occurrence of either 1 or « + 1 .)

Then proceed in the same way.

(c)Let X(a):=¿Znma)w(D(n)) and X±(a) := £a6(?±(a)M£>») • These

have the same initial conditions as U( ) and U±( ), so if we show they satisfy

the same recursion, we are done. This consists of showing that X(a) = cA^ä*2')

and X±(a) = cX±(á^)  if âO £ AQ, and that  X(a) = X(â^)dX(â^)
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and Xa" (a) = X(ä(1))dX±(ä(2)) otherwise.   We will show the first and last

of the four statements; the other two are very similar.

Let a £ A„+x, and âO) £ Aq . Hence, a = la2a^ ■ ■ ■ a„+x . Then let Q(a) —

Qx 0 Q"+x, where g' := { n £ Q(a) \ nx = i} for i e {1, n + 1}. Then

X(a)= £>(£(*)) +   Y   W(DW)
%eQ} neQ"+l

=     Y     aw(D(n{2]))+     Y     bw(D(7i{2)))

«(2)eë(â(2)) 7r(2)ee(ä<2>)

=     Y     CW(D(ti)) = CX(á{2)) .

neQ(ä.M)

Let a G A± , with a\tA%, and let k = a~x («). Then let (f^a) = Q" U g" ,

where g' := { o £ Q±(a) \ ok = i} for i £ {n, »} . Then

*±(a)= 5] «;(£>») + J] w(D±(o))
aeQ" aeQ"

=     Y    (w(D(n))abw(D±(o)))+     Y    (w(D(7t))baw(D±(o)))

neQ(&il)) 7r€Q>(1))

aeQ±(ä{2)) f76ß±(ä<2))

=      Y     (w(D(7t))ów(D±(o)))

iteö(ö<")
<ree±(ä(2))

= (   J]    «;(2>(k))W    Y     w(D±(o)))=X(ä^)dX±(ä^).
\t€Q(ö<')) (reQ±(ä(2))

We now have a combinatorial interpretation of coefficients of the cd-index of

the simplex, octahedron, and cube, as counting certain classes of André (signed)

permutation:

C cd (A") = #{ a £ An+X | U(a) = w } ,
w

Ccd(cf") = #{a£A±\ U(a) = w } ,
w

Ccd(<Sn) = #{a£A±\ U(a) = rev(w)}
w

(where Zwf(c,ó) is the coefficient of the cd-word w in /(c,d)).
Since the simplex is self-dual in every dimension, we immediately get (from

the above and Lemma 2.7) that

U(An+x) = cd(An) = rev(cd(A")) = rev(U(An+x)) ;

this is the duality theorem of Foata and Schützenberger (which takes up a whole

section of [11]); we get it for free.
Furthermore, since the proof of Theorem 6.1 gives us a bijection between

augmented André (signed) permutations and blocks of a partition of Sn (S^),
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we can prove the following result originally due (in unsigned form) to Foata

and Schützenberger. (A porism is a corollary of the proof of a result.)

Porism 6.2.

(6.3) #An = #{7i£SnD(n) = {l,3,5,... ,2[fJ-l}},

(6.4) #A± = #{o£SnbD(o) = {\,3,5,... , 2[^\ - 1}}.

Proof. Note that for each cd-word w , there is exactly one ab-word in its expan-

sion of the form ababab • • • . Hence, in each block of the partition { g(a) | a e

An } there is exactly one (signed) permutation of the right-hand side of (6.3).   D

The permutations of the right-hand side of (6.3) are called alternating per-

mutations, and their cardinality is called the «th Euler number En . (It was

interest in these numbers that motivated the paper [11].) We will define the

signed permutations on the right-hand side of (6.4) to be the alternating signed

permutations and their cardinality to be the «th signed Euler number, E^ .

Notice that by Corollary 5.6, Corollary 5.10 and Porism 6.2, we have the

recurrence relations

En+2 = Y(«)E}En-j+x    and   £±+1 = ¿2^)£,£±_,

7=0 7=0

for « > 1, and E0 = Ex = E2 = E$ = Ef = 1 . If we let F(x) = £„>0 E„ xn/n\

and G(x) = ¿Z„>0En *"/»' > then we have F(0) = Eo = 1 > ̂ '(0) = Ex = I ,

and

F"(x) = YEn+2x"/nl = 1 + YE Q)EjEH-J+1x*/n\
«>0 n>lj=0

= YE"X"/n] • E^»+iX>! = F(x)F'(x) .
n>0 «>0

Integrating both sides of the last equation gives the more familiar form 2F'(x) =

F(x)2 + 1; either way, the solution is well known to be F(x) = secx + tanx .

For G(x), we get G(0) = E± = 1 and

G'(x) = YE^X» = 1 + EÊ ®&Ej)Etj
n>0 n>lj=0

= Y2"Enx"/n}- -YEnX"/nl = F(2x)G(x) .
n>0 n>0

Hence,

lnC7(x) = /   F(2t)dt,     G(x) = sec(2x)(sin(x) + cos(jc)) .
Jo

In [18], Shanks studies two matrices of numbers denoted ca,n and da,„ ,

which he calls the generalized Euler and class numbers. The definition is rather

complicated and noncombinatorial, but recursions are found for ca,n   and



96 MARK PURTILL

for da ; „ for each a. Furthermore, it is observed that

cxk    if « = 2k,
i dx k   if n = 2k+ 1.

Shanks notes the combinatorial interpretation this gives for cXfk and dxk , and

wonders if there are combinatorial interpretations for higher values of a .

For a = 2, we have the following:

Proposition 6.3.

c2k    ifn — 2k,E± = Í'
n " \d2,k   ifn = 2k + I.

Proof. From [18], we have the recursions

¿(-4V(g)C2,„-7 = (-!)",

7=0

7=0

-1

If we let r(x):=£„>0C2,„*27(2«)! and A(x) :=£„>, d2,„ *2"-'/(2« - 1)!,

then we have

£(-l)«*27(2«)! = £¿(-4Vg)c2,„_,*27(2«)!
«>0 «>0 7=0

= EE(2^rT)2;©C2.«-^2"/(2")!
í!>0 7=0

J](v^T)2"(2x)27(2«)!) (^c2,nx27(2«)!) ;
v«>0 '    \i>0

cos(x) = cos(2x)r(x) ,

and, similarly,

^(_ir-.x2-'/(2« - 1)! = ££(2v^T)2;(2"2-,)d2,n-^2"-1/(2« - D!

n>l n>[ j=0

= te(v/^î)2"(2x)27(2«)!)(^d2,^2n-1/(2»- 1)¡) ;

sin(x) = cos(2x)A(x) .

Hence,

Y(x) + A(x) = sec(2x)(sin(jc) + cos(x)) = G(x) ,

which proves the result.   D

To abstract the results of this section for A" and (f" , we say that any

polytope 3° satisfying the generalized Dehn-Sommerville equations has a co«7-

binatorial cd-index whenever there is a CL-labeling X and a partition n =

{n,, ... , n,} of J!W(\,(3>)) such that for each block n,  of the partition,
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Seen W(D(Ç.)) sums to a cd-word; the labeling X is called a combinatorial la-

beling. In other words, if there is a partition (called a combinatorial partition)

like { g(a) | a 6 An} for some X. As above, the existence of this partition

and labeling implies that the coefficients of the cd-index are nonnegative. The

converse is also true, since if the coefficients of the cd-index are nonnegative,

then for any CL-labeling X (which exists by Theorem 3.6), we can associate

each chain with an ab-word in the aô-index. Then the expansion of the cd-

index gives us a partition as required. However, when we say that 3s has a

combinatorial cd-index, we would like there to be some combinatorial way of

producing the partition, as in the results of this section. Notice that we have

shown that A" and cf " have combinatorial cd-index. Since (§n is the dual

of ffn , we could say that it has a dually combinatorial cd-index.

We will need the following observation later:

Proposition 6.4. For 3s £ {A", (f"}n>x and X a standard labeling, consider

a block Q(a) of the partition of the chains, and suppose the chains in Q(a)

sum to the cd-word w. Then if w begins with a d, all the chains of Q(a)

pass through a common atom of ^-,(3°), and if w begins with a c, then all

the chains of Q(a) pass through one of two atoms a(a), a(b' e g(a), those

chains whose ab-word begin with a (resp. b) pass through a(a) (resp. a(b)),

and X satisfies X0(Ô, a<a>) < X0(Ô, a^).

Proof. We proceed by induction. Write a — à^xà^, where x is 1 or «,

depending on whether 3° is A" or tfn . If ä(1) 0 A0 U Ax , then K;(ä(1)) ̂  1 ,

and so the result holds by induction. (This follows from the structure of X : all

elements of ß(ä~(1)) will label chains in [Ô, e], where e is the bottom of the

edge labeled x in the chain labeled a.)
Otherwise, if w begins with c, then a(l) £ Aq and a — xa(2), and all the

chains Q(a) have labels starting with {1, «} or {«,«}, depending on 3°.

All of those chains whose labels begin with 1 or « pass through a single atom

of L(3B) (since no two atoms have the same label A(Ô < a)) and they all start
with an ascent since all other labels are larger than 1 or ñ, whichever it is.

Similarly, all the chains whose labels begin with either « + 1 or « pass through

a single atom and start with a descent.

So suppose w starts with d; then a(1> £ Ax . Hence all the chains pass

through a single atom (the one such that X(Ö < a) = a(1)), as required.   D

We will say that any polytope that has some labeling which satisfies Proposi-

tion 6.4 for some partition n = {g(a)} has a strongly combinatorial cd-index

and that the labeling is a strongly combinatorial labeling. The standard (and

X-standard) labelings of the simplex and octahedron are strongly combinatorial

CL-labelings, and the standard labeling of the octahedron is a strongly combi-

natorial co CL-labeling of the cube.

7. Extending strongly combinatorial labelings

The results of the previous section only apply to a few polytopes.   In this

section, we will show how the strongly combinatorial labelings can be extended
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bf\*) *f-ía)(b)

r
Ô

Figure 3. When the word begins with a c.

to other classes of polytopes. Then, we will use the fact that any simplex can al-

ways be strongly combinatorially labeled starting from any values of the bottom

labels to get some additional specific results.

Theorem 7.1. Let P be an Eulerian poset. If X is a CL-labeling of P such

that for each atom a, X restricted to [a, \] is a strongly combinatorial CL-

labeling, then X is a combinatorial CL-labeling of P, so the cd-index of P has

nonnegative coefficients.

Proof. For each atom a £ P, we have a partition n(a) := {iTja), ... , n|a)}

of the maximal chains of [a, Î] such that ¿Zcenw w(c) = w\a) is a cd-word

(where w(c) = w(D(c))). Furthermore, if tuj"' begins with a d, there is an

atom o[a) of [a, Î] that all the chains of n|a) pass through; and if w\a) begins

with a c, then there are two atoms b("\a) and b\a\b) through which all chains

of n[fl) pass, such that those chains beginning with ascents (resp. descents)

pass through b\a)(a) (resp. b¡a)(b)), and the label X{0<a}(a, ¿>,(fl)(a)) = / is less

than the label X,Q<aAa, ¿>;-a)(b)) = m . (This is just the definition of a strongly

combinatorial labeling.)

Now, let T[a) be the set of chains in {{0} < c \ c £ Ylf }. Clearly {T|a) |

a £ P, p(a) = 1 } is a partition of the maximal chains of P. If w^ (which is

still the sum of the ab-words of the chains in n'a)) begins with a d , then each

chain of T|a) begins {Ô < a < ¿>;-fl)}, and hence all either start with an ascent

or all start with a descent, since the first two labels are the same for them all.

Hence, ¿ZceTw W(<Ù = xw^ , where x £ {a, b} . We let ssfw (resp. 38w) be the

collection of blocks T|a) such that ¿ZceJ«» w(ç) — aw (resp. bw) for each w .

On the other hand, if w¡ begins with a c, we have the situation shown

in Figure 3: ¿>ja)(a) and b\a\b) each cover a and the labels of these (rooted)

covering relations are / and m respectively, and a > Ô with label k . We have

that m > I, so there are three cases: k > m > /, m > k > I and m > I > k.

In the first case, all chains of T) begin with an ascent and in the last case,

with a descent, so we form s/w and 3§w as before. In the remaining case, we

have that each chain of T\a) passing through ¿>|a)(a) begins with a descent,

since k > I; following this is an ascent by definition of b¡(a).   Similarly,
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Meach chain passing through b)  (b) begins with an ascent followed by a descent.

Vtll'Since Scen(<,) w(£) = wi^ = cw' ■> we nave tnat SceT<<» w(c) = dw'. Let

be the collection of blocks TJa) so that ¿Zc€X1w w(c) = du;'.

Now, every block T¡ is in one of sfw , 3§w or 3¡w for some w , and every

maximal chain is in exactly one block. Hence we have that

(7.1) cd(P) = Y#-^v,&w + Y #^ bw + Y #2w üw ■
www

Now, since P has a cd-index, the right-hand side of (7.1) can be written in

terms of c and d. The last term already is in this form, so we have that

Y #s^w aw + Y #^w bw
w w

can be written in terms of c and d. This implies that it is invariant under

the map switching a and b, but so are c and d, and thus so is a word w in
c and d, so we have

Y #Ss?w aw + Y #^w bw = Y #ssfw bw + Y #^w aw »
w w w w

Y (#-^w aw + #38w bw) = Y (#s*™ bw + #^u>aw) '
w w

Y(*^w -#^)(a-b)u> = 0;
w

considering this as a noncommuting polynomial in {c, d} with coefficients

in Z[a - b] implies that #s/w — #¿%tw . Hence, there exists a bijection t/>w = 4>

from sfw to 3SW for each w, and we can define 8^ to be { T|a) u </>T¡-a' |

T;a) £ jz?w } , and then {Ww , 3W} is a combinatorial partition as required.   D

Note that we do not have that X is a strongly combinatorial CL-labeling

because although those chains in the block T;a' U 4>T¡ that begin with ascents

pass through one atom (a) and those that begin with a descent pass through

another atom (<j>(a)), it could well be that Xr0,(Ô, a) < X^JO, (¡>(a)). We

will describe such Eulerian posets, labelings and partitions as almost strongly

combinatorial Eulerian posets, labelings and partitions when they satisfy all of

the conditions for a strong combinatorial labeling except this one. It would be

very nice to find a combinatorial way for finding the bijection q>w in this proof,

especially if we could find one that would have X,qJÔ, a) > X,0,(Ô, 4>(a)) (since

if we could do this in general, it would prove the nonnegativity of the cd-index

in general).

Porism 7.2. Under the same hypothesis as Theorem 7.1, X is almost strongly

combinatorial.

A polytope is said to be simplicial whenever each of its facets is a simplex. A

polytope is said to be simple whenever each of its vertex figures is a simplex, or,

equivalently, whenever it is the dual of a simplicial polytope. Similar definitions
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Figure 4. This cannot be completed to a standard labeling.

can be stated for Eulerian posets and lattices; for instance, an Eulerian poset is

simple if every interval [a, Î] is isomorphic to a boolean algebra for all a ^ Ô.

For the lattice of faces L = L(3S) of any simple polytope 3° of dimension n

(or any other simple, CL-labelable Eulerian poset L of rank « + 1 ) we can cre-

ate a CL-labeling that satisfies the hypothesis of Theorem 7.1. If « < 0, there

is nothing to do; otherwise, order the facets of 3d* in a shelling order (The-

orem 3.6) or some other recursive atom order for L (which exists because L

is CL-shellable). By definition of dual shelling order (recursive atom order),

we have dual shelling orders (recursive atom orders) of each [a, Î], each of

which is isomorphic to B„ . Now, define the first two levels of X as in Al-

gorithm 3.3. Then continue so that each [a, I] is labeled in the Z-standard

labeling, where X is the set of labels of the form X,Q<a-, (a, b) ; this set has the

right cardinality by the choice of labels in Algorithm 3.3. As in that result, the

resulting A is a CL-labeling. Now, by our previous results, the X-standard

labelings are strongly combinatorial, and by Corollary 2.6, L has a cd-index.

Hence we have:

Corollary 7.3. Any CL-shellable simple Eulerian poset has a combinatorial cd-

index, and hence has nonnegative cd-index.

Corollary 7.4. Any CL-shellable simplicial Eulerian poset has a dually combi-

natorial cd-index, and hence has nonnegative cd-index.

Unfortunately, we do not have similar results for cubic and dual-cubic poly-

topes, because it is not true that any ordering of the facets of a cube gives rise

to a standard labeling of its dual—see Figure 4.

If we weaken the hypotheses of Theorem 7.1 to only require that each inter-

val [a, Î] is almost strongly combinatorially labeled, then the proof will not go

through, since there will be the additional case of k < I < m , which will give a

term of the form (a2 + b2)u; = (c2 - d)w . However, since this term will come

from a block having all of its chains pass through a single atom (a), we can

state the following:

Proposition 7.5. Every Eulerian poset's cd-index can be written as a nonnegative

noncommutingpolynomial in the variables c, d and e := c2 - d.

Of course, such a noncommuting polynomial need not be unique, even if all

possible d 4- e's are replaced by c2's: c2d + dc2 - d2 = ed + de2 = de + c2d .
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However, in [2], Bayer and Klapper produce a recursion for the cd-index of

a polytope, which in our notation is

(7.2) 2cd(3B) = Y cd(Fj)c + cd(Ej)(2d - c2) ,

7=1

where Fx, ... , Ft is a line shelling of the polytope 3° and Ej is the boundary

of Fj D U,<, F¡ in dFj. It is relatively easy to see that E¡ is a polyhedral

complex isomorphic (as a polyhedral complex) to a polytope, which we also

call Ej. (Since the lattice of faces of the two L/s is the same, no confusion

will result.) The facets of Ej are faces of 3° of codimension 3 .

As a result of (7.2), we can inductively show that the cd-index of any polytope

can be written as a nonnegative noncommuting polynomial of the variables c,

d and e' := 2d - c2. This is not enough to show that the cd-index is positive,

even with Proposition 7.5, as can be seen from the fact that c4 + d(2d - c2) =

c4 - dc2 + 2d2 = 2d2 + (c2 - d)c2.

However, we can use this recursion to get the following result:

Proposition 7.6. Let 3s be a polytope such that the CL-labeling X of L :=
h(3s) coming from a line shelling of the dual polytope 3°* is such that for each

element b £ L of rank 2, X restricted to [b, î ] is a strongly combinatorial

labeling. Suppose further that in the line shelling of 3s* that gives rise to X,

each Ej has a nonnegative cd-index. Then X is a combinatorial labeling of L.

Proof. By Porism 7.2, for each atom a, the interval [a, I] is almost strongly

combinatorially labeled by X. So we can mimic the proof of Theorem 7.1 to

get

(7.3) cd(3>) = Y #%» cw + E(#^ ów + #^> (°2 _ dM '
w w

where each Yl£Ww sums to cw , each n £ 2SW sums to du; and each n £ Ww

sums to (c2 - d)w.
From (the dual formulation of) the recursion (7.2), we have

t

(7.4) cd(3»)=x1Yc-cd([al, î]) + (2d-c2)cd(L7) ,
i=\

where E* is the dual polytope to E¡. Its lattice of faces can be constructed

by taking the union of certain intervals of the form [x, Î], where p(x) = 3 ,

and adding a Ô. By assumption (and Lemma 2.7), cd(E*) is nonnegative.

Furthermore, each polytope F¡ satisfies Theorem 7.1, and hence, each F¡ has

nonnegative cd-index.

Hence, the only negative terms of the right-hand side of (7.4) are of the

form c2u>, while the only negative terms of the right-hand side of (7.3) are

of the form du;. Since the left-hand sides of the two equations are the same,

the right-hand sides must match, and hence neither one has any negative terms,

that is, the negative terms must be cancelled out by positive terms.

In the case of (7.3), this implies that for each w, #3¡w > #g?w . So we

may pair each partition block in g?w with a partition block in 2W to form

new blocks which, along with the other blocks of 2SW and the blocks of ^,,,
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Figure 5. A union of blocks as formed in the proof of Proposition 7.6.

form our combinatorial partition of -# f (L). However, this partition is not

even almost strongly combinatorial, since the new blocks that are formed by the

union of a block from 3SW and a block from "¡gw are as shown in 7: although

all chains pass through one of two atoms, chains starting with both ascents and

descents pass through both atoms. (However, these are the only blocks that do

not satisfy the almost combinatorial condition.)   d

Corollary 7.7. Let 3s be a polytope such that each vertex figure of 30 is simple.

Then 3° has a combinatorial cd-index.

Proof. Note that there exists a line shelling for 3°*. In this shelling, each E¡

is simplicial (since each facet of 3° is simplicial) and hence has nonnegative

cd-index. Hence, Proposition 7.6 proves the result.   D

Corollary 7.8. Let 3s be a polytope such that each facet of 3s is simplicial.

Then 3° has dually combinatorial cd-index.

Proposition 7.9. Let 3° be a polytope with face-lattice labeled by a CL-labeling
X coming from a line-shelling of 3s*. If each E* in this line shelling has a

nonnegative cd-index, and each vertex figure of 3° satisfies the conditions of

Proposition 7.6, then 3s has a combinatorial cd-index.

Proof. By the proof of Proposition 7.6, each vertex figure [a, Î] is almost com-

binatorially labeled by X, except for blocks of the sort shown in Figure 5. We

can proceed as in the proof of Proposition 7.6 to get

cd(33) = Y #%» cw + Y §2w dw + Y #^<- (°2 - à)w
w w w

+ (blocks as in Figure 5) .

Consider such a block, and assume the label going to the 0 of Figure 5 (which

is an atom of 3e) is k. Then we have four cases: k < I, m; k > I, m;

I > k > m or I < k < m. The first two produce elements of s/C2w and 3§&w

and match up as usual. For the other two cases, we get

I > k > m: (a(ab + ba) + b(a2 + b2))w ,

l<k<m: (b(ab + ba)+ a(a2+ b2))u>.

Neither of these can be written in terms of c and d (so they will not interfere

with the 3W and WU) terms, which match as in Proposition 7.6). However,

they sum to cd + c(c2 - d) = c3, and in fact it is easy to see that the existence
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of the cd-index implies that they match up just as blocks in sfw and 3SW did

before. Hence, the cd-index is again combinatorial.   D

Corollary 7.10. For any polytope such that every interval of the form [b, Î],

p(b) - 3, is a simplex, the cd-index is combinatorial.

Proof. The vertex figures of such a polytope satisfy Proposition 7.6 as in Corol-

lary 7.7, and the L*'s will have simplicial facets, so by Corollary 7.8, they have

nonnegative cd-indexes.   D

Since every 1-polytope is a simplex, this implies that every polytope of di-

mension 4 or less has a combinatorial cd-index. However, we can do one

better:

Proposition 7.11. If 3° is a polytope of dimension 5 or less, it has a combina-

torial cd-index.

Proof. For dimensions less than 5, the result follow from the remarks just

made. For dimension 5, each E* is of dimension 3, and hence has nonneg-

ative cd-index. Furthermore, let "V be a vertex figure of 3° ; its L/s are of

dimension 2 and thus have nonnegative cd-indexes. Then 'V is of dimen-

sion 4, and if b £ L(?/") is of rank 2, then b is of rank 3 in 1^(3°), and the

interval [b, Î] is of rank 3 (in both) and hence is the lattice of faces of a 2-

polytope, that is, an «-gon. But it is easy to see that any line shelling of an «-gon

gives rise to a strongly combinatorial labeling, so 'V satisfies Proposition 7.6.

Hence, by Proposition 7.9, the result follows,   d

It seems that it might be possible to extend this technique further, but for

the moment we will stop here.

8. Conclusions

We have given a combinatorial interpretation of the cd-index for several types

of polytopes, most notably simple and simplicial polytopes. This implies that

the cd-indexes of these polytopes have nonnegative coefficients. It would be
most interesting if these techniques could be extended to other classes of poly-

topes, especially to all polytopes. The remarks after Theorem 7.1 may provide

a clue as to how to proceed in this direction.
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Note added in proof. Richard Stanley has recently proven Conjecture 1.1.
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