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ANDRE PERMUTATIONS, LEXICOGRAPHIC SHELLABILITY AND
THE cd-INDEX OF A CONVEX POLYTOPE

MARK PURTILL

ABSTRACT. The cd-index of a polytope was introduced by Fine; it is an integer
valued noncommutative polynomial obtained from the flag-vector. A result
of Bayer and Fine states that for any integer “flag-vector,” the existence of
the cd-index is equivalent to the holding of the generalized Dehn-Sommerville
equations of Bayer and Billera for the flag-vector. The coefficients of the cd-
index are conjectured to be nonnegative.

We show a connection between the cd-index of a polytope & and any
C L-shelling of the lattice of faces of % ; this enables us to prove that each
André polynomial of Foata and Schiitzenberger is the cd-index of a simplex.
The combinatorial interpretation of this cd-index can be extended to cubes,
simplicial polytopes, and some other classes (which implies that the cd-index
has nonnegative coefficients for these polytopes). In particular, we show that
any polytope of dimension five or less has a positive cd-index.

1. INTRODUCTION

The combinatorial properties of a polytope % are the properties of the lat-
tice of faces of the polytope L(Z); properties that are the same for all poly-
topes with the same lattice of faces are called combinatorial invariants. (For
background on polytopes, see [8, 13, 14].) The cd-index is an important new
combinatorial invariant, introduced by Fine, which is related to the flag-vector,
which in turn is a generalization of the f~vector. Both the flag- and f-vectors can
be defined for any ranked poset, not just the lattice of faces of a polytope. (For
background on posets and lattices, see [4, 20].)

The f-vector of a n-polytope (or, in general, of any ranked poset of rank n +
1) is defined to be (f_,,..., fu_1), where f_, is the number of faces of
rank i (thatis, in the polytope case, the number of faces of dimension i — 1).
Hence, for polytopes, f_; = 1 (counting the empty face), fo is the number of
vertices of &, and f,_, is the number of facets. (Notice that this notation has
a subscript that is off-by-one from that often used for the fvector of a poset.)
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A lot of work has been done on the f-vector of simplicial polytopes (which
are polytopes such that each facet is a simplex). One of the first such re-
sults is the Dehn-Sommerville equations; these are best stated in terms of the
h-vector (hg, ... , h,), which is defined by

S hix" =Y fig(x -1
i=0

i=0

The Dehn-Sommerville equations then are just #; = h,_; foreach 0 <i < n.
Since each of the A;’s is a linear combination of the f;_,’s, the Dehn-Sommer-
ville equations are linear relations among the f;_;, and in fact are the most
general such relations that hold for the f-vector of every simplicial polytope
(that is, they imply all other such linear relations).

Further work by many mathematicians culminated when Stanley (only if) and
Billera and Lee (if) proved a characterization of the f-vector of any simplicial
polytope (which was originally conjectured by McMullen). The result states

that an integer vector (hg, ..., h,) is the h-vector of a simplicial polytope
of dimension n if and only if the Dehn-Sommerville equations hold and the
vector (ho, by —ho, ... , hjnj2) = hinj2)—1) is an M-vector, which means that it

is the f-vector of a multicomplex (a numeric condition for this is known). The
proofs of both directions of this result are quite difficult, and Stanley’s direction
uses techniques from commutative algebra and algebraic geometry. For details,
see [3, 19].

Now, the flag-vector of a ranked poset L (with least element 0 and greatest
element 1) of rank n + 1 is an integer vector indexed by subsets of [n]:=
{1,...,n}, denoted (fs | S C [n]). (In the case of a polytope, L is the
lattice of faces of the polytope, and » is the rank of the facets, which is thus
the dimension of the polytope.) Each fg counts the number of chains in L of
the form {0<x1 <Xy<---<Xg<1} suchthat {p(x;))|1<i<k}=S.

For simplicial polytopes, the characterization of Billera, Lee, and Stanley
of the f-vector gives a characterization of the flag-vector (since the flag-vector
of each simplex of rank r, A™!, is known, so the value of f5(Z) is ex-
actly fmaxs(<) * fs\ max s(A™* S-1)). Not much is known about the flag-vector
of arbitrary polytopes, and it seems unlikely that a conjecture analogous to the
McMullen-Stanley-Billera-Lee result for simplicial f~vectors will be formulated
soon for the flag-vectors of arbitrary polytopes, let alone proven. However,
Bayer and Billera proved that certain linear equations, called the generalized
Dehn-Sommerville equations, hold for the flag-vector of any convex polytope,
and that these are the most general linear equations that hold for all convex
polytopes. The generalized Dehn-Sommerville equations are:

k—1

(=1 fog(P) = (1= (=¥ fs(P)
J=i+l1

whenever S C[n], i<k, {i,k} CSU{0,n+1}
{ji<j<k}nS=2,
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where n is the dimension of the polytope in question. As with the f~vector, it
is convenient to define the f-vector or flag h-vector, by writing

Bs =D (=)D fr

TCS

for each S C [n]. (This notation is taken from [2], as, unfortunately, Ags is used
for something else in this field.) However, while the generalized Dehn-Som-
merville equations imply that fs = f,\s, (which is reminiscent of 4; = h,_;),
the converse is not the case, and the general statement of generalized Dehn-
Sommerville is not simplified by merely restating the equations in terms of
the flag h-vector.

However, if we form the noncommuting polynomial ) sciBsw(S), where
w(S) is a word of length n in the variables a and b such that the ith letter
of w(S) is b if i € S and a otherwise, then Bayer and Fine showed that this
sum can be rewritten in terms of ¢ = a+b and d = ab + ba if and only if
the generalized Dehn-Sommerville equations hold for the flag-vector (fs); this
rewriting is called the cd-index, which was first introduced by Fine. These ideas
were first published by Bayer and Klapper in [2].

Fine originally made the following conjecture (which was strengthened by
Bayer and Klapper in [2] to all CW-spheres—see that paper for details):

Conjecture 1.1 (Fine). The coefficients of the cd-index of any polytope are non-
negative.

Unfortunately, the cd-index as we have defined it is a very mysterious ob-
ject. So in addition to attempting to prove the Bayer-Klapper conjecture, we
would like to find some combinatorial interpretation of the coefficients, that
is, some set of objects for each cd-word w and each polytope Z, such that
the coefficient of w in the cd-index of & is the cardinality of the given set
of objects. In addition to proving the conjecture, such an interpretation might
provide additional insight into the cd-index.

We do not find such an interpretation for all polytopes, but for several classes
of polytopes, including the simplicial polytopes, we do; for each word, there is
a collection of blocks in a partition of the maximal chains of the lattice of faces
of # which has cardinality equal to the coefficient of the word in the cd-index.
This interpretation relies on the notion of a CL-shelling of the chains of a
lattice, which is a way of labeling the maximal chains of the lattice with integer
vectors, one integer per covering relation. This concept is due to Bjorner and
Wachs, who showed that the lattice of faces of every polytope is C L-shellable (a
result which in turn requires the famous result of Bruggesser and Mani that every
polytope is shellable). Then the flag h-vector of a polytope can be computed
from the labels of any CL-shelling of the lattice of faces of the polytope; in
fact, Bs is the number of maximal chains of & that have descents at exactly the
rank levels specified by S. Hence, each chain gives rise to a word in a and b
in the sum Y Bsw(S), so a partition of these chains such that the chains in
each block have ab-words summing to some cd-word gives the combinatorial
interpretation desired.

In the case of the simplex and octahedron (in each dimension), such a par-
tition exists, since the lattices of faces of these polytopes are isomorphic to the
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boolean lattice and the lattice of signed sets respectively. Hence, we can produce
a CL-labeling by labeling each covering relation 4 < B by the unique element
of B\A. This labeling is particularly nice, and the collection of labels of all
chains of the boolean lattice (resp., the lattice of signed sets) is exactly the set
of (signed) permutations of an n-set (where n is one more than the dimension
of the simplex, or the dimension of the octahedron; in the latter case, 0 must
be added to each signed permutation).

This motivates a study of (signed) permutations, in which the work of Foata
and Schiitzenberger on André permutations is invaluable. An André permutation
of a totally ordered set X is a permutation without double descents satisfying
an additional technical property. We extend this notion to the case of signed
permutations, where we must add additional even more technical properties (for
instance, we require that if m = max X, then 7 = —m appears in the signed
permutation). Foata and Schiitzenberger studied André (signed) permutations
because they are in bijection with alternating permutations of the same set (and
we extend this to the signed case as well). The main fact that makes André
(signed) permutations useful is that if «;---a, is a permutation with o, =
min{a;, ... , a,}, then it is an André permutation if and only if both a; --- oy
and a4, ---a, are André permutations. In the signed case, if

ay =min{ay, ... , ay} = —max{|a|, ... , |aa|},

then a;---a,0 is an André signed permutation if and only if a;---a; is an
André unsigned permutation and a4, ---@,0 is an André signed permutation.
(This corresponds to the fact that the downward intervals in the lattice of signed
sets are isomorphic to boolean lattices).

We inductively construct a partition of the maximal chains of the boolean lat-
tice and the lattice of signed sets, labeled as above. There is one André (signed)
permutation per block, and each block sums to a word in ¢ and d that can
be read off of the ascent-descent structure of that André (signed) permutation.
From this fact, it follows that the cd-index of the simplex is exactly one of Foata
and Schiitzenberger’s André polynomials (with the identification of their s, t
and the ¢, d of the cd-index). Since the simplex is self-dual and since the cd-
index of & can be derived from that of %°* by simply reversing each word,
we immediately get their result that each André polynomial is invariant under
the reversal of each word.

The partition just constructed has some very nice properties. For instance,
each block II; that corresponds to (that is, whose chains’ ab-words sum to)
a cd-word w; beginning with the letter d has all of its chains pass through
a single atom of the lattice of faces of . A similar but more complicated
fact holds if w; begins with the letter c. Since every ordering of the atoms
of a simplex gives rise to a CL-labeling as before, and hence to a partition
with these nice properties, we can use these properties to extend the partition
to the lattice of faces of any simple polytope; since simple polytopes are dual
to simplicial polytopes, simplicial polytopes also have nonnegative cd-indexes.
Similarly, using similar properties and a recursion for the cd-index for polytopes
due to Bayer and Klapper, we show that any polytope with dimension less than
or equal to five has a nonnegative cd-index.
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2. THE cd-INDEX

Definition 2.1. For any ranked poset P with 0 and 1 of rank n + 1 and
for each subset of [n], S = {i;,i2,...,is} such that i; < --- < i, let
fs = fs(P) be the number of chains of P, 0 < x;, <x;, <--- <Xx;, <1 such
that p(x;,) = i;. The flag-vector of P is the vector ( fs|S C[n]) in Z*' with
basis elements indexed by (S |S C[n]).

If P is as in the definition, and S C [n], then Pg is the poset with base
set {x € P| p(x) € S}uU{0, 1} with the same relation; this is called the
rank selection of P. The chains in this definition are exactly the flags (maximal
chains) of the rank selected posets Pg, which is why (fs) is called the flag-
vector.

Following Stanley, we say a ranked poset with 0 and 1, P, is Eulerian
whenever its Mobius function satisfies up(x, y) = (=1)?X)=,0) = (—1)Px.7)
forall x <y in P. For any F < G in the face lattice, the interval [F, G]
is the face lattice of a polytope A G of rank p(G)— p(F), and hence of
dimension p(G) — p(F) — 1; furthermore, it is well known that ux(F, G) =
X(Pr ) = (1)@ .9) . Hence for every polytope &, L(£) is Eulerian; this
motivated the definition of Eulerian.

Theorem 2.2 (Bayer-Billera, [1]). If P is a rank n+ 1 Eulerian poset, then

k-1 o 4

(=17 fogi(P) = (1= (=11 fs(P)

(21) J=i+l

whenever S C [n), i <k, {i, k} CSU{0,n+ 1} and

{jli<j<k}nS=o2

Furthermore, these equations (along with fy = 1) imply all linear equations

that hold for the flag-vectors of all n-polytopes (and hence all Eulerian posets P) .
The dimension of the affine span of all flag-vectors of n-polytopes is e, — 1,
where e, is the nth Fibonacci number (defined by ex = e, = 1 and e; =
ei_1+ei2).

Definition 2.3. The flag h-vector or f-vector of a poset P of rank n + 1 1is

(Bs | S C [n]), where
Bs:= > (-1)*\D £
TCS
Note: the flag h-vector is to the flag-vector as the f~ _ctor is to the h-vector;
as with the h-vector, use of the flag h-vector makes stating certain things clearer.

(The generalized Dehn-Sommerville equations are unfortunately not one of
these things; (2.1) becomes

k—1
SN (1Y Bry(P) = 5(1 = (=DFTY) Y Br(P)

(22) TCS j=i+1 TCS
whenever S C [n], i <k, {i, k} CSU{0, n+ 1}, and

{jli<j<k}inS=2.
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which is not really very nice. However, Proposition 2.9 gives a nice consequence
of the generalized Dehn-Sommerville equations, as does Theorem 2.4.)
As with the h-vector and the f-vector, the flag #-vector can be converted back

into the flag-vector:
fs=> Bs.

TCS
(This is a simple inclusion-exclusion argument.)
To each subset of [n], we can associate a word in the letters a and b of
length 7, via wy(2) :=w(@):=1 and w,(S) :=w(S):=ww,...w,, where
_Ja ifi¢gs;
“’"'{b ifies.
So for instance, if n =95, then w({l, 3, 4}) = babba.

Using w(S), we can associate a noncommuting polynomial ab(&) (in the
(noncommuting) variables a and b) to the flag A-vector of &#:

ab(P):= Y Bsw(S).

SC[n]
We call this the ab-index of £ .

Theorem 2.4 (Bayer-Klapper, [2]). The generalized Dehn-Sommerville equations
holding for an integer vector (Bs | S C [n]) is equivalent to the existence of a
unique noncommuting polynomial f(c, d) in ¢ and d with integral coefficients
such that 3 g, Bsw(S) = f(a+b, ab+ba).

Definition 2.5. Given the notation of Theorem 2.4, the cd-index of P is defined
to be f(c,d) and will be denoted cd(P); the cd-index of a polytope £ is
defined to be cd(L(Z)).

Corollary 2.6. Every polytope has a cd-index.

For example, consider A2, which is a triangle. Then fz =1, fi1; = fi; =3
and f{l,2} =6. Hence, iz =1, ﬁ{l} =,3{2} =2 and ﬂ{l’z} =6-3-3+1=
1. The cd-index of A? is thus c2+d.

Let rev(vy---v,) = v, ---v; forany word v, ---v, and extend rev( ) linearly
to sums of words. Then we have the following fact (from [2]):

Lemma 2.7. cd(%) = rev(cd(F*)).

Since the existence of the cd-index is equivalent to the holding of the general-
ized Dehn-Sommerville equations, studying the cd-index is a good way to study
these equations (especially since the equations are so messy and unpleasant).
However, the cd-index appears to be a very subtle invariant; it is not even easy
to calculate the cd-index of a simplex without some sort of general theory. (In
fact, the author spent several weeks trying to do this before Dr. Stanley pointed
out the paper [11].) Therefore, it would be nice to get some sort of combi-
natorial interpretation for the cd-index. In connection with this, we recall the
following conjecture:

Conjecture 2.8 (Fine). The coefficients of the cd-index of any polytope are non-
negative.
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If this holds, it might be possible to find some set of combinatorial objects
that the coefficients of the cd-index count; conversely, if we could find such a
set of objects, we would have proved the conjecture.

At this point, we note the following result, which is essentially [20, Corollary
3.14.6] for Eulerian posets and due to Bayer and Billera [1] in this context:

Proposition 2.9. If the integer vector (Bs | S C [n]) satisfies the generalized
Dehn-Sommerville equations, then Bs = iy\s -

Note that the equations fs = f,)s do not imply all of the generalized Dehn-
Sommerville equations, as we will see. Consider the case where n = 3. It is
straightforward to calculate that the generalized Dehn-Sommerville equations
are

Bo=1, Buy=Bp3, By =Bu.3,. Bpy=Bu.2
and, finally
By =By +Bsy — 1
which does not follow from the other four.

3. POSET LABELINGS

Bjorner [5] and Bjorner and Wachs [7] introduced notions of shellability for
posets which we require. For completeness, we give the definitions and state a
few results here; see the papers just referenced for details.

Let &,(P) be the rooted edges of a poset P, thatis, {(r, x,y)|r={r <
< =xe LE(0,x]), x < vy}, where .# #(Q) denotes the set of
maximal chains of any poset Q. Then A: &,(P)—>Z is a chain-edge labeling
of P, and we write A,(x,y) for A(r, x, ). A rooted interval ,[x,y] is an
interval [x, y] together with a maximal chain r of [0, x], which is called the
root of the rooted interval.

A (maximal, saturated) chain of ,[x, y] is a (maximal, saturated) chain ¢ of
the interval [x, y] along with the root. For a chain-edge labeling A, and a max-
imal chain ¢ of ,[x, y], we write A,(c) for (4,(co, c1), Aretepy(cr,ca),y oo,
Arsc(Ci—1, 7)) (in the last term, we slightly abuse the notation; the root is ac-
tually r < {co < ¢; <--- < ¢_}). We say that a rooted chain ¢ of ,[x, y] is
(A-)increasing whenever 4,(c) is, and we have the lexicographic order <{, on
the chains of P (a <j, b iff for some j, a; =b; for i <j and a; < b)).
Definition 3.1. A chain-edge labeling A: &,(P) - Q is a CL-labeling of P (for
“chain-edge /exicographic”) iff for each rooted interval ,[x, y] of P, there is
a unique lexicographically first maximal chain, and this chain is the unique
increasing chain of ,[x,y]. A poset P is said to be CL-shellable or CL-
labelable if there is some C L-labeling of P.

If A,(x, y) is always independent of the chain r, then we say A isan EL-
labeling and that the poset is E L-shellable.

A useful reformulation of C L-shellability was introduced by Bjérner and
Wachs in [7]; for this, recall that the atoms of P are a € P such that a > 0.

Definition 3.2. An ordering {a;, a, ... , a;} of the atoms of P is a recursive
atom order (and we say P admits a recursive atom order) whenever either P is
of rank 1, or both
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(1) forall 1< j<t,theinterval [a;, 1] admits a recursive atom order in
which those atoms of [a;, i] which cover some g; with i < j come
first, and

(2) forall 1 <i<j<t,if a;,a;<yeP,thenthereexistsa 1 <k < j
and z € P such that a;,a;<z<y.

A shelling order of a polytope (which we will define in a moment) is a recur-
sive atom order of the lattice of faces of the dual polytope. This motivated the
definition of recursive atom order.

Algorithm 3.3. Given a recursive atom order of a poset P, we constructa CL-
labeling of P.

Let {a,, a3, ... , a;} be an recursive atom order, and pick any integer label-
ing A{O} of the pairs (0, a;) such that l{o}((), a;) < 1{0}(0» a;) forall i <.
Now, for each atom a;, let F(a;) be the set of all atoms of [a;, i] that
cover some a; with i < j; this is the set of atoms of [a;, 1] that must come
first in any recursive atom order of [a;, 1]. Pick such a recursive atom or-
der (which exists by definition), say b, ba, ... , bs, and extend A to the bot-
tom edges {a; < b} of [a;, 1] such that Moeay(@is Bk) < Aoaqy (@), br)
for k </, and

bk € F(aj) = A{0<aj}(aj s bk) < )'{0}(0’ a]) ’
b & F(a)) = Aqgeq,) (@), bi) > Aoy (0, a));
clearly this is possible. Continue inductively to create the required labeling.

See [7, Theorem 3.2] for a proof that this is, indeed, a CL-labeling. The
same proof demonstrates how to go from a CL-labeling to a recursive atom
order.

Recall that a polyhedral complex is a finite set A of polytopes in R” such
that a face of any element is again an element and the intersection of any two
elements is a face of both (and hence an element). One example of a polyhedral
complex is any simplicial complex, since a simplex is a polytope. The example
we are most concerned with is 8.2 , which is the set of all faces of % except &
itself. Hence, we say that the facets of a polyhedral complex A are the maximal
elements of A, so the facets of 8.2 in the polyhedral complex sense are the
same as the facets of % in the polytope sense. If all of the facets have the same
dimension n, we say A is a n-complex, so if & is a n-polytope, 0% is a
(n — 1)-complex homeomorphic to a sphere, and the complex & :=0.%# U {#}
is a n-complex. A simplicial complex is a n-complex whenever it is a pure
simplicial complex.

An ordering of the facets F;, F>, ... , F; of a n-complex is called a shelling
order if either n = 0 or _E N Uf;,' F, is a nonempty (n — 1)-complex for
all 1 < j <t and the following recursive condition holds: there is a shelling
of each 9F;, 1 < j < t, in which the facets of Tjﬂ U{;l'fi come first.
(This definition, due to Bjorner in [5], seems the most useful in this context.
Note that it implies that a recursive atom order of a polytope is equivalent
to a shelling order for the dual polytope, and vice versa.) We say that a n-
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complex is shellable if there is a shelling order on the facets, and that &
is shellable whenever 0% is. We form the lattice of faces of A, L(A), by
taking the union of the lattice of faces of each facet of A and adding a 1;
similarly, we form L*(A) by taking the dual to L(A). Hence, L(02) is the
same as L(%).

Theorem 3.4 (Bjorner-Wachs, [7, Theorem 4.3]). Let A be a n-complex. Then
A is shellable iff L*(A) has a recursive atom order.

Corollary 3.5. Let A be a n-complex. Then A is shellable iff L*(A) is CL-
shellable.

Note that we have slightly unfortunate terminology here: an n-complex is
shellable iff the dual to its lattice of faces is shellable, in which case we say
the lattice of faces is co C L-shellable. So we can say that an n-complex A is
shellable if and only if its lattice of faces is co C L-shellable.

Now we have the following important result.

Theorem 3.6 (Bruggesser-Mani, [9]). Every polytope & is shellable.

The idea of this is fairly straightforward. We imagine that we have a polytope
floating in space, and consider launching a “spacecraft” off of one of the facets
on a suitable straight line off to infinity. The “spacecraft” will then return from
infinity along the same straight line, but on the other side of the polytope. The
order in which the facets of the polytope become visible (on the way out) and
invisible (on the way in) gives a shelling order for the polytope. For details and
proofs, which are not so straightforward, see [9].

In a CL-labeled poset P of rank n + 1, the descent set of a maximal
chain ¢ = {0 = ¢p < ¢ < -+~ < Cpyy = 1} of P is the set of all i € [n]
such that Ac(c;—1, ¢;) > Ac(ci, ciy1) ; this set is denoted D;(c) = D(c), and each
I € D(c) is called a descent of the chain ¢. Recall the definition (in §2) of the
map w, from subsets of [n] to words of length » in the letters a and b, and,
as before, denote the set of maximal chains of a ranked poset P by .# & (P).
Then we have the following, which is basically [20, Theorem 3.13.2]. (See
also [6].)

Theorem 3.7. The ab-index Y fsy - w(S) of any polytope P with a CL-
shelling A is equal to the sum Y w(D(c)), where the sum is taken over all ¢ €
M E(L(P)).

So we have a combinatorial interpretation of the flag A-vector (8s) for CL-
shellable posets P, since s = #{c € £/ Z(P) | D(c) = S} . Of course,
this immediately implies that each fs is nonnegative for every C L-shellable
Eulerian poset (which was well known).

Each word in {c, d} can be thought of as a set of words in {a, b} of the
same degree by expanding ¢ = a+b and d = ab + ba, so we might hope
to construct a partition of .# % (L(Z)) so that each block B of the partition
has 3 .pw(D(c)) summing to a word in ¢ and d. This would constitute a

combinatorial interpretation of the cd-index.
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4. (SIGNED) PERMUTATIONS AND FE L-SHELLINGS

Recall that the n-simplex A" is the convex hull of n + 1 points in general
position in R"”. The boolean lattice of rank n, B,, is the poset of subsets
of [n] ordered by inclusion. It is well known that L(A") = B,,;. The n-
octahedron, @" , is the convex hull of the points {¢;, &}’_, in R", where ¢; =
(61,i502,i5... ,0n,i), & = —¢;, and J; ; is the Kronecker delta (1 if i = j
and 0 otherwise). The lattice of signed sets of rank n, BE, is the poset on
base set

{A=(A", A ){A* N4~ =@and AT UA~ C[n]}uU{l},

ordered by 1 > (4%, A~) for all pairs 4 and (4*, A7) < (B*, B™) iff A+ C
Bt and A— C B~ . (Note: in many other papers, such as [15], the order used for
the lattice of signed sets is the dual of the one given here.) We can think of these
pairs as sets where elements of A% have a positive sign and A~ have a negative
sign; hence the name signed sets. For instance, the signed set ({2, 5}, {1, 3})
can be thought of as {—1, +2, —3, +5}. Once again, it is well known that

L(@") =BZ.
The n-cube, @" is the dual of the n-octahedron; alternatively, we can define
it to be the convex hull of the points {(e;, ez, ... , €,) | ¢, = £1}; its lattice of

faces is BE™. See [10] for more details on all three of these polytopes, and [16]
for more on the lattice of signed sets.

The boolean lattice and the lattice of signed sets each have a very nice EL-
labeling, defined as follows: for 4, B € B,, obviously 4 < B iff B\A is
a single element. We define A(4 < B) to be the element of B\A (which
isin [n] C Z). For A = (A*,A”), B = (B*, B~) € Bf, we have that
A < B when B\A is a single signed element (either B*\ A" is a single element
and A~ = B~ , or vice versa). We let A(4 < B) be the element of B\A
(considered as an integer), so that A(({1}, {2}) < ({1}, {2,3})) = =3. In
addition, if A* U A~ =[n], then 4 < 1. In this case, we let A(A<1)=0.

These labelings of B, and B} are called the standard labelings; any labeling
of L(A") = B, or L(@") = B that can be derived from the standard labelings
by isomorphism is also called standard. See Figure 1 for an example of the latter;
each element of the poset is labeled by both a face of @2 and the corresponding
element of BY .

Given a totally ordered n-set X, the X-standard labelings are defined to
be Ax(a, b):=vy'(A(a, b)), where v is the unique order preserving bijection
from X to [n] (extended to X* — [—n, n] for the octahedron). Notice that
all the results we prove for the standard labelings will hold for the X-standard
labelings as well.

A bijection 7: [n]— X (where X is any n-set) is called a permutation
(or an unsigned permutation) of X . We often write n; for n(i) and the
word 7,773 .-, for m; hence, we call n the length of n. The set of all per-
mutations of aset X isdenoted X!, and S, :=[n]'; we have that the size of X',
#(X") = (#X)!,s0 #S, = n!. We think of these sets primarily as sets of words;
forexample, {x, y, z}! isthesetof words {xyz, xzy, yxz, yzx, zxy, zyx},
and S; = {123, 132, 213, 231, 312, 321}.

Consider injections o: [n]—{+, —} x X, and write g; for o(i), X for
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FIGURE 1. A standard labeling of & .

(=, x) and x for (+, x). Define |(+, x)|:=x, and |o| such that |g|; :=|g;|,
so |o| is a map from [n] to X. Then we say that such a o is a signed
permutation whenever |o| is a permutation of X . In this case, we let g,,,:=0,
and write g, - -- 0,0,,; for . However, we still call n the length of ¢ . The set
of all signed permutations of a set X is denoted X!, and S;f:=[n]!. Again, we
consider SF and X! as sets of words; S5 = {120, 120, 120, 120, 210, 210,
210, 210}.

We consider only the case where X is (totally) ordered by a relation <. In
this case, we extend < to the set X* :=({+, —} x X)U {0}, so that

e y<0<x forall x,ye X;

e x<y iff x<y in X;and

e X<y iff x>y in X.
This defines < as a total order on X*. (For instance, if X = [2], we
have 2<1<0<1<2.) If X =[n], we identify X with —x, so X* isiden-
tified with [—-n, n]. We define supp(o) to be the image of ¢ in {+, -} x X,
{01, 02, ... , 0.}, s0 |supp(c)| = X . For instance, supp(1320) is {1, 2, 3} =
({2}, {1, 3}). Notice that ¢ can be thought of as a map from [#] into supp(c),
and thus as a permutation of that set. Thus, a word with signs is ambiguous,
in that it could be a permutation or a signed permutation; throughout this pa-
per, the 0 at the end of the word o, ---0,0,,; will mark that the word is to
be thought of as a signed permutation rather than as an unsigned permutation
of {o;}_,. For an unsigned permutation n of X, we define supp(n):= X .
(Notice that this is quite different from the support of a chain.)

Note that if #X = n, we have order-preserving bijections vy: X —[n]
and v)f: X* —[-n, n], which can be extended to bijections cany(m):=vyon
from X! to S,, and can}(o) :=vy o0 from X! to SF. For any (signed)
permutation 7 (resp. o), we define can(m) = cangpp)(7) (resp. can* (o) :=
canlfupp(a)l(a)); can(n) and can*(cg) are called the canonical equivalents of n
and o. For example, if X = {x,y, z} ordered alphabetically (x <y < z),
then can(xzy) =132 and can*(xzy0) = 1320.

Proposition 4.1. For n > 0, if A is the standard labeling of B, , then the set of
labels of all maximal chains of B,, A4 % (B,)), is exactly S, .
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Proposition 4.2. For n >0, if A is the standard labeling of BE , then the set of
all labels of all maximal chains of B, A(# & (BL)), is exactly SE.

For any (signed) permutation 7 of length n, we say i € [n — 1] is a descent
of n whenever m; > m;,, and an ascent whenever n; < m,,,. The descent
set of m is the set of all descents of n and is denoted D(m) (this definition
matches the one given earlier for labeled chains in the case of the standard
labelings used in the last two results). For a signed permutation o, we say
that i € [n] is a signed descent if either i € [n — 1] isa descentof o or i=n
and g, > 0,,; = 0; the set of all signed descents of ¢ is denoted D*(g).!
For example, the descent set of the permutation 7462531 is {1, 3,5, 6}. One
way to see this is to write 7°426P225°3P1 | where the superscript is a for an
ascent and b for a descent. The word bababb is w(D(7462531)), where w
is the function defined in §2. By using Theorem 3.7, we see that

Proposition 4.3. cd(A") =, .5  w(D(n)), and cd(O") =} csx w(D*(a)).

5. ANDRE (SIGNED) PERMUTATIONS

From here until the end of the section, we follow Foata and Schiitzenberger’s
paper [11] (the first part of which was published as [12]), adding the correspond-
ing signed concepts which were not considered there. So all of the results in this
section for permutations originally appeared in [11]. If i — 1 and i are both
(signed) descents, we call i a double (signed) descent. Similarly, we can define
double (signed) ascents, (signed) peaks (ascent, descent) and (signed) valleys
(descent, ascent).

For any permutation 7 of length n, we define the restriction of n to an
interval [i, j] of [n] to be the permutation x|; ;; of {m;, miyy, ... , w;} of
length j — i + 1 defined by n|; jj(k) = n(k + i —1). In other words, the
restriction is the word 7;m;;,---7;. For any signed permutation ¢ of an
n-set X and [i, j] C [n] we define o|; ; in the same way, so it is an un-
signed permutation 00,4, ---0; of the set {g;, 0;41,... , 0;}, not a signed
permutation, (because there is no 0 at the end—the reason for this defini-
tion is because of our application to the standard labelings of B¥). However,
we define o|;; +1) to be a signed permutation of length n — i + 1 because
we have ol ne1)(n — i 4+ 2) = Op_is24i-1 = Ony1 = 0, S0 T ny1) 1S the
word 0i0;41 - 0,0,,1, which ends with 0.

A permutation a of an n-set X is an André permutation whenever o has
no double descents and « satisfies condition A, :

(Ap): forall 1 <j<j <n,if
aj_| = max{aj_l s Qj, Qjr g, aj/} and
aj = min{aj_l s Qjy Qjr_y, aj:} ,
there exists a j”, with j < j” < j’, such that a;» < aj .

This is rather confusing; see Figure 2 which shows the condition on a graph
of o thought of as a function. Notice that, in fact, (4,) implies that there are
no double descents; it can be thought of as a generalization of the requirement

This is nonstandard; we are adding the 0 to match the labels of BE .
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aj

FiGure 2. Condition (A4,): the existence of j < j' such
that aj—1 > o, o > ajp, ajp < aj, and aj_| > aji_|
implies the existence of j < j” < j' so that aj» < a;r .

that there be no double descents. The set of all André permutations of [n] is
denoted Dy, .

Examples.

D} ={1}, D;={12,21}, D;={123,132,213,231, 312},
D; = {1234, 1243, 1324, 1342, 1423, 2134, 2143, 2314,
2341, 2413, 3124, 3142, 3241, 3412, 4123, 4132}.
Proposition 5.1. The restriction of an André permutation is an André permuta-
tion.

Proof. We just note that if o has no double descents and satisfies condition (4,),
then any restriction of it of length m has no double descents and satisfies (A4,,) .
]

We say that an André permutation o of an n-set X is augmented when-
ever a, = maxsupp(«); we denote the augmented André permutations of [n]
by A4,.

Examples.

A ={1}, Ay=1{12}, A3={123,213},
As = {1234, 1324, 2134, 2314, 3124}.

Proposition 5.2. For n > 0, restriction to [n] gives a bijection An.; — D; and
hence, #A4,.1 = #D;, .

A signed permutation a of an n-set X is an André signed permutation
if a has no double signed descents, « satisfies condition A4,.; (which means
that the O at the end must be considered), and for x = max X, X € supp(«)
and a|j4-1(x)+1,2+1) 18 also an André signed permutation, where we take 0 € Sy
to be an André signed permutation. (These extra conditions are needed to make
various results that hold for André unsigned permutations also hold for André
signed permutations; for instance, the following.)
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Proposition 5.3. The restriction of an André signed permutation is an André per-
mutation or an André signed permutation.

Proof. For a signed permutation o and its restriction afj; ;) with j < n, the
proof is as in Proposition 5.1 (and since we have removed the 0 at the end,
the result is an unsigned permutation). Otherwise, we have B = ol n+1],
and letx = max.X; either i < o !(X), in which case x = max|supp(B)|
(so X € supp(B)) and Blg-1(x)+1,n+1) 1S the same as a|,-1(x)4+1,n+1], Which is
an André signed permutation; or i > o~ !(X), in which case y = Aja-1(®)+1, n+1]
is an André signed permutation, so by induction on the length of «, the signed
permutation f is again André, since it is a restriction of the shorter André
signed permutation y. O

The following was pointed out by Bayer (in a personal communication):

Corollary 5.4. If o is an André signed permutation of [n], then a, <0.

Proof. By the proposition, al(, ».1} is an André signed permutation; Hence,
—|an| € {an} by one of the conditions on André signed permutation, so «a, =
—lan' < 0 . D

Because of the last result, all André signed permutations end with a descent,
like augmented André (signed) permutations; we shall see that the André signed
permutations correspond to augmented André (signed) permutations in other re-
spects as well. Hence, we say that all André signed permutations are augmented.
(It would be nice to find a better definition for André signed permutations, so
that they would properly contain the augmented André signed permutations,
as with the unsigned permutations. It would be especially nice if an analog of
Proposition 5.2 existed.) The set of all (augmented) André signed permutations
of [n] is denoted A .

Examples.
Ay ={0}, Af={10}, A7 ={120, 120,210},
A;t = {3120, 3120, 3210, 1320, 2310,
1320, 2310, 1230, 1230, 2130, 2130} .

The variation of a (signed) permutation n of length n is V(n):=w,_;(D(n)),
where w is the function introduced in §2. Similarly, we have the signed
variation V*(o) := w,(D*(c)) of a signed permutation ¢. For instance,
V*(3120) = w({2}) = aba.

For an augmented André permutation o of the usual n-set X, we define
the reduced variation U(a) to be the word obtained from V' (a) by replacing
each ba with a d, and each remaining a by a ¢.? Since a has no double
descents and ends with an ascent (so V' (a) ends with an a), there will be no
extra b’s, so U(a) isa word in ¢ and d. Similarly, we have the reduced signed
variation of an augmented André signed permutation o, U*(a) which comes
from V*(a), both in the same way as U(a) comes from V («).

2In [11], the original notation used was s for ¢ and t for d. The fact that the letters in
question sound similar is apparently a coincidence (see Theorem 6.1 for why we use ¢ and d).
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Examples. We have that V(2134) = baa, so U(2134) = dc. Similarly,
V%(3120) = aba, so U*(2130) =cd.

We now define the noncommutative André polynomial of Foata and Schiit-
zenberger as follows: U(4,):=3,, U(a) is the nth noncommutative André
polynomial. In addition, we define the nth signed noncommutative André poly-
nomial to be U*(Ay):=3 ¢+ U*(a).

Examples.
U(d))=1, U(4y)=c, U(43)=c*>+d,
U(Aq4) = ¢ +2cd + 2dc,
U(As) = c¢* + 3c*d + Scdc + 3dc? + 4d?,
UX(45)=1, U*(4y)=c,
U(47)=c?+2d, U*(47)=c’+4dc+ 6cd.

By letting ¢ and d commute, we get the commutative André polynomial of
each type.

Proposition 5.5. For any permutation o of an (ordered) n-set, o is an André
permutation iff for a, = minsupp(a), both o|m) and a|ymsi, ) are André
permutations.

Proof. The ‘only if* is Proposition 5.1. So suppose a|;m and a|pm41,.) are
André permutations. Since m is a valley of «, we need only check condi-
tion 4, for j < m < j', but recall that a, = minsupp(a), so it is smaller
than aj , so we take j" =m. O

Corollary 5.6. For any permutation o« of an (ordered) n-set, o is an augmented
André permutation iff for a, = minsupp(a), we have that a|y,—1) is an aug-
mented André permutation, o|im+1,n is an augmented André permutation and

max supp(a) € supp(a|im+1,n)) -

Proposition 5.7. Let & be an augmented André permutation of an n-set with n >

2. Let am = minsupp(a), @' = @|pm_1; and &' = alimy1.n. Then
) = CU(dI) Jm =1,
vta) = { U(aM)dU(a") otherwise.

Corollary 5.8.

n
U(Ant2) = cU(Aps1) + Y (HU(A4)dU(Aps1-;),  n>0.
j=1
Proposition 5.9. For any signed permutation a of an (ordered) n-set X with x

=max X, a is an André signed permutation iff a,, =X € supp(a), a|m) Isan
André permutation and i1 n+1) IS an André signed permutation.

Proof. By Proposition 5.3, the ‘only if” part is clear. Conversely, there are no
double signed descents and (A,,;) holds just as the corresponding facts were
true in the proof of Proposition 5.5. The other two necessary conditions (X €
supp(a) and afjm41 n+1) being André) are true by assumption. O
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Corollary 5.10. There is a bijection

n+l

n+1 @( [n] XA’" l><An m+l)

(where (’,‘:):t is the set of all signed sets, (AT, A™), such that AT UA~ C X
and #A* + #4- =k).

Proposition 5.11. For all o« € AL, if o, =7, then

U*(a) = {CU:t(al[mH,nH]) ifm=1,
U(alim—1))dU*(a|im+1,n+1)) Otherwise.

Corollary 5.12.

) = OUE(4%) + YV ()UA)AUS(AE )
j=1

U* (4%

n+1

6. CONNECTION WITH THE cd-INDEX
Theorem 6.1. For all n >0,
(6.1) cd(A") = U(An+1),
(6.2) cd(@") = U*(AY).
Proof. By Proposition 4.3, we have that cd(A") = 37, .¢ w(D(x)) and cd(@")
= Y,esx w(D*(0)). We will define a map Q: Ay — 251 50 that {Q(a)
a € Apyy} is a partition of S,.;; forall a, f € 4y, @ € Q) iff a =
B; and 3, o W(D(n)) = Ule); this will prove (6.1). Similarly, we will
define Q*: A* - 25" sothat {Q*(a) | a € A%} partitions S*; forall o, f €
Ay, a € Q*(p) iff a = B;and 3, i, W(D(n)) = U*(a) to prove (6.2).
For both of these, we will proceed by induction on #.

For n =1, $; = {12, 21}, 4, = {12}, and we set Q(12) = {12, 21}.
Similarly, Sli = {10, 10}, Af = {10} and so we set Q*(10) = {10, 10}.
Note that again the facts required of Q and Q% hold.

To define Q and Q* for n > 1, it is convenient to define

0(a) = cang,l ., (Q(can(a)))

for a any augmented André permutation, and _Q_i similarly. This means that
we will have partitions of X! or X! once we have partitions of the correspond-
ing S¢x and S#x For instance, Q(23) = {23, 32} because can(23) = 12,
Q(12) = {12, 21}, and can{2 3 ({12, 21}) = {23, 32}.

For a an André signed permutation of [n], let a,, = 7, &'V = ol m-y
(an unsigned permutation), &? = a|im+1,+1] (a signed permutation) and X; =
supp(a')). Then we set

Q*(a) = {nna, nno|n € Q(a"), o € 0*(a?)}.

For example, we have Ai = {120, 120, 210} For 120, m = 2 and
so Q(120) = {n20, n2a|n € Q(1) = {1}, € Q' (0) = {0}} = {120, 120}.
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Similarly, Q*(120) = {120, 120} and Q*(210) = {20, 20 |0 € 05 (10) =
{10, 10} } = {210, 210, 210, 210} (in the latter case, m = 1).

For a an augmented André permutatlon of [n+1],let ap =1, al) =
ali,m-13> @? = alm+1,n+1), Xi =supp(@?) (so n+ 1 € X;). Then we set

Q(a) = (xM12®, 20 (n + 1)1(x?)|a? € T(a)} |

where |(n) —cans‘u:,p(n)u{]}\{nﬁ}(can( ).

For example, 4, = {12}, and Q(12) = {1z, 2|(n) | = € Q(2)}, that is,
{12,21(2)} = {12, 21}. Then, we have 43 = {123, 213}; for a = 123,

m=1,andso Q(123) = {1z, 3|(n) | n € Q(23)}, since Q(2) = @. We know
that Q(23) = {23, 32}, so Q(123) = {123, 132, 312, 321}, because |(23) =
12 and [(32) =21. Note that }> 523 W(D(n)) = a2 +ab+ba+b?=c?=
U(123). Similarly, Q(213) = {213, 231}, and ¥,¢p213 w(D(1)) = ab+ba =
d=U(213).

We will now show

(@) Q(a)NQ(B) # @ implies a = B
0*(a)NQ*(B) # @ implies a = f.

(b) Forall m € S,,,, there exists a € A,,, such that © € Q(a);
for all m € S, there exists a € AF such that = € Q*(a).

(€©) Xreg@W(D(n)) =Ul(a);
Yocot (@ W(D*(0)) = U*(a).

The first two show that we have a partition, and the third shows that the sum
1s right. Note that all three are true for » = 1 (from the complete description
of Q and Q% for this case given above). So we may proceed by induction.

(a) Note that for all 7 € Q(a), if a = 1, then by construction 7, €
{1,n+1}. Soif n € Q(a) N Q(B), then a4 = B = 1. Hence, we have
that 7 = 1(0xn®  where x = m, € {1, n+1}. Suppose x =1 (the x =n+ 1
case is similar). By definition of Q( ), we have that n() € Q(a')) N Q(B"), so
by induction &) = (), Hence a = aV1a?) = BW153 = B . For the signed
case, we do the same thing with {n, 7} instead of {1, n + 1}; note that we
must use the unsigned case in the induction step.

(b) For 0 € S¥, we can write ¢ = nxa’, where x € {n, 7}. By induc-
tion, the permutation 7 is in some Q(a'") (for a!) some augmented André

. . . . -t _
permutation of supp(n)) and the signed permutation ¢’ is in some Q (a?®)
(for @@ some André signed permutation of |supp(c’)|). The signed permuta-
tion o = a7na® is an André signed permutation by Proposition 5.9 and the
fact that @'% is André, and o € Q*(a) by definition of Q*( ).

Forany n € S,,, we write 7 = n(Vxn®  where x € {I,n+1},and {1, n
+ 1} nsupp(n") = @. (So x is the first occurrence of either 1 or n+1.)
Then proceed in the same way.

(c) Let X(a):= Y comW(D(n)) and X*(a):= 3 c ot (o W(D*(0)). These
havé the same initial conditions as U( ) and U*(), so if we show they satisfy
the same recursion, we are done. This consists of showing that X (a) = cX(a'?)
and X*(a) = cX*(a?) if a € 4y, and that X(a) = X(aD)dX(a?)
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and X*(a) = X(aV)dX*(a?) otherwise. We will show the first and last
of the four statements; the other two are very similar.

Let o € Any1, and aV) € 4. Hence, a = lazas - ayy; . Thenlet Q(a) =
Q'u Q™! where Q':={ne€Qa)|mn =i} for i€ {l,n+1}. Then

X(e)= ) w(D(m)+ Y w(D(n))

IIEQI I(EQ"“

= Y awD@?)+ > bw(Dn?))
n@eQ(a?) @eQ(a?)

= Y cw(D(n)=cX(a?).

neQ(a?)

Let a € A*, with a; ¢ AX, andlet k = o~ (7). Thenlet Q" (a) = Q"UQ",
where Q':={0 € Q*(a) |0y =i} for i € {n,7}. Then
X*(@) = ) w(D*(a))+ Y w(D*(q))
geQ geQ”
= > (w(D(n)abw(D*(0)))+ Y  (w(D(n))baw(D*()))
neQ(@") neQ(a")
oe0™ (a?) oe0™ (a?)

= Y (w(D(n))dw(D*(a)))
reQ(a")
aG-Q_i(&(z))

> w(D(ﬂ)))d( >, w(Di(a))>=X(a(1>)dxi(d<2)),

neQ(ah) ae0* (a?)

We now have a combinatorial interpretation of coefficients of the cd-index of
the simplex, octahedron, and cube, as counting certain classes of André (signed)
permutation:

Ccd(A") = #{a € Apyi | Ul@) =w ),
Ccd(@) = #{a€ AX | U@ =w} ,
Ccd(@") = #{a € AT | U(a) = rev(w) }

(where C,, f(c, d) is the coefficient of the cd-word w in f(c, d)).
Since the simplex is self-dual in every dimension, we immediately get (from
the above and Lemma 2.7) that

U(Ans1) = cd(A") = rev(cd (A7) = rev(U(A4n11)) ;

this is the duality theorem of Foata and Schiitzenberger (which takes up a whole
section of [11]); we get it for free.

Furthermore, since the proof of Theorem 6.1 gives us a bijection between
augmented André (signed) permutations and blocks of a partition of S, (S7),
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we can prove the following result originally due (in unsigned form) to Foata
and Schiitzenberger. (A porism is a corollary of the proof of a result.)

Porism 6.2.

(6.3) #A4, = #{ne S, D(n)={1,3,5,...,2|5] - 1}},
(6.4) #AX = #{oc € SED a)={1,3,5,...,2[”7+‘]—1}}.
Proof. Note that for each cd-word w , there is exactly one ab-word in its expan-

sion of the form ababab--- . Hence, in each block of the partition { Q(a) | a €
A, } there is exactly one (signed) permutation of the right-hand side of (6.3). O

The permutations of the right-hand side of (6.3) are called alternating per-
mutations, and their cardinality is called the nth Euler number E,. (It was
interest in these numbers that motivated the paper [11].) We will define the
signed permutations on the right-hand side of (6.4) to be the alternating signed
permutations and their cardinality to be the nth signed Euler number, EE .

Notice that by Corollary 5.6, Corollary 5.10 and Porism 6.2, we have the
recurrence relations

n
Eni2=)Y (MWEE,_j;1 and Ef sz )E,E;
Jj=0
for n>1,and Eg = E) = E; = Ej = Eff = 1. If welet F(x)=),50E,x"/n!
and G(x) = 3,50 EX X"/n!, then we have F(0) = Ey = 1 F’(O) E =1,
and B

F'(x) =" EpoX /n'—1+zz )EEn_j1X"/n!

n>0 n>1 j=0
=Y EX"/n!- ) EpX"/n! = F(x)F'(x).
n>0 n>0

Integrating both sides of the last equation gives the more familiar form 2F’(x) =
F(x)? + 1; either way, the solution is well known to be F(x) =secx +tanx.
For G(x), we get G(0) = Ef =1 and

G'(x)=> Ef X"/n'=1+)" Z (")(2E))E,

n>0 n>1 j=0
=Y 2"E,X"/n!- Y Exx"/n!=F(2x)G(x) .
n>0 n>0
Hence,
In G(x / F(2t)d G(x) = sec(2x)(sin(x) + cos(x)) .

In [18], Shanks studies two matrices of numbers denoted ¢, , and d, ,,
which he calls the generalized Euler and class numbers. The definition is rather
complicated and noncombinatorial, but recursions are found for ¢, , and
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for d, , for each a. Furthermore, it is observed that

E = {ck if n =2k,
"Tldik ifn=2k+1.

Shanks notes the combinatorial interpretation this gives for ¢, , and d, , and
wonders if there are combinatorial interpretations for higher values of a.
For a = 2, we have the following:

Proposition 6.3.
gr_{Cx n=2k
n d2,k ifn=2k+1.
Proof. From [18], we have the recursions

n

YA e = (D",
j=0

n—1

Z 2nld2"1_( l)n—l.

j=0

If we let T(x) = Y,50C2,a X"/(2n)! and A(x):= 3,5, 2,0 ¥>" /(20 = 1)1,
then we have -

S 1 n) = 55 =4 Cer a X 20)

n>0 n>0 j—O
—ZZ V=) (") ez, X"/ (20)!
n>0 j=0
- (Z(J:W"(zx)z"/(zn)!) (Zemiann)
n>0 n>0

cos(x) = cos(2x)I'(x) ,

and, similarly,

S (=il "ZZ V=Y (1) dy e (20 - 1)!
n>1 n>1 j=0
= (ZN—‘I)“(zx)z"/(zn)!) (X der 20 - 101)
n>0 n>1

sin(x) = cos(2x)A(x) .
Hence,
I'(x) + A(x) = sec(2x)(sin(x) + cos(x)) = G(x) ,
which proves the result. O

To abstract the results of this section for A" and @", we say that any
polytope & satisfying the generalized Dehn-Sommerville equations has a com-
binatorial cd-index whenever there is a CL-labeling 4 and a partition Il =
{I, ... , I} of # &(L(ZL)) such that for each block II; of the partition,
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Egel‘h w(D(c)) sums to a cd-word; the labeling A is called a combinatorial la-

beling. In other words, if there is a partition (called a combinatorial partition)
like {Q(a) | @ € A} for some A. As above, the existence of this partition
and labeling implies that the coefficients of the cd-index are nonnegative. The
converse is also true, since if the coefficients of the cd-index are nonnegative,
then for any CL-labeling A (which exists by Theorem 3.6), we can associate
each chain with an ab-word in the ab-index. Then the expansion of the cd-
index gives us a partition as required. However, when we say that & has a
combinatorial cd-index, we would like there to be some combinatorial way of
producing the partition, as in the results of this section. Notice that we have
shown that A" and &" have combinatorial cd-index. Since @&" is the dual
of &", we could say that it has a dually combinatorial cd-index.
We will need the following observation later:

Proposition 6.4. For # € {A",O"},>, and i a standard labeling, consider
a block Q(a) of the partition of the chains, and suppose the chains in Q(a)
sum to the cd-word w. Then if w begins with a d, all the chains of Q(«)
pass through a common atom of L(P), and if w begins with a ¢, then all
the chains of Q(a) pass through one of two atoms a® , a® € Q(a), those
chains whose ab-word begin with a (resp. b) pass through a® (resp. a®),
and ) satisfies 45(0, a®) < 25(0, a®)).

Proof. We proceed by induction. Write a = a’xa® , where x is 1 or 7,
depending on whether & is A" or @". If al') ¢ AgU A4, , then w(aV) # 1,
and so the result holds by induction. (This follows from the structure of A: all
elements of Q(a(") will label chains in [0, e], where e is the bottom of the
edge labeled x in the chain labeled «.)

Otherwise, if w begins with ¢, then a!) € 49 and o = xa'?, and all the
chains Q(a) have labels starting with {1, n} or {n, n}, depending on 2.
All of those chains whose labels begin with 1 or 7 pass through a single atom
of L(%) (since no two atoms have the same label (0 < a)) and they all start
with an ascent since all other labels are larger than 1 or 7, whichever it is.
Similarly, all the chains whose labels begin with either n + 1 or n pass through
a single atom and start with a descent.

So suppose w starts with d; then a!) € 4,. Hence all the chains pass
through a single atom (the one such that (0 < a) = a"), as required. O

We will say that any polytope that has some labeling which satisfies Proposi-
tion 6.4 for some partition Il = {Q(«)} has a strongly combinatorial cd-index
and that the labeling is a strongly combinatorial labeling. The standard (and
X-standard) labelings of the simplex and octahedron are strongly combinatorial
C L-labelings, and the standard labeling of the octahedron is a strongly combi-
natorial co C L-labeling of the cube.

7. EXTENDING STRONGLY COMBINATORIAL LABELINGS

The results of the previous section only apply to a few polytopes. In this
section, we will show how the strongly combinatorial labelings can be extended
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5 (b)

0

FIGURE 3. When the word begins with a ¢C.

to other classes of polytopes. Then, we will use the fact that any simplex can al-
ways be strongly combinatorially labeled starting from any values of the bottom
labels to get some additional specific results.

Theorem 7.1. Let P be an Eulerian poset. If i is a CL-labeling of P such
that for each atom a, A restricted to [a, 1] is a strongly combinatorial CL-
labeling, then A is a combinatorial C L-labeling of P, so the cd-index of P has
nonnegative coefficients.

Proof. For each atom a € P, we have a partition I1@ := {[1'”, ... ¥}

of the maximal chains of [a, 1] such that Peene W(C) = w,(“) is a cd-word

(where w(c) = w(D(c))). Furthermore, if w}“) begins with a d, there is an
atom b of [a, 1] that all the chains of I1/® pass through; and if w!® begins
with a ¢, then there are two atoms 5*(a) and b{”)(b) through which all chains
of Hf.”) pass, such that those chains beginning with ascents (resp. descents)
pass through b{®(a) (resp. b (b)), and the label Ao<ay (@ b(a)) =1 is less
than the label 4.5, (a, b”(b)) = m. (This is just the definition of a strongly
combinatorial labeling.)

Now, let T be the set of chains in {{0} <¢|ce1”}. Clearly { T\ |
a€P, p(a) =1} is a partition of the maximal chains of P. If wl(”) (which is
still the sum of the ab-words of the chains in HE“)) begins with a d, then each

chain of Tf-a) begins {0 < a < b}, and hence all either start with an ascent
or all start with a descent, since the first two labels are the same for them all.
Hence, Zce'r‘."’ w(c) = xw,(a) , where x € {a, b}. Welet &, (resp. %, ) be the

collection of blocks Tf.“) such that 3 1« w(c) =aw (resp. bw) for each w.

On the other hand, if wf“) begins with a ¢, we have the situation shown
in Figure 3: {”(a) and b (b) each cover a and the labels of these (rooted)
covering relations are / and m respectively, and a > 0 with label k. We have
that m > [, so there are three cases: k>m >/, m>k>1 and m>1[> k.

In the first case, all chains of TE.") begin with an ascent and in the last case,
with a descent, so we form %, and %, as before. In the remaining case, we

have that each chain of TE’” passing through bf‘”(a) begins with a descent,
since k > [/; following this is an ascent by definition of bf“)(a). Similarly,
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each chain passing through bf“)(b) begins with an ascent followed by a descent.

Since ¥ .o w(c) = w,(“) = cw’, we have that }° 1w w(c) =dw’. Let G

be the collection of blocks Tf.”) so that }° @ w(c) = dw’.

Now, every block TE”) is in one of &, , %, or <, for some w, and every
maximal chain is in exactly one block. Hence we have that

(7.1) cd(P) =) #d,aw+ Y #B,bw+ Y #Zydw .
w w w

Now, since P has a cd-index, the right-hand side of (7.1) can be written in
terms of ¢ and d. The last term already is in this form, so we have that

Y #,aw+ Y #B, bw
w

w

can be written in terms of ¢ and d. This implies that it is invariant under
the map switching a and b, but so are ¢ and d, and thus so is a word w in
¢ and d, so we have

Z#Mwaw+2#$wbw=E#Mwbw+2#.@waw,
w w w w

Y (#4, aw + #B, bw) = Y (#5%4, bw + #B, aw) |

w w

> (#y — #By )@ -b)w =0 ;

considering this as a noncommuting polynomial in {c, d} with coefficients
in Z[a — b] implies that #&, = #%, . Hence, there exists a bijection ¢, = ¢
from %, to %, for each w, and we can define %, to be {Tf.") U qSTf.a) |

Tf-a) € A, } , and then {%,, Z,} is a combinatorial partition as required. O

Note that we do not have that A is a strongly combinatorial C L-labeling
because although those chains in the block T\ U¢T® that begin with ascents
pass through one atom (a) and those that begin with a descent pass through
another atom (¢(a)), it could well be that 1{0}(0, a) < l{o}((), o(a)). We
will describe such Eulerian posets, labelings and partitions as almost strongly
combinatorial Eulerian posets, labelings and partitions when they satisfy all of
the conditions for a strong combinatorial labeling except this one. It would be
very nice to find a combinatorial way for finding the bijection ¢,, in this proof,
especially if we could find one that would have A, 0,a)>41 {0}((), #(a)) (since
if we could do this in general, it would prove the nonnegativity of the cd-index
in general).

Porism 7.2. Under the same hypothesis as Theorem 7.1, A is almost strongly
combinatorial.

A polytope is said to be simplicial whenever each of its facets is a simplex. A
polytope is said to be simple whenever each of its vertex figures is a simplex, or,
equivalently, whenever it is the dual of a simplicial polytope. Similar definitions
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-2 1

FiGURE 4. This cannot be completed to a standard labeling.

can be stated for Eulerian posets and lattices; for instance, an Eulerian poset is
simple if every interval [a, 1] is isomorphic to a boolean algebra for all a # 0.

For the lattice of faces L = L(£) of any simple polytope &% of dimension n
(or any other simple, CL-labelable Eulerian poset L of rank »n + 1) we can cre-
ate a C L-labeling that satisfies the hypothesis of Theorem 7.1. If n <0, there
is nothing to do; otherwise, order the facets of Z* in a shelling order (The-
orem 3.6) or some other recursive atom order for L (which exists because L
is CL-shellable). By definition of dual shelling order (recursive atom order),
we have dual shelling orders (recursive atom orders) of each [a, 1], each of
which is isomorphic to B,. Now, define the first two levels of A as in Al-
gorithm 3.3. Then continue so that each [a, 1] is labeled in the X-standard
labeling, where X is the set of labels of the form A (© <a}(a , b); this set has the
right cardinality by the choice of labels in Algorithm 3.3. As in that result, the
resulting A is a CL-labeling. Now, by our previous results, the X-standard
labelings are strongly combinatorial, and by Corollary 2.6, L has a cd-index.
Hence we have:

Corollary 7.3. Any CL-shellable simple Eulerian poset has a combinatorial cd-
index, and hence has nonnegative cd-index.

Corollary 7.4. Any CL-shellable simplicial Eulerian poset has a dually combi-
natorial cd-index, and hence has nonnegative cd-index.

Unfortunately, we do not have similar results for cubic and dual-cubic poly-
topes, because it is not true that any ordering of the facets of a cube gives rise
to a standard labeling of its dual—see Figure 4.

If we weaken the hypotheses of Theorem 7.1 to only require that each inter-
val [a, 1] is almost strongly combinatorially labeled, then the proof will not go
through, since there will be the additional case of k </ < m, which will give a
term of the form (a2 + b?)w = (¢* — d)w . However, since this term will come
from a block having all of its chains pass through a single atom (a), we can
state the following:

Proposition 7.5. Every Eulerian poset’s cd-index can be written as a nonnegative
noncommuting polynomial in the variables ¢, d and e:=c®> —d.

Of course, such a noncommuting polynomial need not be unique, even if all
possible d + e’s are replaced by ¢?’s: ¢2d + dc2 — d? = ed + dc? = de + c¢’d.
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However, in [2], Bayer and Klapper produce a recursion for the cd-index of
a polytope, which in our notation is

~

(1.2) 2cd(P Z e+ cd(E;)(2d — c?)
where Fi, ..., F, isaline shellmg of the polytope & and E; is the boundary
of F; Nl JF, in 0F;. It is relatively easy to see that E; is a polyhedral

complex isomorphic (as a polyhedral complex) to a polytope, which we also
call E;. (Since the lattice of faces of the two E;’s is the same, no confusion
will result.) The facets of E; are faces of & of codimension 3.

As a result of (7.2), we can inductively show that the cd-index of any polytope
can be written as a nonnegative noncommuting polynomial of the variables c,
d and €' :=2d —c2. This is not enough to show that the cd-index is positive,
even with Proposition 7.5, as can be seen from the fact that ¢* + d(2d — ¢?) =

—dc? 4 2d? = 2d? + (¢? — d)c?.
However, we can use this recursion to get the following result:

Proposition 7.6. Let & be a polytope such that the CL-labeling A of L :=
L(%) coming from a line shelling of the dual polytope P* is such that for each
element b € L of rank 2, A restricted to [b, 1] is a strongly combinatorial
labeling. Suppose further that in the line shelling of P* that gives rise to A,
each E; has a nonnegative cd-index. Then i is a combinatorial labeling of L.

Proof. By Porism 7.2, for each atom a, the interval [a, 1] is almost strongly
combinatorially labeled by 4. So we can mimic the proof of Theorem 7.1 to
get

(7.3) cd(P) = #F,cw+ Y (#Z,dw + #&, (¢ - dw) ,

where each Il € €, sums to cw, each I1 € &, sums to dw and each Il € &,
sums to (¢ —d)w .
From (the dual formulation of) the recursion (7.2), we have

(7.4) cd(P) =%Z d([a;, 1)) + (2d — c?)cd(E}) ,

where E} is the dual polytope to E;. Its lattice of faces can be constructed
by taking the union of certain intervals of the form [x, 1], where p(x) =3,
and adding a 0. By assumption (and Lemma 2.7), cd(E}) is nonnegative.
Furthermore, each polytope F; satisfies Theorem 7.1, and hence, each F; has
nonnegative cd-index.

Hence, the only negative terms of the right-hand side of (7.4) are of the
form c?w, while the only negative terms of the right-hand side of (7.3) are
of the form dw . Since the left-hand sides of the two equations are the same,
the right-hand sides must match, and hence neither one has any negative terms,
that is, the negative terms must be cancelled out by positive terms.

In the case of (7.3), this implies that for each w, #Z, > #&, . So we
may pair each partition block in &, with a partition block in &, to form
new blocks which, along with the other blocks of &, and the blocks of %, ,
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FIGURE 5. A union of blocks as formed in the proof of Proposition 7.6.

form our combinatorial partition of .# #(L). However, this partition is not
even almost strongly combinatorial, since the new blocks that are formed by the
union of a block from &, and a block from &, are as shown in 7: although
all chains pass through one of two atoms, chains starting with both ascents and
descents pass through both atoms. (However, these are the only blocks that do
not satisfy the almost combinatorial condition.) O

Corollary 7.7. Let & be a polytope such that each vertex figure of & is simple.
Then & has a combinatorial cd-index.

Proof. Note that there exists a line shelling for &#* . In this shelling, each E;
is simplicial (since each facet of % is simplicial) and hence has nonnegative
cd-index. Hence, Proposition 7.6 proves the result. 0O

Corollary 7.8. Let P be a polytope such that each facet of & is simplicial.
Then £ has dually combinatorial cd-index.

Proposition 7.9. Let & be a polytope with face-lattice labeled by a C L-labeling
A coming from a line-shelling of °*. If each E; in this line shelling has a
nonnegative cd-index, and each vertex figire of & satisfies the conditions of
Proposition 7.6, then P has a combinatorial cd-index.

Proof. By the proof of Proposition 7.6, each vertex figure [a, 1] is almost com-
binatorially labeled by A, except for blocks of the sort shown in Figure 5. We
can proceed as in the proof of Proposition 7.6 to get

cd(P) =" #B,cw+ Y #Z,dw+ ) #&, (¢* —djw

w

+ (blocks as in Figure §) .

Consider such a block, and assume the label going to the 0 of Figure 5 (which
is an atom of ) is k. Then we have four cases: kK < [, m; k > [, m;
I >k >m or | <k < m. The first two produce elements of %%, and %,
and match up as usual. For the other two cases, we get

I >k>m: (a(ab + ba) + b(a? + b*)w ,
l<k<m: (b(ab + ba) + a(a’ + b*))w .

Neither of these can be written in terms of ¢ and d (so they will not interfere
with the &, and &, terms, which match as in Proposition 7.6). However,
they sum to cd + c(c2 —d) = ¢, and in fact it is easy to see that the existence
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of the cd-index implies that they match up just as blocks in &, and %, did
before. Hence, the cd-index is again combinatorial. O

Corollary 7.10. For any polytope such that every interval of the form [b, 1],
p(b) =3, is a simplex, the cd-index is combinatorial.

Proof. The vertex figures of such a polytope satisfy Proposition 7.6 as in Corol-
lary 7.7, and the E7’s will have simplicial facets, so by Corollary 7.8, they have
nonnegative cd-indexes. O

Since every 1-polytope is a simplex, this implies that every polytope of di-
mension 4 or less has a combinatorial cd-index. However, we can do one
better:

Proposition 7.11. If £ is a polytope of dimension 5 or less, it has a combina-
torial cd-index.

Proof. For dimensions less than 5, the result follow from the remarks just
made. For dimension 5, each Ej’-‘ is of dimension 3, and hence has nonneg-
ative cd-index. Furthermore, let 7 be a vertex figure of % its E;’s are of
dimension 2 and thus have nonnegative cd-indexes. Then 7~ is of dimen-
sion 4, and if b € L(7") is of rank 2, then b is of rank 3 in L(Z), and the
interval [b, 1] is of rank 3 (in both) and hence is the lattice of faces of a 2-
polytope, that is, an n-gon. But it is easy to see that any line shelling of an »n-gon
gives rise to a strongly combinatorial labeling, so 7~ satisfies Proposition 7.6.
Hence, by Proposition 7.9, the result follows. O

It seems that it might be possible to extend this technique further, but for
the moment we will stop here.

8. CONCLUSIONS

We have given a combinatorial interpretation of the cd-index for several types
of polytopes, most notably simple and simplicial polytopes. This implies that
the cd-indexes of these polytopes have nonnegative coefficients. It would be
most interesting if these techniques could be extended to other classes of poly-
topes, especially to all polytopes. The remarks after Theorem 7.1 may provide
a clue as to how to proceed in this direction.
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Note added in proof. Richard Stanley has recently proven Conjecture 1.1.
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