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THE NOETHERIAN PROPERTY IN RINGS OF
INTEGER-VALUED POLYNOMIALS

ROBERT GILMER, WILLIAM HEINZER, AND DAVID LANTZ

Abstract. Let D be a Noetherian domain, D' its integral closure, and Int(£»)

its ring of integer-valued polynomials in a single variable. It is shown that, if

D' has a maximal ideal M' of height one for which D' ¡M' is a finite field,

then Int(Z>) is not Noetherian; indeed, if M' is the only maximal ideal of D'

lying over M' n D , then not even Spec(Int(Z))) is Noetherian. On the other

hand, if every height-one maximal ideal of D' has infinite residue field, then

a sufficient condition for Int(/J) to be Noetherian is that the global transform

of D is a finitely generated .D-module.

1. Introduction

Throughout this paper D denotes an integral domain (commutative, with

unity), K denotes its field of fractions, and X denotes an indeterminate. The

ring of integer-valued polynomials of D (in the single indeterminate X) is

Int(D) = {f(X) £ K[X]\ Va£D, f(a) £ D}.

The rings of integer-valued polynomials on various domains have been studied

at least since the 1919 articles of Ostrowski [O] and Pólya [P]. Even at that time

it was known that the ring of integer-valued polynomials, Int(Z), is generated

as a Z-module by the binomial coefficient polynomials

(Xn)=X(X-l)-..(X-n+l)/n\

for n = 0, 1, 2, ... . The ring R = Int(Z) is an interesting example of a non-

Noetherian ring that "occurs in nature": It follows from [Cal, Corollary 1.3]
that dim(i?) = 2, and Brizolis [B] showed that R is a Prüfer domain, so R

is not Noetherian. (There are perhaps more direct ways of reaching the same

conclusion—cf. [Ch2, p. 1]—but we use a similar method below.) In the present

paper we investigate the Noetherian property of the rings Int(D), and of their

spectra. We will need the following well-known result.
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Fact 1.1 [SSY, Theorem 2; Chl, Proposition 2.2]. If D is a Noetherian domain,
then Int(Z)) ^ D[X] iff there is a maximal ideal M of D that is an associated

prime of a principal ideal aD (i.e., for some b in D, M = aD : b) and such

that the residue field D/M is finite.

We prove the following statements for a Noetherian domain D with integral

closure D' : If D' has a maximal ideal M' of height one for which D'jM'

is finite, then lnt(D) is not Noetherian. (In fact, if M' is the only maximal
ideal of D' lying over M' n D, then not even Spec(Int(Z))) is Noetherian.)

In particular, if dim(D) = 1, then Int(D) is Noetherian iff Int(D) = D[X].
On the other hand, if D' has no height-one maximal ideal with finite residue

field, then a sufficient condition for Int(ö) to be Noetherian is that the global

transform of D (in the sense of [Mj]) is a finitely generated module over D.

We also provide an example of a two-dimensional Noetherian domain D for

which, for each maximal ideal M of D, Int(Z>A/) is Noetherian, but Int(D)

is not Noetherian.
In terms of the spectrum of Int(D), we prove in Theorem 3.1 that for a

one-dimensional local domain (D, M) with finite residue field, Spec(Int(D))

is Noetherian if and only if D' has more than one maximal ideal.
We consistently use ' to denote integral closure of a domain (in its field of

fractions). When no confusion is likely, we write E in place of Int(Z>). The

spectrum (i.e., the set of proper prime ideals) and the maximal spectrum of

a domain D are denoted Spec(D) and Mspec(Z)), respectively. The terms

"local" and "semilocal" include "Noetherian". We use < to denote proper set
inclusion.

Let a be any element of D. Then the evaluation map tp: E —> D defined

by <p(p) = p(a) is a retraction of D-algebras. Its kernel is the prime ideal

(X - a)K[X] n E. Since D is an algebraic retract of E, D is "ideally closed" in

E—i.e., for each ideal / of D, IEnD = I. In particular, if E is Noetherian,

then D is Noetherian. Thus, most of our results lose nothing with the addition

of a Noetherian hypothesis on D. Moreover, if 5 is a multiplicatively closed

subset of D, then the equality (Int(D))s = lnt(Ds) holds if D is Noetherian

[CC, p. 303], but not in general, as is shown in [G] by the construction of an

almost Dedekind domain D for which Int(D) is not a Prüfer domain.

2. The Noetherian property in Int(D)

It turns out that the domain Int(D') plays a significant role in our work

on the problem of determining conditions under which Int(Z)) is Noetherian,

particularly in the case where D is one-dimensional. In general, if Di is a

subring of an integral domain D2, it need not be true that Int(A) is contained

in Int(Z>2) • (They are, of course, both subrings of K[X], where K is the

field of fractions of D2.) For example, if k is the field of two elements,

t is an indeterminate, Dx - A:[[i2,/3]], and D2 = k[[t]] = (£>•)', then

[(l/t2)X(X + l)]2 is in Int(A) but not in Int(D2) ■ This phenomenon forced
us to exercise some care, especially in our notation: If E = Int(D), we need

not have E' = Int(D'). (In fact, in Proposition 6.1, we give necessary and

sufficient conditions on a one-dimensional Noetherian domain D in order that

Int(D) ç Int(-D').)   Thus Proposition 2.2 below is reassuring.   Recall that a
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transversal of a family Jf of sets is a set {sN : N £ yV} such that Sn £ N for

each N in JV .

Remark 2.1. Let Ä and -S be subrings of a larger ring (commutative, with

unity), and let JV be a family of multiplicatively closed subsets of i?nS such

that every transversal of JV generates the unit ideal in R . Then an element s

of S is integral over R iff, for each N in JV, the image of 5 in Sn is integral

over Rn ■

Proof. If s in S is integral over .R, it is clear that the image of s in Sn

is integral over Rn . Conversely, if the local condition is satisfied by s, then

for each N in JV, s is a root of a polynomial Pn(X) in R[X] with leading

coefficient in N. Since a finite set of these leading coefficients generates the

unit ideal in R, the ideal in R[X] generated by the corresponding polynomials

Pn(X) contains a monic polynomial, of which s is a root.   D

Proposition 2.2. Let D be a Noetherian domain, with field of fractions K and

integral closure D'. Then the ring Int(D, D') of polynomials f(X) in K[X]

for which f(D) ç D' is the integral closure of Int(D).

Proof. Since Int(Z),D') is contained in the field of fractions K(X) of lnt(D),

it is enough to show that Int(D, D') is integrally closed and integral over

Int(D). But it is immediate that, for any subset 5 of an integrally closed

domain R, the ring lnt(S, R) of polynomials f(X) with coefficients in the

field of fractions of R and for which f(S) ç R is integrally closed (since its

integral closure is contained in the ring of polynomials over the field of fractions

of R, and if g(X) is a polynomial over the field of fractions of R integral

over Int(S, R), then for each s in S, g(s) is integral over R and hence in

R).
To see that Int(Z), D') is integral over lnt(D), let f(X) be an element of

Int(Z), D'). It suffices to show that, for each maximal ideal M' of D', there

is an element s of D' - M' for which sf is integral over lnt(DM'nD) (for

then, possibly with a different 5, sf will be integral over Int(D), and since

the integral closure lnt(D)' of Int(D) is a module over D', it will follow that

/ £ Int(D)'). So take the maximal ideal M' of D', and assume D is local
with maximal ideal M' n D.

Suppose first that M' has height greater than one. Then by Proposition 4.1,

/ G C\{D'P,[X]: P' C M',ht(P') = 1} = D'M,[X], so there is an element 5

of D' - M' for which sf £ D'[X], i.e., sf is integral over D[X] ç Int(D).
Similarly, if M' has height one and D'jM' is infinite, then again / e D'M,[X],

so there is an s £ D' - M' such that sf is integral over Int(D).

Now suppose M' has height one and D'/M' is finite. Since f(D) c/J'n

(\/d)D, where d is a common denominator for the coefficients of /, there is

a ring R contained in D', finitely generated over D, for which f(D) ç R and

M' is the only maximal ideal of D' lying over M' n R = N. Let C = D RR,
s be an element of R - N for which s(CRn DR) ç C (such an element exists

because R is Noetherian, so that CRn n R is finitely generated), q be the

cardinality of R/N, and « be a positive integer for which jV" ç CRa; n R

(such an integer exists because ht(N) — 1, so that CRn n R is A-primary).

Then for each a in D, (sf(a))q-sf(a) 6 A, so ((sf(a))q-sf(a))n £ CRNnR,
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SO

((sf(a))q - sf(a))n+l = s(sq~lf(a)q - f(a))((sf(a))q - sf(a))n

£s(CRNr\R) ÇC CD,

so g = ((sf)q - sf)n+1 £ Int(D). Thus sf is a root of the monic polynomial

(y« _ 7)n+i _ g over Int(D)     D

Theorem 2.3. Let D be a Noetherian domain for which Int(O) is also Noethe-

rian. Then for every maximal ideal M' of the integral closure D' of D, either

M' has height greater than one, or else the residue field D'/M' is infinite.

Proof. Assume by way of contradiction that a maximal ideal M' of D' has

height one and finite residue field; set M = M'n D . Then by localizing D and

D' at D\M, we preserve the hypothesis, so we may assume (D, M) is local.

Next, adjoining to D an element of M' not in any of the other maximal ideals

of D' (these are finite in number [Na, (33.10)]), we form a ring R, finitely

generated as a D-modale, for which D' = R' and M' is the only maximal

ideal of D' lying over M'n R = N. Since the nonzero conductor of R into D

also multiplies Int(i?) into Int(Z>), the compositum E[lnt(R)] of E = lnt(D)

and Int(.R) is (contained in) a finitely generated module over lnt(D) and

hence is also Noetherian. Localizing at the multiplicative set R\N, we see

that (£,[Int(i?)])jR\Ar = £[(Int(JR))fi\Ar] = E[lnt(RN)] is also Noetherian, and

that the integral closure of Rn is D'M,, a discrete rank-one valuation domain.

By Proposition 2.2, Int(D^,) is contained in the integral closure (lnt(RN))' of

Int(i?jv) and hence in (Zs[Int(i?jv)])'. On the one hand, as the integral closure of

a Noetherian domain, (£[Int(i?jv)])' is Krull. On the other hand, as an overring

of Int(D'M,), which is a Prüfer domain by, for example, [Ch2, Corollaire 6.5],

(£[Int(jRjv)])' is also a Prüfer domain; so it is Dedekind and hence one dimen-

sional. However, since both E = lnt(D) and Int(ÄAi) are contained in the rank-

two valuation domain V = {/ £ K[X\X) ; /(0) £ D'M,} , (E[lnX(RN)])' Q V,
and hence the dimension of the Prüfer domain (E[lnt(RN)])', being equal to

its valuative dimension, is at least 2, the desired contradiction.   D

We are grateful to Professor Paul-Jean Cahen for pointing out to us an error

in our original proof of Theorem 2.3.

The construction of the famous examples of Nagata of Noetherian domains

D that are not catenary (cf. [Na, pp. 204-205; Mul, pp. 87-88; ZS, pp. 327-
329]) start with a ground field k, which can be taken to be a finite field. If k is
finite, then such a domain D has dimension greater than 1, the integral closure

D' of D fails to satisfy the conclusion of Theorem 2.3, and hence Int(D) is

not Noetherian. These domains have nonzero conductors with respect to their

integral closures, so they provide counterexamples to Proposition 3.1 of [Chi];

the error in the proof of Proposition 3.1 of [Chi] is its tacit assumption that

each maximal ideal of the integral closure has height greater than one. We

note that (3.1) of [Chi] is used in the appendix of that paper to show that

dim(Int(ö)) = dim(ö) +1 for a Noetherian domain D ; a proof for this latter

statement independent of [Chi, (3.1)] is given in [Cal], where Corollary 1.3

asserts validity of the equality for a Jaffard domain D.

From Theorem 2.3 we have the following corollaries for one-dimensional

domains and normal domains:
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Corollary 2.4. For D a one-dimensional Noetherian domain, the following state-

ments are equivalent:

( 1 ) Int(Z>) is Noetherian.
(2) Int(Z>) = D[X].
(3) The residue field at each maximal ideal of D is infinite.

Proof.   (3) => (2) : Apply Fact 1.1.
(2)=»(1): Clear.
(1) => (3) : Apply Theorem 2.3.   D

Corollary 2.5. For D an integrally closed Noetherian domain, the following state-

ments are equivalent :

(1) Int(D) is Noetherian.
(2) Int(D)= D[X].
(3) D/P is infinite for each height-one prime ideal P of D.

3. The Noetherian property in Spec(Int(Z)))

Suppose that (D, M) is a one-dimensional local domain for which D/M
is finite, and let E = lnt(D). It is natural to ask for conditions under which

Spec(-E) is Noetherian. In [Chi] it was shown that for such a D, Spec(is)

consists of height-one primes f(X)K[X] n E, where f(X) is irreducible in

K[X], and maximal ideals of the form Ma = {f(X) £ E: f(a) £ M}, where

a varies over the completion D of D and M = MD is the maximal ideal of

D (the ideals Ma are distinct only if D is an integral domain [CGH; Ch3]).

The primes contracted from K[X] form a Noetherian space, so Spec(£) is

Noetherian iff the maximal ideals Ma form a Noetherian space; moreover,

since the ideals Ma are precisely the minimal primes of ME, this is true iff

they are finite in number—i.e., iff Spec(E/ME) is finite. Suppose D' is a

finitely generated Z)-module. Since D is an integral domain iff D' is local

and a finitely generated D-module [Na, Exercise 1, p. 122], if D' is local, then

it follows from the result in [CGH or Ch3] cited above that Spec(E/ME) is
infinite and hence Spec(is) is not Noetherian. On the other hand, if D' has

more than one maximal ideal, then Cahen [Ca2, Lemme 1.2] shows that for

a, b in D, the ideals Ma, Mb can be distinct only if a, b represent different

cosets in D of the nonzero conductor C of D' into D. If / £ Ma, then

f(a + C)CM, and hence, by continuity, f(a + CD) ç M. Since D = D + CD,

it follows that if the elements u, v of D belong to the same coset of CD, then

MU = MV. Because D/CD s D/C is finite, then Spec(EfME) is finite in this
case and Spec^) is Noetherian. The following result modifies the proofs of

these results only slightly to determine whether Spec(.E) is Noetherian in the

case where D' is not a finitely generated D-module.

Theorem 3.1. Let (D, M) be a one-dimensional local domain with D/M finite.

(1) Suppose D' is local (and hence a discrete rank-one valuation domain).  If

a, b are distinct elements of D, then there is an f(X) 6 Int(Z>) for which

f(a) £ M but f(b) = 0. In particular, Ma^ Mb.
(2) Suppose D' is not local. Let R be a finite extension of D in D' such

that the maximal ideals of D' have distinct contractions Ni, ... , Nk to R, and
suppose the positive integer a is such that (N\ n • • • n Nk)a is contained in the
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(nonzero) conductor of R into D. If a, b in D are such that a-b £ (NfCiD)D,

then Ma = Mb.
Therefore Spec(Int(Z))) is Noetherian iff D1 has more than one maximal

ideal.

Proof. (1) Suppose we have found an element g(X) of Int(D) for which

g(a - b) £ M and g(0) = 0 ; then f(X) = g(X - b) has the desired prop-
erty. So we may assume b = 0. Let T be a set of coset representatives of the

maximal ideal M' in D' for which 0 6 T, and let d be a generator of M'.

Set f(X) = (l/d) UiiX- t): t £ T) and for k > 1, set fk(X) = /,(/*_.(*)) •
Then it is easy to see that, for any positive integer n and any element c of D',

fi(dnc) is associate in D' to dn~lc, so if n > k , then fk(d"c) is associate to

dn~kc. It follows that if a is associate in D' to dk , then fk(a) is a unit in

D', but fk(0) = 0. The same statements hold for any power of fk(X). Now

since fk(D) is contained in both D' and a finitely generated D-submodule of

K, it is contained in a subring R of D' that is finitely generated over D ; and

R is also local, say with maximal ideal N. Some power Nm of N is contained

in the nonzero conductor of R into D. Let q, p denote the (finite) cardinality

and characteristic, respectively, of D'/M'. Then the (q - l)st power of any

element of R differs from either 0 or 1 (which are in D) by an element of N ;

and since p e N, it follows from a basic property of binomial coefficients that
if n = (q - \)pm , then the «th power of any element of R is in D (cf. [Na,

(31.3)]). Thus f»(X)£lnt(D).
(2) Note first that since D' has only finitely many maximal ideals by the

Krull-Akizuki Theorem [Na, (33.2)], one can always find an R with the desired

property by adjoining to D one element from each maximal ideal of D' that

is not in any other maximal ideal.

Assume by way of contradiction that Ma ^ M¡,; then there is an element

g(X) £ lnt(D) for which g(a) - g(b) i M. Write / = jV^nö. Since
g(X) is continuous, we can replace a, b with approximating elements a- , bx

of D such that ai - bi £ I and g(ai) - g(bi) £ M ; so we may assume
a, b G D. Now suppose the maximal ideals of D' are M[, ... , M'k , lying over

N\, ... , Nk respectively, and for i = 1, ... , /c, let v, denote the valuation

associated to the discrete rank-one valuation domain D'M, , and let y¡ be a

positive integer such that for x, y in K,

Vi(x -y)> Ji   implies   v¡(g(x) - g(y)) > 0.

(For instance, y, could be greater than the negative of the smallest v,-value

among those of the coefficients of g(X).) By the Chinese Remainder Theorem,

choose z in R such that

z = b mod A,max{a •n},        z = a mod A2max{" ■»>,

and
z = a mod N",        i - 3, ... , k.

Then z - a = (z - b) - (a - b) £ Af1 and z - a £ N'¡' for / > 1 . Since the N¡*
are comaximal, their intersection is their product, so z - a is in the conductor

of R into D, and hence z £ D. Thus, g(z) - g(b) £ M\D'M, nD = M and

g(z) - g(a) £ M'2D'M[ n D = M ; but this yields g (a) - g(b) = \g(z) - g(b)) -

isiz) - 8(a)) £ M, the desired contradiction.
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It remains to prove the final statement in the theorem: If D' is local, then

by (1), Spec(E/ME) has at least the cardinality of D itself, so Spec(E/ME)
is infinite. But if D' is not local, then by (2) the cardinality of Spec(E/ME) is

bounded above by the cardinality of D/ID = D/I [Na, ( 17.9)], a finite ring.   D

The question of when Spec(Int(Z>)) is Noetherian for D not local or of

higher dimension than one remains open. But Corollary 4.4 gives an affirmative

answer in many cases of higher dimension, since a finitely generated algebra over

a ring with Noetherian spectrum has Noetherian spectrum.

Another consequence of (2) above (or, in the case where D' is a finitely

generated Z)-module, of Lemme 1.2 of [Ca2]) is:

Remark 3.2. Let (D,M) be a one-dimensional local domain with D/M finite

and with integral closure D' not local. Then the integral closure E' of E =

Int(.D) is not a finitely generated ^-module.

Proof. By (2), Spec(E/ME) is finite; so it is enough to show that Spec(E'/ME')

is infinite, since if E' were finitely generated over E, then there would be only

finitely many prime ideals of E' having the same contraction to E. (Indeed,

for any P in Spec(is), E' ®E (EP/PEP) is a finite-dimensional vector space

over Ep/PEp, so the dimension of E' ®e (Ep/PEp) is an upper bound for

the number of primes of E' lying over P. Cf. [Mu2, Exercise 9.3, p. 69].)

Note first that, because Int(D') is a Prüfer domain, all rings between it and its

field of fractions K(X) are integrally closed; so E' = E[\nt(D')]. Now suppose

a £ D, and fix a maximal ideal M' of D'. Then a £ D and a £ D'M, . Thus if

v denotes the discrete rank-one valuation associated with D'M,, then the rank-

two valuation domain Va = {f £ K[X\x-a)'- v(f(a)) > 0} contains E and

lnt(D'M,) ; so E' C E[lnt(D'M,)] ç Va . Moreover, if a, b £ D with a^b, then

Va, Vf, have distinct centers on lnt(D'M,) and hence on Int(D') and hence on

E'. Since these centers contain M, Spec(E' /ME') has at least the cardinality

of D.   U

Question 3.3. If D is a one-dimensional local domain with finite residue field

for which D < D', is it possible for (Int(D))' to be a finitely generated Int(D)-

module? For example, if D = k[[t2, t3]], where Ac is a finite field and t is an

indeterminate, is (Int(D))' a finitely generated Int(Z))-module?

4. The inclusion of Int(D) in D'[X] and

the Noetherian property revisited

The methods used to prove Fact 1.1 yield a slightly stronger result, which

will be useful to us in proving a partial converse to Theorem 2.3.

Proposition 4.1. Let S be a subset of a domain R, P be a prime ideal of R,

and f(X) be a polynomial with coefficients in the field of fractions of R for

which f(S) ç R. If the number ofcosets of P in R met by S is greater than

deg(f), then f(X)£RP[X].

Proof. Write f(X) = f0 + fX + ■■■ + fnXn , and take elements t0, tx, ... , t„
of S in distinct cosets of P . If T denotes the (n + 1) x (n + 1) Vandermonde

matrix whose jth column is the (_/— 1 )st powers of the elements t, in order, and
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if F is the column matrix of the coefficients f , then TF is the column matrix

with entries /(/,■), all in R . The determinant of T is d = Yi^AU - tf), which

by our choice of the elements t¡ is not in P. But for each i = 0, 1, ... , n ,

Cramer's rule shows that dfi is the determinant of a matrix with entries in R,

and hence in RP , and since d is a unit in RP , f £ RP .   D

Definition 4.2. For a domain D that is not a finite field, we set

Da = Ç]{DP: P £ Spec(D) such that D/P is infinite}.

We note that, for a prime P of D, D/P is infinite iff either P is not
maximal or P is maximal but has infinite residue field. The proof of part (1)

of the following result is immediate from Proposition 4.1, and part (2) follows

from part (1).

Corollary 4.3. Suppose D is a subring of a domain R. (1) For each P in

Spec(iî) such that D/(P n D) is infinite, Int(D) ç RP[X]. In particular,
lnt(D) C Da[X].

(2) // D is Noetherian and f]{RP : P £ Spec(i?) and D/(P n D) is infinite}
is a finitely generated D-module, then lnt(D) is Noetherian. In particular, if Da

is a finitely generated D-module, then \n\(D) is Noetherian.

Suppose D is Noetherian. Then it follows from [Na, (33.10)] that for a

prime ideal P' of D', D'/P' is infinite iff D/(P' n D) is infinite, and hence
Da C (D')a . If for every height-one prime P' of D', D'/P' is infinite, then

the fact that D' is Krull implies that

(D')a ç f]{D'P, : P' is a height-one prime of D'} = D',

so that (D'Y = D'. These observations and Corollary 4.3 then yield the fol-

lowing result.

Corollary 4.4. Let D be a Noetherian domain such that for every height-one

prime P' of the integral closure D' of D, D'/P' is infinite (for example, such
that D' has no height-one maximal ideals). Then lnt(D) c D'[X]. In particular,

in this case, if D' is a finitely generated D-module, then Int(D) is Noetherian.

A familiar domain to which this corollary applies is constructed as follows:

Let ¡i,ü be indeterminates over the finite field k, and set D = k[[u, v]].

Write D' in the form D' = k + M, where M — (u, v)k[[u, v]] is the unique

maximal ideal of D', and set D = k + M2. Then the unique maximal ideal

M2 of D is an associated prime of a principal ideal (for example, M2 =

(u2D : u2v)), so Int(D) > D[X]. But since the conductor of D' into D is

nonzero (in fact, the conductor is M2), D' is a finitely generated D-module,

so Int(D) is Noetherian. This shows that Corollary 2.4 does not extend to

higher dimensional domains D.

In [Mj], Matijevic defined the "global transform" of a Noetherian domain D

as follows:

Dg = {x £ K: 31 an ideal of D such that dim(£>/7) = 0 and xl CD}.

In other words, Dg is the directed union of the transforms of all finite products

of maximal ideals of D. For D not a field, this definition is equivalent to

Dg = f]{DP: P £ Spec(D)\Mspec(Z))}.
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Thus, for a Noetherian domain D, Da is contained in Dg . Hence, by Corol-

lary 4.3, if Dg is a finitely generated D-module, then \nl(D) is Noetherian.

Nishimura [Ni, Proposition 1.2] shows that if every maximal ideal of the in-

tegral closure D'D, M of Dm has height greater than one, the AfDM-transform

f]{DP : P £ Spec(D), P < M} of Dm is integral over Dm—i.e., is contained

in DL M . Taking intersection as M varies over Mspec(D), we conclude that

Int(D) ç Da[X] ç D8[X] ç D'[X].

Thus, we obtain an alternative proof of Corollary 4.4. Ferrand and Raynaud

[FR, Proposition 3.3 and Remarques 3.7] give examples of two-dimensional

local domains (D, M) for which the transform Dg of M is not a finitely

generated D-module, but in these examples D/M is infinite. It seems possible

that there exist examples of the type constructed by Ferrand and Raynaud but

with finite residue field. So the question of whether, for a local domain D of

dimension greater than 1, Int(D) is Noetherian iff Int(D) is a finitely generated

D-algebra remains open.

5. Locally Noetherian does not imply Noetherian

Our next example shows that Int(D) may be locally Noetherian in a strong

sense without being Noetherian. The final touch in the example is provided by

the following lemma.

Lemma 5.1. Let (D, M) be a local domain with finite residue field and inte-

gral closure D' having no height-one maximal ideals. Assume that M is an

associated prime of a principal ideal of D. Then for some maximal ideal M'

of D', (M', X)D'[X] n Int(D) = P is an associated prime of (X) Int(D), and
Pf)D = M.

Proof. Since M has the form dD:Dc for some elements d, c of D, if we

set b — c/d, we get M = D : Db. Let T be a set of coset representatives

of M in D such that 0 G T, and set f(X) = TJ{(* - t): t £ T}. Then

bf(X) £ lnt(D)\D[X] and bf(X)/X i Int(D), so (X)lnt(D) ..mD)bf(X) isa
proper ideal of Int(D). Since (M, X)D[X] is maximal, it is contained in only

maximal ideals of D'[X], of the form (M', X)D'[X]. But (M, X) Int(D) ç
(X) Int(D) : lnt(0) bf(X), so at least one of the minimal primes P of (M, X) Int(D)

is an associated prime of (X) Int(D).   D

Example 5.2. A two-dimensional Noetherian domain D such that Int(D) is not

Noetherian but IM(Dm) is Noetherian for each maximal ideal M of D : Let k
be a finite field, p be its characteristic, and u, v be indeterminates. Enumerate

the nonzero elements of k[u, v]: gi, g2, ... . For each positive integer i in

turn: Pick a maximal ideal A, of k[u, v] suchthat bi---b¡-igi- ■■ g¡ $. N¡.

(This is possible because k[u, v] is a Hilbert ring. The elements b¡ will be

selected below; there are no b, in the product avoided to select Ái.) Let

Si denote the localization of k[u, v] at N,■, a two-dimensional regular local

ring, and pick a,, b, £ k[u, v] such that b¡ g N¡\(N? u A» U • • • U A,-.) and
a¡, bj is a minimal generating set for A,-5,-. Let Ri denote the localization of

Si[(ai/bj)2, (a,/A,)3] at its maximal ideal (a¡, b¡, (a¡/bi)2, (a,/A,)3), so that
the integral closure R', of R¡ is the localization of 5/[a,-/6/] at its maximal

ideal (at/hi, bf). Set D = f)~, R¡ ; then since for any / in R'¡, f" £ R¡, we
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see that D' - f)~, R'¡ is integral over D. Also D' is contained in the field of

fractions k(u, v) of D and is integrally closed, so D' is indeed the integral

closure of D.
Next we note that {.R;}^, and {R'j}°Zi are locally finite families, i.e., that

any nonzero element of k(u, v) is a unit in all but finitely many of each family.

Since k[u, v] C R¡ C R[., it is enough to note that, by our choice of the A,, no

nonzero element g¡ of k[u, v] is contained in infinitely many of the centers

A, of Rj and R'¡ on k[u, v]. The property of local finiteness allows us to

"commute localization and intersection," i.e., for any multiplicatively closed

subset T of D, Dp = f)%i(Ri)r and similarly for D'. In particular, if T —
k[u, v]\Nj, then for any j distinct from i, since b¡ £ A,, (Rj)t - (R'j)t 2

(Sj)T = f]{k[u,v]P: P £ Spec(k[u, v]), P ç A,■ n A,} D Ä} D R¡, while
(R¡)t = R¡ ; so if M¡ is the center on D of the maximal ideal of R¡, we get

Ri = T>t ç Dm, Ç R¡, so Dm, = R¡ ■ Similarly if M[ denotes the center on D'
of the maximal ideal of R\, then (D')M< = R'¡ ■

Now we want to show that D is Noetherian. Let d be a nonzero element

of D ; then dD = f|~. dR¿, and dR¡ = R, for all but finitely many positive
integers i, so dD is the intersection of finitely many primary ideals (contracted

from the remaining R¡). So to see that D is Noetherian, it suffices to show

that, for each nonzero primary ideal Q of D, D/Q is Noetherian.

Suppose first that the radical P of Q is a height-one prime of D . Then P

does not contain any M¡, so (R¡)d\p is a proper localization of R¡, i.e., one

of a¡, b¡, (a¡/bj)2, (a¡/b¡)3 is a unit in (R¡)d\p • It is easy to check in each of

these four cases that a¡/b¡ £ (R¡)d\p , and hence (Rí)d\p - (R'¡)d\p ■ Now the

height-one primes of R'¡ are A,i?' and some of the form (f)k[u,v\f)C)R'j for

/ irreducible in k[u, v]. Since biR\ lies over A, in k[u, v], the localization

of R'¡ at bjR'j is a discrete rank-one valuation domain containing k[u, v], and

by our choice of the A, these localizations form a locally finite family. The

localizations of k[u, v] at height-one primes also form a locally finite family,

so the intersection of any subfamily of the union of these two families is a

Krull domain. In particular, DP = f)°li(Ri)D\p = C}™i(R'í)d\p is Krull, and
since DP is also one-dimensional and local, it is a discrete rank-one valuation

domain. Thus Q is a symbolic power of P. Moreover, D/P is Noetherian:

If p = (f)k[u, v](f) DD, then D/P lies between k[u,v]/(f) and its field of
fractions, so by the Krull-Akizuki Theorem D/P is Noetherian. If P = bjR'^D

for some i, then D/P lies between the field F = k[u, v]/N, and R'¡/biR'¡, a
polynomial ring in one indeterminate over F ; so again D/P is Noetherian. It

follows from [HL, Lemma 3.3] that D/Q is Noetherian in this case.

Now suppose the radical M of Q is maximal in D. Then D/Q = DM/QDM,
so it is enough to show that Dm is Noetherian. For M — M¡, Dm = R¡ is

Noetherian. If M ± M¡ for every /, then DM = C\T=i(R')d\m = C\Z\Ír'í)d\m
is a Krull domain between k[u, v] and its field of fractions; so it is Noetherian

by [H, Theorem 9].
We can also use the descriptions of the localizations of D at its maximal

ideals M in the last paragraph to see that Int(DM) is Noetherian: If M = M¡,

then Int(DA/) = Int(/?,), which lies between R,[X] and R'¡[X]; since R'; has

nonzero conductor into R¡, we see that Int(D^) is Noetherian. Suppose M ^

Mi for every / ; then as we saw above,  DM  is integrally closed.   Moreover,
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if M were of height one, then Dm would be a discrete rank-one valuation

domain and hence a localization of D', i.e., a localization of one of the R'¡ at

a height-one prime, i.e., a localization of one of the R¡ = Dm, , which would

imply that M ç M¡. It follows that M has height two, and hence by Corollary
2.5 that \ni(DM) = DM[X], which is Noetherian.

Finally, assume by way of contradiction that Int(D) is Noetherian. For

each positive integer i, M¡Rj = (ai/b¡)2R¡ : (a¡/b¡)3 is an associated prime of

(ai/bi)2R¡; so by Lemma 5.1, (M\, X)R\\X] n Int(Z?,) = P, is an associated
prime of (X) in Int(i?,), and hence P, nlnt(D) is an associated prime of (X)

in Int(D). All the .P, nlnt(D) are distinct (since their intersections with D are

the distinct M¡), so (X) has infinitely many associated primes in Int(D), the

desired contradiction. Thus, Int(D) is not Noetherian.

6. The inclusion of Int(D) in Int(D')

In conclusion we provide a description of the one-dimensional Noetherian

domains D for which Int(D) ç Int(D').

Proposition 6.1. Let D be a one-dimensional Noetherian domain with integral

closure D'. The following conditions are equivalent:

(1) Int(D) C Int(D').

(2) For each maximal ideal M' of D' for which D'/M' is finite, we have

D'/M' = D/(M' n D) and (M' n D)D'M, = M'D'M,.

Proof. It is clear that (2) is a local statement; since D and D' are Noetherian, it

follows easily from [SSY, Proposition 5] that ( 1 ) is also local—i.e., that Int(D) ç

Int(D') iff In^D^no) Ç Int(D^,) for every maximal ideal M' of D'. Thus we
may assume that D is local with maximal ideal M (so that D' is a semilocal

principal ideal domain) and consider a particular maximal ideal M' of D'.

Moreover, if D'/M' is infinite, then D/M is also infinite, so Int(D) = D[X] ç

D'M, [X] = Int(D^, ) ; thus we need only consider those M' for which the residue

field is finite.
(2) =>• (1). Let R = D'M, ; then the hypotheses of (2) imply that R =

D+MR . Take f(X) e Int(D), and write f(X) = g(X)/d , where g(X) £ D[X]
and d g D\(0). Choose a power M" of M for which M" ç dD. Then

R = D + MR = D + M(D + MR) = D + M2R = • • • = D + M nR = D + dR.

Thus, for any element r of R there is an element a in D such that r-a £ dR ;

and since g(X) £ D[X] ç R[X], we have g(r)-g(a) is divisible in R by r-a

and hence by d. Thus, g(r) = d(f(a)) + (g(r) - g (a)) £ dR—i.e., f(r) £ R .
We conclude that f(X) £ lnt(R) = lnt(D'M,).

(1) => (2). Let T be a set of coset representatives of D in M such that

0 G T, and let p(X) = R{X - t: t £ T}. If D/M < D'/M', then there ex-
ists an element b of D' that is congruent to no element of T modulo M'.

Choose m in M\(0) and a positive integer k such that Mk ç niD. Then

f(X) = p(X)k/m £ Int(D); but p(b)k/m £ D' because, by the choice of

b, p(b) i M', and hence p(b)k i M' d mD'. Therefore f(X) i Int(D'),
and Int(D) £ Int(D') in this case. On the other hand, if D/M = D'/M' but

MD'M, < M'D'M,, then MD'M, ç [M'D'M,]2 = a2D'M,, where a isa generator

of M' in D'. Thus if g(X) = p(X)2/ai, then g(D) is contained in the Ja-
cobson radical of D'. As in the proof of Proposition 2.2, it then follows that
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g(X)m £ Int(D) for some positive integer m . However, g(X)m $ Int(D') be-

cause, for example, g(a)m £ D'M, for any positive integer m . This completes

the proof.   D
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Addendum

We remark that in Theorem 6 and Corollary 7 of [GHLS], the hypothesis

that the domain D be countable can be replaced by the hypothesis that the

spectrum of D is countable. Thus, for example, Corollary 7 of [GHLS] applies

in the case where D is a complete discrete rank-one valuation domain.
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